

Received 30 September 2020 Accepted 28 October 2020

Edited by A. M. Chippindale, University of Reading, England

Keywords: crystal structure; coordination polymer; mandelate,1,2-bi(4-pyridyl)ethane; disorder.

CCDC reference: 2040978

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the coordination polymer *catena*-poly[[bis[hydroxy(phenyl)acetato- $\kappa^2 O^1, O^2$]zinc(II)]- μ_2 -1,2-bis(pyridin-4-yl)ethane- $\kappa^2 N:N'$]

Shen Fwu Ming^a and Lush Shie Fu^{b*}

^aDepartment of Medical Laboratory Science Biotechnology, Yuanpei University, No. 306, Yuanpei Street, Hsinchu, Taiwan 30015, ROC, and ^bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei Street, Hsinchu, Taiwan 30015, ROC. *Correspondence e-mail: lush@mail.ypu.edu.tw

In the title polymeric Zn^{II} compound, $[Zn(C_8H_7O_3)_2(C_{12}H_{12}N_2)]_n$, the Zn cation is coordinated by two N atoms from 1,2-bis(pyridin-4-yl)ethane unit and four O atoms from two mandelate [or hydroxy(phenyl)acetate] anions in a slightly distorted octahedral coordination geometry. The 1,2-bis(pyridin-4-yl)ethane unit bridges two Zn^{II} cations, related by an inversion centre, to form a polymeric chain along [110]. The crystal structure features extensive O $-H\cdots$ O and weak C $-H\cdots$ O hydrogen bonds, with C $-H\cdots\pi$ interactions and $\pi-\pi$ interactions also being present. The centroid–centroid distance between the phenyl ring of the mandelate group and the 1,2-bis(pyridine-4-yl)ethane moiety is 4.951 (2) Å. The 1,2-bis(pyridin-4-yl)ethane ligand is disordered over two positions, with a refined occupancy of 0.578 (14) for the major component.

1. Chemical context

 α -Hydroxycarboxylic acids play an important role in many biological processes and in coordination chemistry (Miyamoto *et al.*, 1989). The deprotonated anion of one example, mandelic acid (2-hydroxy-2-phenylacetic acid), can behave as a multifunctional ligand and can act as a bridging ligand in metal complexes by involving the oxygen atoms of the carboxylate and hydroxy groups (Zechel *et al.*, 2019; Smatanová *et al.*, 2000; Bromant *et al.*, 2005). We report the preparation and structural characterization of a new coordination polymer in which the Zn^{II} cations are coordinated to two mandelate anions, behaving as bidentate ligands, and linked together *via* 1,2-bis(4-pyridyl)ethane molecules. 1,2-Bis(4-pyridyl)ethane is a versatile building block for the purposes of crystal engineering as the pyridyl N atoms can connect to adjacent metals to form a chain (Lee & Kim, 2015).

Figure 1

View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$]. The major disorder component of the pyridine unit is drawn using solid lines and the minor disorder component is drawn using dashed lines.

1.1. Structural commentary

The asymmetric unit of the title compound comprises one Zn^{II} cation, one mandelate anion and one half of a 1,2-bis(4-pyridin-4-yl)ethane molecule. There is an inversion centre located at the mid-point of the ethane C–C bond in the 1,2-bis(4-pyridin-4-yl)ethane molecule. Each Zn^{II} cation is coordinated by two N atoms from two 1,2-bis(4-pyridin-4-yl)ethane molecules in a *trans* arrangement and four O atoms from two mandelate anions in a slightly distorted octahedral coordination geometry, as shown in Table 1 and Fig. 1. The mandelate anions are coordinated to the central Zn^{2+} cation

Table 1Selected geometric parameters (Å, °).

0	1 ()	/	
Zn-O1	2.0290 (14)	O2-C1	1.250 (3)
Zn-O3	2.1013 (15)	O3-C2	1.424 (2)
Zn-N	2.2217 (19)	N-C13	1.334 (3)
O1-C1	1.260 (2)	N-C9	1.339 (3)
O1–Zn–O3	80.02 (6)	C9-N-C13	117.3 (2)
O1-Zn-N	90.25 (7)	O2-C1-C2	116.10 (17)
$O1-Zn-O3^{i}$	99.98 (6)	O1-C1-O2	124.67 (19)
O1-Zn-N ⁱ	89.75 (7)	O1-C1-C2	119.21 (18)
O3-Zn-N	88.73 (6)	O3-C2-C3	110.90 (18)
O3-Zn-N ⁱ	91.27 (6)	O3-C2-C1	110.17 (16)
Zn-O1-C1	116.96 (13)	N-C9-C10	118.8 (4)
Zn-O3-C2	113.41 (12)	N-C9-C10'	127.1 (6)
Zn-N-C13	120.03 (16)	N-C13-C12'	116.3 (4)
Zn-N-C9	122.45 (16)	N-C13-C12	126.5 (3)

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

form five-membered chelate rings *via* an oxygen atom of the OH group [Zn-O3 = 2.1013 (15) Å] and an oxygen atom of the carboxyl group [Zn-O1=2.0290 (14) Å]. The Zn^{II} cations are linked together *via* 1,2-bis(4-pyridin-4-yl)ethane bridges, forming a polymeric chain along [110].

2. Supramolecular features

The crystal structure features extensive $O-H\cdots O$ hydrogen bonding $[O3\cdots O2^{ii}=2.572 (2) \text{ Å}]$ (Fig. 2), establishing a threedimensional network that is consolidated by further C- $H\cdots O$ hydrogen-bonding interactions. The C2 $-H2A\cdots O1^{ii}$, C8 $-H8A\cdots O2^{iii}$ and C13 $-H13A\cdots O2^{ii}$ distances are 3.193 (2), 3.378 (3), and 3.064 (3) Å, respectively (Table 2). In addition, C $-H \cdots \pi$ interactions $[C9-H9A\cdots Cg5^{iv} =$ 3.781 (2) Å and C12'-H12 $B\cdots Cg5^{ii} =$ 3.649 (8) Å, Table 2] and $\pi-\pi$ stacking are present in the crystal structure. The distance $Cg5\cdots Cg3^{iv}$ between the centroids of the phenyl ring (C3–C8) of the mandelate group and of the 1,2-bis(pyridine-4-

Figure 2

The molecular packing of the title compound. Hydrogen bonds are shown as dashed lines. The minor occupancy components of the disordered pyridine carbon atoms have been omitted for clarity.

research communications

Table 2	
Hydrogen-bond geometry (Å,	°).

Cg5 is the centroid of the C3-C8 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O3-H3A\cdots O2^{ii}$	0.86 (3)	1.72 (3)	2.572 (2)	177.3 (15)
$C2-H2A\cdots O1^{ii}$	1.00	2.46	3.193 (2)	129
$C8-H8A\cdots O2^{iii}$	0.95	2.44	3.378 (3)	168
$C13-H13A\cdots O2^{ii}$	0.96	2.43	3.064 (3)	124
$C9-H9A\cdots Cg5^{iv}$	0.96	2.88	3.781 (2)	157
$C12' - H12B \cdots Cg5^{ii}$	0.95	2.75	3.649 (8)	159
	. 1 1	. 3 (. 1 . 1	

Symmetry codes: (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

yl)ethane moiety (C9–C13) [symmetry code: (iv) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$] is 4.951 (2) Å and the dihedral angle between the two rings is 62.6 (2)°.

3. Database survey

Other examples of complexes containing the mandelate anion and the 1,2-bis(pyridine-4-yl)ethane moiety were found in the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016). These include catena-[[μ -oxido(phenyl)acetato](μ -4,4'-ethane-1,2-divldipyridine)zinc(II) perchlorate monohydrate] (CSD refcode QEBFUB; Guo et al., 2015), which has a ClO_4^- counter-ion. An Ni complex, *catena*-[bis](hydroxy)(phenyl)acetato]{ μ -4-[2-(pyridin-4-yl)ethyl]pyridine]nickel(II)], isostructural with the title compound, has also been reported (QEBFAH; Guo et al., 2015). A complex with the same molecular formula but different coordination environment of the Zn atom, catena-[[μ_2 -1,2-bis(4-pyridyl)ethane]bis(2-hydroxy-2-phenylacetato)zinc(II)] (MUBZEP; Yu et al., 2009) has also been characterized. In this case, the 1,2-bis(pyridine-4-yl)ethane and mandelate units are *cis* to each other.

4. Synthesis and crystallization

 $Zn(NO_3)_2$ (91.4 mg, 0.50 mmol), 1,2-bi(4-pyridyl)ethane (92.1 mg, 0.50 mmol) and mandelic acid (76.0 mg, 0.50 mmol) were mixed in deionized water. The mixture was placed in a 25 mL Teflon linear reactor and heated at 423 K in an autoclave for 24 h. The resulting solution was slowly cooled to room temperature. Yellow transparent single crystals of the title compound were obtained in 75% yield (based on Zn).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. Atoms C10, C11, C12, C14 of the pyridine ring are disordered over two sets of sites with an occupancy of 0.578 (14) for the major moiety. C-bound H atoms were included in calculated positions and treated as riding: C-H = 0.95 Å with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms. The hydroxy H atoms, which could not be located in a difference-Fourier map, were

Table 3 Experimental datails	
Crystal data	$[\mathbf{Z}_{\mathbf{r}}(\mathbf{C},\mathbf{H},\mathbf{O}),(\mathbf{C},\mathbf{H},\mathbf{N})]$
	$\begin{bmatrix} \Sigma \Pi (C_8 \Pi_7 O_3)_2 (C_{12} \Pi_{12} N_2) \end{bmatrix}$
Crystal system, space group	Monoclinic C2/c
Temperature (K)	150
$a \ b \ c \ (\text{\AA})$	25 6754 (19) 9 8838 (5)
<i>u</i> , <i>b</i> , <i>c</i> (11)	10 6208 (7)
β (°)	108.234 (7)
$V(A^3)$	2559.9 (3)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.01
Crystal size (mm)	$0.35 \times 0.32 \times 0.26$
Data collection	
Diffractometer	Oxford Diffraction Gemini-S CCD detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.936, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5016, 2270, 1970
R _{int}	0.027
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.082, 1.04
No. of reflections	2270
No. of parameters	210
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}}$ (e Å ⁻³)	0.43, -0.41

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999) and PLATON (Spek, 2020).

included in idealized calculated positions that gave the most sensible geometry.

Funding information

This work was supported financially by Yuanpei University, Taiwan.

References

- Brandenburg, K. & Putz, H. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bromant, C., Nika, W., Pantenburg, I. & Meyer, G. (2005). Z. Naturforsch. Teil B, 60, 753–757.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guo, W. Y., Li, M. L., Shi, Y. J., Song, H. H. & Yu, H. T. (2015). J. Coord. Chem. 68, 4224–4241.
- Lee, D. N. & Kim, Y. (2015). Acta Cryst. E71, m150-m151.
- Miyamoto, T. K., Okude, K., Maeda, K., Ichida, H., Sasaki, Y. & Tashiro, T. (1989). *Bull. Chem. Soc. Jpn*, **62**, 3239–3246.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smatanová, I. K., Marek, J., Švančárek, P. & Schwendt, P. (2000). Acta Cryst. C56, 154–155.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.
- Zechel, F., Schwendt, P., Gyepes, R., Šimunek, J., Tatiersky, J. & Krivosudský, L. (2019). New J. Chem. 43, 17696–17702.

Acta Cryst. (2020). E76, 1868-1870 [https://doi.org/10.1107/S2056989020014322]

Crystal structure of the coordination polymer *catena*-poly[[bis[hydroxy(phenyl)-acetato- $\kappa^2 O^1, O^2$]zinc(II)]- μ_2 -1,2-bis(pyridin-4-yl)ethane- $\kappa^2 N$:N']

Shen Fwu Ming and Lush Shie Fu

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2009); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 1999); software used to prepare material for publication: *PLATON* (Spek, 2020).

catena-Poly[[bis[hydroxy(phenyl)acetato- $\kappa^2 O^1, O^2$]zinc(II)]- μ_2 -1,2-bis(pyridin-4-yl)ethane- $\kappa^2 N:N'$]

Crystal data

 $[Zn(C_8H_7O_3)_2(C_{12}H_{12}N_2)]$ $M_r = 551.90$ Monoclinic, C2/cHall symbol: -C 2yc a = 25.6754 (19) Å b = 9.8838 (5) Å c = 10.6208 (7) Å $\beta = 108.234$ (7)° V = 2559.9 (3) Å³ Z = 4

Data collection

Oxford Diffraction Gemini-S CCD detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) $T_{\min} = 0.936, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.082$ S = 1.042270 reflections 210 parameters 0 restraints F(000) = 1144 $D_x = 1.432 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1818 reflections $\theta = 2.8-29.2^{\circ}$ $\mu = 1.00 \text{ mm}^{-1}$ T = 150 KParallelepiped, yellow $0.35 \times 0.32 \times 0.26 \text{ mm}$

5016 measured reflections 2270 independent reflections 1970 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -23 \rightarrow 30$ $k = -7 \rightarrow 11$ $l = -12 \rightarrow 11$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_o^2) + (0.038P)^2 + 2.1396P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn	0.25000	0.25000	0.50000	0.0138 (1)	
01	0.25093 (6)	0.37191 (14)	0.65439 (14)	0.0171 (5)	
O2	0.26248 (7)	0.37664 (14)	0.87065 (15)	0.0229 (5)	
O3	0.28062 (6)	0.11415 (15)	0.65814 (14)	0.0151 (5)	
Ν	0.16575 (7)	0.18198 (19)	0.48454 (18)	0.0189 (6)	
C1	0.26431 (9)	0.3184 (2)	0.7677 (2)	0.0146 (6)	
C2	0.28282 (9)	0.1695 (2)	0.7835 (2)	0.0154 (7)	
C3	0.33972 (9)	0.1537 (2)	0.8826 (2)	0.0164 (6)	
C4	0.38568 (10)	0.1438 (2)	0.8401 (2)	0.0249 (7)	
C5	0.43745 (11)	0.1262 (3)	0.9311 (3)	0.0349 (9)	
C6	0.44387 (11)	0.1178 (3)	1.0644 (3)	0.0352 (9)	
C7	0.39842 (11)	0.1278 (2)	1.1077 (2)	0.0319 (8)	
C8	0.34670 (10)	0.1461 (2)	1.0174 (2)	0.0235 (7)	
C9	0.13113 (11)	0.2581 (2)	0.5259 (3)	0.0279 (8)	
C10	0.0768 (3)	0.2104 (9)	0.5048 (9)	0.0261 (19)	0.578 (14)
C11	0.0594 (2)	0.0835 (5)	0.4523 (9)	0.026 (2)	0.578 (14)
C12	0.0972 (3)	0.0046 (6)	0.4172 (10)	0.0260 (18)	0.578 (14)
C13	0.14957 (10)	0.0569 (2)	0.4432 (3)	0.0310 (8)	
C14	0.0017 (3)	0.0308 (7)	0.4359 (5)	0.0341 (17)	0.578 (14)
C12′	0.1046 (4)	0.0024 (8)	0.4827 (13)	0.025 (3)	0.422 (14)
C14′	0.0228 (4)	0.0209 (9)	0.5626 (7)	0.028 (3)	0.422 (14)
C10′	0.0870 (5)	0.2148 (13)	0.5599 (12)	0.026 (3)	0.422 (14)
C11′	0.0722 (3)	0.0805 (6)	0.5343 (12)	0.021 (2)	0.422 (14)
H4A	0.38160	0.14900	0.74820	0.0300*	
H7A	0.40270	0.12210	1.19970	0.0380*	
H5A	0.46860	0.12000	0.90120	0.0420*	
H6A	0.47930	0.10510	1.12650	0.0420*	
H10A	0.05140	0.26770	0.52760	0.0320*	0.578 (14)
H12A	0.08770	-0.08160	0.37700	0.0310*	0.578 (14)
H13A	0.17770	-0.00500	0.43840	0.0370*	
H14A	-0.02490	0.10630	0.40920	0.0410*	0.578 (14)
H14B	-0.00830	-0.03820	0.36490	0.0410*	0.578 (14)
H8A	0.31580	0.15360	1.04800	0.0280*	
H9A	0.13500	0.35420	0.51880	0.0330*	
H2A	0.25660	0.11780	0.81760	0.0180*	
H3A	0.2653 (11)	0.036 (3)	0.647 (3)	0.039 (8)*	
			× /		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10B	0.06730	0.27390	0.59920	0.0310*	0.422 (14)
H12B	0.09720	-0.09190	0.47220	0.0300*	0.422 (14)
H14C	0.00800	0.08830	0.61150	0.0340*	0.422 (14)
H14D	0.03450	-0.05930	0.62030	0.0340*	0.422 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0156 (2)	0.0132 (2)	0.0143 (2)	-0.0016 (2)	0.0070 (2)	-0.0005 (1)
01	0.0242 (9)	0.0122 (7)	0.0164 (8)	0.0026 (7)	0.0086 (6)	0.0012 (6)
O2	0.0352 (10)	0.0182 (8)	0.0176 (8)	0.0074 (7)	0.0115 (7)	-0.0001 (6)
03	0.0222 (9)	0.0085 (7)	0.0157 (8)	-0.0012 (7)	0.0075 (6)	-0.0007 (6)
Ν	0.0166 (10)	0.0191 (10)	0.0217 (10)	-0.0016 (9)	0.0072 (8)	0.0046 (8)
C1	0.0134 (11)	0.0133 (11)	0.0193 (11)	-0.0012 (9)	0.0084 (9)	-0.0006 (9)
C2	0.0208 (12)	0.0109 (11)	0.0183 (11)	-0.0013 (10)	0.0115 (9)	-0.0014 (8)
C3	0.0214 (12)	0.0088 (10)	0.0196 (11)	0.0000 (9)	0.0074 (9)	0.0015 (8)
C4	0.0221 (13)	0.0303 (13)	0.0227 (12)	0.0043 (11)	0.0075 (10)	0.0005 (10)
C5	0.0222 (14)	0.0431 (16)	0.0388 (16)	0.0047 (13)	0.0089 (12)	0.0005 (12)
C6	0.0274 (15)	0.0358 (15)	0.0324 (15)	0.0032 (12)	-0.0049 (12)	0.0040 (12)
C7	0.0412 (17)	0.0305 (14)	0.0187 (12)	-0.0026 (13)	0.0016 (11)	0.0041 (10)
C8	0.0298 (14)	0.0198 (12)	0.0234 (12)	-0.0020 (11)	0.0118 (10)	0.0015 (10)
C9	0.0229 (14)	0.0229 (13)	0.0414 (15)	0.0022 (11)	0.0151 (12)	0.0065 (11)
C10	0.014 (3)	0.038 (3)	0.028 (4)	-0.001 (3)	0.009 (3)	-0.005 (4)
C11	0.016 (2)	0.032 (3)	0.030 (5)	-0.007 (2)	0.007 (3)	0.005 (2)
C12	0.024 (3)	0.020 (2)	0.034 (4)	-0.003 (2)	0.009 (3)	-0.001 (3)
C13	0.0174 (13)	0.0188 (13)	0.0563 (17)	0.0011 (11)	0.0110 (12)	0.0067 (12)
C14	0.022 (3)	0.042 (3)	0.040 (3)	-0.006 (3)	0.012 (2)	0.007 (3)
C12′	0.024 (4)	0.016 (3)	0.036 (6)	-0.005 (3)	0.011 (4)	-0.002 (4)
C14′	0.026 (5)	0.031 (4)	0.035 (4)	-0.008 (4)	0.020 (3)	0.002 (3)
C10′	0.022 (5)	0.029 (4)	0.025 (6)	-0.004 (3)	0.006 (5)	-0.011 (5)
C11′	0.014 (3)	0.028 (3)	0.021 (6)	-0.005 (3)	0.007 (3)	0.001 (3)

Geometric parameters (Å, °)

Zn—O1	2.0290 (14)	C11—C12	1.384 (10)
Zn—O3	2.1013 (15)	C11—C14	1.528 (10)
Zn—N	2.2217 (19)	C11′—C14′	1.512 (13)
Zn—O1 ⁱ	2.0290 (14)	C11′—C12′	1.369 (14)
Zn—O3 ⁱ	2.1013 (15)	C12—C13	1.385 (9)
Zn—N ⁱ	2.2217 (19)	C12′—C13	1.450 (11)
01—C1	1.260 (2)	C14—C14 ⁱⁱ	1.519 (8)
O2—C1	1.250 (3)	C14′—C14′ ⁱⁱ	1.528 (12)
O3—C2	1.424 (2)	C2—H2A	1.0000
ОЗ—НЗА	0.86 (3)	C4—H4A	0.9500
N—C13	1.334 (3)	С5—Н5А	0.9500
N—C9	1.339 (3)	C6—H6A	0.9500
C1—C2	1.540 (3)	С7—Н7А	0.9500
C2—C3	1.518 (3)	C8—H8A	0.9500

C3—C8	1.388 (3)	С9—Н9А	0.9600
C3—C4	1.393 (4)	C10—H10A	0.9500
C4—C5	1.388 (4)	C10′—H10B	0.9500
C5—C6	1.376 (4)	C12—H12A	0.9500
C6—C7	1.385 (4)	C12′—H12B	0.9500
C7—C8	1.385 (3)	C13—H13A	0.9600
C9—C10	1.422 (9)	C14—H14B	0.9900
C9-C10'	1.361(14)	C14—H14A	0.9900
C10-C11	1.388(11)	C14' - H14C	0.9900
C10' - C11'	1.384(14)	C14'—H14D	0.9900
	1.504 (14)		0.7700
0103	2.656 (2)	C9····H4A ⁱ	2.9700
01N	3,015(2)	C10H14B ⁱⁱ	3 0700
01	2,419(2)	C10'····H7A ^{iv}	2,9600
$01 \cdots C9$	3,156(3)	$C12' \cdots H14C^{ii}$	2.9000
$01 \cdots C13^{i}$	3,123(3)	C12H3A	3.09(3)
01	3.123(3) 3.103(2)	$C14' \cdots H12B^{ii}$	3.0700
$O1 \cdots N^{i}$	3.193(2)		2.4600
	3.002(2)	$H2A \cdots C1$	2.4000
$O_2 = C_{\text{pin}}$	3.104(2)		3.0900
02	5.578 (5) 2.572 (2)		2.4700
0203	2.572(2)	H3A. C12	2.79(3)
02	3.350 (2)		3.09 (3)
	3.192 (3)	H3A····O2	1.72(3)
02C13m	3.064 (3)	H3A····Cl ^v	2.54 (3)
O3…O1 ¹	3.164 (2)	Н4А…ОЗ	2.4900
O3…N	3.024 (2)	$H4A\cdots N^{1}$	2.9200
O3…C1	2.431 (3)	H4A····C9 ⁱ	2.9700
O3…O2 ^v	2.572 (2)	H5A····H10A ^{vi}	2.4000
O3…C1 ^v	3.326 (3)	H6A····H6A ^{vii}	2.5000
O3…O1	2.656 (2)	H7A····C10′ ^{iv}	2.9600
O3…N _i	3.092 (2)	$H7A$ ···H10 B^{iv}	2.2800
O1…H13A ⁱ	2.6800	H8A…H2A	2.4700
O1…H3A ⁱⁱⁱ	2.79 (3)	H8A…O2 ^{iv}	2.4400
01…Н9А	2.8800	H9A····C8 ⁱⁱⁱ	2.9700
O1····H2A ⁱⁱⁱ	2.4600	H9A····C7 ⁱⁱⁱ	3.0200
O2····H8A ^{iv}	2.4400	H9A…O1	2.8800
O2····H3A ⁱⁱⁱ	1.72 (3)	H10A…H14A	2.5300
O2…H13A ⁱⁱⁱ	2.4300	H10A…C5 ^{viii}	2.9700
O3…H4A	2.4900	H10A…H5A ^{viii}	2.4000
N…O1	3.015 (2)	H10B…H14C	2.4100
NO3	3.024 (2)	H10B…H7A ^{iv}	2.2800
N…O1 ⁱ	3.002 (2)	H12A…H14B	2.4700
N···O3 ⁱ	3.092(2)	H12A····C7 ^v	2.8900
N…H4A ⁱ	2.9200	H12B···H14D	2,6000
C1O3 ⁱⁱⁱ	3 326 (3)	H12B····C14′ ⁱⁱ	3 0700
$C^{2} \cdots O^{2^{v}}$	3 350 (2)	H12B····C7v	2 9100
$C^{2} = 0^{1}$	3,103(2)	H12BC8v	2.9100
C8O2	3.195(2) 3.107(2)	H12B $U0$ H12BH14 C^{ii}	2.5500
00 02	5.174 (5)		2.5700

C8····O2 ^{iv}	3.378 (3)	H12B····C6 ^v	3.0400
C13…O2 ^v	3.064 (3)	H13A…O1 ⁱ	2.6800
C1···H3A ⁱⁱⁱ	2.54 (3)	H13A…O2 ^v	2.4300
C1···H2A ⁱⁱⁱ	3.0900	H14A…C5 ^{viii}	2.8500
C5…H10A ^{vi}	2.9700	H14A…H10A	2.5300
C5····H14A ^{vi}	2.8500	H14B…H12A	2.4700
C6···H12B ⁱⁱⁱ	3.0400	H14B…C10 ⁱⁱ	3.0700
C7…H12B ⁱⁱⁱ	2.9100	H14C···H10B	2.4100
C7···H12A ⁱⁱⁱ	2.8900	H14C···C12′ ⁱⁱ	2.8900
C7···H9A ^v	3 0200	H14C····H12B ⁱⁱ	2.5700
C8····H12B ⁱⁱⁱ	2 9500	H14D····H12B	2.6000
C8····H9A ^v	2.9300		2.0000
	2.9700		
O1—Zn—O3	80.02 (6)	C10'—C11'—C14'	122.1 (9)
O1—Zn—N	90.25 (7)	C11—C12—C13	117.1 (6)
$O1$ —Zn— $O1^i$	180.00	C11'—C12'—C13	123.0 (7)
$O1$ —Zn— $O3^i$	99.98 (6)	N—C13—C12′	116.3 (4)
O1—Zn—N ⁱ	89.75 (7)	N—C13—C12	126.5 (3)
O3— Zn — N	88.73 (6)	C11-C14-C14 ⁱⁱ	111.1 (6)
$O1^{i}$ Zn $O3$	99.98 (6)	C11′—C14′—C14′ ⁱⁱ	113.2 (7)
$O_3 - Z_n - O_3^i$	180.00	O3-C2-H2A	108.00
$O3 - Zn - N^i$	91 27 (6)	C1 - C2 - H2A	108.00
$O1^{i}$ Zn N	89 75 (7)	C3 - C2 - H2A	108.00
$O3^{i}$ Zn N	91.27 (6)	C3-C4-H4A	120.00
$N_7 n_N^i$	180.00	$C_5 - C_4 - H_4 A$	120.00
Ω^{i}	80.02 (6)	C4 - C5 - H5A	120.00
$O1^{i}$ Zn $O3^{i}$	90.25(7)	C6-C5-H5A	120.00
$O_1 - Z_1 - N$ $O_3^i - Z_2 - N^i$	90.23 (7) 88 73 (6)	C5-C6-H6A	120.00
$7n_{1}$	116 96 (13)	C7-C6-H6A	120.00
2n - 01 - 01 7n - 03 - 02	110.90(13) 113.41(12)	C6-C7-H7A	120.00
C2_O3_H3A	113.41(12) 111(2)	C8 - C7 - H7A	120.00
7n O3 H3A	111(2) 115(2)	$C_3 C_8 H_{8A}$	120.00
$Z_{\rm III} = 0.5 = 113$ A	113(2) 120.03(16)	C_{3} C_{8} H_{8}	120.00
$Z_{II} = N = C_{IJ}$	120.05 (10)	$C = C \delta = H \delta A$	120.00
C0 N C13	122.43(10) 117.3(2)	$\mathbf{N} = \mathbf{C} \mathbf{J} = \mathbf{H} \mathbf{J} \mathbf{A}$	116.00
$O_2 = O_1 = O_2$	117.3(2) 116.10(17)	C10' C0 H0A	117.00
02 - C1 - C2	110.10(17) 124.67(10)	C10 - C9 - H9A	117.00
01 - 01 - 02	124.07 (19)	C_{11} C_{10} H_{10A}	119.00
OI - CI - C2	119.21 (18)	CII = CI0 = HI0A	119.00
03-02-03	110.90 (18)	$C_{11} = C_{10} = H_{10} = H_{10}$	122.00
03-02-01	110.17 (10)	C11 - C12 - H10B	122.00
C1 - C2 - C3	111./9(1/) 120.4(2)	C12 - C12 - H12A	122.00
$C_2 - C_3 - C_8$	120.4(2)	C13 - C12 - H12A	121.00
$C_2 - C_3 - C_4$	120.78(18)	C13 - C12' - H12B	119.00
$C_4 - C_5 - C_8$	118.8(2)	$U_{11} - U_{12} - H_{12B}$	118.00
$C_3 - C_4 - C_5$	120.5(2)	N = - U13 = - H13A	116.00
-100 - 100	120.3(3)	C12— $C13$ — $H13A$	117.00
US-U6-U/	119.7 (3)	C12'— $C13$ — $H13A$	117.00
C6-C7-C8	120.3 (2)	C14 ⁿ —C14—H14B	109.00

C3—C8—C7	120.5 (2)	H14A—C14—H14B	108.00
N—C9—C10	118.8 (4)	C14 ⁱⁱ —C14—H14A	109.00
N—C9—C10′	127.1 (6)	C11—C14—H14A	109.00
C9—C10—C11	122.6 (7)	C11—C14—H14B	109.00
C9—C10′—C11′	116.7 (10)	C11'—C14'—H14C	109.00
C12—C11—C14	120.9 (6)	C11'—C14'—H14D	109.00
C10-C11-C14	122.2 (6)	H14C—C14′—H14D	108.00
C10—C11—C12	116.9 (6)	C14' ⁱⁱ —C14'—H14C	109.00
C12'—C11'—C14'	120.9 (7)	C14' ⁱⁱ —C14'—H14D	109.00
C10'—C11'—C12'	117.1 (9)		
O3—Zn—O1—C1	-4.48 (16)	01—C1—C2—C3	122.9 (2)
N—Zn—O1—C1	84.19 (17)	O2—C1—C2—O3	177.3 (2)
$O3^{i}$ —Zn—O1—C1	175.52 (16)	O2—C1—C2—C3	-58.9 (3)
N^{i} — Zn — $O1$ — $C1$	-95.81 (17)	O3—C2—C3—C4	25.8 (3)
O1—Zn—O3—C2	3.79 (14)	O3—C2—C3—C8	-152.94 (18)
N—Zn—O3—C2	-86.69 (14)	C1—C2—C3—C4	-97.6 (2)
$O1^{i}$ —Zn—O3—C2	-176.21 (14)	C1—C2—C3—C8	83.7 (2)
N ⁱ —Zn—O3—C2	93.31 (14)	C2—C3—C4—C5	-178.5 (2)
O1—Zn—N—C9	25.77 (19)	C8—C3—C4—C5	0.2 (3)
O1—Zn—N—C13	-148.46 (19)	C2—C3—C8—C7	178.15 (18)
O3—Zn—N—C9	105.78 (19)	C4—C3—C8—C7	-0.6 (3)
O3—Zn—N—C13	-68.45 (19)	C3—C4—C5—C6	0.3 (4)
$O1^{i}$ —Zn—N—C9	-154.23 (19)	C4—C5—C6—C7	-0.4 (4)
$O1^{i}$ —Zn—N—C13	31.54 (19)	C5—C6—C7—C8	0.0 (4)
$O3^{i}$ —Zn—N—C9	-74.22 (19)	C6—C7—C8—C3	0.5 (3)
$O3^{i}$ —Zn—N—C13	111.55 (19)	N-C9-C10-C11	5.1 (10)
Zn—O1—C1—O2	-173.77 (19)	C9—C10—C11—C12	-1.7 (13)
Zn—O1—C1—C2	4.3 (3)	C9—C10—C11—C14	177.2 (6)
Zn—O3—C2—C1	-2.7 (2)	C10-C11-C12-C13	2.9 (12)
Zn—O3—C2—C3	-127.04 (14)	C14—C11—C12—C13	-176.0 (6)
Zn—N—C9—C10	176.2 (4)	C10-C11-C14-C14 ⁱⁱ	-83.6 (9)
C13—N—C9—C10	-9.5 (5)	C12-C11-C14-C14 ⁱⁱ	95.2 (9)
Zn—N—C13—C12	-173.7 (5)	C11—C12—C13—N	-8.3 (11)
C9—N—C13—C12	11.8 (6)	C11-C14-C14 ⁱⁱ -C11 ⁱⁱ	180.0 (5)
O1—C1—C2—O3	-0.9 (3)		

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*, -*y*, -*z*+1; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) -*x*+1/2, -*y*+1/2, -*z*+2; (v) -*x*+1/2, *y*-1/2, -*z*+3/2; (vi) *x*+1/2, -*y*+1/2, *z*+1/2; (vii) -*x*+1/2, -*y*+1/2, -*z*+3/2; (vi)

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C3–C8 ring.

D—H···A	<i>D</i> —Н	H····A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
$O3-H3A\cdots O2^{\vee}$	0.86 (3)	1.72 (3)	2.572 (2)	177.3 (15)
C2— $H2A$ ···O1 ^v	1.00	2.46	3.193 (2)	129
C8—H8A····O2 ^{iv}	0.95	2.44	3.378 (3)	168
C13—H13 <i>A</i> ···O2 ^v	0.96	2.43	3.064 (3)	124

C9-H9A···Cg5ⁱⁱⁱ 0.96 2.88 3.781 (2) 157 C12'-H12B···Cg5^v 0.95 2.75 3.649 (8) 159

Symmetry codes: (iii) -x+1/2, y+1/2, -z+3/2; (iv) -x+1/2, -y+1/2, -z+2; (v) -x+1/2, y-1/2, -z+3/2.