

ISSN 2056-9890

Received 13 August 2020 Accepted 5 October 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; pyridine; hydrogen bonding; π – π stacking.

CCDC references: 2035321; 2035321

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2,6-bis(3-hydroxy-3-methylbut-1-yn-1-yl)pyridine monohydrate

Take-aki Koizumi* and Toshikazu Takata

School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan. *Correspondence e-mail: koizumi.t.aa@m.titech.ac.jp

In the title pyridine derivative, $C_{15}H_{17}NO_2 \cdot H_2O$, the two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring. In the crystal, hydrogen bonds between the pyridine molecule and the water molecule, *viz.* $O_{hydroxy} - H \cdots O_{water}$, $O_{hydroxy} - H \cdots O_{hydroxy}$, $O_{water} - H \cdots O_{hydroxy}$ and $O_{water} - H \cdots N_{pyridine}$, result in the formation of a ribbon-like structure running along [011].

1. Chemical context

Pyridine derivatives with propargyl alcohol groups as substituents in the 2,6-positions are interesting compounds that have been used as synthons of many reactive compounds (Furusho et al., 2004) and polymers (Miyagawa et al., 2010, 2011), as starting materials of helical polymers (Inouye et al., 2004; Waki et al., 2006; Abe, Machiguchi et al., 2008; Abe, Murayama et al., 2008), and as ligands for transition-metal complexes (Hung et al., 2009). Since such compounds have rigid structures containing one pyridine nitrogen and two alcoholic OH groups, they can be used to construct a higher order structure by coordination with metals and/or hydrogen-bond formation at multiple points. The crystal structures of 2,6-bis(3-methylbutyn-3-ol)pyridine, 1, and its complex with triphenylphosphine oxide (1-OPPh₃) were reported by Holmes et al. (2002). In the crystal of 1, the molecules form intermolecular hydrogen bonds with the pyridine ring and the two OH groups; the O-H···O hydrogen bonds from a 2_1 helical chain along the *b*-axis direction. The chains are linked by intermolecular N···H-O hydrogen bonds, forming a layer structure, and then form a stacking structure via C-H···O interactions between the layers. In contrast, in the case of 1-OPPh₃, each of the two OH groups forms a hydrogen bond with the O atom of OPPh3 without forming a network structure. Hence, it is expected that the crystal packing of 1 strongly depends on the presence or absence of hydrogen bonding. However, to our knowledge, the present examples have only been structurally analysed with 2,6-bis(propargyl alcohol)substituted pyridines. In this paper, we report the crystal structure of 2,6-bis(3-methylbutyn-3-ol)pyridine monohydrate, $1 \cdot H_2O$.

research communications

Figure 1

The molecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. A dashed line indicates the $O-H\cdots O$ hydrogen bond.

2. Structural commentary

The molecular structure of the title compound is depicted in Fig. 1. The bond lengths of two C=C triple bonds (C6=C7 and C11=C12) are 1.199 (2) and 1.191 (2) Å, respectively, consistent with the triple-bond character. The $C_{ipso}-C=C$ (C1-C6=C7 and C5-C11=C12) and C=C-C(OH) (C6=C7-C8 and C11=C12-C13) bond angles are 176.0 (2), 176.4 (2), 174.6 (2) and 178.5 (2)°, respectively. C6=C7-C8 is slightly distorted from a linear structure compared to the other bonds. The two OH groups are oriented in directions opposite to each other with respect to the plane of the pyridine ring, and the pyridine ring makes dihedral

Figure 2 Packing diagram of the title compound, viewed down the c axis.

angles of 50.50 (17) and 57.58 (15) $^{\circ}$, respectively, with the C7/ C8/O1 and C12/C13/O2 planes.

3. Supramolecular features

Fig. 2 depicts the packing of $1 \cdot H_2O$ along the *c* axis. The water molecules present as the crystallization solvent form intermolecular $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ interactions with the hydroxyl groups and the N atoms of the pyridine unit of molecule **1** (Table 1), resulting in a ribbon-like structure along [011] (Fig. 3). The pyridine ring forms $\pi - \pi$ stacking interactions with that in a neighboring ribbon in an *anti*-parallel

Partial packing diagram of the title compound, showing the chain formation along the *c* axis by π - π interactions (dashed lines). [Symmetry codes: (b) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}; (c) -x + \frac{1}{2}, -y + 1, z - \frac{1}{2}.]$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O2^i$	0.86 (3)	1.90 (3)	2.7640 (15)	175 (3)
$O2-H2\cdots O3$	0.89(3)	1.82(2)	2.7052 (17)	170(3)
$O3-H3A\cdots N1$ $O3-H3B\cdots O1^{iii}$	0.80(3) 0.83(3)	2.02 (3) 2.01 (3)	2.8790 (18) 2.8361 (19)	179 (3) 173 (3)

Symmetry codes: (i) $-x + \frac{3}{4}$, $y - \frac{1}{4}$, $z + \frac{1}{4}$, (ii) $-x + \frac{3}{4}$, $y + \frac{1}{4}$, $z - \frac{1}{4}$, (iii) $x, y + \frac{1}{2}$, $z - \frac{1}{2}$.

mode, resulting in a π - π network along the *c* axis (Fig. 4). The centroid-centroid distance between the pyridine rings $[Cg \cdots Cg^{iv};$ symmetry code: (iv) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}]$ is 3.5538 (11) Å. In the crystal of non-solvated 1 (space group $P2_1/c$; Holmes *et al.*, 2002), such π - π stacking interactions between the pyridine rings are not found.

4. Database survey

The Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) has 138 entries for structures containing 2,6-diethynylpyridine scaffolds, and for 2,6-bis(1-propyn-3-ol) derivatives gave two hits. The nonsolvated compound 2,6-bis(3-methylbutyn-3-ol)pyridine (refcode LUMYEX) and its complex with O=PPh₃ (LUMYIB) have been reported (Holmes et al., 2002). The benzene derivative containing two propargyl alcohol units at the 1,3-positions gives 34 hits; however, there is no report of a simple benzene derivative having a structure similar to that of **1**.

5. Synthesis and crystallization

2,6-Bis(3-methylbutyn-3-ol)pyridine was prepared by using a modified Potts method (Potts et al., 1993). 2,6-Dibromopyridine (9.1 g, 38 mmol) was reacted with 2-methyl-3-butyn-2-ol (13 g, 151 mmol) using CuI (225 mg, 1.3 mmol)/ PdCl₂(PPh₃)₂ (840 mg, 1.3 mmol) as a catalyst in a THF (50 mL)–NEt₃ (150 mL) solvent for 19 h at room temperature. The resulting dark-brown solution was guenched with an aqueous NH₄Cl solution and the obtained solid was eliminated by celite filtration. The solution was extracted by AcOEt, and the organic phase was dried over MgSO₄. After filtering off the desiccant, the filtrate was concentrated and subjected to silica-gel chromatography (eluent: AcOEt:hexane 3:2). Single crystals suitable for X-ray diffraction studies were obtained from an ethyl acetate solution via slow evaporation in air.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2. Water H atoms and alcohol H atoms were located in a difference-Fourier map, and were refined freely. All of the C-bound H atoms were positioned geometrically (C-H = 0.93 or 0.98 Å), and were refined using a

Table 2 Experimental datails	
Experimental details.	
Crystal data	
Chemical formula	$C_{15}H_{17}NO_2 \cdot H_2O$
$M_{\rm r}$	261.31
Crystal system, space group	Orthorhombic, <i>Fdd</i> 2
Temperature (K)	113
a, b, c (Å)	31.9834 (14), 27.7358 (13), 6.6610 (4)
$V(Å^3)$	5908.9 (5)
Z	16
Radiation type	Ου Κα
$\mu \text{ (mm}^{-1})$	0.66
μ (mm)	$0.34 \times 0.1 \times 0.1$
crystal size (lillin)	0.54 × 0.1 × 0.1
Data collection	
Diffractometer	Rigaku XtaLAB Synergy R, DW system, HyPix
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.817, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4676, 2071, 2045
Rint	0.015
$(\sin \theta/\lambda)$ $(Å^{-1})$	0.626
(Shi offormax (Tr)	0.020
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.082, 1.04
No. of reflections	2071
No. of parameters	192
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.18, -0.20
Absolute structure	Flack x determined using 495
	quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.02 (11)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), Olex2.solve (Bourhis et al., 2015), Olex2.refine (Bourhis et al., 2015) and OLEX2 (Dolomanov et al., 2009).

riding model, with $U_{iso}(H) = 1.2U_{eq}$ (aromatic-C) or $1.5U_{eq}$ (methyl-C).

Acknowledgements

The authors thank the CREST program (JST, JPMJCR1522) for financial support.

References

- Abe, H., Machiguchi, H., Matsumoto, S. & Inouye, M. (2008). J. Org. Chem. 73, 4650-4661.
- Abe, H., Murayama, D., Kayamori, F. & Inouye, M. (2008). Macromolecules, 41, 6903-6909.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Furusho, Y., Matsuyama, T., Takata, T., Moriuchi, T. & Hirao, T. (2004). Tetrahedron Lett. 45, 9593-9597.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Holmes, B. T., Padgett, C. W., Krawiec, M. & Pennington, W. T. (2002). Cryst. Growth Des. 2, 619-624.
- Hung, W.-C., Wang, L.-Y., Lai, C.-C., Liu, Y.-H., Peng, S.-M. & Chiu, S.-H. (2009). Tetrahedron Lett. 50, 267–270.

- Inouye, M., Waki, M. & Abe, H. (2004). J. Am. Chem. Soc. 126, 2022–2027.
- Miyagawa, N., Kawasaki, A., Watanabe, M., Ogawa, M., Koyama, Y. & Takata, T. (2011). Kobunshi Ronbunshu, **68**, 702–709.
- Miyagawa, N., Watanabe, M., Matsuyama, T., Koyama, Y., Moriuchi, T., Hirao, T., Furusho, Y. & Takata, T. (2010). *Chem. Commun.* 46, 1920–1922.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Potts, K. T., Horwitz, C. P., Fessak, A., Keshavarz-K, M., Nash, K. E. & Toscano, P. J. (1993). J. Am. Chem. Soc. 115, 10444–10445.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Waki, M., Abe, H. & Inouye, M. (2006). Chem. Eur. J. 12, 7839-7847.

supporting information

Acta Cryst. (2020). E76, 1737-1740 [https://doi.org/10.1107/S2056989020013304]

Crystal structure of 2,6-bis(3-hydroxy-3-methylbut-1-yn-1-yl)pyridine monohydrate

Take-aki Koizumi and Toshikazu Takata

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2019); cell refinement: *CrysAlis PRO* (Rigaku OD, 2019); data reduction: *CrysAlis PRO* (Rigaku OD, 2019); program(s) used to solve structure: *Olex2.solve* (Bourhis *et al.*, 2015); program(s) used to refine structure: *Olex2.refine* (Bourhis *et al.*, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

4-[6-(3-Hydroxy-3-methylbut-1-yn-1-yl)pyridin-2-yl]-2-methylbut-3-yn-2-ol monohydrate

Crystal data	
$C_{15}H_{17}NO_{2} \cdot H_{2}O$ $M_{r} = 261.31$ Orthorhombic, <i>Fdd2</i> $a = 31.9834 (14) \text{ Å}$ $b = 27.7358 (13) \text{ Å}$ $c = 6.6610 (4) \text{ Å}$ $V = 5908.9 (5) \text{ Å}^{3}$ $Z = 16$ $F(000) = 2240$	$D_x = 1.175 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4276 reflections $\theta = 4.2-74.9^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 113 K Plate, white $0.34 \times 0.1 \times 0.1 \text{ mm}$
Data collection	
Rigaku XtaLAB Synergy R, DW system, HyPix diffractometer Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source Mirror monochromator Detector resolution: 10.0000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019)	$T_{\min} = 0.817, T_{\max} = 1.000$ 4676 measured reflections 2071 independent reflections 2045 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.015$ $\theta_{\text{max}} = 75.0^{\circ}, \theta_{\text{min}} = 4.2^{\circ}$ $h = -40 \rightarrow 25$ $k = -22 \rightarrow 34$ $l = -8 \rightarrow 5$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.082$ S = 1.04 2071 reflections 192 parameters 1 restraint Primary atom site location: iterative	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 3.7832P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$

Absolute structure: Flack *x* determined using 495 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.02 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.35948 (3)	0.32551 (4)	0.6275 (2)	0.0246 (3)	
O2	0.34219 (3)	0.65799 (4)	0.3581 (2)	0.0216 (3)	
O3	0.38487 (4)	0.74210 (5)	0.3415 (3)	0.0329 (4)	
N1	0.27513 (4)	0.49371 (5)	0.5965 (3)	0.0166 (3)	
H1	0.3733 (8)	0.3523 (9)	0.623 (5)	0.041 (7)*	
H2	0.3550 (7)	0.6863 (9)	0.339 (5)	0.037 (6)*	
H2A	0.195964	0.419764	0.615414	0.022*	
Н3	0.158347	0.492523	0.628127	0.023*	
H3A	0.4117 (8)	0.7423 (8)	0.345 (5)	0.033 (6)*	
H3B	0.3782 (8)	0.7679 (10)	0.288 (5)	0.042 (7)*	
H4	0.194772	0.565882	0.611513	0.022*	
H9A	0.313194	0.255773	0.504956	0.037*	
H9B	0.271146	0.285849	0.469227	0.037*	
H9C	0.290932	0.282373	0.689425	0.037*	
H10A	0.353762	0.360767	0.264577	0.041*	
H10B	0.310243	0.336577	0.202018	0.041*	
H10C	0.350205	0.303410	0.244822	0.041*	
H14A	0.303649	0.733924	0.513951	0.036*	
H14B	0.271251	0.704803	0.651137	0.036*	
H14C	0.269906	0.699027	0.412177	0.036*	
H15A	0.369017	0.641198	0.719381	0.043*	
H15B	0.333112	0.668096	0.843702	0.043*	
H15C	0.364036	0.698483	0.703467	0.043*	
C1	0.25351 (4)	0.45203 (5)	0.6000 (3)	0.0160 (3)	
C2	0.21008 (5)	0.44989 (5)	0.6118 (3)	0.0182 (3)	
C3	0.18798 (5)	0.49280 (6)	0.6182 (3)	0.0193 (4)	
C4	0.20942 (4)	0.53608 (5)	0.6100 (3)	0.0183 (3)	
C5	0.25298 (4)	0.53508 (5)	0.5995 (3)	0.0159 (3)	
C6	0.27810 (5)	0.40863 (6)	0.5837 (3)	0.0186 (4)	
C7	0.29850 (5)	0.37292 (5)	0.5576 (3)	0.0190 (4)	
C8	0.32310 (5)	0.32951 (6)	0.5046 (3)	0.0179 (4)	
C9	0.29729 (5)	0.28434 (6)	0.5457 (3)	0.0244 (4)	
C10	0.33542 (6)	0.33286 (6)	0.2844 (3)	0.0275 (4)	
C11	0.27666 (4)	0.57928 (5)	0.5862 (3)	0.0170 (3)	
C12	0.29570 (4)	0.61579 (6)	0.5643 (3)	0.0178 (3)	

supporting information

C13	0.31907 (5)	0.66164 (5)	0.5422 (3)	0.0181 (4)
C14	0.28820 (5)	0.70362 (6)	0.5287 (3)	0.0238 (4)
C15	0.34897 (6)	0.66791 (7)	0.7178 (4)	0.0290 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0193 (5)	0.0161 (5)	0.0383 (9)	-0.0015 (4)	-0.0082 (6)	0.0042 (6)
O2	0.0195 (5)	0.0166 (5)	0.0287 (7)	-0.0014 (4)	0.0053 (6)	0.0013 (6)
03	0.0154 (5)	0.0246 (6)	0.0586 (11)	-0.0014 (4)	0.0000 (7)	0.0166 (7)
N1	0.0161 (5)	0.0165 (6)	0.0173 (8)	0.0000 (4)	-0.0002 (6)	0.0005 (6)
C1	0.0187 (7)	0.0157 (7)	0.0138 (8)	0.0000 (5)	-0.0010 (7)	0.0008 (7)
C2	0.0186 (6)	0.0176 (7)	0.0182 (9)	-0.0035 (5)	-0.0006 (7)	0.0009 (7)
C3	0.0144 (6)	0.0230 (8)	0.0205 (9)	-0.0004 (6)	-0.0009 (7)	0.0010 (8)
C4	0.0175 (7)	0.0180 (7)	0.0195 (9)	0.0022 (5)	0.0000 (7)	0.0000 (7)
C5	0.0183 (7)	0.0157 (7)	0.0136 (9)	-0.0003 (5)	0.0001 (7)	0.0007 (7)
C6	0.0185 (7)	0.0174 (7)	0.0200 (9)	-0.0027 (5)	-0.0010 (7)	0.0019 (7)
C7	0.0178 (6)	0.0168 (7)	0.0225 (9)	-0.0029 (5)	0.0009 (7)	0.0029 (8)
C8	0.0163 (6)	0.0143 (7)	0.0232 (10)	0.0003 (5)	-0.0017 (7)	0.0024 (7)
C9	0.0228 (7)	0.0164 (7)	0.0339 (11)	-0.0046 (6)	-0.0014 (8)	0.0015 (8)
C10	0.0299 (8)	0.0245 (8)	0.0280 (11)	0.0067 (7)	0.0065 (8)	0.0042 (8)
C11	0.0174 (7)	0.0175 (7)	0.0161 (8)	0.0017 (5)	-0.0005 (7)	-0.0004 (7)
C12	0.0173 (6)	0.0172 (7)	0.0190 (9)	0.0025 (6)	-0.0001 (6)	-0.0009 (7)
C13	0.0179 (7)	0.0135 (7)	0.0229 (10)	0.0004 (5)	0.0002 (7)	0.0001 (7)
C14	0.0230 (7)	0.0161 (7)	0.0322 (11)	0.0031 (6)	0.0025 (8)	0.0023 (8)
C15	0.0340 (9)	0.0203 (8)	0.0327 (11)	-0.0043 (7)	-0.0129 (8)	0.0014 (8)

Geometric parameters (Å, °)

O2—C13	1.436 (2)	C4—C3	1.384 (2)	
O2—H2	0.89 (3)	C13—C14	1.529 (2)	
O1—C8	1.427 (2)	C13—C15	1.521 (3)	
01—H1	0.86 (3)	C2—H2A	0.9500	
ОЗ—НЗА	0.86 (3)	C2—C3	1.385 (2)	
O3—H3B	0.83 (3)	С3—Н3	0.9500	
N1—C1	1.3473 (19)	С9—Н9А	0.9800	
N1—C5	1.3488 (19)	С9—Н9В	0.9800	
C1—C6	1.442 (2)	С9—Н9С	0.9800	
C1—C2	1.393 (2)	C10—H10A	0.9800	
С8—С7	1.481 (2)	C10—H10B	0.9800	
С8—С9	1.525 (2)	C10—H10C	0.9800	
C8—C10	1.522 (3)	C14—H14A	0.9800	
C5—C4	1.3952 (19)	C14—H14B	0.9800	
C5—C11	1.444 (2)	C14—H14C	0.9800	
C12—C11	1.191 (2)	C15—H15A	0.9800	
C12—C13	1.482 (2)	C15—H15B	0.9800	
С7—С6	1.199 (2)	C15—H15C	0.9800	
C4—H4	0.9500			

С13—О2—Н2	107 (2)	C3—C2—C1	118.31 (13)
C8—O1—H1	109.4 (19)	C3—C2—H2A	120.8
НЗА—ОЗ—НЗВ	105 (2)	C4—C3—C2	119.44 (13)
C1—N1—C5	117.40 (12)	С4—С3—Н3	120.3
N1—C1—C6	115.80 (12)	С2—С3—Н3	120.3
N1—C1—C2	123.32 (13)	С8—С9—Н9А	109.5
C2—C1—C6	120.85 (13)	С8—С9—Н9В	109.5
O1—C8—C7	111.09 (14)	С8—С9—Н9С	109.5
O1—C8—C9	105.94 (14)	H9A—C9—H9B	109.5
O1—C8—C10	110.27 (13)	Н9А—С9—Н9С	109.5
С7—С8—С9	109.73 (13)	H9B—C9—H9C	109.5
C7—C8—C10	108.51 (15)	C8—C10—H10A	109.5
C10—C8—C9	111.32 (16)	C8—C10—H10B	109.5
N1—C5—C4	122.83 (14)	C8—C10—H10C	109.5
N1-C5-C11	116.47 (12)	H10A-C10-H10B	109.5
C4—C5—C11	120.68 (14)	H10A-C10-H10C	109.5
C11—C12—C13	178.5 (2)	H10B—C10—H10C	109.5
C6—C7—C8	174.6 (2)	C13—C14—H14A	109.5
C5—C4—H4	120.7	C13—C14—H14B	109.5
C3—C4—C5	118.66 (14)	C13—C14—H14C	109.5
C3—C4—H4	120.7	H14A—C14—H14B	109.5
C12—C11—C5	176.4 (2)	H14A—C14—H14C	109.5
C7—C6—C1	176.0 (2)	H14B—C14—H14C	109.5
O2—C13—C12	106.48 (13)	C13—C15—H15A	109.5
O2—C13—C14	109.61 (14)	C13—C15—H15B	109.5
O2—C13—C15	109.95 (14)	C13—C15—H15C	109.5
C12—C13—C14	109.48 (12)	H15A—C15—H15B	109.5
C12—C13—C15	109.82 (15)	H15A—C15—H15C	109.5
C15—C13—C14	111.38 (14)	H15B—C15—H15C	109.5
C1—C2—H2A	120.8		
N1—C1—C2—C3	0.7 (3)	C5—N1—C1—C6	176.16 (16)
N1—C5—C4—C3	0.1 (3)	C5—N1—C1—C2	-1.8 (3)
C1—N1—C5—C4	1.3 (3)	C5—C4—C3—C2	-1.3 (3)
C1-N1-C5-C11	-177.20 (15)	C11—C5—C4—C3	178.62 (17)
C1—C2—C3—C4	0.9 (3)	C6—C1—C2—C3	-177.14 (17)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
O1—H1···O2 ⁱ	0.86 (3)	1.90 (3)	2.7640 (15)	175 (3)
O2—H2···O3	0.89 (3)	1.82 (2)	2.7052 (17)	170 (3)
O3—H3A····N1 ⁱⁱ	0.86 (3)	2.02 (3)	2.8790 (18)	179 (3)
O3—H3 <i>B</i> …O1 ⁱⁱⁱ	0.83 (3)	2.01 (3)	2.8361 (19)	173 (3)

Symmetry codes: (i) -x+3/4, y-1/4, z+1/4; (ii) -x+3/4, y+1/4, z-1/4; (iii) x, y+1/2, z-1/2.