

Received 30 September 2020

Accepted 20 October 2020

Edited by A. V. Yatsenko, Moscow State University, Russia

Keywords: crystal structure; hydrogen bonding; α-picoline; coordination chemistry.

CCDC reference: 1997065

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of dichlorido(methanol- κO)bis(2-methylpyridine- κN)-copper(II)

J. Prakasha Reddy*

Department of Chemistry, School of Sciences, Indrashil University, Rajpur, Gujarat, 382740, India. *Correspondence e-mail: j.prakashareddy@gmail.com

In the title complex, $[CuCl_2(C_6H_7N)_2(CH_3OH)]$, the copper atom is fivecoordinated by two nitrogen atoms of 2-methylpyridine ligands, two chloro ligands and an oxygen atom of the methanol molecule, being in a tetragonalpyramidal environment with N and Cl atoms forming the basal plane. In the crystal, complex molecules related by the twofold rotation axis are joined into dimeric units by pairs of $O-H\cdots$ Cl hydrogen bonds. These dimeric units are assembled through $C-H\cdots$ Cl interactions into layers parallel to (001).

1. Chemical context

Both organic (from simple molecules to peptides and proteins) and inorganic complexes have been known for more than a century and are central to modern chemistry because of their fascinating, aesthetic architectures and multiple applications (Gan et al., 2011; Gellman, 1998; Thorat et al., 2013; Vijayadas et al., 2013; Ziach et al., 2018). Recently, coordination compounds have been reported that find applications in fields such as catalysis, gas storage, separation technology and molecular sensing (Mueller et al., 2006; Wan et al., 2006; Férey et al., 2003; James, 2003; Eddaoudi et al., 2002; Ruben et al., 2005, Kitagawa et al., 2004). There are many reports of coordination complexes where solvent molecules are located in the voids of the crystal structure. However, reports describing the replacement of coordinated solvent molecules with other molecules are relatively scarce. As part of ongoing work in our laboratory, employing pyridine ligands in the preparation of various coordination networks (PrakashaReddy & Pedireddi, 2007), we have extended our work to the synthesis of other coordination networks. A literature survey revealed that coordination complex aquadichlorobis(2-methylpyridine)copper(II) had been reported (Marsh et al., 1982). Our interest was to see whether we could replace the coordinated water molecule in the complex with other solvent molecules such as methanol or ethanol via single-crystal-to-single-crystal transition (SCSCT) to investigate the structural changes. Although we could not succeed in SCSCT of the complex, we were successful in synthesizing the methanol-coordinated copper complex incorporating 2-methylpyridine as reported herein.

Figure 1

2. Structural commentary

The title complex crystallizes in the monoclinic space group C2/c with one complex molecule per asymmetric unit. Two nitrogen atoms of 2-methylpyridine and two chloride ligands, which are *trans* to each other, form a rectangle around the copper atom, and its coordination is accomplished by the methanol oxygen atom, thus giving a tetragonal pyramid with the oxygen atom in the apical position (Fig. 1). The copper atom deviates by 0.161 (1) Å from the basal plane, and the angles around the copper atom are close to 90 and 180°. A

Figure 2

The O-H···Cl interactions between two molecules in the crystal of the title compound. The molecules are related by the symmetry operation -x + 1, y, $-z + \frac{1}{2}$.

Table 1Hydrogen-bond geometry (Å, °).

, , ,		/		
$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots Cl2^i$	0.75 (3)	2.37 (3)	3.1033 (16)	169 (3)
$C7 - H7 \cdot \cdot \cdot O1$	0.93	2.46	3.148 (3)	130
$C8-H8 \cdot \cdot \cdot O1$	0.93	2.34	3.036 (3)	131
$C11 - H11 \cdots Cl2^{ii}$	0.93	2.83	3.624 (2)	143

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z.

plausible reason why the formation of a dimeric unit, as observed in $[Cu(2-pic)_2Cl_2]$ (Marsh *et al.*, 1982), was precluded might be the presence of the coordinated methanol molecule on one side of the coordination rectangle and the methyl groups on the other side. The methylpyridine rings form angles of 83.96 (8) and 85.70 (8)° with respect to the basal plane of the coordination polyhedron, thereby plausibly blocking the sixth coordination position at the copper atom. The Cu–O bond distance of 2.353 (2) Å is relatively short for an apical atom in typical copper(II) tetragonal–pyramidal structure, whereas the Cu–N bond lengths [Cu1–N1= 2.031 (2) Å, Cu1–N2 = 2.017 (2) Å] agree well with those reported for related structures (Wang *et al.*, 2006; Gong *et al.*, 2009; Hu & Zhang, 2010; Li, 2011; Sun *et al.*, 2013; Sanram *et al.*, 2016).

3. Supramolecular features and Hirshfeld surface analysis

Complex molecules related by the twofold rotation axis are connected by pairs of $O-H\cdots Cl$ interactions (Table 1) involving the apical methanol ligand of one complex and a chloride ligand of the other, thus forming dimers (Fig. 2). The $O\cdots Cl$ and $H\cdots Cl$ distances and associated $O-H\cdots Cl$ angle lie within the ranges observed for other $O-H\cdots Cl$ interactions reported in the literature (Veal *et al.*, 1972; Taylor,

Figure 3

A general view of the crystal packing of the title compound along the *b*-axis direction with intermolecular contacts shown as dashed lines.

Figure 4

Hirshfeld surface mapped over d_{norm} highlighting the regions of O-H···Cl and C-H···Cl intermolecular contacts.

2016; Ristić *et al.*, 2020; Estes *et al.*, 1976). These dimers are further connected through $C-H\cdots Cl$ interactions, generating layers parallel to (001) (Fig. 3, Table 1).

A Hirshfeld surface analysis was performed and twodimensional fingerprint plots were prepared using *Crystal Explorer17* (Turner *et al.*, 2017) to further investigate the intermolecular interactions in the title structure. The Hirshfeld surface mapped over d_{norm} with corresponding colours representing intermolecular interactions is shown in Fig. 4.

Figure 5

The full two-dimensional fingerprint plot for the title compound and those delineated into $H \cdots H$ (53.1%), $Cl \cdots H/H \cdots Cl$ (25.2%) and $C \cdots H/H \cdots Cl$ (15.5%) contacts.

The red spots on the surface correspond to the $O-H\cdots Cl$, $C-H\cdots Cl$ and $C-H\cdots O$ interactions (Table 1). The twodimensional fingerprint plots (McKinnon *et al.*, 2007) are shown in Fig. 5. Weak van der Waals $H\cdots H$ contacts make the largest contribution (53.1%) to the Hirshfeld surface. The twodimensional fingerprint plot shows two spikes that correspond to $H\cdots Cl/Cl\cdots H$ (25.2%) interactions, which highlight the hydrogen bonds between adjacent molecules. The $C\cdots H/$ $H\cdots C$ (15.5%) interactions also appear as two spikes. These interactions play a crucial role in the overall cohesion of the crystal packing.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of August 2019; Groom *et al.*, 2016) revealed three closely related complexes: dichlorobis(2methylpyridine)copper(II) (refcode CMPYCU01; Marsh *et al.*, 1982), aquadichlorobis(2-methylpyridine)copper(II) (BIJWUM; Marsh *et al.*, 1982) and bis(isothiocyanato)methanolbis(2-methylpyridine)copper(II) (ABOSIW; Handy *et al.*, 2017). Structures CMPYCU01 and BIJWUM display dimeric arrangements of the complex molecules arising from $C-H\cdots CI$ and $O-H\cdots CI$ interactions, respectively, while in the copper(II) thiocyanate complex ABOSIW, the threedimensional network is formed as a result of $O-H\cdots S$, C- $H\cdots S$ and $C-H\cdots C$ interactions.

5. Synthesis and crystallization

2-Methylpyridine and anhydrous copper(II) chloride were obtained from Aldrich, and HPLC grade methanol was used for reaction. Anhydrous copper(II) chloride (0.675 g, 0.005 mol) was dissolved in 15 ml of methanol. To this solution, 2-methylpyridine (0.93 g, 0.01 mol) dissolved in 15 mL of methanol was added. The resulting mixture was stirred for *ca* 40 min. at room temperature and filtered to remove the greenish precipitate. The blue filtrate was then allowed to stand at room temperature for a few hours, before being filtered and left at room temperature for crystallization. A mixture of dark-blue crystals of different sizes was obtained after 24 h.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference map. The C-bound H atoms were placed in calculated positions with C—H = 0.93-0.96 Å and refined as riding, whereas the coordinates of O-bound H atom were freely refined. All hydrogen atoms were refined with fixed isotropic displacement parameters [$U_{iso}(H) = 1.2-1.5U_{eq}(C,O)$]

research communications

Table 2 Experimental details.

. .

Crystal data	
Chemical formula	$[CuCl_2(C_6H_7N)_2(CH_4O)]$
M _r	352.73
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	120
a, b, c (Å)	14.4554 (4), 8.5865 (2), 24.8055 (8)
β (°)	99.209 (3)
$V(\dot{A}^3)$	3039.22 (16)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	1.78
Crystal size (mm)	$0.21 \times 0.16 \times 0.11$
Data collection	
Diffractometer	Agilent XCalibur diffractometer
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.549, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15974, 5137, 4251
R _{int}	0.040
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.758
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.081, 1.13
No. of reflections	5137
No. of parameters	178
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.54, -0.51

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

The author thanks Professor G. C. Diaz de Delgado for her help and discussions on the crystallographic aspect of this work.

Funding information

Funding for this research was provided by: Indrashil University.

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.
- Estes, E. D. & Hodgson, D. J. (1976). Inorg. Chem. 15, 348-352.
- Férey, G., Latroche, M., Serre, C., Millange, F., Loiseau, T. & Percheron-Guégan, A. (2003). Chem. Commun. pp. 2976-2977.

- Gan, Q., Ferrand, Y., Bao, C., Kauffmann, B., Grélard, A., Jiang, H. & Huc, I. (2011). Science, 331, 1172-1175. Gellman, S. H. (1998). Acc. Chem. Res. 31, 173-180. Gong, Y.-N., Liu, C.-B., Huang, D.-H. & Xiong, Z.-Q. (2009). Z. Kristallogr. New Cryst. Struct. 224, 421-422. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179. Handy, J. V., Ayala, G. & Pike, R. D. (2017). Inorg. Chim. Acta, 456, 64-75. Hu, M. & Zhang, Q. (2010). Z. Kristallogr. New Cryst. Struct. 225, 155-156. James, S. L. (2003). Chem. Soc. Rev. 32, 276-288. Kitagawa, S., Kitaura, R. & Noro, S. I. (2004). Angew. Chem. Int. Ed. 43. 2334-2375. Li, N.-Y. (2011). Acta Cryst. E67, m1397. Marsh, W. E., Hatfield, W. E. & Hodgson, D. J. (1982). Inorg. Chem. 21, 2679-2684. McKinnon, J. J., Javatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. (2006). J. Mater. Chem. 16, 626-636. Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. PrakashaReddy, J. & Pedireddi, V. R. (2007). Eur. J. Inorg. Chem. pp. 1150-1158. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Ristić, P., Blagojević, V., Janjić, G., Rodić, M., Vulić, P., Donnard, M., Gulea, M., Chylewska, A., Makowski, M., Todorović, T. & Filipović, N. (2020). Cryst. Growth Des. 20, 3018-3033. Ruben, M., Ziener, U., Lehn, J. M., Ksenofontov, V., Gütlich, P. & Vaughan, G. B. M. (2005). Chem. Eur. J. 11, 94-100. Sanram, S., Boonmak, J. & Youngme, S. (2016). Polyhedron, 119, 151-159. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8. Sun, C.-Y., Li, W.-J. & Che, P. (2013). Z. Anorg. Allg. Chem. 639, 129-133 Taylor, R. (2016). Cryst. Growth Des. 16, 4165-4168. Thorat, V. H., Ingole, T. S., Vijavadas, K. N., Nair, R. V., Kale, S. S., Ramesh, V. V. E., Davis, H. C., Prabhakaran, P., Gonnade, R. G., Gawade, R. L., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Eur. J. Org. Chem. 2013, 3529-3542. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Veal, J. T. & Hodgson, D. J. (1972). Inorg. Chem. 11, 597-600.
- Vijayadas, K. N., Nair, R. V., Gawade, R. L., Kotmale, A. S., Prabhakaran, P., Gonnade, R. G., Puranik, V. G., Rajamohanan, P. R. & Sanjayan, G. J. (2013). Org. Biomol. Chem. 11, 8348-8356.
- Wan, Y., Yang, H. & Zhao, D. (2006). Acc. Chem. Res. 39, 423-432. Wang, X.-L., Qin, C. & &Wang, E.-B. (2006). Cryst. Growth Des. 6, 439-443.
- Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P. P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., Chaignepain, S., Pourquier, P. & Huc, I. (2018). Nat. Chem. 10. 511-518.

supporting information

Acta Cryst. (2020). E76, 1771-1774 [https://doi.org/10.1107/S2056989020014036]

Crystal structure and Hirshfeld surface analysis of dichlorido(methanol- κO)bis-(2-methylpyridine- κN)copper(II)

J. Prakasha Reddy

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Dichlorido(methanol-kO)bis(2-methylpyridine-kN)copper(II)

Crystal data	
$[CuCl_2(C_6H_7N)_2(CH_4O)]$ $M_r = 352.73$ Monoclinic, C2/c a = 14.4554 (4) Å b = 8.5865 (2) Å c = 24.8055 (8) Å $\beta = 99.209$ (3)° V = 3039.22 (16) Å ³ Z = 8	F(000) = 1448 $D_x = 1.542 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4621 reflections $\theta = 3.1-32.0^{\circ}$ $\mu = 1.78 \text{ mm}^{-1}$ T = 120 K Block, blue $0.21 \times 0.16 \times 0.11 \text{ mm}$
Data collection	
Agilent XCalibur diffractometer Detector resolution: 16.1511 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) $T_{min} = 0.549, T_{max} = 1.000$ 15974 measured reflections	5137 independent reflections 4251 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 32.6^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -20 \rightarrow 21$ $k = -12 \rightarrow 11$ $l = -37 \rightarrow 37$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.081$ S = 1.13 5137 reflections 178 parameters 0 restraints Primary atom site location: dual	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0199P)^2 + 4.4488P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.54$ e Å ⁻³ $\Delta\rho_{min} = -0.51$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.50986 (2)	0.75598 (3)	0.37062 (2)	0.01272 (6)
Cl1	0.41953 (3)	0.66088 (6)	0.43059 (2)	0.01703 (10)
C12	0.61677 (3)	0.86629 (5)	0.32152 (2)	0.01706 (10)
01	0.40656 (10)	0.69534 (18)	0.29006 (6)	0.0192 (3)
H1	0.408 (2)	0.738 (3)	0.2640 (12)	0.029*
N2	0.45788 (11)	0.97058 (19)	0.38001 (7)	0.0145 (3)
N1	0.57721 (11)	0.54847 (19)	0.37032 (7)	0.0149 (3)
C1	0.49779 (13)	1.0690 (2)	0.41912 (8)	0.0141 (3)
C2	0.45939 (14)	1.2154 (2)	0.42581 (8)	0.0168 (4)
H2	0.488544	1.282802	0.452631	0.020*
C3	0.64638 (14)	0.5067 (2)	0.41102 (9)	0.0175 (4)
C4	0.58446 (14)	1.0157 (2)	0.45567 (8)	0.0188 (4)
H4A	0.571444	0.921107	0.473669	0.028*
H4B	0.604355	1.094501	0.482496	0.028*
H4C	0.633209	0.997353	0.434317	0.028*
C5	0.66783 (15)	0.2646 (2)	0.36638 (9)	0.0220 (4)
Н5	0.698699	0.170012	0.364995	0.026*
C6	0.69292 (14)	0.3650 (2)	0.40943 (9)	0.0216 (4)
H6	0.740983	0.338329	0.437494	0.026*
C7	0.37914 (14)	1.0160 (2)	0.34693 (9)	0.0201 (4)
H7	0.351990	0.948582	0.319564	0.024*
C8	0.55316 (15)	0.4492 (2)	0.32849 (8)	0.0190 (4)
H8	0.505512	0.477838	0.300461	0.023*
С9	0.37781 (15)	1.2600 (2)	0.39241 (9)	0.0192 (4)
Н9	0.350701	1.356328	0.396982	0.023*
C10	0.59622 (16)	0.3063 (2)	0.32532 (9)	0.0220 (4)
H10	0.577215	0.239722	0.296070	0.026*
C11	0.33724 (15)	1.1589 (3)	0.35209 (9)	0.0223 (4)
H11	0.282686	1.186387	0.328834	0.027*
C12	0.32370 (15)	0.6023 (3)	0.28385 (9)	0.0231 (4)
H12A	0.326320	0.525448	0.256034	0.035*
H12B	0.269827	0.667541	0.273541	0.035*
H12C	0.319211	0.551434	0.317792	0.035*
C13	0.67215 (16)	0.6175 (3)	0.45740 (10)	0.0271 (5)
H13A	0.691508	0.714806	0.443729	0.041*
H13B	0.722622	0.574607	0.482943	0.041*
H13C	0.618872	0.634370	0.475334	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.01378 (11)	0.01059 (11)	0.01375 (11)	0.00289 (8)	0.00206 (8)	-0.00104 (8)
Cl1	0.0200 (2)	0.0157 (2)	0.0161 (2)	0.00216 (17)	0.00497 (17)	0.00003 (17)
Cl2	0.0182 (2)	0.0149 (2)	0.0192 (2)	-0.00028 (16)	0.00627 (17)	-0.00322 (17)
01	0.0226 (7)	0.0190 (7)	0.0152 (7)	-0.0020 (6)	0.0008 (6)	0.0024 (6)
N2	0.0145 (7)	0.0122 (7)	0.0175 (8)	0.0024 (6)	0.0047 (6)	0.0004 (6)
N1	0.0152 (7)	0.0133 (7)	0.0168 (8)	0.0020 (6)	0.0045 (6)	-0.0011 (6)
C1	0.0168 (8)	0.0135 (8)	0.0128 (8)	0.0014 (7)	0.0049 (7)	0.0018 (7)
C2	0.0226 (9)	0.0128 (9)	0.0165 (9)	0.0015 (7)	0.0075 (8)	-0.0011 (7)
C3	0.0157 (9)	0.0155 (9)	0.0217 (10)	0.0024 (7)	0.0041 (7)	0.0004 (8)
C4	0.0216 (9)	0.0175 (9)	0.0164 (9)	0.0042 (8)	0.0005 (8)	-0.0029 (8)
C5	0.0252 (10)	0.0135 (9)	0.0304 (11)	0.0057 (8)	0.0138 (9)	0.0027 (8)
C6	0.0186 (9)	0.0196 (10)	0.0264 (11)	0.0077 (8)	0.0030 (8)	0.0034 (8)
C7	0.0178 (9)	0.0175 (9)	0.0237 (10)	0.0031 (7)	-0.0009 (8)	-0.0033 (8)
C8	0.0235 (10)	0.0190 (10)	0.0154 (9)	0.0031 (8)	0.0055 (8)	-0.0020 (8)
C9	0.0233 (10)	0.0138 (9)	0.0225 (10)	0.0058 (7)	0.0094 (8)	0.0022 (8)
C10	0.0293 (11)	0.0163 (9)	0.0222 (10)	0.0021 (8)	0.0101 (9)	-0.0044 (8)
C11	0.0198 (9)	0.0205 (10)	0.0252 (11)	0.0076 (8)	-0.0007 (8)	-0.0007 (8)
C12	0.0202 (10)	0.0289 (11)	0.0202 (10)	0.0001 (8)	0.0033 (8)	-0.0023 (9)
C13	0.0236(10)	0.0235(11)	0.0303(12)	0.0082(0)	-0.0081(0)	-0.0060(0)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cu1—Cl1	2.2818 (5)	C4—H4C	0.9600
Cu1—Cl2	2.3175 (5)	С5—Н5	0.9300
Cu1—O1	2.3534 (15)	C5—C6	1.375 (3)
Cu1—N2	2.0174 (16)	C5—C10	1.378 (3)
Cu1—N1	2.0310 (16)	С6—Н6	0.9300
01—H1	0.75 (3)	С7—Н7	0.9300
O1—C12	1.427 (3)	C7—C11	1.383 (3)
N2—C1	1.345 (2)	C8—H8	0.9300
N2—C7	1.350 (3)	C8—C10	1.384 (3)
N1—C3	1.351 (3)	С9—Н9	0.9300
N1—C8	1.345 (3)	C9—C11	1.382 (3)
C1—C2	1.395 (3)	C10—H10	0.9300
C1—C4	1.496 (3)	C11—H11	0.9300
С2—Н2	0.9300	C12—H12A	0.9600
С2—С9	1.382 (3)	C12—H12B	0.9600
С3—С6	1.394 (3)	C12—H12C	0.9600
C3—C13	1.494 (3)	C13—H13A	0.9600
C4—H4A	0.9600	C13—H13B	0.9600
C4—H4B	0.9600	C13—H13C	0.9600
Cl1—Cu1—Cl2	171.17 (2)	С6—С5—Н5	120.5
Cl1—Cu1—O1	97.06 (4)	C6—C5—C10	118.99 (19)
Cl2—Cu1—O1	91.73 (4)	С10—С5—Н5	120.5

N2—Cu1—Cl1	89.37 (5)	С3—С6—Н6	120.0
N2—Cu1—Cl2	88.82 (5)	C5—C6—C3	120.0 (2)
N2—Cu1—O1	95.90 (6)	С5—С6—Н6	120.0
N2—Cu1—N1	171.61 (7)	N2—C7—H7	118.7
N1—Cu1—Cl1	90.74 (5)	N2—C7—C11	122.6 (2)
N1—Cu1—Cl2	89.79 (5)	С11—С7—Н7	118.7
N1—Cu1—O1	92.42 (6)	N1—C8—H8	118.6
Cu1—O1—H1	121 (2)	N1-C8-C10	122.9 (2)
C12—O1—Cu1	128.53 (13)	С10—С8—Н8	118.6
С12—О1—Н1	109 (2)	С2—С9—Н9	120.6
C1—N2—Cu1	122.19 (13)	C2—C9—C11	118.84 (19)
C1—N2—C7	118.63 (17)	С11—С9—Н9	120.6
C7—N2—Cu1	119.16 (14)	C5—C10—C8	118.7 (2)
C3—N1—Cu1	121.89 (13)	C5-C10-H10	120.7
C8—N1—Cu1	119.60 (13)	C8—C10—H10	120.7
C8—N1—C3	118.50 (17)	C7—C11—H11	120.6
N2—C1—C2	121.29 (18)	C9—C11—C7	118.87 (19)
N2—C1—C4	117.75 (17)	C9—C11—H11	120.6
C2—C1—C4	120.96 (18)	O1—C12—H12A	109.5
C1—C2—H2	120.1	O1—C12—H12B	109.5
C9—C2—C1	119.71 (19)	O1—C12—H12C	109.5
С9—С2—Н2	120.1	H12A—C12—H12B	109.5
N1—C3—C6	120.91 (19)	H12A—C12—H12C	109.5
N1-C3-C13	118.02 (17)	H12B—C12—H12C	109.5
C6—C3—C13	121.06 (19)	С3—С13—Н13А	109.5
C1—C4—H4A	109.5	C3—C13—H13B	109.5
C1—C4—H4B	109.5	С3—С13—Н13С	109.5
C1—C4—H4C	109.5	H13A—C13—H13B	109.5
H4A—C4—H4B	109.5	H13A—C13—H13C	109.5
H4A—C4—H4C	109.5	H13B-C13-H13C	109.5
H4B—C4—H4C	109.5		
Cu1—N2—C1—C2	-178.36 (14)	C1—C2—C9—C11	-1.5 (3)
Cu1—N2—C1—C4	1.1 (2)	C2—C9—C11—C7	0.6 (3)
Cu1—N2—C7—C11	177.53 (17)	C3—N1—C8—C10	-0.1 (3)
Cu1—N1—C3—C6	-178.70 (15)	C4—C1—C2—C9	-178.23 (18)
Cu1—N1—C3—C13	0.6 (3)	C6—C5—C10—C8	1.1 (3)
Cu1—N1—C8—C10	179.63 (16)	C7—N2—C1—C2	0.0 (3)
N2—C1—C2—C9	1.2 (3)	C7—N2—C1—C4	179.42 (18)
N2-C7-C11-C9	0.5 (3)	C8—N1—C3—C6	1.0 (3)
N1—C3—C6—C5	-0.9 (3)	C8—N1—C3—C13	-179.70 (19)
N1-C8-C10-C5	-1.0 (3)	C10-C5-C6-C3	-0.2 (3)
C1—N2—C7—C11	-0.9 (3)	C13—C3—C6—C5	179.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O1—H1···Cl2 ⁱ	0.75 (3)	2.37 (3)	3.1033 (16)	169 (3)

supporting information

С7—Н7…О1	0.93	2.46	3.148 (3)	130	
С8—Н8…О1	0.93	2.34	3.036 (3)	131	
C11—H11····Cl2 ⁱⁱ	0.93	2.83	3.624 (2)	143	

Symmetry codes: (i) -x+1, y, -z+1/2; (ii) x-1/2, y+1/2, z.