Fifteen 4-(2-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in zero, one, two and three dimensions

Chayanna Harish Chinthal,^a Channappa N. Kavitha,^b Hemmige S. Yathirajan,^a* Sabine Foro,^c Ravindranath S. Rathore^d and Christopher Glidewell^e

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, ^bDepartment of Chemistry, Maharani's Science College for Women, Mysuru-570 001, India, ^cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, ^dDepartment of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya 824236, India, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: vathirajan@hotmail.com

Fifteen 4-(2-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. In the isostructural 4chlorobenzoate and 4-bromobenzoate salts, $C_{11}H_{17}N_2O^+ \cdot C_7H_4ClO_2^-$ (I) and $C_{11}H_{17}N_2O^+ \cdot C_7H_4BrO_2^-$ (II), and the 4-iodobenzoate salt $C_{11}H_{17}N_2O^+ \cdot C_7H_4IO_2^{-1}$ (III), the ions are linked by N-H···O hydrogen bonds, forming centrosymmetric $R_4^4(12)$ four-ion aggregates; a similar aggregate is formed in the 2-chlorobenzoate salt (V), isomeric with (I). In the 2-fluorobenzoate salt $C_{11}H_{17}N_2O^+ \cdot C_7H_4FO_2^-$ (IV), and the isomorphous pair of salts, the 2-bromobenzoate (VI), isomeric with (II) and 2-iodobenzoate (VII), isomeric with (III), N-H···O and C-H··· π (arene) interactions link the components into three-dimensional arrays. Four-ion $R_4^{4}(12)$ aggregates are also found in the 2-methylbenzoate, 4-aminobenzoate and 4-nitrobenzoate salts, $C_{11}H_{17}N_2O^+ \cdot C_8H_7O_2^-$ (VIII), $C_{11}H_{17}N_2O^+ \cdot C_7H_6NO_2^-$ (IX) and $C_{11}H_{17}N_2O^+ \cdot C_7H_4NO_4^-$ (X), but those in (IX) are linked into complex sheets by an additional $N-H\cdots O$ hydrogen bond. In the 3,5-dinitrobenzoate salt, $C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_6^- \cdot 2H_2O$ (XI), $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds link the components into a complex ribbon structure. In the picrate salt, $C_{11}H_{17}N_2O^+ \cdot C_6H_2N_3O_7^-$ (XII), the four-ion aggregates are linked into chains of rings by $C-H\cdots O$ hydrogen bonds. In the hydrogen maleate salt, $C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$ (XIII), two- and three-centre hydrogen bonds link the ions into a ribbon structure while both anions contain very short but asymmetric $O-H\cdots O$ hydrogen bonds, having $O\cdots O$ distances of 2.4447 (16) and 2.4707 (17) Å. $O-H \cdots O$ Hydrogen bonds link the anions in the hydrogen fumarate salt (XIV), isomeric with (XIII), into chains that are linked into sheets via N-H···O hydrogen bonds. In the hydrogen (2R,3R)-tartrate salt, $C_{11}H_{17}N_2O^+ \cdot C_4H_5O_6^- \cdot 1.698H_2O$ (XV), the anions are linked into sheets by O-H···O hydrogen bonds. Comparisons are made with the structures of some related compounds.

1. Chemical context

We have recently reported the molecular and supramolecular structures of the recreational drug N-(4-methoxyphenyl)piperazine (4-MeOPP) (Kiran Kumar et al., 2020) and those of a range of salts formed by 4-MeOPP with organic acids (Kiran Kumar, Yathirajan, Foro et al., 2019; Kiran Kumar et al. 2020), as well as those of a number of N-aroyl derivatives (Kiran Kumar, Yathirajan, Sagar et al., 2019). We have also reported the structures of some salts of N-(4-fluorophen-

> 1779 https://doi.org/10.1107/S2056989020014097

Received 20 October 2020 Accepted 21 October 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: synthesis; piperazines; crystal structure; molecular conformation; absolute configuration; disorder; hydrogen bonding; supramolecular assembly.

CCDC references: 2039887; 2039886; 2039885; 2039884; 2039883; 2039882; 2039881; 2039880; 2039879; 2039878; 2039877; 2039876; 2039875; 2039874; 2039873

Supporting information: this article has supporting information at journals.iucr.org/e

vl)piperazine (4-FPP) (Harish Chinthal, Yathirajan, Archana et al., 2020; Harish Chinthal, Yathirajan, Kavitha et al., 2020). As a continuation of this study, we have now investigated a number of salts of the isomeric N-(2-methoxyphenyl)piperazine (2-MeOPP), which has been used as a building block in the synthesis of both 5-HT_{1A} receptor ligands (Orjales et al., 1995) and dopamine D₂ and D₃ ligands (Hackling et al., 2003) and also as a building block for the synthesis of derivatives exhibiting antidepressant-like activity (Waszkielewicz et al., 2015). Here we report the syntheses and structures of the salts (I)-(XI) (Figs. 1-11) formed between 2-MeOPP and eleven aromatic carboxylic acids, along with a redetermination of the salt (XII) (Fig. 12) formed with 2,4,6trinitrophenol (picric acid) where the reported structure (Verdonk et al., 1997; CSD refcode NEBGIK) shows signs of unmodelled disorder, and we report here also the structures of three acid salts (XIII)-(XV) (Figs. 13-15) formed with some aliphatic dicarboxylic acids. All of the salts (I)-(XV) were straightforwardly prepared by the acid-base reactions and subsequent crystallizations of equimolar mixtures of 2-MeOPP with the appropriate organic acid.

Figure 1

The independent components of compound (I) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The independent components of compound (II) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compounds (I) and (II) (Figs. 1 and 2) are isostructural in space group $P\overline{1}$. Although the 4-iodobenzoate analogue (III) (Fig. 3) also crystallizes in the same space group, it is not isostructural with (I) and (II). Among the 2-halobenzoate salts, in the 2-fluorobenzoate (IV) the anion is disordered over two sets of atomic sites having occupancies

The independent components of compound (III) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4

The independent components of compound (IV) showing the atomlabelling scheme and the disorder in the anion; the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 5

The independent components of compound (V) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6

The independent components of compound (VI) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

0.907 (8) and 0.093 (8) (Fig. 4). There is a significant peak, 1.15 e Å⁻³, in the final difference map for compound (V): it was originally thought that this might represent a partialoccupancy water molecule, although no associated H atoms could be located, but its distance from atom O32 is only 2.35 Å, which would require an unusually short $O-H\cdots O$ hydrogen bond for this assignment to be plausible. Consistent

The independent components of compound (VII) showing the atomlabelling scheme and the disorder in the carboxylate group; the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

The independent components of compound (VIII) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The independent components of compound (IX) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

with this, examination of the refined, solvent-free structure of (V) using PLATON (Spek, 2020) showed that the structure contains no solvent-accessible void spaces. Compounds (VI) and (VII) are isomorphous, but whereas the components of (VI) are fully ordered (Fig. 6), in (VII) the carboxylate group in the anion is disordered over two sets of atomic sites having occupancies 0.54 (9) and 0.46 (9) (Fig. 7); hence, these isomorphous compounds cannot be regarded as strictly isostructural (cf. Acosta et al., 2009; Yépes et al., 2012; Shreekanth et al., 2020), because of the disorder in (VII). The structures of (VI) and (VII) are mutually inverse for the crystals selected for data collection, but this has no chemical significance. Compounds (VIII)–(X) (Figs. 8–10) all crystallize in solvent-free form, but the 3,5-dinitrobenzoate salt (XI) is a dihydrate (Fig. 11). The structure of the picrate salt (XII) was reported a number of years ago (Verdonk et al., 1997), but the deposited anisotropic displacement parameters suggest the presence of unmodelled disorder in one of the nitro groups.

Figure 10

The independent components of compound (X) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 11

The independent components of compound (XI) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 12

The independent components of compound (XII) showing the atomlabelling scheme and the disorder in one of the nitro groups, where the dominant disorder component is drawn using full lines, and the two minor disorder components are drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

Figure 13

The independent components of compound (XIII) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 14

The independent components of compound (XIV) showing the atomlabelling scheme and the disorder in one of the anions. The major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level. The atoms marked 'a' or 'b' are at the symmetry positions (2 - x, 1 - y, 2 - z) and (-x, -y, 2 - z), respectively. The H atoms bonded to atoms O32, O34 and O42 have occupancies 0.286 (9), 0.214 (9) and 0.5, respectively, as do their inversion-related equivalents.

Accordingly, we have redetermined this structure and found, indeed, that one of the nitro groups is disordered over three sets of atomic sites having occupancies 0.850(5), 0.080(4) and 0.069(4) (Fig. 12).

The solvent-free 1:1 acid salt (XIII) derived from maleic acid crystallizes with Z' = 2 (Fig. 13). A search for possible additional crystallographic symmetry revealed none, although the atomic coordinates of the two cations and the two anions are related by the approximate, but non-crystallographic translation $(x, \frac{1}{2} + y, z)$. In sharp contrast to compound (XIII),

Figure 15

The independent components of compound (XV) showing the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

the 1:1 salt (XIV) derived from fumaric acid, which is isomeric with maleic acid, crystallizes with two independent hydrogen fumarate anions, each lying across a centre of inversion: one of the anions is fully ordered but the other is disordered over two sets of atomic sites having occupancies 0.572 (9) and 0.428 (9) (Fig. 14). The 1:1 acid salt (XV) derived from (2R,3R)-tartaric acid crystallizes as a dihydrate (Fig. 15).

In none of the salts reported does the cation exhibit any internal symmetry: hence all are conformationally chiral but, with the exception of compounds (VI) and (VII), the space groups indicate that equal numbers of both conformational enantiomers are present. For all compounds except (VII), the reference cation was selected to be one for which the ringpuckering angles θ (Cremer & Pople, 1975) is close to zero, as calculated for the atom sequence (N1,C2,C3,N4,C5,C6). For the crystal of (VII) chosen for data collection, the value of this angle is $177.2 (5)^{\circ}$, confirming that this salt and (VI) have opposite absolute structures. In all of the cations, the piperazine ring adopts a chair conformation with the N-aryl substituent in an equatorial site. In the 2-methoxyphenyl units, the methoxy C atom is always close to coplanar with the adjacent aryl ring: the displacement of this atom from the plane of the ring ranges from 0.038 (5) Å in compound (I) to 0.288 (5) Å in compound (VII). Associated with this near planarity, the two exocyclic C-C-O angles differ in each compound by ca 10°, as is usually observed in planar or nearplanar alkoxyarenes (Seip & Seip, 1973; Ferguson et al., 1996).

The two independent ions in compound (XIII) both contain a very short $O-H \cdots O$ hydrogen bond (Table 1): while these are both nearly linear, the two O-H distances in each are significantly different, as established both by refinement of the atomic coordinates for the H atom, and from the final difference maps.

3. Supramolecular features

The supramolecular assembly in the salts (I)-(XV) is based on $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds augmented in a number of cases by $C-H \cdots O$ and $C-H \cdots \pi(arene)$ hydrogen bonds. In general, we have discounted hydrogen bonds having $D - H \cdots A$ angles that are significantly less than 140°, as the interaction energies associated with such contacts are likely to be very low, so that these cannot be regarded as structurally significant (Wood et al., 2009). We have also discounted short contacts involving the H atoms of the methyl groups, as such groups are likely to be undergoing very rapid rotation about the adjacent C-O bonds (Riddell & Rogerson, 1996, 1997). Most of the C-H··· π (arene) contacts have $H \cdots Cg$ distances in excess of 2.85 Å, and we have therefore only considered the effects of such contacts in the assembly of compounds (III) and (IV), where these distances are below 2.80 Å. It should perhaps be conceded here that these are somewhat arbitrary judgments, made with the primary aim of avoiding over-interpretation of the longer contacts and overcomplication of the crystal structure descriptions.

In each of the isostructural pair of compounds (I) and (II), two $N-H\cdots O$ hydrogen bonds (Table 1) link the ionic components into a centrosymmetric four-ion aggregate, char-

Figure 16

Part of the crystal structure of compound (I) showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Figure 17

Part of the crystal structure of compound (III) showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Table 1

Hydrogen bonds and short inter-ion contacts (Å, °).

Cg1, Cg2 and Cg3 represent the centroids of the rings (C31-C36), (C21-C26) and (C41-C46), respectively.

Compound	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
(I)	N1-H11···O31	1.02 (2)	1.60 (2)	2.616 (3)	176 (2)
	$N1-H12\cdots O32^{i}$	0.92 (3)	1.88 (3)	2.792 (3)	173 (2)
	$C3-H3A\cdots Cg1^{i}$	0.97	2.96	3.881 (3)	160
(II)	$N1 - H11 \cdot \cdot \cdot O31$	0.89 (4)	1.75 (4)	2.620 (4)	168 (3)
	$N1 - H12 \cdots O32^{i}$	0.88 (4)	1.91 (4)	2.786 (4)	175 (4)
(III)	$N1-H11\cdots O31$	0.88 (2)	1.83 (2)	2.684 (3)	163 (2)
	N1-H11···O32	0.88 (2)	2.60 (2)	3.060 (3)	113.6 (17)
	$N1 - H12 \cdot \cdot \cdot O32^{1}$	0.91 (3)	1.84 (3)	2.746 (3)	176 (3)
	$C33-H33\cdots O32^{n}$	0.93	2.57	3.327 (3)	139
(11)	$C_2 - H_2 B \cdots C_g 2^m$	0.97	2.77	3.482 (2)	131
(\mathbf{IV})	$N1 - H11 \cdots O31$ N1 - H11 - O32	0.99 (3)	1.72(3)	2.094(4)	107(3) 1200(10)
	$N1 - \Pi11 \cdots O32$ $N1 - H12 = O32^{iii}$	0.99 (3)	2.31(3) 1.83(3)	2.679(4)	120.9(19) 161(3)
	$N1 - H12 \cdots O32$ $N1 - H11 \cdots O41$	0.88(3)	1.85 (5)	2.079(4)	101(3) 151(3)
	N1-H11042	0.99(3)	2 52 (5)	320(4)	131(3) 126(2)
	$N1 - H12 \cdots O42^{iii}$	0.88(3)	1.83(5)	2.63 (4)	151(3)
	$C34-H34\cdots Cg2^{iv}$	0.93	2.74	3.543 (5)	145
	$C44 - H44 \cdots Cg2^{iv}$	0.93	2.99	3.73 (4)	137
	$C26-H26\cdots Cg3^{v}$	0.93	2.96	3.754 (17)	144
(V)	N1-H11O31	0.97 (4)	1.74 (3)	2.682 (4)	162 (3)
· · ·	$N1-H12\cdots O32^{i}$	0.92 (4)	1.79 (4)	2.700 (5)	170 (4)
	$C5-H5B\cdots Cg1^{ii}$	0.97	2.87	3.554 (4)	128
	$C34-H34\cdots Cg2^{vi}$	0.93	2.93	3.658 (7)	136
(VI)	N1-H11···O31	0.75 (4)	1.98 (4)	2.726 (4)	170 (4)
	$N1 - H12 \cdots O32^{vn}$	0.88 (3)	1.86 (3)	2.712 (4)	163(3
	$C25-H25\cdots O32^{VIII}$	0.93	2.56	3.488 (4)	173
(1 777)	$C26-H26\cdots Cg1^{\text{vm}}$	0.93	2.93	3.69/ (4)	141
(VII)	$NI - HII \cdots O3I$	0.89	1.80	2.66 (3)	162
	$NI - HII \cdots 0.000$	0.89	1.93	2.80(3)	165
	$N1 - \Pi12 \cdots O31$ $N1 - H12 = O33^{ix}$	0.89	1.97	2.65 (5)	162
	$C_{25} = H_{25} \dots O_{34}^{x}$	0.89	2 50	2.00(3) 3.43(3)	101
	$C_{25} = H_{25} \dots G_{54}$	0.93	2.50	3.716 (5)	1/4
(VIII)	$N1 - H11 \cdots O31$	1.010 (15)	1.673 (15)	2.6696 (19)	168.6 (13)
()	$N1 - H12 \cdots O32^{i}$	0.963 (16)	1.745 (16)	2.7077 (17)	178.2 (10)
(IX)	N1-H11···O31	1.068 (15)	1.547 (15)	2.6048 (15)	169.7 (14)
	$N1-H12\cdots O32^{i}$	0.942 (15)	1.861 (15)	2.7797 (15)	164.4 (14)
	$N34-H34\cdots O32^{xi}$	0.914 (16)	2.155 (16)	3.0535 (18)	167.5 (14)
(X)	$N1 - H11 \cdots O31$	0.974 (16)	1.677 (16)	2.6500 (19)	176.8 (15)
	N1-H11···O32	0.974 (16)	2.581 (17)	3.2169 (17)	123.0 (12)
	$N1-H12\cdots O32^{1}$	0.948 (17)	1.837 (17)	2.7709 (18)	168.2 (16)
(XI)	$N1 - H11 \cdots O31$	0.929 (16)	1.771 (16)	2.6837 (16)	166.8 (15)
	$N1 - H12 \cdot \cdot \cdot O41$	0.911 (16)	1.939 (16)	2.8324 (19)	165.5 (14)
	$O41 - H41 \cdots O32^{m}$	0.84 (2)	1.99 (2)	2.8156 (19)	168 (2)
	$O_{41} - H_{42} \cdots O_{51}$	0.90 (2)	1.91(2)	2.810 (2)	1/2(2) 172(2)
	$051 - H52 - 022^{xii}$	0.90(2)	1.91(2) 2.25(2)	2.810(2) 2.9544(10)	172(2) 153(2)
	$C_{25} = H_{25} \dots O_{22}$	0.93	2.23 (2)	2.9344(19) 3.433(2)	153 (2)
(XII)	N1-H11033	0.868 (18)	2.30	2 9120 (19)	1361 (16)
(/111)	$N1 - H12 \cdots O31^{i}$	0.900(18)	1.833 (18)	2.7142 (18)	165.9 (16)
	$N1 - H12 \cdots O32^{i}$	0.900 (19)	2.593 (17)	3.154 (2)	121.2 (13)
	$C6-H6A\cdots O34^{xiii}$	0.97	2.56	3.423 (2)	148
(XIII)	O33-H33···O32	1.07 (2)	1.37 (2)	2.4447 (16)	177.7 (16)
	O43-H43···O42	1.00 (2)	1.48 (2)	2.4707 (17)	174.0 (17)
	N11-H111O32	0.927 (17)	1.891 (17)	2.8122 (18)	172.3 (16)
	$N11-H112\cdots O41^{xiv}$	0.930 (17)	1.848 (17)	2.7725 (17)	172.9 (13)
	N21-H211···O42	0.975 (15)	1.821 (15)	2.7926 (16)	174.5 (14)
	N21-H212···O31	0.895 (15)	2.283 (15)	2.9776 (17)	134.4 (12)
	$N21 - H212 \cdots O34^{xv}$	0.895 (15)	2.428 (15)	3.1170 (18)	134.1 (12)
	$C16-H16A\cdots O34^{xv}$	0.97	2.55	3.341 (2)	138
	$C16-H16B\cdots O44^{xv}$	0.97	2.52	3.338 (2)	141
	$C_{25} - H_{25}B \cdots C_{g4}$	0.97	2.92	3.8440 (16)	159
(AIV)	$N1 - H11 \cdots O31$	0.89	2.01	2.894 (5)	171
	$N1 - H11 \cdots U33$ N1 H12 041	0.89	1./3	2.384 (7)	100
	$1N1 = \Pi 12 \cdots U41$ $O32 H32 O22^{xvii}$	0.89	1.97	2.0231(13) 2.355(7)	101
	$032 - 1132 \cdots 052$	0.62	2.03	2.333(7) 2.820(0)	1/0
	$0.042 - H42042^{\text{xviii}}$	0.82	2.03	2.620 (9)	101
(XV)	N1-H11031	0.02 0.79 (4)	2.40(4)	3.028(4)	137 (3)
× · · /		(•)	(-)		

Compound	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
	$N1-H11\cdots O36^{xii}$	0.79 (4)	2.43 (4)	2.977 (4)	128 (3)
	$N1-H11\cdots O35^{xix}$	0.79 (4)	2.50 (3)	2.942 (3)	117 (3)
	N1-H12···O41	0.89 (4)	1.91 (4)	2.792 (5)	168 (3)
	$O33-H33\cdots O34^{xx}$	0.77 (4)	2.14 (4)	2.800 (3)	144 (4)
	$O34-H34\cdots O31^{xx}$	0.82 (4)	2.11 (4)	2.836 (3)	148 (3)
	$O36-H36\cdots O32^{ii}$	0.81 (4)	1.68 (4)	2.478 (3)	167(3
	$O41 - H41 \cdots O33^{xxi}$	0.82 (5)	1.94 (5)	2.753 (4)	167 (3)
	$O41 - H42 \cdots O31^{xii}$	0.87 (5)	1.90 (5)	2.766 (4)	169 (3)
	O51-H51···O41	0.98 (4)	1.80 (5)	2.776 (5)	172 (9)
	$O51-H52\cdots O22^{xii}$	0.97 (7)	2.22 (7)	3.054 (7)	144 (6)
	$O51 - H52 \cdot \cdot \cdot N4^{xii}$	0.97 (7)	2.48 (6)	3.307 (6)	143 (5)
	$C23-H23\cdots Cg2^{xxii}$	0.93	2.91	3.722 (4)	147

Table 1 (continued)

acterized by an $R_4^4(12)$ (Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) motif (Fig. 16). A similar motif occurs in the structure of compound (III) (Fig. 17), but the different orientations of the unit-cell outline in Figs. 16 and 17, illustrate the different arrangements of the components in compounds (I) and (II) on the one hand and compound (III) on the other. In (III), the four-ion aggregates are linked into chains by a C– $H \cdots \pi$ (arene) interaction, but the C– $H \cdots O$ contact in (III) has a very small $D-H \cdots A$ angle and is thus not structurally significant (Wood *et al.*, 2009).

The hydrogen bonding involving the two disorder components in compound (IV) are very similar (Table 1) and thus only the major component needs to be considered here. The combination of two $N-H\cdots O$ hydrogen bonds and one C- $H\cdots\pi(arene)$ hydrogen bond, involving atom C34 as the donor, links the ions into a three-dimensional network, whose formation is readily analysed in terms of three one-dimen-

Figure 18

Part of the crystal structure of compound (IV) showing the linking of the ion pairs by a further $N-H\cdots O$ hydrogen bond to form a $C_2^2(6)$ chain running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms bonded to C atoms have been omitted.

sional sub-structures (Ferguson *et al.*, 1998*a*,*b*; Gregson *et al.*, 2000). In addition to the N-H···O hydrogen bond forming the ion pair, which defines the selected asymmetric unit, we consider in turn the linking of these ion pairs by the action of the N-H···O hydrogen bond involving atom H12, acting alone; by that of the C-H··· π (arene) hydrogen bond acting alone; and finally by that of the two hydrogen bonds in

Figure 19

Part of the crystal structure of compound (IV) showing the linking of the ions pairs by a $C-H\cdots\pi(arene)$ hydrogen bond to form a chain parallel to [101]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motif shown have been omitted.

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, y, z; (iii) $x, 1 - y, -\frac{1}{2} + z;$ (iv) $-\frac{1}{2} + x, \frac{3}{2} - y, -\frac{1}{2} + z;$ (v) $\frac{1}{2} + x, -\frac{1}{2} + y, z;$ (vi) -1 + x, y, 1 + z; (vi) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z;$ (Viii) $\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z;$ (iv) $-\frac{1}{2} + x, \frac{3}{2} - y, -\frac{1}{2} + z;$ (vi) -1 + x, y, 1 + z; (vii) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z;$ (Viii) $\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z;$ (vii) -1 + x, y, z; (xiii) x, 1 + y, z; (xiv) x, -1 + y, z; (vi) -1 + x, y, 1 - z; (vii) 1 - x, -y, -z; (vii) 1 - x, 1 - y, 2 - z; (viii) 1 - x, -y, 2 - z; (xii) $2 - x, \frac{1}{2} + y, 1 - z;$ (xii) -1 + x, 1 + y, z; (xiii) $1 - x, \frac{1}{2} + y, -z.$

Part of the crystal structure of compound (IV) showing the alternating action of $N-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds in linking the ion pairs into a chain parallel to [112]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder component and the H atoms not involved in the motif shown have been omitted.

combination. The ion pairs are linked by a second N-H···O hydrogen bond to form a $C_2^2(6)$ chain running parallel to the [001] direction (Fig. 18), and they are linked by the C-

Part of the crystal structure of compound (VI) showing the formation of a $C_2^1(4)$ chain running parallel to [100], in which ion pairs are linked by a further N-H···O hydrogen bond. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

 $H \cdots \pi$ (arene) hydrogen bond to form a chain running parallel to [101] (Fig. 19). The N-H···O and C-H··· π hydrogen bonds, acting alternately, generate a chain running parallel to the [112] direction (Fig. 20), and the combination of chains running parallel to [001], [101] and [112] suffices to generate a three-dimensional structure. In the 2-chlorobenzoate analogue, compound (V), two independent N-H···O hydrogen bonds again link the ions into a centrosymmetric $R_4^4(12)$ motif, of the type observed in compounds (I)-(III). There are two C-H··· π (arene) contacts in (V), but these are both long, and probably not structurally significant.

The ion pairs in compounds (VI) and (VII) are again linked into three-dimensional arrays, by a combination of $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, as opposed to the $N-H\cdots O$ and $C-H\cdots \pi$ (arene) interactions in the structure of (IV). An $N-H\cdots O$ hydrogen bond links ion pairs which are related by the 2₁ screw axis along (x, 1/4, 1/2) to form a $C_2^1(4)$ chain along [100] (Fig. 21). In addition, the ion pairs which are related by the 2₁ screw axis along (1/4, 1/2, z) are linked by a $C-H\cdots O$ hydrogen bond to form a $C_2^2(12)$ chain along [001] (Fig. 22),

Part of the crystal structure of compound (VI) showing the formation of a $C_2^2(12)$ chain running parallel to [001], in which ion pairs are linked by a C-H···O hydrogen bond. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

Part of the crystal structure of compound (VI) showing the formation of a chain running parallel to [010], in which ion pairs are linked by alternating $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

Figure 24

Part of the crystal structure of compound (IX) showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Figure 25

Part of the crystal structure of compound (XI) showing the formation of a hydrogen-bonded ribbon running parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

while the alternating action of the N-H···O and C-H···O hydrogen bonds generates a chain running parallel to the [010] direction (Fig. 23). The combination of chains along [100], [010] and [001] thus generates a three-dimensional array.

The ions in compound (VIII) are linked by two N-H···O hydrogen bonds to form an $R_4^4(12)$ four-ion aggregate analogous to those observed in compounds (I)–(III) and (V). Similar four-ion aggregates are also found in compounds (IX) and (X), but in (IX) they are linked by a further N-H···O hydrogen bond, involving the amino group, to form a complex sheet lying parallel to (100) (Fig. 24). In the dihydrate (XI), each water molecule acts as a single acceptor and a double donor of hydrogen bonds (Table 1), and supramolecular aggregation takes the form of a complex ribbon running

Part of the crystal structure of compound (XII) showing the formation of a centrosymmetric four-ion aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted and only the major disorder component is shown. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Part of the crystal structure of compound (XIII) showing the formation of a hydrogen-bonded ribbon of $R_2^4(14)$ and $R_8^8(30)$ rings running parallel to [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

parallel to the [100] direction (Fig. 25). In the picrate salt (XII), a combination of two independent N-H···O hydrogen bonds links the components into a centrosymmetric four-ion aggregate of $R_4^4(16)$ type, where the two acceptor are the phenolic atom O31 and one of the nitro O atoms (Fig. 26). Aggregates of this type are weakly linked into a chain of rings by a C-H···O hydrogen bond.

In compound (XIII), where Z' = 2, each of the anions contains a very short $O-H \cdots O$ hydrogen bond, although in each of these interactions the two O-H distances are significantly different (Table 1). The supramolecular assembly depends upon three independent two-centre $N-H \cdots O$

Figure 28

Part of the crystal structure of compound (XIV) showing the formation of a hydrogen-bonded sheet of $R_6^6(26)$ rings lying parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

Part of the crystal structure of compound (XV) showing the formation of a hydrogen-bonded sheet of anions lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

hydrogen bonds and one three-centre N-H···(O)₂ hydrogen bond. These link the ions into a ribbon, or molecular ladder, running parallel to the [010] direction and in which $R_2^4(14)$ rings centred at (0, n + 1/2, 1/2) alternate with $R_{\circ}^{8}(30)$ rings centred at (0, n, 1/2), where n represents an integer in each case (Fig. 27). Analysis of the supramolecular assembly in compound (XIV) is complicated by the combination of centrosymmetric anions and the disorder exhibited by one of them. However, since the hydrogen bonds involving the two disorder components are very similar, only the major disorder components need to be considered here. The ordered anions are linked by $O-H \cdots O$ hydrogen bonds into a chain along (x, 0, 1) and the disordered anions are similarly linked into a chain along (x, 1/2, 1). The two types of chain, which alternate along the [010] direction, are linked by the cations to form a sheet of $R_6^6(26)$ rings lying parallel to (001) (Fig. 28). In the structure of compound (XV), the anions are linked by three independent O-H···O hydrogen bonds, in which both of the hydroxyl groups as well as the carboxyl group act as donors, to form a sheet lying parallel to (001), in which both $R_4^4(18)$ and $R_4^4(20)$ rings can be identified (Fig. 29). The cations and the water molecules are tethered to this sheet, markedly increasing its complexity but without changing the dimensionality of the overall assembly. The result is a thick tripartite sheet, occupying the whole domain 0 < z < 1.0 and having a hydrogen-bonded layer in the centre with the aryl groups on the outside surfaces: there are no direction-specific interactions between adjacent sheets.

4. Database survey

It is of interest briefly to compare the structures of the compounds reported here with those of some closely related examples, in particular the salts formed by the isomeric N-(4methoxyphenyl)piperazine (4-MeOPP) and the analogous N-(4-fluorophenyl)piperazine (4-FPP). The salts formed between 4-MeOPP and the benzoic acids 4-XC₆H₄COOH, where X = H, F, Cl, and Br, all crystallize as stoichiometric monohydrates and they are all isomorphous in space group $P\overline{1}$ (Kiran Kumar, Yathirajan, Foro et al., 2019), a combination of N-H···O, O-H···O, C-H···O and C-H··· π (arene) hydrogen bonds links the components into complex sheets. By contrast, compounds (I)-(III) reported here all crystallize in solvent-free form and all form finite centrosymmetric four-ion aggregates (Figs. 16 and 17). The salt formed between 4-MeOPP and 4-aminobenzoate crystallizes as a monohydrate (Kiran Kumar et al., 2020), as compared with the solvent free analogues (IX) reported here, and the components are linked by a combination of N-H···O, O-H···O and C-H··· π (arene) hydrogen bonds to form a three-dimensional assembly, as compared with the two-dimensional assembly in (IX). The 3,5-dinitrobenzoate salt with 4-MeOPP crystallizes in solvent-free form (Kiran Kumar et al., 2020), as opposed to the dihydrate (XI) reported here, and the component ions are linked into the simple $R_4^4(12)$ motif found here for compounds (I)-(III), (VIII) and (X). The picrate salt of 4-MeOPP exhibits orientational disorder in one of the nitro groups (Kiran Kumar et al., 2020), as observed in compound (XII) here, but the supramolecular aggregation is more complex than the simple aggregate found for (XII), in that a combination of $N-H \cdots O$ and C-H··· π (arene) hydrogen bonds generates a sheet structure. The anion in the hydrogen maleate salt of 4-MeOPP, which crystallizes with Z' = 1 (Kiran Kumar, Yathirajan, Foro et al., 2019) unlike the Z' = 2 for compound (XIII), contains a very short, but unsymmetrical $O-H \cdots O$ hydrogen bond, and the ions are linked into a chain of rings by a combination of two-centre $N-H\cdots O$ and three-centre $N-H\cdots (O,O)$ hydrogen bonds. By contrast with compound (XIV) reported here where there are two independent hydrogen fumarate anions each lying across a centre of inversion, in the hydrogen fumarate salt of 4-MeOPP, there is only one type of anion, although this exhibits some orientational disorder and Z' = 1: a combination of $N-H\cdots O$ and $O-H\cdots O$ and C-H... π (arene) hydrogen bonds links the ions into a threedimensional structure, as opposed to the two-dimensional structure of (XIV). Finally, we note some salts formed by 4-FPP with organic acids (Harish Chinthal, Yathirajan, Archana et al., 2020; Harish Chinthal, Yathirajan, Kavitha et al., 2020). The 2-fluorobenzoate crystallizes as a stoichiometric monohydrate, and the 2-bromobenzoate as a partial hydrate, while the 2-iodobenzoate crystallizes in solvent-free form (Harish Chinthal, Yathirajan, Kavitha *et al.*, 2020), in contrast to compounds (IV)–(VII), which are all solvent-free, and the 3,5-dinitrobenzoate salt of 4-FPP is also solvent-free, as opposed to the dihydrate (XI). The 1:1 acid salt formed between (2R,3R)-tartaric acid and 4-FPP crystallizes as a monohydrate (Harish Chinthal, Yathirajan, Archana *et al.*, 2020), whereas the analogous compound (XV) crystallizes as a 1.70 (hydrate).

5. Synthesis and crystallization

All reagents were obtained commercially, and all were used as received. For the synthesis of compounds (I)-(XV), solutions of N-(2-methoxyphenyl)piperazine (100 mg, 0.52 mmol) in methanol (10 ml) were mixed with an equimolar quantity of the appropriate acid [4-chlorobenzoic acid (82 mg) for (I), 4-bromobenzoic acid (103 mg) for (II), 4-iodobenzoic acid (129 mg) for (III), 2-fluorobenzoic acid (73 mg) for (IV), 2-chlorobenzoic acid (82 mg) for (V), 2-bromobenzoic acid (103 mg) for (VI), 2-iodobenzoic acid (129 mg) for (VII), 2-methylbenzoic acid (71 mg) for (VIII), 4-aminobenzoic acid (72 mg) for (IX), 4-nitrobenzoic acid (97 mg) for (X), 3.5-dinitrobenzoic acid (110 mg) for (XI), picric acid (120 mg) for (XII), maleic acid (61 mg) for (XIII), fumaric acid (61 mg) for (XIV) and (2R,3R)-tartaric acid (78 mg) for (XV)] also dissolved in methanol (10 ml). These mixtures were then heated briefly at 323 K with magnetic stirring and then set aside to crystallize at room temperature. The resulting products were then collected by filtration and dried in air. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in acetone/acetonitrile (initial composition 1:1, v/v) for (I), methanol/acetonitrile (1:6, v/v) for (II), methanol/acetonitrile (1:1, v/v) for (III), ethyl acetate/ acetone (2:1, v/v) for (IV) and (V), methanol/ethyl acetate (1:7, v/v) for (VI) and (VII), methanol for (VIII), (X), and (XIII)–(XV), methanol/ethyl acetate (3:2, v/v) for (IX), and methanol/ethyl acetate (1:1, v/v) for (XI) and (XII). M.p. (I) 374-378 K, (II) 390-394 K, (III) 422-428 K, (IV) 384-387 K, (V) 396-389 K, (VI) 396-399 K, (VII) 402-408 K, (VIII) 389-393 K, (IX) 441-445 K, (X) 408-412 K, (XI) 437-442 K, (XII) 430-435 K, (XIII) 390-396 K, (XIV) 435-437 K, (XV) 407-411 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2. Two bad outlier reflections [(1,4,0) and (1,2,2)] were removed from the dataset for compound (V), and one bad outlier reflection (0,7,13) was removed from the dataset for compound (XV) before the final refinements. For compound (IV), calculation of the Flack *x* parameter (Flack, 1983) using 1089 quotients of the type $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ (Parsons *et al.*, 2013) gave a value 0.2 (3) in the absence of significant resonant scattering, the correct orientation of the

Table 2Experimental details.

	(I)	(II)	(III)	(IV)	(V)
Crystal data					
Chemical formula	$C_{11}H_{17}N_2O^+$	$C_{11}H_{17}N_2O^+$	$C_{11}H_{17}N_2O^+$	$C_{11}H_{17}N_2O^+$	$C_{11}H_{17}N_2O^+$
М	C ₇ H ₄ ClO ₂	$C_7H_4BrO_2$	$C_7H_4IO_2$	$C_7H_4FO_2$	C ₇ H ₄ ClO ₂
Crystal system, space	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, Cc	Monoclinic, $P2_1/c$
Temperature (K)	296	296	296	296	296
a, b, c (Å)	7.401 (1), 7.888 (1), 15.410 (3)	7.4313 (5), 7.9163 (5), 15.5212 (9) 101 565 (5), 04 780 (5)	7.1129 (4), 11.2722 (7), 12.5923 (8)	19.940 (1), 10.2705 (7), 9.0148 (7)	7.9974 (8), 27.611 (2), 8.5972 (9)
(λ, ρ, γ)	94.14 (1) 970 2 (2)	92.691 (5) 92.91 (10)	79.121 (5)	90, 109.003 (8), 90	1821 2 (3)
V(A) Z	2	2	908.82 (10) 2	4	1021.2 (5) 4
Radiation type	- Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.24	2.33	1.78	0.09	0.23
Crystal size (mm)	$0.44 \times 0.28 \times 0.16$	$0.42\times0.42\times0.12$	$0.48\times0.24\times0.14$	$0.48\times0.36\times0.22$	$0.48 \times 0.20 \times 0.12$
Data collection					
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD			
Absorption correction	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)			
T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$	0.884, 0.963 6241, 3763, 2318	0.258, 0.756 5996, 3739, 2989	0.534, 0.779 6342, 3897, 3203	0.884, 0.963 6204, 3343, 2786	0.747, 0.973 13275, 3410, 2060
R _{int}	0.019	0.018	0.012	0.012	0.030
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.650	0.652	0.660	0.658	0.607
Refinement $R[F^2 > 2\sigma(F^2)],$	0.053, 0.131, 1.01	0.043, 0.115, 1.05	0.026, 0.065, 1.02	0.036, 0.100, 1.03	0.067, 0.216, 1.03
$WR(F^{-})$, S	3763	3730	3807	33/3	3410
No. of parameters	224	224	224	256	223
No. of restraints	0	0	0	25	0
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.19, -0.27	0.84, -0.55	0.52, -0.70	0.24, -0.14	1.15, -0.30
Absolute structure	-	-	-	Flack x determined using 1089 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons at al. 2013)	-
Absolute structure parameter	-	-	-	0.2 (3)	-
	(VI)	(VII)	(VIII)	(IX)	(X)
Crystal data					
Chemical formula	$C_{11}H_{17}N_2O^+-C_7H_4BrO_2^-$	$C_{11}H_{17}N_2O^+{\cdot}C_7H_4IO_2{}^-$	$C_{11}H_{17}N_2O^+{\cdot}C_8H_7O_2^{-}$	$C_{11}H_{17}N_2O^+-C_7H_6NO_2^-$	$\begin{array}{c} C_{11}H_{17}N_2O^+ - \\ C_7H_4NO_4^- \end{array}$
$M_{ m r}$	393.28	440.27	328.40	329.39	359.38
Crystal system, space group	Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁	Orthorhombic, $P2_12_12_1$	Triclinic, $P\overline{1}$	Monoclinic, P2 ₁ /c	Monoclinic, $P2_1/c$
Temperature (K)	293	293	296	296	296
a, b, c (A)	0.9824 (2), 13.2292 (4), 19.4903 (7)	7.0101 (4), 13.3796 (6), 19.5524 (6)	7.826 (1), 10.320 (2), 12.055 (3)	14.922 (1), 7.6951 (5),	7.5174 (5), 7.9761 (5), 29.860 (2)
$lpha,eta,\gamma$ (°)	90, 90, 90	90, 90, 90	78.37 (2), 78.27 (2), 73.83 (2)	90, 106.911 (8), 90	90, 97.322 (6), 90
$V(\text{\AA}^3)$	1800.35 (10)	1833.87 (14)	904.6 (3)	1709.4 (2)	1775.8 (2)
Z	4	4	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	2.30	1.76	0.08	0.09	0.10
Crystal size (mm)	$0.50 \times 0.50 \times 0.48$	$0.50 \times 0.50 \times 0.48$	$0.48 \times 0.48 \times 0.40$	$0.48 \times 0.44 \times 0.16$	$0.50 \times 0.50 \times 0.40$

Table 2 (continued)					
	(VI)	(VII)	(VIII)	(IX)	(X)
Data collection					
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$	0.297, 0.331 13089, 3895, 2640	0.373, 0.431 7500, 3735, 3036	0.883, 0.968 6091, 3838, 2600	0.830, 0.986 6720, 3668, 2606	0.855, 0.961 13660, 3934, 2879
reflections	0.022	0.010	0.012	0.014	0.010
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.654	0.655	0.653	0.651	0.658
Refinement $R[F^2 > 2\sigma(F^2)],$ $wR(F^2), S$	0.035, 0.077, 0.94	0.032, 0.071, 1.05	0.042, 0.119, 1.06	0.039, 0.112, 1.10	0.040, 0.111, 1.03
No. of reflections	3895	3735	3838	3668	3934
No. of parameters	224	237	226	231	242
No. of restraints	0	17	0	0	0
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.29, -0.53	0.46, -0.65	0.16, -0.16	0.15, -0.25	0.17, -0.15
Absolute structure	Flack x determined using 919 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons at al. 2013)	Flack x determined using 1045 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons at al. 2013)	-	-	-
Absolute structure parameter	0.004 (5)	0.004 (10)	-	-	-
	(XI)	(XII)	(XIII)	(XIV)	(XV)
Crystal data					
Chemical formula	$\begin{array}{c} C_{11}H_{17}N_{2}O^{+}-\\ C_{7}H_{3}N_{2}O_{6}^{-}-\\ 2H_{2}O\end{array}$	$\begin{array}{c} C_{11}H_{17}N_2O^+-\\ C_6H_2N_3O_7^{} \end{array}$	$C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$	$C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$	$\begin{array}{c} C_{11}H_{17}N_2O^+ & - \\ C_4H_5O_6^- & - \\ 1.698H_2O \end{array}$
<i>M</i> _r Crystal system, space	440.41 Triclinic, <i>P</i> 1	421.33 Triclinic, $P\overline{1}$	308.33 Triclinic, <i>P</i> 1	308.33 Triclinic, $P\overline{1}$	372.97 Monoclinic, <i>P</i> 2 ₁
Temperature (K)	296	296	296	296	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.8448 (6), 11.4635 (9), 12.0747 (9)	9.4151 (5), 9.8721 (5), 10.9572 (5)	11.1076 (6), 11.1164 (6), 13.7649 (7)	7.8546 (4), 8.9626 (6), 11.2056 (8)	7.479 (1), 7.065 (1), 17.788 (3)
α, β, γ (°)	94.406 (7), 105.075 (8), 93.717 (7)	77.524 (4), 81.360 (5), 81.002 (5)	80.353 (5), 78.353 (5), 74.406 (5)	79.043 (5), 87.715 (5), 85.840 (5)	90, 101.58 (2), 90
$V(Å^3)$	1041.33 (14) 2	974.97 (9) 2	1591.76 (16)	772.15 (9)	920.8 (2) 2
Radiation type	Δ Μο Κα	Δ Μο Κα	- Μο Κα	Δ Μο Κα	Δ Μο Κα
$\mu \text{ (mm}^{-1})$	0.11	0.12	0.10	0.10	0.11
Crystal size (mm)	$0.48\times0.48\times0.44$	$0.48 \times 0.48 \times 0.24$	$0.48 \times 0.40 \times 0.36$	$0.48 \times 0.48 \times 0.34$	$0.36 \times 0.32 \times 0.12$
Data collection					
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis</i> <i>RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	0.892, 0.951 7353, 4419, 3409	0.805, 0.973 12926, 4279, 3276	0.863, 0.966 11727, 6817, 4221	0.867, 0.967 5533, 3307, 2608	0.956, 0.987 3655, 2895, 2062
$R_{\rm int}$	0.016	0.017	0.012	0.009	0.022
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.654	0.656	0.657	0.655	0.658

Table 2	(cont	tinued)
---------	-------	---------

Table 2 (continued)						
	(XI)	(XII)	(XIII)	(XIV)	(XV)	
Refinement $R[F^2 > 2\sigma(F^2)],$	0.039, 0.108, 1.06	0.040, 0.119, 1.07	0.042, 0.121, 1.03	0.036, 0.105, 1.06	0.039, 0.081, 0.97	
$WK(F^{-})$, S No. of reflections	4419	4279	6817	3307	2895	
No. of parameters	300	317	415	240	263	
No. of restraints	0	85	0	6	4	
H-atom treatment	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H atoms treated by a mixture of indepen- dent and constrained refinement	H-atom parameters constrained	H atoms treated by a mixture of indepen- dent and constrained refinement	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.23, -0.17	0.24, -0.27	0.15, -0.17	0.20, -0.15	0.14, -0.17	

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

structure of (IV) with respect to the polar axis directions remains uncertain. The correct absolute configurations for compounds (VI) and (VII) were established from the Flack xparameters: for (VI) x = 0.004 (5) calculated using 919 coefficients, and for (VII) x = 0.004 (10) calculated using 1045 coefficients. For the minor disorder component in compound (IV), the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components, subject to s.u. values of 0.01 and 0.02 Å, respectively, and the anisotropic displacement parameters for corresponding pairs of atoms in the two disorder components were constrained to be the same, giving occupancies of 0.907 (8) and 0.093 (8). Similar distance restraints were applied to the disordered carboxylate group in compound (VII), where the displacement parameters for the disordered O atoms were subjected to similarity restraints, giving occupancies of 0.53 (9) and 0.47 (9). The disordered nitro group in compound (XII) was modelled over three sets of atomic sites, with similar restraints to those imposed in (VII) giving occupancies of 0.860 (5), 0.080 (4) and 0.069 (4). All H atoms, apart from those in the minor disorder component of compound (IV) and in the partial-occupancy water molecule in compound (V), were located in difference maps. The H atoms bonded to C atoms, apart from those in the disordered anion of compound (XIV) which were permitted to ride at the locations found in difference maps, were then treated as riding atoms in geometrically idealized positions with C-H distances of 0.93 Å (alkenyl and aromatic), 0.96 Å (CH₃), 0.97 Å (CH₂) or 0.98 Å (aliphatic C-H), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms: the H atoms in the minor disorder component of compound (IV) were included on exactly the same basis. For the H atoms bonded to N atoms, these were treated as riding atoms in the disordered structures (VII) and (XIV) with N-H distances of 0.89 Å and $U_{iso}H = 1.2U_{eq}(N)$, but in all other compounds, the atomic coordinates of the H atoms bonded to N atoms were refined with $U_{iso}H =$ $1.2U_{eq}(N)$, giving the N-H distances shown in Table 1. For the H atoms bonded to O atoms in compounds (XI), (XIII) and (XV), the atomic coordinates were refined with $U_{iso}(H) =$ $1.5U_{eq}(O)$, giving the O-H distances shown in Table 1, but the partial occupancy H atoms bonded to O atoms in compound (XIV) were treated as riding atoms with O-H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

- Acosta, L. M., Bahsas, A., Palma, A., Cobo, J., Hursthouse, M. B. & Glidewell, C. (2009). *Acta Cryst.* C65, 092–096.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Hackling, A., Ghosh, R., Perachon, S., Mann, A., Höltje, H. D., Wermuth, C. G., Schwartz, J. C., Sippl, W., Sokoloff, P. & Stark, H. (2003). J. Med. Chem. 46, 3883–3899.
- Harish Chinthal, C., Yathirajan, H. S., Archana, S. D., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 841–847.
- Harish Chinthal, C., Yathirajan, H. S., Kavitha, C. N., Foro, S. & Glidewell, C. (2020). *Acta Cryst.* E**76**, 1179–1186.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). *Acta Cryst.* E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.
- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.
- Orjales, A., Alonso-Cires, L., Labeaga, L. & Corcóstegui, R. (1995). J. Med. Chem. 38, 1273–1277.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.

- Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.
- Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.
- Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shreekanth, T. K., Yathirajan, H. S., Kalluraya, B., Foro, S. & Glidewell, C. (2020). *Acta Cryst.* E**76**, 1605–1610.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.

- Verdonk, M. L., Voogd, J. W., Kanters, J. A., Kroon, J., den Besten, R., Brandsma, L., Leysen, D. & Kelder, J. (1997). Acta Cryst. B53, 976– 983.
- Waszkielewicz, A. M., Pytka, K., Rapacz, A., Wełna, E., Jarzyna, M., Satała, G., Bojarski, A. J., Sapa, J., Żmudzki, P., Filipek, B. & Marona, H. (2015). *Chem. Biol. Drug Des.* 85, 326–335.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
- Yépes, A. F., Palma, A., Marchal, A., Cobo, J. & Glidewell, C. (2012). *Acta Cryst.* C68, o199–o203.

Acta Cryst. (2020). E76, 1779-1793 [https://doi.org/10.1107/S2056989020014097]

Fifteen 4-(2-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in zero, one, two and three dimensions

Chayanna Harish Chinthal, Channappa N. Kavitha, Hemmige S. Yathirajan, Sabine Foro, Ravindranath S. Rathore and Christopher Glidewell

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2020).

4-(2-Methoxyphenyl)piperazin-1-ium 4-chlorobenzoate (I)

Crystal data	
$C_{11}H_{17}N_2O^+ \cdot C_7H_4ClO_2^-$	Z = 2
$M_r = 348.82$	F(000) = 368
Triclinic, P1	$D_{\rm x} = 1.318 {\rm Mg} {\rm m}^{-3}$
a = 7.401 (1) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 7.888 (1) Å	Cell parameters from 3770 reflections
c = 15.410 (3) Å	$\theta = 2.6 - 27.8^{\circ}$
$\alpha = 100.28 (2)^{\circ}$	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 94.40(1)^{\circ}$	T = 296 K
$\gamma = 94.14(1)^{\circ}$	Plate, orange
V = 879.2 (2) Å ³	$0.44 \times 0.28 \times 0.16 \text{ mm}$
Data collection	
Oxford Diffraction X calibur with Sapphire CCD	6241 measured reflections
diffractometer	3763 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2318 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.019$
ωscans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -10 \rightarrow 6$
$T_{\min} = 0.884, T_{\max} = 0.963$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	224 parameters
Least-squares matrix: full	0 restraints
$R[F^2 > 2\sigma(F^2)] = 0.053$	Primary atom site location: difference

224 parameters0 restraintsPrimary atom site location: difference Fourier mapHydrogen site location: mixed

 $wR(F^2) = 0.131$

3763 reflections

S = 1.01

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0498P)^2 + 0.3034P]$	$\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	isotropic or	equivalent isotropic	displacement	parameters (1	(4^{2})
-----------------------------------	--------------	----------------------	--------------	---------------	-----------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.3863 (3)	0.5719 (3)	0.61980 (13)	0.0537 (6)
H11	0.349 (3)	0.654 (3)	0.5787 (16)	0.064*
H12	0.494 (4)	0.526 (3)	0.6072 (17)	0.064*
C2	0.2453 (4)	0.4243 (3)	0.61032 (16)	0.0595 (7)
H2A	0.2389	0.3567	0.5509	0.071*
H2B	0.1276	0.4677	0.6194	0.071*
C3	0.2901 (4)	0.3104 (3)	0.67711 (14)	0.0492 (6)
H3A	0.1964	0.2154	0.6709	0.059*
H3B	0.4051	0.2623	0.6665	0.059*
N4	0.3016 (3)	0.4131 (2)	0.76645 (11)	0.0417 (5)
C5	0.4446 (3)	0.5568 (3)	0.77727 (15)	0.0456 (6)
H5A	0.5614	0.5111	0.7685	0.055*
H5B	0.4511	0.6234	0.8369	0.055*
C6	0.4046 (4)	0.6728 (3)	0.71121 (15)	0.0489 (6)
H6A	0.2928	0.7261	0.7232	0.059*
H6B	0.5023	0.7641	0.7173	0.059*
C21	0.3080 (3)	0.3202 (3)	0.83759 (14)	0.0402 (5)
C22	0.2709 (3)	0.4034 (3)	0.92205 (14)	0.0401 (5)
C23	0.2740 (3)	0.3164 (3)	0.99224 (16)	0.0500 (6)
H23	0.2531	0.3740	1.0482	0.060*
C24	0.3080 (4)	0.1439 (3)	0.97981 (17)	0.0565 (7)
H24	0.3088	0.0854	1.0272	0.068*
C25	0.3405 (4)	0.0595 (3)	0.89756 (18)	0.0588 (7)
H25	0.3615	-0.0569	0.8889	0.071*
C26	0.3420 (3)	0.1471 (3)	0.82735 (16)	0.0498 (6)
H26	0.3663	0.0889	0.7721	0.060*
O22	0.2258 (2)	0.5712 (2)	0.92836 (10)	0.0522 (4)
C27	0.2117 (4)	0.6682 (3)	1.01422 (15)	0.0539 (6)
H27A	0.1780	0.7816	1.0093	0.081*
H27B	0.3267	0.6779	1.0488	0.081*
H27C	0.1207	0.6107	1.0426	0.081*
C31	0.2111 (3)	0.8543 (3)	0.37936 (15)	0.0450 (6)
C32	0.1780 (4)	0.8004 (3)	0.28892 (17)	0.0597 (7)

H32	0.1867	0.6850	0.2643	0.072*	
C33	0.1321 (4)	0.9151 (4)	0.23404 (17)	0.0622 (7)	
H33	0.1104	0.8772	0.1732	0.075*	
C34	0.1190 (3)	1.0848 (3)	0.27049 (16)	0.0498 (6)	
Cl34	0.06196 (11)	1.23102 (10)	0.20197 (5)	0.0724 (3)	
C35	0.1471 (5)	1.1410 (3)	0.35980 (18)	0.0712 (9)	
H35	0.1353	1.2559	0.3843	0.085*	
C36	0.1932 (5)	1.0247 (3)	0.41347 (17)	0.0697 (9)	
H36	0.2127	1.0631	0.4744	0.084*	
C37	0.2650 (4)	0.7306 (3)	0.43954 (18)	0.0529 (6)	
031	0.2833 (4)	0.7908 (3)	0.52081 (13)	0.0955 (8)	
O32	0.2879 (3)	0.5797 (2)	0.40612 (13)	0.0704 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0757 (16)	0.0508 (13)	0.0397 (12)	0.0186 (11)	0.0112 (11)	0.0142 (10)
C2	0.079 (2)	0.0591 (16)	0.0380 (14)	0.0075 (14)	-0.0055 (13)	0.0050 (12)
C3	0.0626 (16)	0.0437 (13)	0.0383 (13)	0.0038 (12)	-0.0001 (11)	0.0014 (10)
N4	0.0525 (12)	0.0389 (10)	0.0326 (10)	0.0038 (9)	0.0011 (9)	0.0048 (8)
C5	0.0538 (15)	0.0426 (13)	0.0393 (13)	0.0030 (11)	0.0035 (11)	0.0057 (10)
C6	0.0641 (17)	0.0412 (13)	0.0419 (13)	0.0079 (12)	0.0088 (12)	0.0063 (10)
C21	0.0399 (13)	0.0386 (12)	0.0416 (13)	0.0046 (10)	0.0003 (10)	0.0072 (10)
C22	0.0420 (13)	0.0385 (12)	0.0402 (13)	0.0065 (10)	0.0027 (10)	0.0075 (10)
C23	0.0566 (16)	0.0540 (15)	0.0411 (14)	0.0043 (12)	0.0040 (11)	0.0131 (11)
C24	0.0690 (18)	0.0498 (15)	0.0544 (16)	0.0031 (13)	-0.0027 (13)	0.0240 (13)
C25	0.0725 (19)	0.0388 (13)	0.0652 (18)	0.0073 (12)	-0.0056 (14)	0.0143 (13)
C26	0.0602 (16)	0.0420 (13)	0.0458 (14)	0.0077 (11)	0.0015 (12)	0.0046 (11)
O22	0.0747 (12)	0.0445 (9)	0.0404 (9)	0.0210 (8)	0.0131 (8)	0.0070 (7)
C27	0.0599 (17)	0.0488 (14)	0.0502 (15)	0.0053 (12)	0.0115 (13)	-0.0012 (12)
C31	0.0465 (14)	0.0442 (13)	0.0452 (14)	0.0083 (11)	0.0072 (11)	0.0075 (11)
C32	0.0740 (19)	0.0551 (16)	0.0502 (16)	0.0264 (14)	0.0077 (14)	0.0010 (12)
C33	0.0737 (19)	0.0767 (19)	0.0376 (14)	0.0250 (15)	0.0068 (13)	0.0065 (13)
C34	0.0507 (15)	0.0572 (15)	0.0455 (14)	0.0055 (12)	0.0047 (12)	0.0197 (12)
Cl34	0.0783 (5)	0.0800 (5)	0.0671 (5)	0.0054 (4)	-0.0011 (4)	0.0394 (4)
C35	0.119 (3)	0.0433 (15)	0.0511 (17)	0.0156 (16)	-0.0029 (16)	0.0085 (12)
C36	0.120 (3)	0.0498 (15)	0.0375 (14)	0.0171 (16)	-0.0043 (15)	0.0048 (12)
C37	0.0586 (16)	0.0494 (15)	0.0546 (16)	0.0122 (12)	0.0095 (13)	0.0153 (12)
O31	0.175 (2)	0.0646 (13)	0.0529 (13)	0.0405 (14)	-0.0007 (14)	0.0189 (10)
O32	0.0899 (15)	0.0484 (11)	0.0781 (13)	0.0266 (10)	0.0171 (11)	0.0138 (10)

Geometric parameters (Å, °)

N1—C6	1.481 (3)	C24—C25	1.370 (4)	
N1—C2	1.485 (3)	C24—H24	0.9300	
N1—H11	1.02 (3)	C25—C26	1.385 (3)	
N1—H12	0.92 (3)	C25—H25	0.9300	
C2—C3	1.516 (3)	C26—H26	0.9300	

C2—H2A	0.9700	O22—C27	1.421 (3)
C2—H2B	0.9700	С27—Н27А	0.9600
C3—N4	1.461 (3)	С27—Н27В	0.9600
С3—НЗА	0.9700	С27—Н27С	0.9600
С3—Н3В	0.9700	C31—C36	1.373 (3)
N4—C21	1.423 (3)	C31—C32	1.380 (3)
N4—C5	1.471 (3)	C31—C37	1.515 (3)
C5—C6	1.512 (3)	C32—C33	1.386 (3)
C5—H5A	0.9700	С32—Н32	0.9300
С5—Н5В	0.9700	C33—C34	1.369 (4)
C6—H6A	0.9700	С33—Н33	0.9300
C6—H6B	0.9700	C34—C35	1.364 (3)
C21—C26	1.389 (3)	C34—Cl34	1.750 (2)
$C_{21} - C_{22}$	1.406 (3)	C35—C36	1.384 (3)
$C^{22} = 0^{22}$	1 377 (2)	C35—H35	0.9300
C22—C23	1.380 (3)	C36—H36	0.9300
C^{23} C^{24}	1 384 (3)	$C_{37} = 0_{32}$	1 239 (3)
С23—Н23	0.9300	$C_{37} - O_{31}$	1.251(3)
020 1120			
C6—N1—C2	110.65 (19)	С22—С23—Н23	119.8
C6—N1—H11	107.0 (14)	С24—С23—Н23	119.8
C2—N1—H11	109.8 (15)	C25—C24—C23	119.8 (2)
C6—N1—H12	109.8 (17)	C25—C24—H24	120.1
C2—N1—H12	106.9 (16)	C23—C24—H24	120.1
H11—N1—H12	113 (2)	C24—C25—C26	120.1 (2)
N1—C2—C3	110.5 (2)	C24—C25—H25	120.0
N1—C2—H2A	109.6	C26—C25—H25	120.0
C3—C2—H2A	109.6	C25—C26—C21	121.5 (2)
N1—C2—H2B	109.6	C25—C26—H26	119.3
C3—C2—H2B	109.6	C21—C26—H26	119.3
H2A—C2—H2B	108.1	C22—O22—C27	117.86 (17)
N4—C3—C2	109.35 (19)	O22—C27—H27A	109.5
N4—C3—H3A	109.8	O22—C27—H27B	109.5
С2—С3—НЗА	109.8	H27A—C27—H27B	109.5
N4—C3—H3B	109.8	O22—C27—H27C	109.5
С2—С3—Н3В	109.8	H27A—C27—H27C	109.5
НЗА—СЗ—НЗВ	108.3	H27B—C27—H27C	109.5
C21—N4—C3	116.59 (17)	C36—C31—C32	117.8 (2)
C21—N4—C5	113.53 (18)	C36—C31—C37	120.7 (2)
C3—N4—C5	110.53 (18)	C32—C31—C37	121.5 (2)
N4—C5—C6	110.35 (19)	C31—C32—C33	121.2 (2)
N4—C5—H5A	109.6	С31—С32—Н32	119.4
С6—С5—Н5А	109.6	С33—С32—Н32	119.4
N4—C5—H5B	109.6	C34—C33—C32	119.2 (2)
С6—С5—Н5В	109.6	С34—С33—Н33	120.4
H5A—C5—H5B	108.1	С32—С33—Н33	120.4
N1—C6—C5	110.38 (19)	C35—C34—C33	120.9 (2)
N1—C6—H6A	109.6	C35—C34—Cl34	119.4 (2)

100.6	C22 C24 C124	110.7(2)
109.0	$C_{33} = C_{34} = C_{134}$	119.7(2)
109.0	$C_{34} = C_{35} = C_{36}$	119.0 (2)
109.6	C34—C35—H35	120.5
108.1	C36—C35—H35	120.5
117.5 (2)	C31—C36—C35	121.9 (2)
123.2 (2)	С31—С36—Н36	119.1
119.20 (19)	С35—С36—Н36	119.1
123.4 (2)	O32—C37—O31	124.7 (2)
115.91 (18)	O32—C37—C31	119.0 (2)
120.7 (2)	O31—C37—C31	116.3 (2)
120.4 (2)		
-56.8 (3)	C24—C25—C26—C21	-1.1 (4)
58.6 (3)	C22—C21—C26—C25	-0.3 (4)
168.3 (2)	N4—C21—C26—C25	-177.6 (2)
-60.1 (3)	C23—C22—O22—C27	10.9 (3)
-167.25 (18)	C21—C22—O22—C27	-171.5 (2)
59.6 (2)	C36—C31—C32—C33	1.3 (4)
55.6 (3)	C37—C31—C32—C33	-178.7 (2)
-56.8 (3)	C31—C32—C33—C34	-0.2 (4)
13.9 (3)	C32—C33—C34—C35	-1.3 (4)
-116.3 (2)	C32—C33—C34—Cl34	179.8 (2)
-163.3 (2)	C33—C34—C35—C36	1.4 (5)
66.5 (3)	Cl34—C34—C35—C36	-179.6 (2)
-175.8 (2)	C32—C31—C36—C35	-1.2(5)
1.6 (3)	C37—C31—C36—C35	178.9 (3)
1.9 (3)	C34—C35—C36—C31	-0.2(5)
179.3 (2)	C36—C31—C37—O32	-176.7 (3)
175.4 (2)	C32—C31—C37—O32	3.3 (4)
-2.1 (4)	C36—C31—C37—O31	3.2 (4)
0.6 (4)	C32—C31—C37—O31	-176.7 (3)
1.0 (4)		
	109.6 109.6 109.6 108.1 117.5 (2) 123.2 (2) 119.20 (19) 123.4 (2) 115.91 (18) 120.7 (2) 120.4 (2) -56.8 (3) 58.6 (3) 168.3 (2) -60.1 (3) -167.25 (18) 59.6 (2) 55.6 (3) -56.8 (3) 13.9 (3) -116.3 (2) -163.3 (2) 66.5 (3) -175.8 (2) 1.6 (3) 1.9 (3) 179.3 (2) 175.4 (2) -2.1 (4) 0.6 (4) 1.0 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N1—H11…O31	1.02 (2)	1.60 (2)	2.616 (3)	176 (2)
N1—H12···O32 ⁱ	0.92 (3)	1.88 (3)	2.792 (3)	173 (2)
C3—H3A····Cg1 ⁱ	0.97	2.96	3.881 (3)	160

Symmetry code: (i) -x+1, -y+1, -z+1.

4-(2-Methoxyphenyl)piperazin-1-ium 4-bromobenzoate (II)

<i>b</i> = 7.9163 (5) Å
c = 15.5212 (9) Å
$\alpha = 101.565 (5)^{\circ}$
$\beta = 94.780(5)^{\circ}$

$\gamma = 92.691 \ (5)^{\circ}$	Cell parameters from 3779 reflections
$V = 889.54 (10) \text{ Å}^3$	$\theta = 2.6 - 27.6^{\circ}$
Z = 2	$\mu = 2.33 \text{ mm}^{-1}$
F(000) = 404	T = 296 K
$D_{\rm x} = 1.468 {\rm Mg} {\rm m}^{-3}$	Plate, yellow
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å	$0.42 \times 0.42 \times 0.12 \text{ mm}$
Data collection	
Oxford Diffraction X calibur with Sapphire CCD	5996 measured reflections
diffractometer	3739 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2989 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.018$
ωscans	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.6^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -10 \longrightarrow 10$
$T_{\min} = 0.258, T_{\max} = 0.756$	$l = -19 \rightarrow 16$
Refinement	
Refinement on F^2	Primary atom site location: difference Fou
Least-squares matrix: full	map
$D[E^2 > 2 - (E^2)] = 0.042$	Uridua con sita la sationi mirrad

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ S = 1.05 3739 reflections 224 parameters0 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0576P)^2 + 0.570P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

 $\Delta \rho_{\text{max}} = 0.84 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.55 \text{ e } \text{\AA}^{-3}$

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			_	II */II	
	X	<i>y</i>	Z	$U_{\rm iso} / U_{\rm eq}$	
N1	0.3878 (4)	0.5725 (3)	0.62065 (16)	0.0514 (6)	
H11	0.361 (5)	0.638 (5)	0.582 (2)	0.062*	
H12	0.494 (5)	0.532 (5)	0.610(2)	0.062*	
C2	0.2490 (5)	0.4279 (4)	0.61017 (19)	0.0557 (8)	
H2A	0.2421	0.3600	0.5504	0.067*	
H2B	0.1318	0.4735	0.6198	0.067*	
C3	0.2949 (4)	0.3139 (4)	0.67528 (18)	0.0471 (7)	
H3A	0.2023	0.2204	0.6683	0.057*	
H3B	0.4096	0.2641	0.6642	0.057*	
N4	0.3062 (3)	0.4172 (3)	0.76485 (13)	0.0385 (5)	
C5	0.4474 (4)	0.5584 (3)	0.77722 (17)	0.0424 (6)	
H5A	0.5640	0.5108	0.7685	0.051*	

H5B	0.4531	0.6256	0.8371	0.051*
C6	0.4075 (4)	0.6739 (4)	0.71261 (18)	0.0470 (7)
H6A	0.2968	0.7303	0.7252	0.056*
H6B	0.5051	0.7627	0.7193	0.056*
C21	0.3137 (3)	0.3252 (3)	0.83448 (17)	0.0375 (5)
C22	0.2745 (3)	0.4102 (3)	0.91928 (17)	0.0387 (6)
C23	0.2796 (4)	0.3234 (4)	0.98826 (19)	0.0470 (6)
H23	0.2571	0.3812	1.0443	0.056*
C24	0.3181 (4)	0.1505 (4)	0.9745 (2)	0.0549 (8)
H24	0.3210	0.0927	1.0212	0.066*
C25	0.3515 (5)	0.0658 (4)	0.8927 (2)	0.0556 (8)
H25	0.3747	-0.0506	0.8832	0.067*
C26	0.3511 (4)	0.1526 (4)	0.8233 (2)	0.0473 (7)
H26	0.3765	0.0935	0.7680	0.057*
O22	0.2276 (3)	0.5771 (2)	0.92653 (12)	0.0505 (5)
C27	0.2084 (4)	0.6742 (4)	1.01265 (19)	0.0504 (7)
H27A	0.1755	0.7884	1.0087	0.076*
H27B	0.3209	0.6814	1.0488	0.076*
H27C	0.1156	0.6182	1.0386	0.076*
C31	0.2104 (4)	0.8486 (4)	0.38246 (18)	0.0423 (6)
C32	0.1691 (5)	0.7880 (4)	0.2931 (2)	0.0552 (8)
H32	0.1715	0.6704	0.2697	0.066*
C33	0.1240 (5)	0.8992 (4)	0.2376 (2)	0.0574 (8)
H33	0.0956	0.8571	0.1774	0.069*
C34	0.1217 (4)	1.0726 (4)	0.27254 (19)	0.0457 (6)
Br34	0.06068 (5)	1.22764 (5)	0.19700 (2)	0.06693 (16)
C35	0.1596 (6)	1.1360 (4)	0.3608 (2)	0.0713 (11)
H35	0.1558	1.2533	0.3841	0.086*
C36	0.2042 (6)	1.0211 (4)	0.4153 (2)	0.0703 (11)
H36	0.2305	1.0633	0.4756	0.084*
C37	0.2644 (4)	0.7278 (4)	0.4432 (2)	0.0506 (7)
O31	0.2859 (5)	0.7932 (3)	0.52394 (16)	0.0910 (10)
O32	0.2844 (4)	0.5748 (3)	0.41048 (16)	0.0653 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0781 (19)	0.0471 (14)	0.0325 (12)	0.0163 (13)	0.0077 (12)	0.0123 (10)
C2	0.080 (2)	0.0522 (17)	0.0310 (14)	0.0068 (15)	-0.0080 (14)	0.0033 (12)
C3	0.0635 (18)	0.0421 (15)	0.0322 (13)	0.0027 (13)	-0.0021 (12)	0.0020 (11)
N4	0.0514 (13)	0.0347 (11)	0.0269 (10)	0.0017 (9)	-0.0025 (9)	0.0031 (8)
C5	0.0555 (16)	0.0378 (14)	0.0320 (13)	0.0012 (12)	0.0000 (11)	0.0043 (11)
C6	0.0682 (19)	0.0364 (14)	0.0366 (14)	0.0074 (13)	0.0075 (13)	0.0059 (11)
C21	0.0396 (13)	0.0370 (13)	0.0347 (13)	0.0021 (10)	-0.0032 (10)	0.0077 (10)
C22	0.0404 (13)	0.0393 (14)	0.0361 (13)	0.0049 (11)	0.0001 (11)	0.0080 (11)
C23	0.0519 (16)	0.0534 (16)	0.0365 (14)	0.0014 (13)	-0.0001 (12)	0.0134 (12)
C24	0.0651 (19)	0.0513 (17)	0.0516 (18)	-0.0022 (14)	-0.0066 (14)	0.0251 (14)
C25	0.072 (2)	0.0348 (14)	0.059 (2)	0.0056 (13)	-0.0080 (15)	0.0128 (13)

C26	0.0577 (17)	0.0378 (14)	0.0437 (15)	0.0041 (12)	-0.0048 (13)	0.0056 (12)
O22	0.0738 (14)	0.0445 (11)	0.0337 (10)	0.0191 (10)	0.0067 (9)	0.0052 (8)
C27	0.0581 (18)	0.0478 (16)	0.0412 (15)	0.0055 (13)	0.0079 (13)	-0.0025 (12)
C31	0.0473 (15)	0.0421 (14)	0.0384 (14)	0.0069 (11)	0.0050 (11)	0.0090 (11)
C32	0.070 (2)	0.0458 (16)	0.0469 (17)	0.0186 (14)	0.0023 (15)	0.0005 (13)
C33	0.070 (2)	0.067 (2)	0.0331 (15)	0.0162 (16)	0.0044 (14)	0.0033 (14)
C34	0.0459 (15)	0.0520 (16)	0.0416 (15)	0.0018 (12)	-0.0004 (12)	0.0175 (13)
Br34	0.0726 (2)	0.0759 (3)	0.0590 (2)	-0.00290 (17)	-0.00806 (16)	0.03751 (18)
C35	0.125 (3)	0.0384 (16)	0.0471 (18)	0.0068 (18)	-0.0112 (19)	0.0089 (14)
C36	0.129 (3)	0.0435 (17)	0.0343 (16)	0.0120 (19)	-0.0120 (18)	0.0038 (13)
C37	0.0537 (17)	0.0488 (17)	0.0534 (18)	0.0084 (13)	0.0048 (14)	0.0190 (14)
O31	0.171 (3)	0.0586 (15)	0.0454 (14)	0.0315 (17)	-0.0072 (16)	0.0173 (11)
O32	0.0879 (17)	0.0400 (12)	0.0704 (15)	0.0200 (11)	0.0089 (13)	0.0127 (10)

Geometric parameters (Å, °)

N1—C2	1.479 (4)	C24—C25	1.361 (5)	
N1-C6	1.483 (4)	C24—H24	0.9300	
N1—H11	0.89 (4)	C25—C26	1.388 (4)	
N1—H12	0.88 (4)	С25—Н25	0.9300	
C2—C3	1.513 (4)	C26—H26	0.9300	
C2—H2A	0.9700	O22—C27	1.424 (3)	
C2—H2B	0.9700	С27—Н27А	0.9600	
C3—N4	1.458 (3)	С27—Н27В	0.9600	
С3—НЗА	0.9700	С27—Н27С	0.9600	
С3—Н3В	0.9700	C31—C36	1.363 (4)	
N4—C21	1.418 (3)	C31—C32	1.377 (4)	
N4—C5	1.470 (4)	C31—C37	1.515 (4)	
C5—C6	1.508 (4)	C32—C33	1.384 (4)	
C5—H5A	0.9700	С32—Н32	0.9300	
С5—Н5В	0.9700	C33—C34	1.372 (4)	
С6—Н6А	0.9700	С33—Н33	0.9300	
С6—Н6В	0.9700	C34—C35	1.361 (4)	
C21—C26	1.387 (4)	C34—Br34	1.905 (3)	
C21—C22	1.413 (4)	C35—C36	1.394 (4)	
C22—O22	1.367 (3)	С35—Н35	0.9300	
C22—C23	1.382 (4)	С36—Н36	0.9300	
C23—C24	1.390 (4)	C37—O32	1.237 (4)	
С23—Н23	0.9300	C37—O31	1.251 (4)	
C2—N1—C6	110.8 (2)	C22—C23—H23	119.8	
C2—N1—H11	110 (2)	C24—C23—H23	119.8	
C6—N1—H11	112 (2)	C25—C24—C23	119.9 (3)	
C2—N1—H12	110 (2)	C25—C24—H24	120.1	
C6—N1—H12	107 (2)	C23—C24—H24	120.1	
H11—N1—H12	106 (3)	C24—C25—C26	120.2 (3)	
N1—C2—C3	110.6 (2)	C24—C25—H25	119.9	
N1—C2—H2A	109.5	C26—C25—H25	119.9	

C3—C2—H2A	109.5	C21—C26—C25	121.6 (3)
N1—C2—H2B	109.5	C21—C26—H26	119.2
C3—C2—H2B	109.5	С25—С26—Н26	119.2
H2A—C2—H2B	108.1	C22—O22—C27	117.7 (2)
N4—C3—C2	109.2 (2)	O22—C27—H27A	109.5
N4—C3—H3A	109.8	O22—C27—H27B	109.5
С2—С3—НЗА	109.8	H27A—C27—H27B	109.5
N4—C3—H3B	109.8	O22—C27—H27C	109.5
С2—С3—Н3В	109.8	H27A—C27—H27C	109.5
H3A—C3—H3B	108.3	H27B—C27—H27C	109.5
$C_{21} - N_{4} - C_{3}$	116.6 (2)	$C_{36} - C_{31} - C_{32}$	118.4 (3)
$C_{21} - N_{4} - C_{5}$	113.3 (2)	$C_{36} - C_{31} - C_{37}$	120.4(3)
C3—N4—C5	110.2(2) 110.7(2)	C_{32} C_{31} C_{37}	1212(3)
N4—C5—C6	110.7(2) 110.4(2)	$C_{31} - C_{32} - C_{33}$	121.2(3) 121.0(3)
N4-C5-H5A	109.6	$C_{31} - C_{32} - H_{32}$	119.5
C6-C5-H5A	109.6	C_{33} C_{32} H_{32}	119.5
N4-C5-H5B	109.6	C_{34} C_{33} C_{32}	119.3 119.1(3)
C6-C5-H5B	109.6	C_{34} C_{33} H_{33}	120.4
H5A_C5_H5B	109.0	C_{32} C_{33} H_{33}	120.4
N1-C6-C5	110.7(2)	C_{35} C_{34} C_{33}	120.4 121.2(3)
N1-C6-H6A	109.5	C_{35} C_{34} C_{35} C	121.2(3) 1191(2)
$C_5 - C_6 - H_{6A}$	109.5	C_{33} C_{34} Br_{34}	119.1(2) 119.7(2)
N1-C6-H6B	109.5	C_{34} C_{35} C_{36} C_{36}	119.7(2) 118.5(3)
C5-C6-H6B	109.5	C_{34} C_{35} H_{35}	120.7
H6A—C6—H6B	109.5	$C_{36} - C_{35} - H_{35}$	120.7
$C_{26} = C_{21} = C_{22}$	117.5(2)	$C_{31} - C_{36} - C_{35}$	120.7 121.7(3)
$C_{26} = C_{21} = N_{4}$	117.3(2) 123 4 (2)	C_{31} C_{36} H_{36}	119.1
$C_{20} = C_{21} = N_4$	129.4(2) 1190(2)	C_{35} C_{36} H_{36}	119.1
022 - 021 - 101	119.0(2) 123.8(2)	032 - 037 - 031	124.9(3)
022 - 022 - 023	125.0(2) 115.9(2)	032 - 037 - 031	124.9(3) 1189(3)
C_{23} C_{22} C_{21} C_{21}	120.3(2)	031 - C37 - C31	116.2(3)
$C_{22} = C_{23} = C_{24}$	120.5(2) 120 5(3)	001 007 001	110.2 (5)
022 023 024	120.5 (5)		
C6-N1-C2-C3	-565(3)	$C^{22} - C^{21} - C^{26} - C^{25}$	-0.5(4)
N1 - C2 - C3 - N4	58 8 (3)	N4-C21-C26-C25	-177.9(3)
$C_2 = C_3 = N_4 = C_2 I_1$	1683(2)	$C_{24} - C_{25} - C_{26} - C_{21}$	-1.2(5)
$C_2 = C_3 = N_4 = C_5$	-60.2(3)	C^{23} C^{22} C^{22} C^{27} C^{27}	93(4)
$C_{21} = N_{4} = C_{5} = C_{6}$	-167.6(2)	$C_{21} - C_{22} - O_{22} - C_{27}$	-172.6(2)
$C_3 - N_4 - C_5 - C_6$	59 3 (3)	$C_{36} - C_{31} - C_{32} - C_{33}$	0.6(5)
C_{2} N1 $-C_{6}$ $-C_{5}$	55.0 (3)	C_{37} C_{31} C_{32} C_{33}	-1785(3)
N4-C5-C6-N1	-560(3)	$C_{31} - C_{32} - C_{33} - C_{34}$	04(5)
$C_3 - N_4 - C_2 - C_2 6$	14 8 (4)	C_{32} C_{33} C_{34} C_{35}	-1.3(5)
C_{5} N4 C_{21} C_{26}	-1154(3)	C_{32} C_{33} C_{34} Br ₃₄	179.8(2)
C3—N4—C21—C22	-162.6 (2)	C33—C34—C35—C36	1.1 (6)
C5—N4—C21—C22	67.1 (3)	Br34—C34—C35—C36	-179.9 (3)
C26—C21—C22—O22	-176.2 (2)	C32—C31—C36—C35	-0.7 (6)
N4—C21—C22—O22	1.4 (4)	C37—C31—C36—C35	178.3 (4)
C26—C21—C22—C23	2.0 (4)	C34—C35—C36—C31	-0.1 (7)
	× /		x · /

N4—C21—C22—C23	179.6 (2)	C36—C31—C37—O32	-173.7 (3)
O22—C22—C23—C24	176.1 (3)	C32—C31—C37—O32	5.4 (5)
C21—C22—C23—C24	-1.9 (4)	C36—C31—C37—O31	6.2 (5)
C22—C23—C24—C25	0.2 (5)	C32—C31—C37—O31	-174.8 (3)
C23—C24—C25—C26	1.4 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D···A	D—H···A
N1—H11…O31	0.89 (4)	1.75 (4)	2.620 (4)	168 (3)
N1—H12…O32 ⁱ	0.88 (4)	1.91 (4)	2.786 (4)	175 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

4-(2-Methoxyphenyl)piperazin-1-ium 4-iodobenzoate (III)

Crystal data

 $C_{11}H_{17}N_2O^+C_7H_4IO_2^-M_r = 440.27$ Triclinic, *P*1 *a* = 7.1129 (4) Å *b* = 11.2722 (7) Å *c* = 12.5923 (8) Å *a* = 69.852 (5)° *β* = 74.681 (5)° *γ* = 79.121 (5)° *V* = 908.82 (10) Å³

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.534$, $T_{\max} = 0.779$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.065$ S = 1.023897 reflections 224 parameters 0 restraints Z = 2 F(000) = 440 $D_x = 1.609 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3897 reflections $\theta = 3.0-28.0^{\circ}$ $\mu = 1.78 \text{ mm}^{-1}$ T = 296 K Needle, orange $0.48 \times 0.24 \times 0.14 \text{ mm}$

6342 measured reflections 3897 independent reflections 3203 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 28.0^\circ, \theta_{min} = 3.0^\circ$ $h = -6 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$

Primary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.029P)^2 + 0.4404P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.52$ e Å⁻³ $\Delta\rho_{min} = -0.70$ e Å⁻³

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.6379 (3)	0.34876 (17)	0.41481 (15)	0.0371 (4)	
H11	0.736 (3)	0.364 (2)	0.437 (2)	0.045*	
H12	0.545 (4)	0.417 (2)	0.405 (2)	0.045*	
C2	0.5540 (3)	0.2342 (2)	0.50290 (17)	0.0393 (4)	
H2A	0.4957	0.2524	0.5752	0.047*	
H2B	0.6580	0.1651	0.5168	0.047*	
C3	0.4004 (3)	0.1942 (2)	0.46316 (17)	0.0405 (4)	
H3A	0.3499	0.1181	0.5208	0.049*	
H3B	0.2923	0.2609	0.4536	0.049*	
N4	0.4884 (2)	0.16937 (15)	0.35326 (13)	0.0345 (3)	
C5	0.5578 (3)	0.2859 (2)	0.26462 (17)	0.0414 (5)	
H5A	0.4490	0.3523	0.2555	0.050*	
H5B	0.6108	0.2700	0.1909	0.050*	
C6	0.7146 (3)	0.3286 (2)	0.30021 (18)	0.0430 (5)	
H6A	0.8271	0.2646	0.3039	0.052*	
H6B	0.7570	0.4071	0.2428	0.052*	
C21	0.3825 (3)	0.10145 (18)	0.31654 (17)	0.0354 (4)	
C22	0.4854 (3)	0.0392 (2)	0.23523 (18)	0.0420 (5)	
C23	0.3903 (4)	-0.0354 (2)	0.2031 (2)	0.0544 (6)	
H23	0.4592	-0.0769	0.1499	0.065*	
C24	0.1939 (4)	-0.0483 (2)	0.2498 (2)	0.0605 (7)	
H24	0.1313	-0.0995	0.2288	0.073*	
C25	0.0906 (4)	0.0141 (3)	0.3269 (2)	0.0594 (7)	
H25	-0.0424	0.0064	0.3570	0.071*	
C26	0.1844 (3)	0.0888 (2)	0.3602 (2)	0.0465 (5)	
H26	0.1132	0.1309	0.4126	0.056*	
O22	0.6793 (2)	0.05587 (18)	0.19524 (16)	0.0594 (5)	
C27	0.7839 (4)	0.0197 (3)	0.0974 (2)	0.0694 (8)	
H27A	0.9125	0.0472	0.0736	0.104*	
H27B	0.7156	0.0583	0.0354	0.104*	
H27C	0.7949	-0.0711	0.1166	0.104*	
C31	0.9029 (3)	0.37755 (18)	0.70670 (17)	0.0344 (4)	
C32	1.1047 (3)	0.3626 (2)	0.69034 (18)	0.0395 (4)	
H32	1.1812	0.3648	0.6174	0.047*	
C33	1.1957 (3)	0.3443 (2)	0.78032 (18)	0.0411 (5)	
H33	1.3317	0.3347	0.7681	0.049*	
C34	1.0812 (3)	0.34062 (19)	0.88832 (17)	0.0405 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

I34	1.21476 (3)	0.30958 (2)	1.02693 (2)	0.07326 (9)	
C35	0.8796 (4)	0.3559 (2)	0.90646 (19)	0.0528 (6)	
H35	0.8034	0.3533	0.9795	0.063*	
C36	0.7913 (3)	0.3751 (2)	0.8158 (2)	0.0469 (5)	
H36	0.6552	0.3865	0.8279	0.056*	
C37	0.8053 (3)	0.39540 (18)	0.60869 (18)	0.0382 (4)	
O31	0.9072 (2)	0.36274 (15)	0.52331 (13)	0.0466 (3)	
O32	0.6270 (2)	0.43759 (15)	0.62045 (15)	0.0520 (4)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0383 (9)	0.0379 (9)	0.0422 (9)	0.0006 (7)	-0.0142 (7)	-0.0195 (7)
C2	0.0428 (11)	0.0447 (11)	0.0327 (10)	-0.0010 (9)	-0.0109 (8)	-0.0150 (8)
C3	0.0397 (11)	0.0504 (12)	0.0336 (10)	-0.0068 (9)	-0.0035 (8)	-0.0182 (9)
N4	0.0372 (8)	0.0381 (9)	0.0310 (8)	-0.0066 (7)	-0.0049 (7)	-0.0147 (7)
C5	0.0568 (13)	0.0390 (11)	0.0309 (10)	-0.0104 (9)	-0.0090 (9)	-0.0118 (8)
C6	0.0477 (12)	0.0423 (12)	0.0398 (11)	-0.0116 (9)	-0.0019 (9)	-0.0160 (9)
C21	0.0393 (10)	0.0338 (10)	0.0348 (9)	-0.0033 (8)	-0.0131 (8)	-0.0095 (8)
C22	0.0502 (12)	0.0396 (11)	0.0415 (11)	-0.0021 (9)	-0.0174 (9)	-0.0151 (9)
C23	0.0783 (17)	0.0410 (12)	0.0566 (14)	-0.0021 (11)	-0.0329 (13)	-0.0197 (10)
C24	0.0796 (19)	0.0472 (14)	0.0684 (16)	-0.0216 (13)	-0.0396 (15)	-0.0095 (12)
C25	0.0530 (14)	0.0625 (16)	0.0630 (15)	-0.0234 (12)	-0.0246 (12)	-0.0021 (12)
C26	0.0418 (12)	0.0507 (13)	0.0459 (12)	-0.0068 (10)	-0.0123 (9)	-0.0105 (10)
O22	0.0477 (9)	0.0821 (12)	0.0644 (11)	-0.0033 (8)	-0.0030 (8)	-0.0515 (10)
C27	0.0792 (19)	0.0738 (18)	0.0601 (16)	-0.0034 (15)	0.0021 (14)	-0.0420 (14)
C31	0.0364 (10)	0.0296 (9)	0.0380 (10)	-0.0024 (8)	-0.0091 (8)	-0.0114 (8)
C32	0.0393 (11)	0.0443 (11)	0.0350 (10)	-0.0024 (9)	-0.0068 (8)	-0.0146 (9)
C33	0.0371 (11)	0.0426 (11)	0.0443 (11)	-0.0024 (9)	-0.0133 (9)	-0.0121 (9)
C34	0.0551 (13)	0.0344 (10)	0.0342 (10)	-0.0054 (9)	-0.0167 (9)	-0.0079 (8)
I34	0.09118 (16)	0.08904 (16)	0.04736 (11)	-0.00653 (11)	-0.03522 (9)	-0.01745 (9)
C35	0.0542 (14)	0.0662 (15)	0.0340 (11)	-0.0080 (12)	0.0000 (10)	-0.0171 (10)
C36	0.0369 (11)	0.0584 (14)	0.0439 (12)	-0.0037 (10)	-0.0036 (9)	-0.0184 (10)
C37	0.0392 (11)	0.0319 (10)	0.0461 (11)	-0.0028 (8)	-0.0159 (9)	-0.0110 (9)
O31	0.0426 (8)	0.0614 (10)	0.0433 (8)	-0.0034 (7)	-0.0137 (7)	-0.0232 (7)
O32	0.0399 (8)	0.0546 (9)	0.0664 (10)	0.0106 (7)	-0.0220 (7)	-0.0254 (8)

Geometric parameters (Å, °)

N1—C6	1.482 (3)	C24—C25	1.369 (4)
N1—C2	1.486 (3)	C24—H24	0.9300
N1—H11	0.88 (2)	C25—C26	1.391 (3)
N1—H12	0.91 (2)	C25—H25	0.9300
С2—С3	1.510 (3)	C26—H26	0.9300
C2—H2A	0.9700	O22—C27	1.409 (3)
C2—H2B	0.9700	C27—H27A	0.9600
C3—N4	1.459 (2)	C27—H27B	0.9600
С3—НЗА	0.9700	С27—Н27С	0.9600

С3—Н3В	0.9700	C31—C32	1.381 (3)
N4—C21	1.419 (2)	C31—C36	1.387 (3)
N4—C5	1.469 (3)	C31—C37	1.508 (3)
C5—C6	1.514 (3)	C32—C33	1.386 (3)
C5—H5A	0.9700	С32—Н32	0.9300
С5—Н5В	0.9700	C33—C34	1.379 (3)
C6—H6A	0.9700	C33—H33	0.9300
C6—H6B	0 9700	C34—C35	1 378 (3)
C_{21} C_{26}	1 385 (3)	C_{34} [34	2.098(2)
$C_{21} = C_{22}$	1.303(3) 1 407(3)	C_{35} $-C_{36}$	1.379(3)
$\begin{array}{c} c_{21} \\ c_{22} \\ c_{22} \\ c_{22} \end{array}$	1.407(3)	C35 H35	0.0300
$C_{22} = 0_{22}$	1.303(3) 1 387(3)	C36 H36	0.9300
$C_{22} = C_{23}$	1.307(3)	$C_{27} = 0.21$	1.256(2)
$C_{23} = C_{24}$	1.379 (4)	$C_{37} = O_{31}$	1.230(3)
С23—п23	0.9300	$C_{37} = 0.32$	1.230 (2)
C6—N1—C2	111.24 (15)	С24—С23—Н23	119.9
C6—N1—H11	108.4 (15)	С22—С23—Н23	119.9
C2—N1—H11	108.5 (15)	C25—C24—C23	120.2 (2)
C6—N1—H12	106.8 (15)	С25—С24—Н24	119.9
C2-N1-H12	110.9 (15)	C23—C24—H24	119.9
H11—N1—H12	111 (2)	C_{24} C_{25} C_{26}	120.1 (2)
N1-C2-C3	111 04 (16)	C24—C25—H25	120.0
N1-C2-H2A	109.4	$C_{26} = C_{25} = H_{25}$	120.0
$C_3 = C_2 = H_2 A$	109.4	$C_{20} = C_{20} = C_{20}$	120.0 121.0(2)
N1 C2 H2B	109.4	C21 C26 H26	110 5
$C_3 = C_2 = H_2 B$	109.4	$C_{21} = C_{20} = H_{20}$	119.5
H_{2} H_{2	109.4	$C_{23} = C_{20} = C_{120}$	119.5
$\frac{112}{112} = \frac{112}{112} = $	100.0 (16)	$C_{22} = C_{22} = C_{27} = C_{27}$	100.5
N4 C2 U2A	109.09 (10)	$O_{22} = C_{27} = H_{27} R$	109.5
N4-C3-H3A	109.9	U_{22} U_{27} U_{27} U_{27} U_{27}	109.5
С2—С3—ПЗА	109.9	HZ/A = CZ/=HZ/B	109.5
N4-C3-H3B	109.9	022 - C27 - H27C	109.5
C2—C3—H3B	109.9	H2/A - C2/-H2/C	109.5
$H_3A - C_3 - H_3B$	108.3	H2/B = C2/=H2/C	109.5
C21—N4—C3	117.03 (15)	C32—C31—C36	118.49 (19)
C21—N4—C5	114.74 (15)	C32—C31—C37	120.99 (18)
C3—N4—C5	109.97 (16)	C36—C31—C37	120.52 (18)
N4—C5—C6	109.74 (17)	C31—C32—C33	121.39 (19)
N4—C5—H5A	109.7	С31—С32—Н32	119.3
С6—С5—Н5А	109.7	С33—С32—Н32	119.3
N4—C5—H5B	109.7	C34—C33—C32	118.95 (19)
C6—C5—H5B	109.7	С34—С33—Н33	120.5
H5A—C5—H5B	108.2	С32—С33—Н33	120.5
N1—C6—C5	110.39 (17)	C35—C34—C33	120.63 (19)
N1—C6—H6A	109.6	C35—C34—I34	119.56 (15)
С5—С6—Н6А	109.6	C33—C34—I34	119.81 (16)
N1—C6—H6B	109.6	C34—C35—C36	119.7 (2)
С5—С6—Н6В	109.6	С34—С35—Н35	120.1
H6A—C6—H6B	108.1	С36—С35—Н35	120.1

C26—C21—C22	118.24 (19)	C35—C36—C31	120.8 (2)
C26—C21—N4	123.33 (18)	С35—С36—Н36	119.6
C22—C21—N4	118.37 (17)	С31—С36—Н36	119.6
O22—C22—C23	124.4 (2)	O31—C37—O32	125.09 (19)
O22—C22—C21	115.38 (17)	O31—C37—C31	117.28 (17)
C23—C22—C21	120.2 (2)	O32—C37—C31	117.58 (18)
C24—C23—C22	120.3 (2)		
C6N1C2C3	-545(2)	C22_C21_C26_C25	16(3)
N1 - C2 - C3 - N4	59.0(2)	N4-C21-C26-C25	-175.6(2)
$C_2 C_3 N_4 C_2 C_3$	164.91.(17)	C_{24} C_{25} C_{26} C_{23}	-0.1(4)
$C_2 = C_3 = N_4 = C_2 I$	-61.8(2)	$C_{24} = C_{23} = C_{20} = C_{21}$	145(4)
$C_2 = C_3 = N_4 = C_3$	-163.68(17)	$C_{23} = C_{22} = 0_{22} = C_{27}$	-167.1(2)
C_{3} N4 C_{5} C_{6}	619(2)	$C_{21} = C_{22} = C_{22} = C_{23}$	0.6(3)
$C_2 = N_1 = C_6 = C_5$	53.9(2)	C_{37} C_{31} C_{32} C_{33}	-179.05(19)
N4-C5-C6-N1	-573(2)	C_{31} C_{32} C_{33} C_{34}	0.2(3)
$C_3 - N_4 - C_{21} - C_{26}$	18 2 (3)	C_{32} C_{33} C_{34} C_{35}	-0.5(3)
C_{5} N4 C_{21} C_{26}	-112.9(2)	C_{32} C_{33} C_{34} L_{34}	178 83 (15)
$C_3 - N_4 - C_{21} - C_{22}$	-159.00(18)	C_{33} C_{34} C_{35} C_{36}	0.0 (4)
C5-N4-C21-C22	69.9 (2)	134 - C34 - C35 - C36	-179.37(18)
C26—C21—C22—O22	179.72 (19)	C34—C35—C36—C31	0.9 (4)
N4—C21—C22—O22	-2.9(3)	C32—C31—C36—C35	-1.1(3)
C26—C21—C22—C23	-1.8(3)	C37—C31—C36—C35	178.5 (2)
N4—C21—C22—C23	175.53 (19)	C32—C31—C37—O31	18.7 (3)
O22—C22—C23—C24	178.9 (2)	C36—C31—C37—O31	-161.0(2)
C21—C22—C23—C24	0.6 (3)	C32—C31—C37—O32	-163.71 (19)
C22—C23—C24—C25	1.0 (4)	C36—C31—C37—O32	16.7 (3)
C23—C24—C25—C26	-1.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H11…O31	0.88 (2)	1.83 (2)	2.684 (3)	163 (2)
N1—H11…O32	0.88 (2)	2.60 (2)	3.060 (3)	113.6 (17)
N1—H12···O32 ⁱ	0.91 (3)	1.84 (3)	2.746 (3)	176 (3)
C33—H33…O32 ⁱⁱ	0.93	2.57	3.327 (3)	139
C2—H2 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.97	2.77	3.482 (2)	131

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+1.

4-(2-Methoxyphenyl)piperazin-1-ium 2-fluorobenzoate (IV)

Crystal data	
$C_{11}H_{17}N_2O^+ \cdot C_7H_4FO_2^-$	V = 1738.5 (2) Å ³
$M_r = 332.37$	Z = 4
Monoclinic, Cc	F(000) = 704
a = 19.940(1) Å	$D_{\rm x} = 1.270 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.2705 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 9.0148 (7) Å	Cell parameters from 3343 reflections
$\beta = 109.663 \ (8)^{\circ}$	$\theta = 3.0-27.9^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Data collection

Duiu concention	
Oxford Diffraction Xcalibur with Sapphire CCD	6204 measured reflections
diffractometer	3343 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2786 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.012$
ω scans	$\theta_{\rm max} = 27.9^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 25$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -13 \rightarrow 13$
$T_{\min} = 0.884, T_{\max} = 0.963$	$l = -11 \rightarrow 11$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.1911P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.036$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.100$	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
S = 1.02	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
3343 reflections	Extinction correction: SHELXL,
256 parameters	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
25 restraints	Extinction coefficient: 0.0111 (16)
Primary atom site location: difference Fourier map	Absolute structure: Flack x determined using 1089 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
Hydrogen site location: mixed	al., 2013)
H atoms treated by a mixture of independent and constrained refinement	Absolute structure parameter: 0.2 (3)

Block, orange

 $0.48 \times 0.36 \times 0.22 \text{ mm}$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.40896 (13)	0.4278 (2)	0.1329 (3)	0.0536 (5)	
H11	0.3741 (17)	0.499 (3)	0.119 (3)	0.064*	
H12	0.4026 (16)	0.383 (3)	0.046 (4)	0.064*	
C2	0.39924 (15)	0.3361 (3)	0.2509 (3)	0.0554 (6)	
H2A	0.3543	0.2906	0.2060	0.067*	
H2B	0.3975	0.3846	0.3419	0.067*	
C3	0.45902 (15)	0.2383 (3)	0.3025 (4)	0.0564 (6)	
H3A	0.4530	0.1831	0.3844	0.068*	
H3B	0.4579	0.1834	0.2140	0.068*	
N4	0.52785 (12)	0.30576 (19)	0.3622 (3)	0.0482 (5)	
C5	0.53817 (15)	0.3831 (3)	0.2368 (3)	0.0553 (6)	
H5A	0.5357	0.3275	0.1481	0.066*	
H5B	0.5848	0.4237	0.2737	0.066*	

C6	0.48133 (16)	0.4861 (3)	0.1862 (3)	0.0569 (7)	
H6A	0.4861	0.5445	0.2737	0.068*	
H6B	0.4877	0.5367	0.1011	0.068*	
C21	0.58610 (13)	0.2258 (2)	0.4497 (3)	0.0476 (6)	
C22	0.58740 (14)	0.1743 (3)	0.5946 (3)	0.0511 (6)	
C23	0.64515 (17)	0.1007 (3)	0.6840 (4)	0.0635 (7)	
H23	0.6453	0.0653	0.7791	0.076*	
C24	0 70234 (17)	0.0792(3)	0.6336 (4)	0.0702 (8)	
H24	0.7407	0.0296	0.6946	0.084*	
C25	0.70252 (16)	0.1304 (3)	0.4950 (4)	0.0659 (8)	
H25	0.7414	0.1168	0.4618	0.079*	
C26	0.64492 (14)	0.2029 (3)	0.4028 (3)	0.0561 (6)	
H26	0.6455	0.2369	0.3077	0.067*	
022	0.53102 (11)	0.2053 (2)	0.6414 (2)	0.0672 (6)	
C27	0.5288 (2)	0.1521 (5)	0.7843 (5)	0.1014 (14)	
H27A	0.5278	0.0588	0.7775	0.152*	
H27B	0.4868	0.1822	0.8031	0.152*	
H27C	0.5702	0.1791	0.8694	0.152*	
C31	0.30015 (19)	0.8223 (3)	0.2163 (4)	0.0505 (8)	0.907 (8)
C32	0.3262 (2)	0.9222 (4)	0.3203 (5)	0.0663 (12)	0.907 (8)
F32	0.39194 (19)	0.9110 (3)	0.4272 (4)	0.1101 (11)	0.907 (8)
C33	0.2910 (3)	1.0368 (4)	0.3207 (6)	0.0868 (15)	0.907 (8)
H33	0.3118	1.1029	0.3919	0.104*	0.907 (8)
C34	0.2242 (3)	1.0503 (5)	0.2129 (6)	0.0952 (19)	0.907 (8)
H34	0.1988	1.1265	0.2108	0.114*	0.907 (8)
C35	0.1943 (3)	0.9527 (7)	0.1077 (6)	0.0984 (19)	0.907 (8)
H35	0.1487	0.9633	0.0356	0.118*	0.907 (8)
C36	0.2312 (2)	0.8384 (5)	0.1072 (5)	0.0735 (12)	0.907 (8)
H36	0.2105	0.7728	0.0352	0.088*	0.907 (8)
C37	0.34049 (18)	0.6986 (3)	0.2127 (4)	0.0511 (9)	0.907 (8)
O31	0.3266 (2)	0.6424 (3)	0.0810 (3)	0.0663 (9)	0.907 (8)
O32	0.38350 (17)	0.6562 (4)	0.3377 (4)	0.0779 (12)	0.907 (8)
C41	0.2765 (15)	0.794 (3)	0.179 (4)	0.0505 (8)	0.093 (8)
C42	0.2927 (19)	0.900 (3)	0.276 (4)	0.0663 (12)	0.093 (8)
F42	0.3612 (19)	0.929 (4)	0.357 (6)	0.1101 (11)	0.093 (8)
C43	0.248 (2)	1.005 (4)	0.262 (6)	0.0868 (15)	0.093 (8)
H43	0.2599	1.0754	0.3298	0.104*	0.093 (8)
C44	0.184 (3)	0.997 (4)	0.142 (6)	0.0952 (19)	0.093 (8)
H44	0.1518	1.0657	0.1284	0.114*	0.093 (8)
C45	0.166 (2)	0.894 (4)	0.042 (5)	0.0984 (19)	0.093 (8)
H45	0.1219	0.8954	-0.0390	0.118*	0.093 (8)
C46	0.2094 (17)	0.786 (4)	0.054 (4)	0.0735 (12)	0.093 (8)
H46	0.1963	0.7151	-0.0135	0.088*	0.093 (8)
C47	0.3262 (19)	0.679 (3)	0.198 (4)	0.0511 (9)	0.093 (8)
O41	0.3491 (19)	0.664 (4)	0.084 (4)	0.0663 (9)	0.093 (8)
O42	0.359 (2)	0.640 (5)	0.334 (4)	0.0779 (12)	0.093 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U ¹³	U^{23}
N1	0.0552 (13)	0.0560 (13)	0.0418 (11)	0.0094 (11)	0.0060 (9)	-0.0028 (9)
C2	0.0443 (13)	0.0595 (15)	0.0548 (14)	0.0023 (12)	0.0065 (11)	0.0043 (12)
C3	0.0451 (13)	0.0491 (14)	0.0664 (15)	-0.0031 (11)	0.0074 (11)	0.0015 (13)
N4	0.0420 (10)	0.0461 (11)	0.0512 (11)	-0.0012 (9)	0.0086 (8)	0.0033 (9)
C5	0.0546 (15)	0.0621 (15)	0.0475 (13)	-0.0023 (13)	0.0151 (11)	0.0010 (12)
C6	0.0664 (17)	0.0532 (15)	0.0472 (13)	0.0001 (13)	0.0139 (12)	0.0060 (12)
C21	0.0434 (13)	0.0395 (12)	0.0529 (13)	0.0002 (11)	0.0070 (10)	-0.0050 (11)
C22	0.0458 (13)	0.0413 (13)	0.0625 (15)	0.0009 (10)	0.0134 (11)	0.0024 (11)
C23	0.0618 (17)	0.0523 (15)	0.0712 (17)	0.0109 (13)	0.0154 (13)	0.0138 (14)
C24	0.0528 (16)	0.0609 (17)	0.083 (2)	0.0184 (14)	0.0049 (14)	0.0046 (16)
C25	0.0456 (15)	0.0724 (19)	0.0751 (18)	0.0090 (14)	0.0142 (13)	-0.0172 (16)
C26	0.0470 (14)	0.0636 (16)	0.0541 (14)	0.0009 (12)	0.0121 (11)	-0.0126 (13)
O22	0.0646 (12)	0.0695 (13)	0.0737 (13)	0.0176 (10)	0.0314 (10)	0.0251 (10)
C27	0.102 (3)	0.109 (3)	0.115 (3)	0.029 (2)	0.064 (2)	0.052 (3)
C31	0.0524 (19)	0.0539 (18)	0.0516 (18)	0.0091 (15)	0.0257 (15)	0.0149 (15)
C32	0.061 (3)	0.075 (2)	0.069 (3)	0.014 (2)	0.030 (3)	0.0084 (19)
F32	0.098 (2)	0.119 (2)	0.098 (2)	0.0153 (17)	0.0134 (17)	-0.0298 (18)
C33	0.118 (4)	0.071 (2)	0.093 (3)	0.019 (3)	0.064 (3)	0.005 (2)
C34	0.121 (5)	0.089 (3)	0.100 (4)	0.052 (3)	0.069 (4)	0.040 (3)
C35	0.083 (3)	0.134 (5)	0.088 (4)	0.058 (3)	0.042 (3)	0.055 (3)
C36	0.062 (2)	0.093 (3)	0.071 (3)	0.028 (2)	0.0298 (19)	0.034 (2)
C37	0.0469 (19)	0.0538 (18)	0.0535 (16)	0.0080 (15)	0.0180 (13)	0.0166 (14)
O31	0.064 (2)	0.0682 (17)	0.0588 (12)	0.0137 (15)	0.0102 (14)	0.0001 (12)
O32	0.092 (3)	0.087 (2)	0.0537 (12)	0.041 (2)	0.0226 (16)	0.0226 (12)
C41	0.0524 (19)	0.0539 (18)	0.0516 (18)	0.0091 (15)	0.0257 (15)	0.0149 (15)
C42	0.061 (3)	0.075 (2)	0.069 (3)	0.014 (2)	0.030 (3)	0.0084 (19)
F42	0.098 (2)	0.119 (2)	0.098 (2)	0.0153 (17)	0.0134 (17)	-0.0298 (18)
C43	0.118 (4)	0.071 (2)	0.093 (3)	0.019 (3)	0.064 (3)	0.005 (2)
C44	0.121 (5)	0.089 (3)	0.100 (4)	0.052 (3)	0.069 (4)	0.040 (3)
C45	0.083 (3)	0.134 (5)	0.088 (4)	0.058 (3)	0.042 (3)	0.055 (3)
C46	0.062 (2)	0.093 (3)	0.071 (3)	0.028 (2)	0.0298 (19)	0.034 (2)
C47	0.0469 (19)	0.0538 (18)	0.0535 (16)	0.0080 (15)	0.0180 (13)	0.0166 (14)
O41	0.064 (2)	0.0682 (17)	0.0588 (12)	0.0137 (15)	0.0102 (14)	0.0001 (12)
O42	0.092 (3)	0.087 (2)	0.0537 (12)	0.041 (2)	0.0226 (16)	0.0226 (12)

Geometric parameters (Å, °)

N1—C2	1.482 (4)	С27—Н27В	0.9600
N1—C6	1.485 (4)	С27—Н27С	0.9600
N1—H11	0.98 (3)	C31—C32	1.369 (6)
N1—H12	0.88 (4)	C31—C36	1.405 (5)
C2—C3	1.508 (4)	C31—C37	1.510 (4)
C2—H2A	0.9700	C32—F32	1.345 (5)
C2—H2B	0.9700	C32—C33	1.371 (5)
C3—N4	1.468 (3)	C33—C34	1.366 (7)

С3—НЗА	0.9700	С33—Н33	0.9300
C3—H3B	0.9700	C34—C35	1.370 (8)
N4—C21	1.424 (3)	C34—H34	0.9300
N4—C5	1.452 (3)	C35—C36	1.387 (7)
С5—С6	1.504 (4)	С35—Н35	0.9300
C5—H5A	0.9700	C36—H36	0.9300
С5—Н5В	0.9700	C37—O32	1.243 (3)
С6—Н6А	0.9700	C37—O31	1.264 (4)
C6—H6B	0.9700	C41—C42	1.365(13)
$C_{21} - C_{26}$	1 394 (4)	C41—C46	1432(13)
$C_{21} = C_{22}$	1.391(1) 1 402 (4)	C41 - C47	1.132(13) 1.518(12)
$C^{22} = 0^{22}$	1.102(1) 1.365(3)	C42 - F42	1.347(12)
$C_{22} = C_{23}$	1.303(3) 1 387(4)	$C_{42} - C_{43}$	1.376(13)
$C_{22} = C_{23}$	1.380(5)	C42 - C43	1.370(15) 1.364(15)
С23—Н23	0.9300	C43—H43	0.9300
$C_{23} = 1123$	1 357 (5)	C44— $C45$	1 365 (15)
С24 625	0.9300	C44—H44	0.9300
$C_{24} = 1124$	1.386(A)	$C_{44} = 1144$	1.388(14)
C25 H25	0.9300	$C_{45} = E_{40}$	0.0300
С25—1125	0.9300	C45—1145 C46 H46	0.9300
022 - 1120	1.414(A)	C40 1140 $C47$ 042	1.245(13)
C_{27} H_{27}	0.0600	$C_{47} = 0.42$	1.243(13) 1.263(13)
$C_2/-II_2/A$	0.9000	041	1.203 (13)
C2N1C6	111.80 (18)	C21_C26_H26	110.3
$C_2 = N_1 = C_0$	107.6(17)	$C_{21} C_{20} C_{120}$	119.3 118.3(2)
C6N1H11	107.0(17) 108.1(18)	022 - 022 - 027	109.5
$C_2 = N_1 = H_{12}$	103.1(10) 107(2)	O22 - C27 - H27R O22 - C27 - H27R	109.5
C6 N1 H12	107(2) 109(2)	$H_{27} = C_{27} = H_{27} = H_{27}$	109.5
U11 N1 U12	109(2) 113(3)	022 C27 H27C	109.5
$\frac{111}{112}$	113(3) 1113(2)	$H_{27A} = C_{27} = H_{27C}$	109.5
N1 = C2 = C3 N1 = C2 = H2A	111.3(2)	$\frac{112}{A} - \frac{12}{C}$	109.5
N1 - C2 - I12A	109.4	$C_{22}^{$	109.5
$C_3 - C_2 - \Pi_2 A$ N1 C2 H2B	109.4	$C_{32} = C_{31} = C_{30}$	110.0(3) 124.3(3)
N1 - C2 - H2B	109.4	$C_{32} = C_{31} = C_{37}$	124.3(3)
$U_2 = U_2 = U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2$	109.4	$E_{30} = C_{31} = C_{31}$	119.1(3) 118.7(3)
$M_{12} = C_{2} = M_{12} = C_{2}$	108.0	$F_{32} = C_{32} = C_{31}$	116.7(3)
N4 - C3 - C2 N4 - C2 - H2A	110.1 (2)	$F_{32} - C_{32} - C_{33}$	110.0(4) 124.7(4)
$N4 - C3 - \Pi 3A$	109.0	$C_{31} - C_{32} - C_{33}$	124.7(4)
$C_2 - C_3 - \Pi_3 A$	109.0	$C_{34} = C_{33} = C_{32}$	117.3 (3)
$N4 - C3 - \Pi 3D$	109.0	C_{34} C_{33} H_{33}	121.2
$U_2 - U_3 - \Pi_3 D$	109.0	$C_{32} = C_{33} = H_{33}$	121.2
$H_{3}A - C_{3} - H_{3}B$	108.2	$C_{33} - C_{34} - C_{35}$	120.8 (4)
C_{21} N4 C_{2}	110.3(2)	C35—C34—H34	119.6
C_{21} N_{4} C_{3}	114./3(19) 100.4(2)	$C_{34} = C_{34} = C$	119.0
$C_3 - N_4 - C_3$	109.4 (2)	$C_{24} = C_{25} = U_{25}$	120.9 (4)
N4 - C5 - U5	109.3 (2)	$C_{24} = C_{25} = H_{25}$	119.0
IN4-UJ-HJA	109.8	C30-C35-H35	119.6
CO-CO-HOA	109.8	$C_{35} - C_{30} - C_{31}$	119.5 (5)
IN4-C3-H3B	109.8	C33-C30-H30	120.2

C6—C5—H5B	109.8	С31—С36—Н36	120.2
H5A—C5—H5B	108.3	O32—C37—O31	123.9 (3)
N1—C6—C5	111.5 (2)	O32—C37—C31	119.0 (3)
N1—C6—H6A	109.3	O31—C37—C31	117.0 (3)
С5—С6—Н6А	109.3	C42—C41—C46	120.5 (14)
N1—C6—H6B	109.3	C42—C41—C47	123.0 (16)
С5—С6—Н6В	109.3	C46—C41—C47	116.5 (15)
H6A—C6—H6B	108.0	F42-C42-C41	120 1 (19)
$C_{26}^{$	1177(2)	F42 - C42 - C43	113(2)
$C_{26} = C_{21} = N_{4}$	122 8 (2)	C_{41} C_{42} C_{43}	1237(16)
$C_{20} C_{21} N_{4}$	122.0(2) 110.3(2)	C_{41} C_{42} C_{43} C_{42}	125.7(10) 115.8(17)
$C_{22} = C_{21} = N_{4}$	119.3(2) 122.8(2)	$C_{44} = C_{43} = C_{42}$	113.0(17)
022 - 022 - 023	125.8(5)	$C_{44} = C_{43} = H_{43}$	122.1
022 - 022 - 021	110.2(2)	C42 - C43 - H43	122.1
$C_{23} = C_{22} = C_{21}$	119.9 (2)	C43 - C44 - C45	122.5 (17)
C24—C23—C22	120.8 (3)	C43—C44—H44	118.8
C24—C23—H23	119.6	C45—C44—H44	118.8
С22—С23—Н23	119.6	C44—C45—C46	123.1 (17)
C25—C24—C23	120.0 (3)	C44—C45—H45	118.4
C25—C24—H24	120.0	C46—C45—H45	118.4
C23—C24—H24	120.0	C45—C46—C41	114.4 (16)
C24—C25—C26	120.1 (3)	C45—C46—H46	122.8
С24—С25—Н25	119.9	C41—C46—H46	122.8
С26—С25—Н25	119.9	O42—C47—O41	123 (2)
C25—C26—C21	121.4 (3)	O42—C47—C41	118.2 (19)
C25—C26—H26	119.3	O41—C47—C41	113.7 (19)
C6-N1-C2-C3	-50.7(3)	C37 - C31 - C32 - C33	177 5 (3)
$N_1 - C_2 - C_3 - N_4$	55 7 (3)	F_{32} C_{32} C_{33} C_{34}	179.8(4)
$C_2 C_3 N_4 C_2 C_3$	165.0(2)	C_{21} C_{22} C_{23} C_{24}	179.0(4)
$C_2 = C_3 = N_4 = C_2 I$	-62.2(2)	$C_{31} - C_{32} - C_{33} - C_{34}$	2.2(0)
$C_2 = C_3 = N_4 = C_3$	-02.2(3)	$C_{32} = C_{33} = C_{34} = C_{35}$	-0.0(0)
$C_2 N_4 C_5 C_6$	-105.1(2)	$C_{33} - C_{34} - C_{35} - C_{36}$	-0.3(7)
C_3 —N4—C5—C6	62.9 (3)	$C_{34} = C_{35} = C_{36} = C_{31}$	0.1 (6)
C2—N1—C6—C5	51.9 (3)	$C_{32} = C_{31} = C_{36} = C_{35}$	1.3 (5)
N4—C5—C6—N1	-57.9 (3)	C37—C31—C36—C35	-178.8 (4)
C5—N4—C21—C26	-11.4 (3)	C32—C31—C37—O32	31.1 (5)
C3—N4—C21—C26	118.2 (3)	C36—C31—C37—O32	-148.9 (4)
C5—N4—C21—C22	164.2 (2)	C32—C31—C37—O31	-150.8 (4)
C3—N4—C21—C22	-66.3 (3)	C36—C31—C37—O31	29.3 (5)
C26—C21—C22—O22	176.1 (2)	C46—C41—C42—F42	-159 (5)
N4—C21—C22—O22	0.3 (3)	C47—C41—C42—F42	23 (6)
C26—C21—C22—C23	-1.6(3)	C46—C41—C42—C43	0 (6)
N4—C21—C22—C23	-177.4 (2)	C47—C41—C42—C43	-179 (4)
O22—C22—C23—C24	-176.3(3)	F42—C42—C43—C44	160 (5)
C21—C22—C23—C24	1.3 (4)	C41—C42—C43—C44	0(7)
$C_{22} = C_{23} = C_{24} = C_{25}$	0.0 (5)	C42-C43-C44-C45	0 (8)
C_{23} C_{24} C_{25} C_{26}	-0.9(4)	C43 - C44 - C45 - C46	1 (9)
C_{24} C_{25} C_{26} C_{21}	0 5 (4)	C44-C45-C46-C41	-2(7)
C_{22}^{22} C_{23}^{22} C_{24}^{22} C_{25}^{22}	0.3(1)	C_{42} C_{41} C_{46} C_{45}	$\frac{2}{1}$
022 - 021 - 020 - 023	0.0 (+)		1 (0)

N4—C21—C26—C25	176.4 (2)	C47—C41—C46—C45	180 (4)
C23—C22—O22—C27	-4.5 (5)	C42—C41—C47—O42	40 (6)
C21—C22—O22—C27	177.9 (3)	C46—C41—C47—O42	-138 (5)
C36—C31—C32—F32	179.9 (4)	C42—C41—C47—O41	-115 (4)
C37—C31—C32—F32	0.0 (5)	C46—C41—C47—O41	66 (5)
C36—C31—C32—C33	-2.6(5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H11…O31	0.99 (3)	1.72 (3)	2.694 (4)	167 (3)
N1—H11…O32	0.99 (3)	2.51 (3)	3.131 (4)	120.9 (19)
N1—H12…O32 ⁱ	0.88 (3)	1.83 (3)	2.679 (4)	161 (3)
N1—H11…O41	0.99 (3)	1.77 (5)	2.67 (4)	151 (3)
N1—H11…O42	0.99 (3)	2.52 (5)	3.20 (4)	126 (2)
N1— $H12$ ···O42 ⁱ	0.88 (3)	1.83 (5)	2.63 (4)	151 (3)
C34—H34···· <i>Cg</i> 2 ⁱⁱ	0.93	2.74	3.543 (5)	145
C44—H44···· $Cg2^{ii}$	0.93	2.99	3.73 (4)	137
C26—H26…Cg3 ⁱⁱⁱ	0.93	2.96	3.754 (17)	144

Symmetry codes: (i) *x*, -*y*+1, *z*-1/2; (ii) *x*-1/2, -*y*+3/2, *z*-1/2; (iii) *x*+1/2, *y*-1/2, *z*.

4-(2-Methoxyphenyl)piperazin-1-ium 2-chlorobenzoate (V)

Crystal data

C₁₁H₁₇N₂O⁺·C₇H₄ClO₂⁻⁷ $M_r = 348.82$ Monoclinic, $P2_1/c$ a = 7.9974 (8) Å b = 27.611 (2) Å c = 8.5972 (9) Å $\beta = 106.40$ (1)° V = 1821.2 (3) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.747, T_{\max} = 0.973$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.216$ S = 1.033410 reflections 223 parameters F(000) = 736 $D_x = 1.272 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4043 reflections $\theta = 2.6-28.0^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 296 KNeedle, orange $0.48 \times 0.20 \times 0.12 \text{ mm}$

13275 measured reflections 3410 independent reflections 2060 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.6^\circ, \theta_{min} = 2.6^\circ$ $h = -9 \rightarrow 9$ $k = -33 \rightarrow 33$ $l = -10 \rightarrow 10$

0 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1138P)^2 + 0.7483P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 1.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4620 (4)	0.44249 (11)	0.3578 (4)	0.0640 (8)	
H11	0.368 (5)	0.4525 (14)	0.402 (4)	0.077*	
H12	0.511 (5)	0.4709 (16)	0.336 (4)	0.077*	
C2	0.3954 (4)	0.41253 (14)	0.2112 (5)	0.0684 (10)	
H2A	0.3246	0.4323	0.1241	0.082*	
H2B	0.3225	0.3869	0.2333	0.082*	
C3	0.5449 (4)	0.39067 (13)	0.1593 (4)	0.0614 (9)	
H3A	0.4993	0.3699	0.0659	0.074*	
H3B	0.6122	0.4163	0.1284	0.074*	
N4	0.6572 (3)	0.36247 (10)	0.2916 (3)	0.0545 (7)	
C5	0.7325 (5)	0.39472 (14)	0.4289 (4)	0.0666 (10)	
H5A	0.7975	0.4204	0.3957	0.080*	
H5B	0.8118	0.3767	0.5159	0.080*	
C6	0.5886 (5)	0.41589 (16)	0.4871 (5)	0.0747 (11)	
H6A	0.5290	0.3901	0.5265	0.090*	
H6B	0.6379	0.4377	0.5769	0.090*	
C21	0.7769 (4)	0.33160 (12)	0.2452 (4)	0.0538 (8)	
C22	0.7097 (5)	0.29139 (12)	0.1470 (4)	0.0607 (9)	
C23	0.8208 (7)	0.26032 (14)	0.0999 (5)	0.0798 (12)	
H23	0.7765	0.2342	0.0326	0.096*	
C24	1.0003 (7)	0.26825 (19)	0.1536 (6)	0.0962 (16)	
H24	1.0751	0.2470	0.1223	0.115*	
C25	1.0676 (6)	0.30630 (18)	0.2506 (6)	0.0869 (13)	
H25	1.1875	0.3109	0.2868	0.104*	
C26	0.9558 (5)	0.33835 (14)	0.2954 (4)	0.0672 (10)	
H26	1.0018	0.3648	0.3602	0.081*	
O22	0.5338 (3)	0.28580 (9)	0.1060 (3)	0.0770 (8)	
C27	0.4570 (7)	0.24698 (17)	0.0025 (6)	0.1036 (16)	
H27A	0.3330	0.2476	-0.0157	0.155*	
H27B	0.4835	0.2502	-0.0992	0.155*	
H27C	0.5027	0.2168	0.0522	0.155*	
C31	0.1308 (4)	0.43466 (12)	0.7353 (4)	0.0541 (8)	
C32	0.1418 (4)	0.38566 (13)	0.7729 (4)	0.0606 (9)	
Cl32	0.29281 (16)	0.35006 (4)	0.71550 (13)	0.0871 (4)	
C33	0.0387 (6)	0.36423 (19)	0.8551 (5)	0.0886 (13)	
-----	-------------	--------------	------------	-------------	--
H33	0.0482	0.3312	0.8774	0.106*	
C34	-0.0776 (7)	0.3916 (3)	0.9036 (6)	0.1056 (17)	
H34	-0.1480	0.3772	0.9600	0.127*	
C35	-0.0935 (6)	0.4406 (2)	0.8710 (5)	0.0955 (15)	
H35	-0.1735	0.4591	0.9055	0.115*	
C36	0.0107 (5)	0.46182 (16)	0.7865 (5)	0.0760 (11)	
H36	0.0000	0.4948	0.7637	0.091*	
C37	0.2417 (5)	0.45733 (12)	0.6402 (5)	0.0643 (9)	
031	0.1985 (3)	0.45110 (11)	0.4917 (3)	0.0810 (8)	
O32	0.3701 (5)	0.48041 (13)	0.7200 (4)	0.1152 (12)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0672 (19)	0.0561 (18)	0.075 (2)	-0.0144 (15)	0.0306 (17)	-0.0193 (16)
C2	0.058 (2)	0.067 (2)	0.075 (2)	-0.0070 (17)	0.0105 (18)	-0.0203 (19)
C3	0.063 (2)	0.065 (2)	0.051 (2)	0.0015 (17)	0.0071 (16)	-0.0152 (16)
N4	0.0560 (16)	0.0569 (16)	0.0480 (15)	-0.0057 (12)	0.0104 (13)	-0.0120 (12)
C5	0.066 (2)	0.073 (2)	0.055 (2)	-0.0103 (18)	0.0071 (17)	-0.0133 (17)
C6	0.084 (3)	0.083 (3)	0.058 (2)	-0.012 (2)	0.022 (2)	-0.024 (2)
C21	0.060 (2)	0.0538 (18)	0.0486 (18)	-0.0018 (15)	0.0169 (15)	0.0073 (15)
C22	0.079 (2)	0.0516 (19)	0.057 (2)	0.0033 (18)	0.0281 (18)	0.0030 (16)
C23	0.113 (4)	0.056 (2)	0.082 (3)	0.013 (2)	0.045 (3)	0.0067 (19)
C24	0.113 (4)	0.080 (3)	0.114 (4)	0.045 (3)	0.062 (3)	0.038 (3)
C25	0.072 (3)	0.084 (3)	0.108 (3)	0.025 (2)	0.029 (2)	0.042 (3)
C26	0.061 (2)	0.067 (2)	0.067 (2)	0.0059 (18)	0.0090 (18)	0.0218 (18)
O22	0.0822 (18)	0.0675 (16)	0.0825 (18)	-0.0186 (13)	0.0251 (14)	-0.0303 (14)
C27	0.129 (4)	0.072 (3)	0.111 (4)	-0.036 (3)	0.037 (3)	-0.041 (3)
C31	0.0585 (19)	0.0577 (19)	0.0435 (17)	-0.0075 (15)	0.0100 (15)	0.0004 (14)
C32	0.072 (2)	0.062 (2)	0.0431 (18)	-0.0134 (17)	0.0088 (16)	0.0058 (15)
C132	0.1206 (9)	0.0538 (6)	0.0861 (8)	0.0079 (5)	0.0279 (6)	0.0040 (5)
C33	0.109 (4)	0.092 (3)	0.065 (3)	-0.020 (3)	0.026 (3)	0.020 (2)
C34	0.103 (4)	0.151 (5)	0.070 (3)	-0.021 (4)	0.036 (3)	0.033 (3)
C35	0.080 (3)	0.148 (5)	0.064 (3)	0.012 (3)	0.031 (2)	0.007 (3)
C36	0.076 (2)	0.086 (3)	0.069 (2)	0.007 (2)	0.025 (2)	0.004 (2)
C37	0.072 (2)	0.0407 (17)	0.085 (3)	-0.0034 (17)	0.030 (2)	0.0005 (18)
O31	0.0823 (18)	0.101 (2)	0.0683 (18)	0.0104 (15)	0.0350 (15)	0.0168 (15)
O32	0.130 (3)	0.094 (2)	0.132 (3)	-0.062 (2)	0.053 (2)	-0.024 (2)

N1—C6	1.472 (5)	C24—C25	1.355 (7)	
N1—C2	1.475 (4)	C24—H24	0.9300	
N1—H11	0.97 (4)	C25—C26	1.387 (6)	
N1—H12	0.92 (4)	C25—H25	0.9300	
С2—С3	1.515 (5)	C26—H26	0.9300	
C2—H2A	0.9700	O22—C27	1.418 (4)	

C2 H2B	0.9700	С27 Н27А	0.9600
C2—112D C3—N4	1 460 (4)	C27—H27R	0.9000
$C_3 H_3 \Lambda$	0.0700	$C_{27} = H_{27}C$	0.9000
C3 H3P	0.9700	$C_2 = C_2 C_2$	1.385(5)
N4 C21	1.421(4)	$C_{31} = C_{30}$	1.365(5) 1.299(5)
N4	1.421(4)	$C_{21} = C_{22}$	1.300(3) 1.502(5)
N4—C3	1.403 (4)	C_{22}	1.303(3) 1.262(5)
C_{5}	1.497 (3)	C_{32}	1.303(3)
C5—H5A	0.9700	$C_{32} = C_{132}$	1./33(4)
C5—H5B	0.9700	C33—C34	1.354 (7)
С6—Н6А	0.9700	С33—Н33	0.9300
С6—Н6В	0.9700	C34—C35	1.378 (7)
C21—C26	1.385 (5)	С34—Н34	0.9300
C21—C22	1.407 (5)	C35—C36	1.381 (6)
C22—O22	1.359 (4)	С35—Н35	0.9300
C22—C23	1.375 (5)	С36—Н36	0.9300
C23—C24	1.395 (6)	C37—O31	1.237 (5)
C23—H23	0.9300	C37—O32	1.238 (5)
C6—N1—C2	111.8 (3)	С22—С23—Н23	120.2
C6—N1—H11	107 (2)	C24—C23—H23	120.2
C2—N1—H11	111 (2)	C25—C24—C23	121.2 (4)
C6—N1—H12	110 (2)	C25—C24—H24	119.4
C2—N1—H12	112 (2)	C23—C24—H24	119.4
H11—N1—H12	105 (3)	C24—C25—C26	119.4 (4)
N1-C2-C3	1105(3)	C24—C25—H25	120.3
N1-C2-H2A	109 5	$C_{26} = C_{25} = H_{25}$	120.3
$C_3 - C_2 - H_2 A$	109.5	$C_{20} = C_{20} = C_{20}$	120.3 121.2(4)
N1-C2-H2B	109.5	$C_{21} = C_{26} = H_{26}$	119.4
$C_3 C_2 H_{2B}$	109.5	C_{25} C_{26} H_{26}	110 /
$H_{2A} = C_2 = H_{2B}$	109.5	$C_{23} = C_{20} = C_{120}$	119.4 118.8(3)
$M_{12} = C_2 = M_{12} = D_1$	110.2 (2)	022 - 022 - 027	100.5
N4 C2 H2A	100.6	022 - 027 - 1127A	109.5
N4 - C3 - H3A	109.0	$U_{22} = U_{27} = H_{27} B$	109.5
С2—С3—ПЗА	109.0	HZ/A = CZ/=HZ/B	109.5
N4-C3-H3B	109.0	$U_{22} = U_{27} = U_{27} U_{27}$	109.5
	109.6	$H_2/A = C_2/=H_2/C$	109.5
$H_3A - C_3 - H_3B$	108.1	H2/B = C2/=H2/C	109.5
C21—N4—C3	114.6 (2)	$C_{36} - C_{31} - C_{32}$	117.3 (3)
C21—N4—C5	115.8 (3)	C36—C31—C37	121.1 (3)
C3—N4—C5	109.0 (3)	C32—C31—C37	121.6 (3)
N4—C5—C6	109.1 (3)	C33—C32—C31	122.4 (4)
N4—C5—H5A	109.9	C33—C32—Cl32	118.2 (3)
С6—С5—Н5А	109.9	C31—C32—Cl32	119.4 (3)
N4—C5—H5B	109.9	C34—C33—C32	119.1 (5)
C6—C5—H5B	109.9	C34—C33—H33	120.5
H5A—C5—H5B	108.3	С32—С33—Н33	120.5
N1—C6—C5	111.8 (3)	C33—C34—C35	121.1 (4)
N1—C6—H6A	109.2	С33—С34—Н34	119.4
С5—С6—Н6А	109.2	С35—С34—Н34	119.4

N1—C6—H6B C5—C6—H6B H6A—C6—H6B C26—C21—C22 C26—C21—N4 C22—C21—N4 O22—C22—C23 O22—C22—C21	109.2 109.2 107.9 118.6 (3) 123.4 (3) 118.0 (3) 124.1 (4) 115.9 (3)	C34—C35—C36 C34—C35—H35 C36—C35—H35 C35—C36—C31 C35—C36—H36 C31—C36—H36 O31—C37—O32 O31—C37—C31	119.3 (4) 120.4 120.4 120.8 (4) 119.6 119.6 126.2 (4) 117.9 (3)
C23—C22—C21	120.0 (4)	O32—C37—C31	115.9 (4)
022-023-024	119.0 (4)		
C6—N1—C2—C3	-51.8 (4)	C22-C21-C26-C25	-0.1 (5)
N1-C2-C3-N4	56.7 (4)	N4—C21—C26—C25	178.0 (3)
C2-C3-N4-C21	166.2 (3)	C24—C25—C26—C21	1.3 (6)
C2-C3-N4-C5	-62.2 (3)	C23—C22—O22—C27	-2.9 (5)
C21—N4—C5—C6	-166.8 (3)	C21—C22—O22—C27	177.8 (3)
C3—N4—C5—C6	62.2 (4)	C36—C31—C32—C33	0.7 (5)
C2—N1—C6—C5	53.2 (4)	C37—C31—C32—C33	-178.1 (4)
N4—C5—C6—N1	-58.0 (4)	C36—C31—C32—Cl32	-178.7 (3)
C3—N4—C21—C26	112.9 (3)	C37—C31—C32—Cl32	2.4 (4)
C5—N4—C21—C26	-15.3 (4)	C31—C32—C33—C34	-0.7 (6)
C3—N4—C21—C22	-68.9 (4)	Cl32—C32—C33—C34	178.7 (3)
C5—N4—C21—C22	162.8 (3)	C32—C33—C34—C35	0.2 (7)
C26—C21—C22—O22	177.9 (3)	C33—C34—C35—C36	0.3 (7)
N4—C21—C22—O22	-0.3 (4)	C34—C35—C36—C31	-0.3 (6)
C26—C21—C22—C23	-1.4 (5)	C32—C31—C36—C35	-0.2 (5)
N4—C21—C22—C23	-179.6 (3)	C37—C31—C36—C35	178.6 (4)
O22—C22—C23—C24	-177.6 (4)	C36—C31—C37—O31	-101.0 (4)
C21—C22—C23—C24	1.7 (5)	C32—C31—C37—O31	77.8 (4)
C22—C23—C24—C25	-0.5 (6)	C36—C31—C37—O32	79.5 (4)
C23—C24—C25—C26	-0.9 (6)	C32—C31—C37—O32	-101.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H11…O31	0.97 (4)	1.74 (3)	2.682 (4)	162 (3)
N1—H12···O32 ⁱ	0.92 (4)	1.79 (4)	2.700 (5)	170 (4)
C5—H5 B ··· $Cg1^{ii}$	0.97	2.87	3.554 (4)	128
C34—H34…Cg2 ⁱⁱⁱ	0.93	2.93	3.658 (7)	136

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*+1.

4-(2-Methoxyphenyl)piperazin-1-ium 2-bromobenzoate (VI)

Crystal data	
$C_{11}H_{17}N_2O^+ \cdot C_7H_4BrO_2^-$	b = 13.2292 (4) Å
$M_r = 393.28$	c = 19.4903 (7) Å
Orthorhombic, $P2_12_12_1$	$V = 1800.35 (10) \text{ Å}^3$
a = 6.9824 (2) Å	Z = 4

F(000) = 808 $D_x = 1.451 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3863 reflections $\theta = 5.6-89.3^{\circ}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer	
Radiation source: Enhance (Mo) X-ray Source	
Graphite monochromator	
ω scans	
Absorption correction: multi-scan	
(CrysAlis RED; Oxford Diffraction, 2009)	
$T_{\min} = 0.297, \ T_{\max} = 0.331$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.077$ S = 0.94	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0418P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$
3895 reflections	$\Delta \rho_{\rm max} = 0.28 \text{ e A}^{-3}$
224 parameters	$\Delta \rho_{\rm min} = -0.53 \ {\rm e \ A}^{-5}$
0 restraints	Absolute structure: Flack x determined using
Primary atom site location: difference Fourier map	919 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Hydrogen site location: mixed	Absolute structure parameter: 0.004 (5)

 $\mu = 2.30 \text{ mm}^{-1}$

Block, orange

 $0.50 \times 0.50 \times 0.48 \text{ mm}$

 $\theta_{\rm max} = 27.7^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

13089 measured reflections 3895 independent reflections 2640 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.033$

 $h = -9 \rightarrow 9$ $k = -16 \rightarrow 17$ $l = -24 \rightarrow 23$

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and	isotropic or e	quivalent isotropic	displacement	parameters ($(Å^2)$)
	1	1 1	1	1 1	\ <i>/</i>	

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.2366 (5)	0.3584 (2)	0.50360 (15)	0.0385 (7)	
H11	0.156 (5)	0.338 (3)	0.5251 (19)	0.046*	
H12	0.271 (5)	0.307 (2)	0.4774 (17)	0.046*	
C2	0.4021 (5)	0.3893 (3)	0.54630 (18)	0.0422 (9)	
H2A	0.4540	0.3309	0.5699	0.051*	
H2B	0.3611	0.4380	0.5805	0.051*	
C3	0.5535 (5)	0.4355 (2)	0.50113 (17)	0.0351 (8)	
H3A	0.6611	0.4572	0.5290	0.042*	
H3B	0.5993	0.3855	0.4686	0.042*	
N4	0.4745 (4)	0.52259 (19)	0.46388 (14)	0.0323 (7)	
C5	0.3155 (5)	0.4908 (2)	0.42030 (18)	0.0356 (9)	
H5A	0.3607	0.4421	0.3868	0.043*	
H5B	0.2651	0.5488	0.3957	0.043*	

C6	0.1594 (5)	0.4441 (3)	0.4630(2)	0.0446 (10)	
H6A	0.1064	0.4946	0.4938	0.054*	
H6B	0.0574	0.4203	0.4334	0.054*	
C21	0.6096 (5)	0.5876 (2)	0.43291 (17)	0.0318 (8)	
C22	0.7393 (5)	0.6421 (2)	0.47504 (16)	0.0353 (7)	
C23	0.8583 (5)	0.7139 (3)	0.4459 (2)	0.0493 (10)	
H23	0.9422	0.7502	0.4735	0.059*	
C24	0.8539 (6)	0.7323 (3)	0.3762 (2)	0.0574 (11)	
H24	0.9346	0.7808	0.3573	0.069*	
C25	0.7323 (5)	0.6800(3)	0.33479 (18)	0.0482 (9)	
H25	0.7286	0.6931	0.2879	0.058*	
C26	0.6140 (5)	0.6070 (3)	0.36316 (18)	0.0392 (9)	
H26	0.5348	0.5698	0.3343	0.047*	
O22	0.7279 (4)	0.62323 (15)	0.54385 (11)	0.0412 (6)	
C27	0.8382 (6)	0.6854 (3)	0.58800 (19)	0.0531 (11)	
H27A	0.9718	0.6758	0.5784	0.080*	
H27B	0.8126	0.6675	0.6348	0.080*	
H27C	0.8048	0.7549	0.5806	0.080*	
C31	0.0331 (5)	0.3548 (2)	0.67134 (16)	0.0357 (8)	
C32	0.1964 (5)	0.3120 (3)	0.69802 (18)	0.0444 (9)	
Br32	0.23614 (7)	0.16981 (3)	0.68887 (3)	0.0746 (2)	
C33	0.3352 (6)	0.3685 (4)	0.7308 (2)	0.0629 (13)	
H33	0.4435	0.3377	0.7491	0.076*	
C34	0.3097 (7)	0.4713 (4)	0.7360 (2)	0.0712 (15)	
H34	0.4033	0.5110	0.7566	0.085*	
C35	0.1467 (8)	0.5153 (4)	0.7107 (2)	0.0685 (14)	
H35	0.1279	0.5845	0.7158	0.082*	
C36	0.0120 (6)	0.4583 (3)	0.6783 (2)	0.0527 (10)	
H36	-0.0964	0.4895	0.6605	0.063*	
C37	-0.1145 (5)	0.2952 (3)	0.6315 (2)	0.0397 (9)	
031	-0.0853 (3)	0.29029 (17)	0.56785 (12)	0.0409 (6)	
O32	-0.2506 (4)	0.2563 (2)	0.66127 (13)	0.0792 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0415 (17)	0.0396 (15)	0.0344 (17)	-0.0058 (17)	0.0099 (16)	-0.0041 (12)
C2	0.048 (2)	0.044 (2)	0.035 (2)	0.0010 (17)	0.0020 (18)	0.0005 (17)
C3	0.0376 (18)	0.0328 (18)	0.035 (2)	-0.0018 (16)	-0.0022 (16)	-0.0011 (16)
N4	0.0320 (15)	0.0302 (15)	0.0348 (18)	-0.0001 (13)	-0.0053 (13)	0.0004 (13)
C5	0.037 (2)	0.0373 (19)	0.033 (2)	-0.0035 (15)	-0.0070 (15)	0.0017 (15)
C6	0.0376 (19)	0.045 (2)	0.051 (2)	-0.0019 (17)	-0.0041 (18)	0.0004 (19)
C21	0.0355 (18)	0.0291 (16)	0.031 (2)	0.0035 (15)	0.0023 (16)	-0.0034 (15)
C22	0.0340 (17)	0.0379 (17)	0.034 (2)	-0.0008 (18)	-0.0025 (18)	-0.0017 (14)
C23	0.041 (2)	0.057 (2)	0.050 (3)	-0.0128 (19)	-0.0041 (18)	0.001 (2)
C24	0.051 (2)	0.069 (3)	0.052 (3)	-0.017 (2)	0.006 (2)	0.014 (2)
C25	0.045 (2)	0.070 (2)	0.0304 (19)	-0.005 (2)	0.0032 (18)	0.0057 (17)
C26	0.039 (2)	0.045 (2)	0.034 (2)	-0.0004 (17)	-0.0016 (17)	-0.0041 (17)

O22	0.0488 (14)	0.0450 (12)	0.0297 (13)	-0.0095 (13)	-0.0065 (13)	-0.0008 (10)
C27	0.059 (2)	0.061 (3)	0.039 (2)	-0.008 (2)	-0.0174 (19)	-0.0053 (19)
C31	0.0362 (19)	0.046 (2)	0.025 (2)	-0.0065 (16)	0.0051 (15)	-0.0024 (15)
C32	0.0384 (19)	0.065 (2)	0.030 (2)	-0.0035 (17)	0.0008 (16)	0.0064 (19)
Br32	0.0640 (3)	0.0691 (3)	0.0907 (4)	0.0123 (3)	-0.0067 (3)	0.0203 (3)
C33	0.045 (2)	0.107 (4)	0.037 (2)	-0.014 (3)	-0.0080 (19)	0.012 (2)
C34	0.070 (3)	0.103 (4)	0.040 (3)	-0.045 (3)	0.006 (2)	-0.022 (3)
C35	0.087 (3)	0.060 (3)	0.058 (3)	-0.023 (3)	0.016 (3)	-0.015 (2)
C36	0.058 (2)	0.051 (2)	0.049 (3)	-0.004 (2)	0.002 (2)	-0.006 (2)
C37	0.0325 (19)	0.048 (2)	0.039 (2)	0.0034 (17)	-0.0004 (17)	-0.0047 (18)
031	0.0475 (14)	0.0471 (14)	0.0283 (14)	-0.0077 (12)	0.0019 (12)	-0.0046 (12)
O32	0.0561 (18)	0.131 (3)	0.0509 (17)	-0.044 (2)	0.0165 (16)	-0.0198 (16)

N1—C2	1.481 (5)	C24—C25	1.360 (5)
N1-C6	1.484 (4)	C24—H24	0.9300
N1—H11	0.75 (4)	C25—C26	1.386 (5)
N1—H12	0.89 (3)	C25—H25	0.9300
C2—C3	1.506 (5)	C26—H26	0.9300
C2—H2A	0.9700	O22—C27	1.417 (4)
C2—H2B	0.9700	C27—H27A	0.9600
C3—N4	1.469 (4)	С27—Н27В	0.9600
С3—НЗА	0.9700	С27—Н27С	0.9600
С3—Н3В	0.9700	C31—C32	1.375 (5)
N4—C21	1.412 (4)	C31—C36	1.383 (4)
N4—C5	1.460 (4)	C31—C37	1.512 (5)
C5—C6	1.505 (5)	C32—C33	1.381 (5)
C5—H5A	0.9700	C32—Br32	1.910 (4)
С5—Н5В	0.9700	C33—C34	1.375 (7)
С6—Н6А	0.9700	С33—Н33	0.9300
C6—H6B	0.9700	C34—C35	1.370 (7)
C21—C26	1.384 (5)	C34—H34	0.9300
C21—C22	1.419 (4)	C35—C36	1.361 (6)
C22—O22	1.366 (4)	С35—Н35	0.9300
C22—C23	1.385 (5)	С36—Н36	0.9300
C23—C24	1.380 (5)	C37—O32	1.226 (4)
С23—Н23	0.9300	C37—O31	1.260 (4)
C2—N1—C6	111.8 (3)	С24—С23—Н23	119.6
C2—N1—H11	112 (3)	C22—C23—H23	119.6
C6—N1—H11	107 (3)	C25—C24—C23	120.5 (4)
C2—N1—H12	109 (2)	C25—C24—H24	119.7
C6—N1—H12	112 (2)	C23—C24—H24	119.7
H11—N1—H12	104 (3)	C24—C25—C26	119.3 (3)
N1—C2—C3	109.3 (3)	C24—C25—H25	120.3
N1—C2—H2A	109.8	C26—C25—H25	120.3
C3—C2—H2A	109.8	C21—C26—C25	122.3 (3)

N1—C2—H2B	109.8	C21—C26—H26	118.8
C3—C2—H2B	109.8	C25—C26—H26	118.8
H2A—C2—H2B	108.3	C22—O22—C27	117.3 (3)
N4—C3—C2	110.1 (3)	O22—C27—H27A	109.5
N4—C3—H3A	109.6	O22—C27—H27B	109.5
С2—С3—Н3А	109.6	H27A—C27—H27B	109.5
N4—C3—H3B	109.6	O22—C27—H27C	109.5
C2—C3—H3B	109.6	H27A—C27—H27C	109.5
$H_{3}A - C_{3} - H_{3}B$	108.2	H27B-C27-H27C	109.5
C_{21} N4 C_{5}	1158(3)	$C_{32} = C_{31} = C_{36}$	1173(3)
C_{21} N_{4} C_{3}	116.0(3)	C_{32} C_{31} C_{37}	123.0(3)
$C_5 N_4 C_3$	110.0(3) 110.3(3)	$C_{36} = C_{31} = C_{37}$	129.0(3) 1196(3)
N4	110.3(3)	C_{31} C_{32} C_{33}	119.0(5) 122.3(4)
N4-C5-H5A	109.6	$C_{31} = C_{32} = C_{33}$	122.3(4) 1194(3)
$C6$ $C5$ $H5\lambda$	109.6	C_{33} C_{32} Br_{32}	119.4(3) 118.3(3)
N4 C5 H5B	109.0	$C_{33} = C_{32} = D_{132}$	118.5(3)
C6 C5 U5D	109.0	$C_{34} = C_{33} = C_{32}$	110.0 (4)
	109.0	C34—C35—H35	120.7
$H_{A} = C_{A} = H_{A} = H_{A}$	100.1	С32—С33—П33	120.7
	110.2 (3)	$C_{35} = C_{34} = C_{35}$	120.1 (4)
	109.6	C35—C34—H34	119.9
	109.6	C33—C34—H34	119.9
NI—C6—H6B	109.6	$C_{36} - C_{35} - C_{34}$	120.3 (4)
С5—С6—Н6В	109.6	С36—С35—Н35	119.8
Н6А—С6—Н6В	108.1	С34—С35—Н35	119.8
C26—C21—N4	123.2 (3)	C35—C36—C31	121.4 (4)
C26—C21—C22	117.4 (3)	С35—С36—Н36	119.3
N4—C21—C22	119.2 (3)	С31—С36—Н36	119.3
O22—C22—C23	124.3 (3)	O32—C37—O31	124.8 (3)
O22—C22—C21	116.0 (3)	O32—C37—C31	120.3 (3)
C23—C22—C21	119.6 (3)	O31—C37—C31	114.9 (3)
C24—C23—C22	120.7 (3)		
C6—N1—C2—C3	-56.0 (4)	N4—C21—C26—C25	172.1 (3)
N1-C2-C3-N4	58.1 (4)	C22—C21—C26—C25	-3.2 (5)
C2-C3-N4-C21	165.1 (3)	C24—C25—C26—C21	2.4 (5)
C2—C3—N4—C5	-60.7 (3)	C23—C22—O22—C27	3.5 (5)
C21—N4—C5—C6	-166.1 (3)	C21—C22—O22—C27	-172.2 (3)
C3—N4—C5—C6	59.7 (4)	C36—C31—C32—C33	0.2 (5)
C2—N1—C6—C5	55.3 (4)	C37—C31—C32—C33	176.2 (3)
N4—C5—C6—N1	-56.5 (4)	C36—C31—C32—Br32	-179.1(3)
C5—N4—C21—C26	-11.1 (4)	C37—C31—C32—Br32	-3.1(4)
C3—N4—C21—C26	120.6 (3)	C31—C32—C33—C34	-1.0(6)
C5—N4—C21—C22	164.2 (3)	Br32—C32—C33—C34	178.3 (3)
C3—N4—C21—C22	-64.2 (4)	C32—C33—C34—C35	2.0 (6)
C26—C21—C22—O22	178.3 (3)	C33—C34—C35—C36	-2.3(7)
N4-C21-C22-O22	2.8 (4)	C_{34} C_{35} C_{36} C_{31}	1.5 (6)
$C_{26} - C_{21} - C_{22} - C_{23}$	2.4 (5)	C_{32} C_{31} C_{36} C_{35}	-0.5(6)
N4-C21-C22-C23	-1732(3)	C37 - C31 - C36 - C35	-176.6(4)
	1,2,2 (2)	05, 051 050 055	1,0.0(1)

O22—C22—C23—C24	-176.4 (4)	C32—C31—C37—O32	91.3 (4)
C21—C22—C23—C24	-0.8 (5)	C36—C31—C37—O32	-92.8 (5)
C22—C23—C24—C25	0.0 (6)	C32—C31—C37—O31	-89.1 (4)
C23—C24—C25—C26	-0.7 (6)	C36—C31—C37—O31	86.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H··· A	
N1—H11…O31	0.75 (4)	1.98 (4)	2.726 (4)	170 (4)	
N1—H12…O31 ⁱ	0.88 (3)	1.86 (3)	2.712 (4)	163 (3)	
C25—H25…O32 ⁱⁱ	0.93	2.56	3.488 (4)	173	
C26—H26…Cg1 ⁱⁱ	0.93	2.93	3.697 (4)	141	

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) -x+1/2, -y+1, z-1/2.

4-(2-Methoxyphenyl)piperazin-1-ium 2-iodobenzoate (VII)

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot C_7H_4IO_2^ M_r = 440.27$ Orthorhombic, $P2_12_12_1$ a = 7.0101 (4) Å b = 13.3796 (6) Å c = 19.5524 (6) Å V = 1833.87 (14) Å³ Z = 4F(000) = 880

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.373, T_{\max} = 0.431$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.071$ S = 1.053735 reflections 237 parameters 17 restraints Primary atom site location: difference Fourier map $D_x = 1.595 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3735 reflections $\theta = 2.6-27.8^{\circ}$ $\mu = 1.76 \text{ mm}^{-1}$ T = 293 KBlock, orange $0.50 \times 0.50 \times 0.48 \text{ mm}$

7500 measured reflections 3735 independent reflections 3036 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 2.6^{\circ}$ $h = -5 \rightarrow 9$ $k = -17 \rightarrow 16$ $l = -25 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0306P)^2 + 0.7308P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.46 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.65 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack *x* determined using 1045 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.004 (10)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.7532 (6)	0.6404 (2)	0.49690 (15)	0.0402 (7)	
H11	0.8436	0.6650	0.4697	0.048*	
H12	0.7154	0.6890	0.5249	0.048*	
C2	0.5901 (6)	0.6069 (4)	0.4550 (2)	0.0423 (11)	
H2A	0.6330	0.5584	0.4215	0.051*	
H2B	0.5361	0.6634	0.4307	0.051*	
C3	0.4399 (6)	0.5604 (3)	0.5005 (2)	0.0387 (10)	
H3A	0.3923	0.6100	0.5324	0.046*	
H3B	0.3338	0.5374	0.4728	0.046*	
N4	0.5212 (5)	0.4761 (3)	0.53831 (17)	0.0339 (8)	
C5	0.6810(6)	0.5097 (3)	0.5809 (2)	0.0396 (10)	
H5A	0.7349	0.4530	0.6051	0.048*	
H5B	0.6356	0.5574	0.6145	0.048*	
C6	0.8318 (7)	0.5575 (4)	0.5374 (3)	0.0487 (12)	
H6A	0.9335	0.5823	0.5664	0.058*	
H6B	0.8857	0.5078	0.5068	0.058*	
C21	0.3893 (5)	0.4115 (3)	0.5700 (2)	0.0338 (9)	
C22	0.2609 (8)	0.3565 (3)	0.52887 (19)	0.0372 (9)	
C23	0.1420 (7)	0.2860 (4)	0.5579 (3)	0.0517 (12)	
H23	0.0584	0.2496	0.5307	0.062*	
C24	0.1478 (8)	0.2697 (4)	0.6279 (3)	0.0583 (14)	
H24	0.0678	0.2219	0.6472	0.070*	
C25	0.2675 (8)	0.3219 (4)	0.6684 (2)	0.0527 (12)	
H25	0.2700	0.3102	0.7153	0.063*	
C26	0.3866 (6)	0.3931 (3)	0.6399 (2)	0.0418 (11)	
H26	0.4670	0.4296	0.6683	0.050*	
O22	0.2722 (6)	0.3732 (2)	0.45961 (14)	0.0432 (7)	
C27	0.1621 (8)	0.3095 (4)	0.4164 (3)	0.0574 (14)	
H27A	0.0289	0.3190	0.4257	0.086*	
H27B	0.1959	0.2411	0.4249	0.086*	
H27C	0.1874	0.3255	0.3694	0.086*	
C31	0.9641 (6)	0.6382 (4)	0.3324 (2)	0.0387 (10)	
C32	0.8007 (6)	0.6775 (4)	0.3027 (2)	0.0421 (11)	
I32	0.74794 (6)	0.83201 (2)	0.30799 (2)	0.06407 (13)	
C33	0.6680 (8)	0.6168 (5)	0.2703 (3)	0.0596 (15)	
H33	0.5591	0.6443	0.2506	0.072*	
C34	0.7001 (8)	0.5157 (5)	0.2677 (3)	0.0689 (19)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H34	0.6110	0 4741	0 2470	0.083*	
C35	0.8613 (10)	0.4758 (5)	0.2953 (3)	0.0660 (16)	
H35	0.8834	0.4075	0.2922	0.079*	
C36	0.9913 (7)	0.5360 (4)	0.3277 (3)	0.0536 (13)	
H36	1.0999	0.5075	0.3469	0.064*	
C37	1.1071 (6)	0.7004 (3)	0.3715 (2)	0.0389 (10)	0.54 (9)
031	1.072 (4)	0.699 (3)	0.4352 (5)	0.033 (3)	0.54 (9)
O32	1.233 (4)	0.750 (3)	0.3440 (12)	0.065 (5)	0.54 (9)
C38	1.1071 (6)	0.7004 (3)	0.3715 (2)	0.0389 (10)	0.46 (9)
O33	1.070 (4)	0.726 (3)	0.4325 (7)	0.030 (4)	0.46 (9)
O34	1.258 (3)	0.716 (4)	0.3417 (13)	0.065 (6)	0.46 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0418 (17)	0.0403 (16)	0.0384 (16)	-0.005 (3)	0.013 (2)	-0.0056 (13)
C2	0.045 (3)	0.047 (3)	0.035 (2)	-0.002(2)	0.002 (2)	-0.002 (2)
C3	0.042 (2)	0.036 (2)	0.038 (2)	-0.003 (2)	-0.005 (2)	0.001 (2)
N4	0.0337 (19)	0.0347 (19)	0.0334 (18)	-0.0026 (16)	-0.0045 (15)	-0.0008 (16)
C5	0.037 (2)	0.044 (2)	0.038 (2)	-0.0003 (19)	-0.0061 (19)	-0.004 (2)
C6	0.040 (2)	0.053 (3)	0.054 (3)	-0.001(2)	-0.005 (2)	-0.006 (3)
C21	0.031 (2)	0.034 (2)	0.036 (2)	0.0025 (18)	0.0003 (19)	-0.0023 (19)
C22	0.037 (2)	0.038 (2)	0.0362 (19)	0.002 (3)	0.000 (3)	0.0002 (15)
C23	0.044 (3)	0.057 (3)	0.054 (3)	-0.010 (2)	-0.004 (2)	0.004 (3)
C24	0.052 (3)	0.068 (4)	0.055 (3)	-0.016 (3)	0.008 (3)	0.017 (3)
C25	0.050 (3)	0.068 (3)	0.041 (2)	-0.003 (4)	0.006 (3)	0.010(2)
C26	0.042 (2)	0.050(3)	0.033 (2)	0.000 (2)	0.002 (2)	-0.004(2)
O22	0.0477 (19)	0.0469 (15)	0.0350 (13)	-0.0054 (18)	-0.0046 (17)	0.0000 (12)
C27	0.063 (3)	0.067 (3)	0.043 (3)	-0.015 (3)	-0.014 (3)	-0.007 (3)
C31	0.035 (2)	0.051 (3)	0.030 (2)	-0.003 (2)	0.0036 (18)	-0.004 (2)
C32	0.041 (3)	0.055 (3)	0.030(2)	-0.0081 (19)	0.0015 (18)	0.004 (2)
I32	0.05832 (19)	0.0631 (2)	0.0708 (2)	0.0097 (3)	-0.0032 (3)	0.01731 (17)
C33	0.049 (3)	0.090 (4)	0.041 (3)	-0.014 (3)	-0.010 (2)	0.003 (3)
C34	0.073 (5)	0.087 (5)	0.047 (3)	-0.037 (3)	0.004 (3)	-0.017 (3)
C35	0.078 (4)	0.058 (3)	0.062 (4)	-0.014 (3)	0.016 (3)	-0.020 (3)
C36	0.050 (3)	0.054 (3)	0.056 (3)	-0.001(2)	0.001 (2)	-0.009 (3)
C37	0.032 (2)	0.046 (3)	0.039 (3)	-0.002 (2)	0.000 (2)	-0.003 (2)
O31	0.051 (5)	0.015 (9)	0.034 (4)	-0.012 (7)	0.003 (4)	-0.005 (3)
032	0.066 (8)	0.072 (11)	0.057 (6)	-0.031 (7)	0.019 (7)	-0.022 (6)
C38	0.032 (2)	0.046 (3)	0.039 (3)	-0.002 (2)	0.000 (2)	-0.003 (2)
O33	0.042 (5)	0.010 (9)	0.038 (5)	-0.009 (7)	0.002 (4)	-0.004 (4)
O34	0.039 (6)	0.105 (16)	0.053 (6)	-0.020 (9)	0.009 (6)	-0.037 (9)

N1—C6	1.470 (6)	C24—C25	1.350 (7)
N1—C2	1.476 (6)	C24—H24	0.9300
N1—H11	0.8900	C25—C26	1.383 (6)

N1—H12	0.8900	C25—H25	0.9300
C2—C3	1.512 (6)	C26—H26	0.9300
C2—H2A	0.9700	O22—C27	1.428 (6)
C2—H2B	0.9700	C27—H27A	0.9600
C3—N4	1.464 (5)	C27—H27B	0.9600
С3—НЗА	0.9700	С27—Н27С	0.9600
С3—Н3В	0.9700	C31—C36	1.384 (7)
N4—C21	1.410 (5)	C31—C32	1.387 (6)
N4—C5	1.466 (6)	C31—C37	1.511 (6)
C5—C6	1 500 (7)	$C_{32} = C_{33}$	1.388(7)
C5—H5A	0.9700	C_{32} C	2 103 (5)
C5—H5B	0.9700	$C_{33} - C_{34}$	1 372 (9)
С6—Н6А	0.9700	C33—H33	0.9300
C6—H6B	0.9700	C_{34} C 25	1 361 (8)
C_{21} C_{26}	1 389 (6)	C_{34} H34	0.9300
$C_{21} = C_{20}$	1.389 (0)	C_{35} C_{36}	1 370 (8)
$C_{21} = C_{22}$	1.415(0) 1.375(5)	$C_{35} = C_{30}$	0.0300
$C_{22} = 0_{22}$	1.373(3)	C35—H35	0.9300
C22—C23	1.382 (0)	C30—H30	0.9300
C23—C24	1.385 (7)	$C_{37} = 0_{32}$	1.226 (9)
C23—H23	0.9300	$C_{3}/=031$	1.269 (8)
C6—N1—C2	111.1 (3)	C22—C23—H23	120.1
C6—N1—H11	109.4	C24—C23—H23	120.1
C2—N1—H11	109.4	C25—C24—C23	121.1 (5)
C6—N1—H12	109.4	C25—C24—H24	119.5
C_{2} N1 H12	109.4	C_{23} C_{24} H_{24}	119.5
H11—N1—H12	108.0	C^{24} C^{25} C^{26}	119.7 (4)
N1—C2—C3	109.8 (3)	C_{24} C_{25} H_{25}	120.2
N1—C2—H2A	109.7	$C_{26} = C_{25} = H_{25}$	120.2
$C_3 - C_2 - H_2 A$	109.7	$C_{25} = C_{26} = C_{21}$	120.2
N1 - C2 - H2B	109.7	$C_{25} = C_{26} = H_{26}$	119.1
$C_3 - C_2 - H_2B$	109.7	C_{21} C_{26} H_{26}	119.1
$H_2A = C_2 = H_2B$	109.7	$C^{22} = C^{22} = C^{27}$	117.1 117.1(4)
N4 - C3 - C2	100.2	022 - 022 - 027 022 - 027 - H27A	109.5
N4 - C3 - H3A	109.6	022 - 027 - H27R 022 - C27 - H27B	109.5
$C_2 = C_3 = H_3 \Delta$	109.0	H27A - C27 - H27B	109.5
N4_C3_H3B	109.6	022 - 027 - H27C	109.5
$C_2 C_3 H_{3R}$	109.6	$\frac{1}{12}$	109.5
$H_{3A} = C_{3} = H_{3B}$	109.0	H27R C27 H27C	109.5
$C_{21} N_{4} C_{3}$	100.2	$C_{26}^{$	109.3
$C_{21} = N_{4} = C_{5}$	116.0(3)	$C_{30} = C_{31} = C_{32}$	117.4(4)
$C_2 N_4 C_5$	110.1(3)	$C_{30} = C_{31} = C_{37}$	119.1(4) 123.4(4)
C_{3}	110.7(3) 110.2(4)	$C_{32} = C_{31} = C_{37}$	123.4(4) 121.5(5)
N4 C5 H54	100.5 (4)	$C_{31} - C_{32} - C_{33}$	121.3(3) 1108(3)
C6 C5 H5A	109.0	$C_{31} - C_{32} - C_{32}$	119.0(3) 119.6(4)
$C_0 - C_3 - \Pi_3 A$	109.0	$C_{33} - C_{32} - C_{32}$	110.0(4)
	109.0	$C_{24} = C_{22} = U_{22}$	110.9 (3)
	109.0	$C_{22} = C_{22} = U_{22}$	120.0
пла—сл—плв	108.1	U32—U33—H33	120.6

N1—C6—C5	111.3 (4)	C35—C34—C33	120.6 (5)
N1—C6—H6A	109.4	С35—С34—Н34	119.7
С5—С6—Н6А	109.4	С33—С34—Н34	119.7
N1—C6—H6B	109.4	C34—C35—C36	120.3 (6)
С5—С6—Н6В	109.4	С34—С35—Н35	119.8
H6A—C6—H6B	108.0	С36—С35—Н35	119.8
C26—C21—N4	123.4 (4)	C35—C36—C31	121.3 (5)
C26—C21—C22	117.3 (4)	С35—С36—Н36	119.4
N4—C21—C22	119.1 (4)	С31—С36—Н36	119.4
O22—C22—C23	123.4 (4)	O32—C37—O31	125.5 (12)
O22—C22—C21	116.0 (4)	O32—C37—C31	123.5 (13)
C23—C22—C21	120.4 (4)	O31—C37—C31	111.0 (13)
C22—C23—C24	119.7 (5)		
C6—N1—C2—C3	56.3 (5)	C24—C25—C26—C21	-1.1 (8)
N1-C2-C3-N4	-58.4 (5)	N4—C21—C26—C25	-173.6 (4)
C2-C3-N4-C21	-165.5 (4)	C22—C21—C26—C25	1.8 (7)
C2-C3-N4-C5	59.7 (5)	C23—C22—O22—C27	-3.7 (7)
C21—N4—C5—C6	167.0 (4)	C21—C22—O22—C27	172.1 (4)
C3—N4—C5—C6	-58.3 (5)	C36—C31—C32—C33	0.8 (6)
C2—N1—C6—C5	-55.6 (5)	C37—C31—C32—C33	-176.6 (4)
N4-C5-C6-N1	56.2 (5)	C36—C31—C32—I32	179.7 (3)
C3—N4—C21—C26	-121.0 (4)	C37—C31—C32—I32	2.3 (5)
C5—N4—C21—C26	11.1 (6)	C31—C32—C33—C34	0.0 (7)
C3—N4—C21—C22	63.7 (5)	I32—C32—C33—C34	-178.9 (4)
C5—N4—C21—C22	-164.2 (4)	C32—C33—C34—C35	-1.4 (8)
C26—C21—C22—O22	-177.4 (4)	C33—C34—C35—C36	1.8 (8)
N4—C21—C22—O22	-1.8 (6)	C34—C35—C36—C31	-0.9 (8)
C26—C21—C22—C23	-1.5 (6)	C32—C31—C36—C35	-0.4 (7)
N4—C21—C22—C23	174.1 (4)	C37—C31—C36—C35	177.1 (5)
O22—C22—C23—C24	176.1 (5)	C36—C31—C37—O32	101 (2)
C21—C22—C23—C24	0.5 (8)	C32—C31—C37—O32	-82 (2)
C22—C23—C24—C25	0.2 (9)	C36—C31—C37—O31	-82.8 (18)
C23—C24—C25—C26	0.1 (9)	C32—C31—C37—O31	94.6 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A	
N1—H11…O31	0.89	1.80	2.66 (3)	162	
N1—H11…O33	0.89	1.93	2.80 (3)	165	
N1—H12…O31 ⁱ	0.89	1.97	2.83 (3)	162	
N1—H12…O33 ⁱ	0.89	1.74	2.60 (3)	161	
C25—H25…O34 ⁱⁱ	0.93	2.50	3.43 (3)	174	
C26—H26…Cg1 ⁱⁱ	0.93	2.93	3.716 (5)	143	

Symmetry codes: (i) x-1/2, -y+3/2, -z+1; (ii) -x+3/2, -y+1, z+1/2.

4-(2-Methoxyphenyl)piperazin-1-ium 2-methylbenzoate (VIII)

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot C_8H_7O_2^ M_r = 328.40$ Triclinic, $P\overline{1}$ a = 7.826(1) Å b = 10.320 (2) Åc = 12.055 (3) Å $\alpha = 78.37 (2)^{\circ}$ $\beta = 78.27 \ (2)^{\circ}$ $\gamma = 73.83 \ (2)^{\circ}$ V = 904.6 (3) Å³

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD	6091 measured reflections
diffractometer	3838 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2600 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.013$
ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -5 \rightarrow 10$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -11 \rightarrow 13$
$T_{\min} = 0.883, T_{\max} = 0.968$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.0332P]$
$wR(F^2) = 0.119$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3838 reflections	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.057 (5)
Hydrogen site location: mixed	

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Z = 2

F(000) = 352

 $\theta = 2.7 - 27.7^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.48 \times 0.48 \times 0.40 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.206 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3838 reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.42898 (16)	0.55387 (12)	0.64034 (10)	0.0429 (3)	
H11	0.3320 (19)	0.5684 (15)	0.5920 (12)	0.051*	
H12	0.5095 (19)	0.4646 (16)	0.6376 (12)	0.051*	
C2	0.33370 (18)	0.55987 (15)	0.75988 (11)	0.0449 (3)	
H2A	0.2790	0.4832	0.7859	0.054*	

H2B	0.2384	0.6433	0.7619	0.054*
C3	0.46231 (18)	0.55582 (14)	0.83911 (11)	0.0448 (3)
H3A	0.3967	0.5651	0.9157	0.054*
H3B	0.5512	0.4688	0.8430	0.054*
N4	0.55258 (15)	0.66676 (12)	0.79702 (9)	0.0445 (3)
C5	0.6584 (2)	0.64945 (17)	0.68405 (12)	0.0534 (4)
H5A	0.7448	0.5613	0.6881	0.064*
H5B	0.7241	0.7198	0.6581	0.064*
C6	0.5332 (2)	0.65903 (17)	0.60108 (12)	0.0542 (4)
H6A	0.4510	0.7490	0.5945	0.065*
H6B	0.6027	0.6466	0.5259	0.065*
C21	0.63967 (18)	0.69298 (14)	0.87963 (11)	0.0434 (3)
C22	0.53136 (18)	0.75748 (14)	0.97177 (12)	0.0453 (3)
C23	0.6112 (2)	0.78557 (16)	1.05340 (13)	0.0562 (4)
H23	0.5396	0.8262	1.1149	0.067*
C24	0.7965 (2)	0.75375 (18)	1.04446 (14)	0.0628 (4)
H24	0.8488	0.7740	1.0995	0.075*
C25	0.9036 (2)	0.6926 (2)	0.95519 (15)	0.0693 (5)
H25	1.0283	0.6715	0.9492	0.083*
C26	0.8242 (2)	0.66219 (18)	0.87324 (14)	0.0599 (4)
H26	0.8973	0.6202	0.8129	0.072*
O22	0.34998 (13)	0.78566 (11)	0.97381 (9)	0.0602 (3)
C27	0.2347 (2)	0.85827 (19)	1.06138 (16)	0.0734 (5)
H27A	0.1119	0.8784	1.0492	0.110*
H27B	0.2676	0.9419	1.0587	0.110*
H27C	0.2472	0.8032	1.1350	0.110*
C31	0.02692 (17)	0.80006 (14)	0.37927 (11)	0.0434 (3)
C32	0.0231 (2)	0.93671 (15)	0.33658 (14)	0.0571 (4)
C33	-0.1295 (3)	1.01830 (17)	0.29036 (17)	0.0752 (5)
H33	-0.1323	1.1089	0.2594	0.090*
C34	-0.2735 (2)	0.9696 (2)	0.28923 (16)	0.0774 (6)
H34	-0.3733	1.0266	0.2588	0.093*
C35	-0.2708 (2)	0.8359 (2)	0.33318 (14)	0.0660 (5)
H35	-0.3690	0.8019	0.3331	0.079*
C36	-0.12087 (18)	0.75165 (16)	0.37783 (12)	0.0523 (4)
H36	-0.1195	0.6609	0.4074	0.063*
C37	0.18760 (19)	0.70027 (14)	0.42484 (13)	0.0482 (4)
O31	0.15924 (14)	0.62406 (13)	0.51830 (10)	0.0692 (3)
O32	0.34037 (13)	0.69583 (10)	0.36497 (10)	0.0615 (3)
C38	0.1751 (3)	0.99828 (18)	0.3413 (2)	0.0863 (6)
H38A	0.1307	1.0954	0.3377	0.130*
H38B	0.2688	0.9785	0.2775	0.130*
H38C	0.2222	0.9600	0.4116	0.130*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0422 (6)	0.0442 (7)	0.0423 (7)	-0.0085 (5)	-0.0076 (5)	-0.0088 (5)

C2	0.0437 (7)	0.0458 (8)	0.0438 (8)	-0.0139 (6)	-0.0032 (6)	-0.0033 (6)
C3	0.0488 (8)	0.0453 (8)	0.0400 (7)	-0.0170 (6)	-0.0048 (6)	-0.0008 (6)
N4	0.0510 (7)	0.0487 (7)	0.0364 (6)	-0.0207 (5)	-0.0022 (5)	-0.0057 (5)
C5	0.0586 (9)	0.0655 (10)	0.0425 (8)	-0.0319 (8)	0.0027 (7)	-0.0102 (7)
C6	0.0678 (10)	0.0605 (9)	0.0385 (8)	-0.0287 (8)	-0.0011 (7)	-0.0065 (7)
C21	0.0503 (8)	0.0426 (7)	0.0391 (7)	-0.0187 (6)	-0.0051 (6)	-0.0021 (6)
C22	0.0480 (8)	0.0441 (8)	0.0441 (8)	-0.0156 (6)	-0.0054 (6)	-0.0032 (6)
C23	0.0658 (10)	0.0620 (10)	0.0452 (9)	-0.0237 (8)	-0.0026 (7)	-0.0134 (7)
C24	0.0649 (10)	0.0836 (12)	0.0523 (9)	-0.0336 (9)	-0.0114 (8)	-0.0148 (9)
C25	0.0497 (9)	0.0982 (13)	0.0662 (11)	-0.0248 (9)	-0.0088 (8)	-0.0183 (10)
C26	0.0517 (9)	0.0763 (11)	0.0549 (10)	-0.0196 (8)	-0.0007 (7)	-0.0200 (8)
O22	0.0496 (6)	0.0720 (7)	0.0595 (7)	-0.0088 (5)	-0.0046 (5)	-0.0237 (6)
C27	0.0582 (10)	0.0747 (12)	0.0849 (13)	-0.0085 (9)	0.0044 (9)	-0.0336 (10)
C31	0.0417 (7)	0.0445 (8)	0.0389 (7)	-0.0049 (6)	-0.0018 (6)	-0.0075 (6)
C32	0.0583 (9)	0.0425 (8)	0.0643 (10)	-0.0064 (7)	0.0005 (8)	-0.0127 (7)
C33	0.0775 (12)	0.0437 (9)	0.0853 (13)	0.0025 (8)	-0.0062 (10)	0.0020 (9)
C34	0.0550 (10)	0.0801 (13)	0.0749 (12)	0.0088 (9)	-0.0136 (9)	0.0064 (10)
C35	0.0473 (9)	0.0850 (13)	0.0590 (10)	-0.0117 (8)	-0.0116 (7)	0.0010 (9)
C36	0.0460 (8)	0.0585 (9)	0.0491 (9)	-0.0137 (7)	-0.0082 (6)	0.0011 (7)
C37	0.0462 (8)	0.0445 (8)	0.0573 (9)	-0.0121 (6)	-0.0131 (7)	-0.0091 (7)
O31	0.0594 (7)	0.0788 (8)	0.0667 (8)	-0.0227 (6)	-0.0250 (6)	0.0177 (6)
O32	0.0422 (6)	0.0544 (7)	0.0800 (8)	-0.0033 (5)	-0.0046 (5)	-0.0094 (6)
C38	0.0885 (13)	0.0510 (10)	0.1240 (18)	-0.0242 (10)	-0.0133 (12)	-0.0174 (11)

N1—C6	1.4820 (18)	C25—C26	1.394 (2)
N1-C2	1.4866 (18)	C25—H25	0.9300
N1—H11	1.010 (15)	C26—H26	0.9300
N1—H12	0.963 (16)	O22—C27	1.4300 (19)
C2—C3	1.5094 (19)	C27—H27A	0.9600
C2—H2A	0.9700	C27—H27B	0.9600
C2—H2B	0.9700	C27—H27C	0.9600
C3—N4	1.4621 (17)	C31—C36	1.3861 (19)
С3—НЗА	0.9700	C31—C32	1.395 (2)
С3—Н3В	0.9700	C31—C37	1.508 (2)
N4—C21	1.4202 (18)	C32—C33	1.402 (2)
N4—C5	1.4592 (18)	C32—C38	1.511 (2)
С5—С6	1.508 (2)	C33—C34	1.359 (3)
С5—Н5А	0.9700	С33—Н33	0.9300
С5—Н5В	0.9700	C34—C35	1.370 (3)
С6—Н6А	0.9700	C34—H34	0.9300
С6—Н6В	0.9700	C35—C36	1.387 (2)
C21—C26	1.379 (2)	С35—Н35	0.9300
C21—C22	1.413 (2)	С36—Н36	0.9300
C22—O22	1.3634 (16)	C37—O31	1.2552 (17)
C22—C23	1.381 (2)	C37—O32	1.2587 (16)
C23—C24	1.382 (2)	C38—H38A	0.9600

С23—Н23	0.9300	С38—Н38В	0.9600
C24—C25	1.368 (2)	C38—H38C	0.9600
C24—H24	0.9300		
C6—N1—C2	111.69 (11)	C25—C24—H24	119.8
C6—N1—H11	111.2 (8)	C23—C24—H24	119.8
C2—N1—H11	105.7 (8)	C24—C25—C26	119.46 (15)
C6—N1—H12	109.4 (8)	С24—С25—Н25	120.3
C2—N1—H12	108.3 (9)	С26—С25—Н25	120.3
H11—N1—H12	110.4 (12)	C21—C26—C25	121.52 (15)
N1—C2—C3	110.86 (11)	С21—С26—Н26	119.2
N1—C2—H2A	109.5	С25—С26—Н26	119.2
C3—C2—H2A	109.5	C22—O22—C27	117.89 (12)
N1—C2—H2B	109.5	O22—C27—H27A	109.5
C3—C2—H2B	109.5	O22—C27—H27B	109.5
H2A—C2—H2B	108.1	H27A—C27—H27B	109.5
N4—C3—C2	109.85 (11)	O22—C27—H27C	109.5
N4—C3—H3A	109.7	H27A—C27—H27C	109.5
С2—С3—НЗА	109.7	H27B—C27—H27C	109.5
N4—C3—H3B	109.7	C36—C31—C32	119.20 (14)
C2—C3—H3B	109.7	C36—C31—C37	117.89 (13)
НЗА—СЗ—НЗВ	108.2	C32—C31—C37	122.89 (13)
C21—N4—C5	117.07 (11)	C31—C32—C33	117.94 (15)
C21—N4—C3	113.60 (10)	C31—C32—C38	122.05 (15)
C5—N4—C3	109.82 (11)	C33—C32—C38	119.99 (16)
N4—C5—C6	109.00 (12)	C34—C33—C32	122.27 (17)
N4—C5—H5A	109.9	С34—С33—Н33	118.9
С6—С5—Н5А	109.9	С32—С33—Н33	118.9
N4—C5—H5B	109.9	C33—C34—C35	119.66 (17)
C6—C5—H5B	109.9	С33—С34—Н34	120.2
H5A—C5—H5B	108.3	С35—С34—Н34	120.2
N1—C6—C5	110.75 (12)	C34—C35—C36	119.66 (17)
N1—C6—H6A	109.5	С34—С35—Н35	120.2
С5—С6—Н6А	109.5	С36—С35—Н35	120.2
N1—C6—H6B	109.5	C31—C36—C35	121.23 (15)
С5—С6—Н6В	109.5	С31—С36—Н36	119.4
H6A—C6—H6B	108.1	С35—С36—Н36	119.4
C26—C21—C22	118.20 (13)	O31—C37—O32	124.33 (14)
C26—C21—N4	123.60 (13)	O31—C37—C31	117.71 (13)
C22—C21—N4	118.18 (12)	O32—C37—C31	117.92 (13)
O22—C22—C23	124.39 (13)	С32—С38—Н38А	109.5
O22—C22—C21	115.73 (13)	С32—С38—Н38В	109.5
C23—C22—C21	119.88 (13)	H38A—C38—H38B	109.5
C22—C23—C24	120.54 (15)	C32—C38—H38C	109.5
С22—С23—Н23	119.7	H38A—C38—H38C	109.5
C24—C23—H23	119.7	H38B—C38—H38C	109.5
C25—C24—C23	120.39 (15)		

C6—N1—C2—C3	-52.32 (16)	C22—C21—C26—C25	0.3 (2)
N1-C2-C3-N4	56.11 (15)	N4-C21-C26-C25	178.59 (14)
C2-C3-N4-C21	164.70 (11)	C24—C25—C26—C21	0.3 (3)
C2-C3-N4-C5	-62.04 (15)	C23—C22—O22—C27	4.9 (2)
C21—N4—C5—C6	-165.56 (12)	C21—C22—O22—C27	-176.31 (13)
C3—N4—C5—C6	62.98 (16)	C36—C31—C32—C33	-2.0 (2)
C2—N1—C6—C5	53.64 (16)	C37—C31—C32—C33	176.40 (15)
N4-C5-C6-N1	-58.51 (17)	C36—C31—C32—C38	176.65 (15)
C5—N4—C21—C26	-20.7 (2)	C37—C31—C32—C38	-4.9 (2)
C3—N4—C21—C26	109.01 (15)	C31—C32—C33—C34	2.0 (3)
C5—N4—C21—C22	157.56 (13)	C38—C32—C33—C34	-176.74 (18)
C3—N4—C21—C22	-72.74 (15)	C32—C33—C34—C35	-0.8 (3)
C26—C21—C22—O22	179.95 (13)	C33—C34—C35—C36	-0.3 (3)
N4—C21—C22—O22	1.60 (18)	C32—C31—C36—C35	1.0 (2)
C26—C21—C22—C23	-1.2 (2)	C37—C31—C36—C35	-177.50 (14)
N4—C21—C22—C23	-179.54 (12)	C34—C35—C36—C31	0.2 (2)
O22—C22—C23—C24	-179.86 (14)	C36—C31—C37—O31	-47.61 (19)
C21—C22—C23—C24	1.4 (2)	C32—C31—C37—O31	133.92 (15)
C22—C23—C24—C25	-0.7 (2)	C36—C31—C37—O32	130.15 (14)
C23—C24—C25—C26	-0.2 (3)	C32—C31—C37—O32	-48.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H…A
N1—H11…O31	1.010 (15)	1.673 (15)	2.6696 (19)	168.6 (13)
N1—H12···O32 ⁱ	0.963 (16)	1.745 (16)	2.7077 (17)	178.2 (10)

Symmetry code: (i) -x+1, -y+1, -z+1.

4-(2-Methoxyphenyl)piperazin-1-ium 4-aminobenzoate (IX)

Crystal data	
$C_{11}H_{17}N_{2}O^{+}C_{7}H_{6}NO_{2}^{-}$ $M_{r} = 329.39$ Monoclinic, $P2_{1}/c$ $a = 14.922 (1) Å$ $b = 7.6951 (5) Å$ $c = 15.560 (1) Å$ $\beta = 106.911 (8)^{\circ}$ $V = 1709.4 (2) Å^{3}$ $Z = 4$	F(000) = 704 $D_x = 1.280 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 3671 reflections $\theta = 2.7-27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Plate, orange $0.48 \times 0.44 \times 0.16 \text{ mm}$
Data collection Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.830, T_{max} = 0.986$	6720 measured reflections 3668 independent reflections 2606 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -18 \rightarrow 15$ $k = -5 \rightarrow 9$ $l = -17 \rightarrow 20$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0619P)^2 + 0.0395P]$
$wR(F^2) = 0.112$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
3668 reflections	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
231 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.019 (2)
Hydrogen site location: mixed	

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.60709 (8)	0.26835 (15)	0.52995 (8)	0.0431 (3)
H11	0.5586 (10)	0.2606 (17)	0.4643 (10)	0.052*
H12	0.5953 (10)	0.3661 (19)	0.5615 (10)	0.052*
C2	0.70246 (9)	0.28650 (18)	0.51932 (9)	0.0442 (3)
H2A	0.7056	0.3915	0.4858	0.053*
H2B	0.7155	0.1883	0.4857	0.053*
C3	0.77450 (9)	0.29453 (16)	0.60945 (8)	0.0385 (3)
H3A	0.8364	0.3050	0.6015	0.046*
H3B	0.7635	0.3963	0.6417	0.046*
N4	0.77041 (7)	0.13685 (13)	0.66227 (7)	0.0376 (3)
C5	0.67672 (9)	0.11904 (18)	0.67358 (9)	0.0433 (3)
H5A	0.6642	0.2174	0.7074	0.052*
H5B	0.6741	0.0143	0.7074	0.052*
C6	0.60307 (9)	0.11039 (17)	0.58382 (9)	0.0458 (3)
H6A	0.6131	0.0079	0.5515	0.055*
H6B	0.5416	0.1013	0.5928	0.055*
C21	0.84580 (9)	0.13068 (16)	0.74309 (9)	0.0409 (3)
C22	0.93798 (9)	0.11685 (17)	0.73737 (10)	0.0460 (3)
C23	1.01328 (10)	0.1198 (2)	0.81461 (11)	0.0600 (4)
H23	1.0740	0.1142	0.8102	0.072*
C24	0.99867 (13)	0.1311 (2)	0.89743 (11)	0.0714 (5)
H24	1.0495	0.1345	0.9489	0.086*
C25	0.90983 (13)	0.1373 (3)	0.90449 (11)	0.0732 (5)
H25	0.9001	0.1412	0.9608	0.088*
C26	0.83373 (11)	0.1379 (2)	0.82761 (9)	0.0559 (4)
H26	0.7734	0.1432	0.8332	0.067*

O22	0.94654 (7)	0.10004 (14)	0.65293 (7)	0.0603 (3)
C27	1.03816 (12)	0.1063 (3)	0.64265 (13)	0.0762 (5)
H27A	1.0342	0.0973	0.5801	0.114*
H27B	1.0747	0.0114	0.6749	0.114*
H27C	1.0675	0.2142	0.6660	0.114*
C31	0.38418 (8)	0.30821 (15)	0.23323 (8)	0.0341 (3)
C32	0.30092 (9)	0.39385 (17)	0.19135 (9)	0.0410 (3)
H32	0.2734	0.4636	0.2255	0.049*
C33	0.25815 (9)	0.37762 (17)	0.10033 (9)	0.0429 (3)
H33	0.2021	0.4355	0.0741	0.051*
C34	0.29810 (9)	0.27553 (16)	0.04752 (8)	0.0373 (3)
C35	0.38187 (9)	0.19061 (17)	0.08919 (8)	0.0395 (3)
H35	0.4102	0.1226	0.0551	0.047*
C36	0.42342 (9)	0.20608 (16)	0.18038 (9)	0.0382 (3)
H36	0.4789	0.1468	0.2069	0.046*
C37	0.43113 (9)	0.32513 (16)	0.33203 (8)	0.0379 (3)
O31	0.50355 (7)	0.23691 (14)	0.36411 (6)	0.0627 (3)
O32	0.39544 (7)	0.42404 (13)	0.37713 (6)	0.0526 (3)
N34	0.25457 (10)	0.25415 (18)	-0.04368 (8)	0.0501 (3)
H341	0.2158 (11)	0.340 (2)	-0.0658 (11)	0.060*
H342	0.2928 (11)	0.211 (2)	-0.0750 (10)	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0392 (6)	0.0463 (7)	0.0372 (6)	0.0090 (5)	0.0006 (5)	-0.0055 (5)
C2	0.0476 (8)	0.0477 (8)	0.0356 (7)	0.0105 (6)	0.0093 (6)	0.0029 (6)
C3	0.0364 (7)	0.0412 (7)	0.0369 (7)	0.0019 (5)	0.0090 (5)	0.0051 (5)
N4	0.0319 (5)	0.0418 (6)	0.0361 (6)	0.0015 (4)	0.0054 (4)	0.0063 (5)
C5	0.0370 (7)	0.0447 (7)	0.0471 (8)	-0.0015 (5)	0.0106 (6)	0.0064 (6)
C6	0.0352 (7)	0.0449 (8)	0.0523 (9)	0.0009 (5)	0.0048 (6)	-0.0043 (6)
C21	0.0396 (7)	0.0402 (7)	0.0385 (7)	0.0019 (5)	0.0045 (6)	0.0068 (6)
C22	0.0402 (7)	0.0477 (8)	0.0459 (8)	0.0075 (6)	0.0061 (6)	0.0066 (6)
C23	0.0402 (8)	0.0653 (10)	0.0642 (11)	0.0072 (7)	-0.0012 (7)	0.0102 (8)
C24	0.0632 (11)	0.0846 (13)	0.0482 (10)	0.0057 (9)	-0.0124 (8)	0.0141 (9)
C25	0.0752 (12)	0.0985 (14)	0.0378 (9)	0.0081 (10)	0.0037 (8)	0.0151 (9)
C26	0.0529 (9)	0.0727 (10)	0.0402 (8)	0.0057 (7)	0.0105 (7)	0.0130 (7)
O22	0.0416 (6)	0.0838 (8)	0.0561 (7)	0.0162 (5)	0.0150 (5)	0.0020 (6)
C27	0.0525 (10)	0.0953 (14)	0.0880 (14)	0.0157 (9)	0.0320 (9)	0.0088 (11)
C31	0.0373 (6)	0.0343 (6)	0.0318 (7)	-0.0043 (5)	0.0119 (5)	-0.0014 (5)
C32	0.0437 (7)	0.0454 (7)	0.0371 (7)	0.0048 (5)	0.0165 (6)	-0.0029 (6)
C33	0.0371 (7)	0.0497 (8)	0.0402 (8)	0.0052 (6)	0.0086 (6)	0.0023 (6)
C34	0.0392 (7)	0.0411 (7)	0.0311 (6)	-0.0106 (5)	0.0093 (5)	-0.0014 (5)
C35	0.0405 (7)	0.0435 (7)	0.0375 (7)	-0.0041 (5)	0.0162 (6)	-0.0115 (6)
C36	0.0346 (6)	0.0407 (7)	0.0380 (7)	0.0009 (5)	0.0086 (5)	-0.0050 (6)
C37	0.0433 (7)	0.0375 (6)	0.0326 (7)	-0.0062 (5)	0.0108 (6)	-0.0023 (5)
O31	0.0634 (7)	0.0731 (7)	0.0387 (6)	0.0183 (5)	-0.0053 (5)	-0.0091 (5)
O32	0.0664 (7)	0.0579 (6)	0.0364 (5)	0.0017 (5)	0.0197 (5)	-0.0099 (4)

N34	0.0537 (8)	0.0590 (8)	0.0337 (6)	-0.0036 (6)	0.0067 (5)	-0.0047 (6)		
Geome	Geometric parameters (Å, °)							
N1-C	2	1.4864	(18)	C24—H24		0.9300		
N1-C	6	1.4875	(18)	C25—C26		1.389 (2)		
N1—H	11	1.067 (1	(4)	С25—Н25		0.9300		
N1—H	12	0.942 (1	15)	C26—H26		0.9300		
C2—C	3	1.4997	(16)	O22—C27		1.4228 (18)		
С2—Н	2A	0.9700		С27—Н27А		0.9600		
С2—Н	2B	0.9700		С27—Н27В		0.9600		
C3—N-	4	1.4768	(15)	С27—Н27С		0.9600		
С3—Н	3A	0.9700	. ,	C31—C36		1.3844 (17)		
С3—Н	3B	0.9700		C31—C32		1.3897 (17)		
N4C	21	1.4235	(16)	C31—C37		1.4982 (16)		
N4—C	5	1.4654	(16)	C32—C33		1.3796 (18)		
С5—С	6	1.5067	(18)	С32—Н32		0.9300		
С5—Н	5A	0.9700	~ /	C33—C34		1.3902 (18)		
С5—Н	5B	0.9700		С33—Н33		0.9300		
С6—Н	6A	0.9700		C34—N34		1.3881 (16)		
С6—Н	6B	0.9700		C34—C35		1.3923 (18)		
C21—C	226	1.380 (2	2)	C35—C36		1.3784 (17)		
C21—C	222	1.4079	(19)	С35—Н35		0.9300		
C22—0	022	1.3627	(17)	С36—Н36		0.9300		
C22—C	223	1.3863	(19)	C37—O31		1.2506 (16)		
C23—0	224	1.371 (2	2)	C37—O32		1.2542 (15)		
C23—I	123	0.9300	,	N34—H341		0.877 (16)		
C24—0	225	1.363 (2	2)	N34—H342		0.913 (16)		
			,					
C2—N	1—C6	109.66	(10)	С22—С23—Н23		119.8		
C2—N	1—H11	107.7 (8	3)	C25—C24—C23		120.16 (15)		
C6—N	1—H11	111.5 (7	<i>7</i>)	С25—С24—Н24		119.9		
C2—N	1—H12	108.2 (9	<i>)</i>)	С23—С24—Н24		119.9		
C6—N	1—H12	108.3 (9	ý)	C24—C25—C26		120.10 (16)		
H11-P	N1—H12	111.5 (1	1)	С24—С25—Н25		119.9		
N1-C	2—С3	110.42	(11)	С26—С25—Н25		120.0		
N1-C	2—Н2А	109.6	~ /	C21—C26—C25		121.33 (15)		
C3—C2	2—H2A	109.6		C21—C26—H26		119.3		
N1-C	2—H2B	109.6		С25—С26—Н26		119.3		
C3—C	2—H2B	109.6		C22—O22—C27		117.90 (12)		
H2A—	C2—H2B	108.1		O22—C27—H27A		109.5		
N4—C	3—C2	110.62	(10)	O22—C27—H27B		109.5		
N4—C	3—H3A	109.5	× - /	H27A—C27—H27B	3	109.5		
C2—C	3—H3A	109.5		022—C27—H27C		109.5		
N4-C	3—H3B	109.5		H27A—C27—H27C		109.5		
C2—C	3—H3B	109.5		H27B—C27—H27C	1	109.5		
H3A—	С3—Н3В	108.1		C36-C31-C32		117.75 (11)		
C21—N	N4—C5	115.29	(10)	C36—C31—C37		120.43 (11)		
		110.27	v - ~ /					

C21—N4—C3	111.66 (9)	C32—C31—C37	121.82 (11)
C5—N4—C3	109.81 (9)	C33—C32—C31	121.46 (12)
N4—C5—C6	110.91 (11)	С33—С32—Н32	119.3
N4—C5—H5A	109.5	C31—C32—H32	119.3
С6—С5—Н5А	109.5	C32—C33—C34	120.54 (12)
N4—C5—H5B	109.5	С32—С33—Н33	119.7
С6—С5—Н5В	109.5	С34—С33—Н33	119.7
Н5А—С5—Н5В	108.0	N34—C34—C33	121.17 (12)
N1—C6—C5	110.38 (10)	N34—C34—C35	120.69 (12)
N1—C6—H6A	109.6	C33—C34—C35	118.11 (11)
С5—С6—Н6А	109.6	C36—C35—C34	120.86 (11)
N1—C6—H6B	109.6	C36—C35—H35	119.6
С5—С6—Н6В	109.6	C34—C35—H35	119.6
H6A—C6—H6B	108.1	C35—C36—C31	121.27 (12)
C26—C21—C22	117.66 (13)	С35—С36—Н36	119.4
C26—C21—N4	123.51 (12)	C31—C36—H36	119.4
C22—C21—N4	118.83 (12)	O31—C37—O32	124.36 (12)
O22—C22—C23	123.91 (13)	O31—C37—C31	117.02 (11)
O22—C22—C21	115.81 (12)	O32—C37—C31	118.62 (11)
C23—C22—C21	120.28 (14)	C34—N34—H341	111.8 (11)
C24—C23—C22	120.38 (15)	C34—N34—H342	114.2 (10)
C24—C23—H23	119.8	H341—N34—H342	120.4 (15)
C6—N1—C2—C3	-57.43 (14)	C22—C21—C26—C25	2.1 (2)
N1—C2—C3—N4	58.53 (13)	N4—C21—C26—C25	-177.79 (13)
C2-C3-N4-C21	172.34 (11)	C24—C25—C26—C21	0.6 (3)
C2—C3—N4—C5	-58.48 (13)	C23—C22—O22—C27	-7.6 (2)
C21—N4—C5—C6	-174.66 (10)	C21—C22—O22—C27	172.72 (13)
C3—N4—C5—C6	58.16 (13)	C36—C31—C32—C33	0.31 (19)
C2—N1—C6—C5	56.92 (14)	C37—C31—C32—C33	179.98 (12)
N4-C5-C6-N1	-57.96 (14)	C31—C32—C33—C34	-0.6(2)
C5—N4—C21—C26	-10.87 (18)	C32—C33—C34—N34	178.21 (12)
C3—N4—C21—C26	115.36 (14)	C32—C33—C34—C35	0.14 (19)
C5—N4—C21—C22	169.26 (11)	N34—C34—C35—C36	-177.43 (12)
C3—N4—C21—C22	-64.51 (14)	C33—C34—C35—C36	0.65 (19)
C26—C21—C22—O22	176.36 (13)	C34—C35—C36—C31	-0.97 (19)
N4—C21—C22—O22	-3.76 (17)	C32—C31—C36—C35	0.48 (19)
C26—C21—C22—C23	-3.3 (2)	C37—C31—C36—C35	-179.20 (11)
N4—C21—C22—C23	176.56 (11)	C36—C31—C37—O31	-3.44 (17)
O22—C22—C23—C24	-177.72 (15)	C32—C31—C37—O31	176.90 (13)
C21—C22—C23—C24	1.9 (2)	C36—C31—C37—O32	177.29 (12)
C22—C23—C24—C25	0.8 (3)	C32—C31—C37—O32	-2.37 (18)
C23—C24—C25—C26	-2.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H11…O31	1.068 (15)	1.547 (15)	2.6048 (15)	169.7 (14)

N1—H12…O32 ⁱ	0.942 (15)	1.861 (15)	2.7797 (15)	164.4 (14)
N34—H342…O32 ⁱⁱ	0.914 (16)	2.155 (16)	3.0535 (18)	167.5 (14)

F(000) = 760

 $\theta = 2.7 - 27.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Block, yellow

 $0.50 \times 0.50 \times 0.40 \text{ mm}$

 $\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.7^{\circ}$

13660 measured reflections

3934 independent reflections

2879 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.019$

 $h = -9 \rightarrow 8$

 $k = -10 \rightarrow 10$

 $l = -38 \rightarrow 38$

 $D_{\rm x} = 1.344 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3934 reflections

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z-1/2.

4-(2-Methoxyphenyl)piperazin-1-ium 4-nitrobenzoate (X)

Crystal data

 $C_{11}H_{17}N_2O^+ C_7H_4NO_4^ M_r = 359.38$ Monoclinic, $P2_1/c$ a = 7.5174 (5) Å b = 7.9761 (5) Å c = 29.860 (2) Å $\beta = 97.322$ (6)° V = 1775.8 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.855, T_{\max} = 0.961$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.040$ $w = 1/[\sigma^2(F_0^2) + (0.0457P)^2 + 0.4848P]$ $wR(F^2) = 0.111$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.03 $(\Delta/\sigma)_{\rm max} = 0.001$ 3934 reflections $\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ 242 parameters 0 restraints Extinction correction: SHELXL, Primary atom site location: difference Fourier $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0175 (15) map Hydrogen site location: mixed

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.44452 (18)	0.51582 (18)	0.42036 (4)	0.0456 (3)	
H11	0.359 (2)	0.579 (2)	0.4356 (6)	0.055*	

1110	0.486 (2)	0.42((2))	0.4207 (()	0.055*
H12	0.486(2)	0.426(2)	0.4397(6)	0.055*
C2	0.5986 (2)	0.6202 (2)	0.41168 (5)	0.0509 (4)
H2A	0.6633	0.65/1	0.4402	0.061*
H2B	0.5558	0.7188	0.3946	0.061*
C3	0.72308 (19)	0.5222 (2)	0.38567 (5)	0.0445 (4)
H3A	0.8229	0.5926	0.3799	0.053*
H3B	0.7707	0.4266	0.4034	0.053*
N4	0.62657 (15)	0.46482 (15)	0.34309 (4)	0.0388 (3)
C5	0.47731 (19)	0.3566 (2)	0.35153 (5)	0.0431 (3)
H5A	0.5234	0.2588	0.3685	0.052*
H5B	0.4140	0.3187	0.3230	0.052*
C6	0.3495 (2)	0.4492 (2)	0.37760 (5)	0.0468 (4)
H6A	0.2950	0.5410	0.3595	0.056*
H6B	0.2548	0.3740	0.3841	0.056*
C21	0.73290 (19)	0.39011 (18)	0.31211 (5)	0.0405 (3)
C22	0.6595 (2)	0.3763 (2)	0.26645 (5)	0.0474 (4)
C23	0.7580 (3)	0.3012 (2)	0.23580 (6)	0.0602 (5)
H23	0.7093	0.2922	0.2057	0.072*
C24	0.9269 (3)	0.2400 (3)	0.24948 (7)	0.0697 (5)
H24	0.9919	0.1898	0.2286	0.084*
C25	1.0000 (2)	0.2525 (3)	0.29365 (7)	0.0695 (5)
H25	1.1143	0.2108	0.3029	0.083*
C26	0.9025 (2)	0.3280 (2)	0.32471 (6)	0.0546 (4)
H26	0.9533	0.3368	0.3547	0.066*
O22	0.49191 (17)	0.43933 (18)	0.25585 (4)	0.0657 (4)
C27	0.4027 (3)	0.4122 (3)	0.21158 (6)	0.0739 (6)
H27A	0.2862	0.4633	0.2088	0.111*
H27B	0.4715	0.4612	0.1900	0.111*
H27C	0.3902	0.2940	0.2061	0.111*
C31	0.16123 (19)	0.82005 (18)	0.52883 (4)	0.0392 (3)
C32	-0.0213 (2)	0.79178 (19)	0.52353 (5)	0.0450 (4)
H32	-0.0716	0.7179	0.5014	0.054*
C33	-0.1305 (2)	0.8720 (2)	0.55077 (5)	0.0458 (4)
H33	-0.2535	0.8531	0.5473	0.055*
C34	-0.05131 (19)	0.98058 (18)	0.58316 (5)	0.0414 (3)
C35	0.1295 (2)	1.01111 (19)	0.58934 (5)	0.0441 (4)
H35	0.1794	1.0853	0.6115	0.053*
C36	0.2358 (2)	0.92921 (19)	0.56193 (5)	0.0435 (3)
H36	0.3590	0.9477	0.5658	0.052*
C37	0.2801 (2)	0.73155 (19)	0.49920 (5)	0.0458 (4)
O31	0.20537 (17)	0.67769 (17)	0.46209 (4)	0.0656 (4)
O32	0.44235 (15)	0.71810 (15)	0.51349 (4)	0.0570 (3)
N34	-0.1638 (2)	1.06966 (19)	0.61219 (5)	0.0541 (4)
O41	-0.32042 (19)	1.0270 (2)	0.61086 (5)	0.0826 (4)
O42	-0.09646 (19)	1.18199 (18)	0.63615 (4)	0.0731 (4)
		< -)		

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
N1	0.0481 (7)	0.0554 (8)	0.0341 (6)	0.0041 (6)	0.0078 (5)	-0.0034 (6)
C2	0.0574 (9)	0.0535 (9)	0.0410 (8)	-0.0073 (8)	0.0034 (7)	-0.0110 (7)
C3	0.0444 (8)	0.0490 (9)	0.0395 (7)	-0.0089 (7)	0.0027 (6)	-0.0033 (7)
N4	0.0394 (6)	0.0450 (7)	0.0321 (6)	-0.0041 (5)	0.0041 (5)	-0.0029 (5)
C5	0.0409 (8)	0.0510 (9)	0.0372 (7)	-0.0061 (7)	0.0039 (6)	-0.0064 (6)
C6	0.0412 (8)	0.0611 (10)	0.0377 (7)	-0.0022 (7)	0.0038 (6)	-0.0026 (7)
C21	0.0424 (8)	0.0419 (8)	0.0383 (7)	-0.0049 (6)	0.0089 (6)	-0.0004 (6)
C22	0.0532 (9)	0.0523 (9)	0.0375 (7)	0.0025 (7)	0.0093 (6)	0.0007 (7)
C23	0.0696 (11)	0.0717 (12)	0.0422 (9)	0.0004 (9)	0.0182 (8)	-0.0069 (8)
C24	0.0610 (11)	0.0838 (14)	0.0703 (12)	-0.0019 (10)	0.0314 (10)	-0.0169 (11)
C25	0.0408 (9)	0.0878 (14)	0.0816 (13)	0.0024 (9)	0.0144 (9)	-0.0132 (11)
C26	0.0400 (8)	0.0695 (11)	0.0543 (9)	-0.0039 (8)	0.0058 (7)	-0.0040 (8)
O22	0.0696 (7)	0.0899 (10)	0.0349 (6)	0.0288 (7)	-0.0039 (5)	-0.0076 (6)
C27	0.0843 (13)	0.0919 (15)	0.0406 (9)	0.0168 (12)	-0.0106 (9)	-0.0046 (9)
C31	0.0456 (8)	0.0401 (8)	0.0318 (7)	0.0060 (6)	0.0049 (6)	0.0060 (6)
C32	0.0504 (9)	0.0470 (8)	0.0359 (7)	-0.0014 (7)	-0.0010 (6)	0.0003 (6)
C33	0.0392 (8)	0.0526 (9)	0.0454 (8)	-0.0017 (7)	0.0052 (6)	0.0076 (7)
C34	0.0467 (8)	0.0430 (8)	0.0360 (7)	0.0057 (7)	0.0121 (6)	0.0071 (6)
C35	0.0498 (9)	0.0438 (8)	0.0385 (7)	-0.0012 (7)	0.0044 (6)	-0.0019 (6)
C36	0.0402 (8)	0.0468 (8)	0.0432 (8)	0.0014 (7)	0.0046 (6)	0.0019 (7)
C37	0.0556 (9)	0.0455 (8)	0.0372 (7)	0.0100 (7)	0.0089 (7)	0.0053 (7)
O31	0.0698 (8)	0.0835 (9)	0.0428 (6)	0.0201 (7)	0.0044 (6)	-0.0148 (6)
O32	0.0520 (7)	0.0674 (8)	0.0526 (7)	0.0152 (6)	0.0111 (5)	0.0023 (6)
N34	0.0606 (9)	0.0598 (9)	0.0456 (7)	0.0109 (7)	0.0207 (6)	0.0082 (7)
O41	0.0611 (8)	0.1020 (11)	0.0923 (10)	0.0029 (8)	0.0395 (7)	-0.0035 (9)
O42	0.0905 (10)	0.0772 (9)	0.0558 (7)	0.0075 (8)	0.0258 (7)	-0.0159 (7)

Atomic displacement parameters $(Å^2)$

N1—C2	1.476 (2)	C24—H24	0.9300
N1—C6	1.4798 (18)	C25—C26	1.390 (2)
N1—H11	0.974 (18)	C25—H25	0.9300
N1—H12	0.947 (18)	C26—H26	0.9300
C2—C3	1.508 (2)	O22—C27	1.4204 (19)
C2—H2A	0.9700	C27—H27A	0.9600
C2—H2B	0.9700	C27—H27B	0.9600
C3—N4	1.4551 (17)	C27—H27C	0.9600
С3—НЗА	0.9700	C31—C32	1.380 (2)
С3—Н3В	0.9700	C31—C36	1.381 (2)
N4—C21	1.4275 (18)	C31—C37	1.510 (2)
N4—C5	1.4626 (18)	C32—C33	1.384 (2)
С5—С6	1.505 (2)	С32—Н32	0.9300
С5—Н5А	0.9700	C33—C34	1.376 (2)
С5—Н5В	0.9700	С33—Н33	0.9300
С6—Н6А	0.9700	C34—C35	1.370 (2)

C6—H6B	0.9700	C34—N34	1.4690 (19)
C21—C26	1.375 (2)	C35—C36	1.379 (2)
C21—C22	1.409 (2)	С35—Н35	0.9300
C22—O22	1 3562 (19)	C36—H36	0.9300
C^{22} C^{23}	1.384(2)	$C_{37} - C_{32}$	1.2443(18)
C22—C25	1.307(2)	C37_031	1.2443(10)
C23—C24	1.575 (5)	C37—031	1.2328 (19)
C25—H25	0.9300	N34	1.2157 (19)
C24—C25	1.366 (3)	N34—O41	1.2217 (19)
C2 - N1 - C6	110 74 (11)	C22—C23—H23	1197
C_2 N1 H11	110.7 (11)	$C_{22} C_{23} C_{23} C_{23}$	120.23 (17)
C_{2} N1 U11	111.7(10) 108 4 (10)	$C_{25} = C_{24} = C_{25}$	120.23(17)
	108.4 (10)	$C_{23} = C_{24} = H_{24}$	119.9
C2—NI—HI2	109.0 (10)	C23—C24—H24	119.9
C6—N1—H12	109.8 (10)	C24—C25—C26	119.65 (17)
H11—N1—H12	107.1 (14)	C24—C25—H25	120.2
N1—C2—C3	110.53 (13)	C26—C25—H25	120.2
N1—C2—H2A	109.5	C21—C26—C25	121.52 (16)
С3—С2—Н2А	109.5	C21—C26—H26	119.2
N1—C2—H2B	109.5	C25—C26—H26	119.2
C3—C2—H2B	109.5	C22—O22—C27	118.37 (13)
$H^2A - C^2 - H^2B$	108.1	022—C27—H27A	109.5
N4-C3-C2	109.89(12)	022 - 027 - H27B	109.5
N4 C3 H3A	109.89 (12)	$H_{27A} = C_{27} = H_{27B}$	109.5
$N = C_2 - H_2 A$	109.7	$\frac{112}{A} - \frac{12}{D} = \frac{112}{D}$	109.5
C2—C3—H3A	109.7	U_{22} U_{27} H_{27} U_{27} H_{27}	109.5
N4—C3—H3B	109.7	H2/A - C2/-H2/C	109.5
С2—С3—Н3В	109.7	H27B—C27—H27C	109.5
НЗА—СЗ—НЗВ	108.2	C32—C31—C36	119.48 (13)
C21—N4—C3	116.07 (11)	C32—C31—C37	120.70 (13)
C21—N4—C5	111.75 (11)	C36—C31—C37	119.81 (13)
C3—N4—C5	110.07 (11)	C31—C32—C33	120.84 (14)
N4—C5—C6	110.72 (12)	C31—C32—H32	119.6
N4—C5—H5A	109.5	C33—C32—H32	119.6
С6—С5—Н5А	109.5	C34—C33—C32	117.93 (14)
N4—C5—H5B	109.5	C34—C33—H33	121.0
C6-C5-H5B	109.5	C32_C33_H33	121.0
	109.5	$C_{32}^{35} = C_{33}^{34} = C_{33}^{33}$	121.0 122.65(14)
NI CE C5	100.1 110.67(12)	$C_{33} = C_{34} = C_{33}$	122.03(14)
	110.07 (12)	$C_{33} = C_{34} = N_{34}$	118.04 (14)
N1 - C0 - H0A	109.5	C_{33} — C_{34} — N_{34}	119.30 (14)
С5—С6—Н6А	109.5	$C_{34} - C_{35} - C_{36}$	118.40 (14)
N1—C6—H6B	109.5	С34—С35—Н35	120.8
С5—С6—Н6В	109.5	С36—С35—Н35	120.8
H6A—C6—H6B	108.1	C35—C36—C31	120.68 (14)
C26—C21—C22	118.14 (14)	С35—С36—Н36	119.7
C26—C21—N4	123.33 (13)	С31—С36—Н36	119.7
C22—C21—N4	118.52 (13)	O32—C37—O31	125.68 (14)
O22—C22—C23	124.42 (14)	O32—C37—C31	117.82 (13)
O22—C22—C21	115.75 (13)	O31—C37—C31	116.50 (14)
$C_{23} - C_{22} - C_{21}$	119.83 (15)	042—N34—041	123.48 (15)

C24—C23—C22 C24—C23—H23	120.63 (16) 119.7	O42—N34—C34 O41—N34—C34	118.43 (14) 118.09 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.63 (16) 119.7 $-55.83 (17)$ $58.62 (16)$ $171.70 (12)$ $-60.13 (16)$ $-170.14 (12)$ $59.35 (15)$ $54.67 (17)$ $-56.40 (16)$ $19.2 (2)$ $-108.17 (16)$ $-162.02 (14)$ $70.65 (17)$ $179.94 (15)$ $1.1 (2)$ $0.2 (2)$ $-178.64 (15)$ $-179.71 (18)$ $0.0 (3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	118.43 (14) 118.09 (15) 0.4 (3) 6.8 (3) -172.93 (16) 0.3 (2) 179.66 (13) 0.1 (2) -0.2 (2) 179.10 (13) -0.1 (2) -179.38 (13) 0.5 (2) -0.6 (2) -179.95 (13) -157.78 (15) 21.5 (2) 22.1 (2) -158.53 (15) 9.5 (2)
C21—C22—C23—C24 C22—C23—C24—C25 C23—C24—C25—C26 C22—C21—C26—C25 N4—C21—C26—C25	0.0 (3) 0.0 (3) -0.1 (3) -0.4 (3) 178.42 (16)	C35—C34—N34—O42 C33—C34—N34—O42 C35—C34—N34—O41 C33—C34—N34—O41	9.5 (2) -169.80 (14) -170.64 (15) 10.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H11…O31	0.974 (16)	1.677 (16)	2.6500 (19)	176.8 (15)
N1—H11…O32	0.974 (16)	2.581 (17)	3.2169 (17)	123.0 (12)
N1—H12···O32 ⁱ	0.948 (17)	1.837 (17)	2.7709 (18)	168.2 (16)

Symmetry code: (i) -x+1, -y+1, -z+1.

4-(2-Methoxyphenyl)piperazin-1-ium 3,5-dinitrobenzoate dihydrate (XI)

Crystal data

$C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_6^- \cdot 2H_2O$	Z = 2
$M_r = 440.41$	F(000) = 464
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.405 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.8448 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.4635 (9) Å	Cell parameters from 4419 reflections
c = 12.0747 (9) Å	$\theta = 2.6 - 27.7^{\circ}$
$\alpha = 94.406 \ (7)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 105.075 \ (8)^{\circ}$	T = 296 K
$\gamma = 93.717 \ (7)^{\circ}$	Block, yellow
$V = 1041.33 (14) \text{ Å}^3$	$0.48 \times 0.48 \times 0.44 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.892, T_{max} = 0.951$	7353 measured reflections 4419 independent reflections 3409 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -9 \rightarrow 10$ $k = -9 \rightarrow 14$ $l = -15 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.108$ S = 1.06 4419 reflections 300 parameters 0 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.1343P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å ⁻³ $\Delta\rho_{min} = -0.17$ e Å ⁻³ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.052 (4)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.65966 (17)	0.38158 (10)	0.34243 (10)	0.0387 (3)	
H11	0.718 (2)	0.3310 (14)	0.3931 (14)	0.046*	
H12	0.541 (2)	0.3638 (13)	0.3304 (13)	0.046*	
C2	0.7170 (2)	0.37246 (12)	0.23459 (12)	0.0437 (3)	
H2A	0.6800	0.2946	0.1947	0.052*	
H2B	0.8452	0.3838	0.2531	0.052*	
C3	0.63768 (19)	0.46357 (11)	0.15669 (11)	0.0383 (3)	
H3A	0.6811	0.4588	0.0884	0.046*	
H3B	0.5097	0.4481	0.1325	0.046*	
N4	0.68560 (14)	0.58186 (8)	0.21770 (8)	0.0317 (2)	
C5	0.61652 (19)	0.58963 (11)	0.31932 (11)	0.0374 (3)	
H5A	0.4888	0.5723	0.2961	0.045*	
H5B	0.6431	0.6686	0.3579	0.045*	
C6	0.7004 (2)	0.50306 (12)	0.40043 (11)	0.0422 (3)	
H6A	0.8278	0.5219	0.4251	0.051*	
H6B	0.6557	0.5085	0.4682	0.051*	
C21	0.64076 (16)	0.67242 (10)	0.14284 (10)	0.0311 (3)	

C22	0.74860 (16)	0.69609 (11)	0.06906 (11)	0.0342 (3)
C23	0.71254 (19)	0.78402 (12)	-0.00441 (12)	0.0421 (3)
H23	0.7837	0.7991	-0.0533	0.051*
C24	0.5696 (2)	0.84922 (12)	-0.00446 (13)	0.0466 (4)
H24	0.5458	0.9083	-0.0535	0.056*
C25	0.4631 (2)	0.82783 (12)	0.06667 (13)	0.0476 (4)
H25	0.3677	0.8721	0.0660	0.057*
C26	0.49877 (18)	0.73919 (12)	0.14005 (12)	0.0399 (3)
H26	0.4260	0.7245	0.1881	0.048*
O22	0.88764 (13)	0.62807 (9)	0.07539 (9)	0.0471 (3)
C27	1.0094 (2)	0.65658 (16)	0.01004 (16)	0.0601 (4)
H27A	1.1050	0.6069	0.0266	0.090*
H27B	1.0556	0.7372	0.0301	0.090*
H27C	0.9495	0.6448	-0.0706	0.090*
C31	1.07262 (16)	0.14162 (10)	0.58115 (10)	0.0328 (3)
C32	1.23171 (17)	0.09894 (11)	0.57551 (11)	0.0361 (3)
H32	1.2888	0.1233	0.5216	0.043*
C33	1.30429 (17)	0.01961 (11)	0.65116 (12)	0.0384 (3)
C34	1.22367 (18)	-0.02069 (11)	0.73110 (12)	0.0406 (3)
H34	1.2719	-0.0765	0.7792	0.049*
C35	1.06862 (18)	0.02555 (11)	0.73629 (11)	0.0376 (3)
C36	0.99163 (17)	0.10646 (11)	0.66424 (11)	0.0356 (3)
H36	0.8874	0.1369	0.6712	0.043*
C37	0.98662 (19)	0.22652 (11)	0.49671 (11)	0.0402 (3)
O31	0.84578 (15)	0.26458 (10)	0.51102 (9)	0.0585 (3)
O32	1.05696 (16)	0.24991 (11)	0.42026 (10)	0.0655 (3)
N33	1.47682 (18)	-0.02225 (14)	0.64945 (12)	0.0578 (4)
033	1.57628 (16)	0.04182 (15)	0.61300 (12)	0.0825 (4)
O34	1.51295 (19)	-0.11651 (13)	0.68590 (15)	0.0890 (5)
N35	0.98229 (19)	-0.01443 (13)	0.82304 (11)	0.0558 (4)
035	1.0381 (2)	-0.09880 (14)	0.87252 (13)	0.0929 (5)
036	0.86187 (19)	0.03867 (14)	0.84155 (11)	0.0794 (4)
O41	0.28832 (16)	0.36547 (12)	0.31241 (12)	0.0639 (3)
H41	0.225 (3)	0.322 (2)	0.341 (2)	0.096*
H42	0.230 (3)	0.431 (2)	0.306 (2)	0.096*
051	0.13836 (19)	0.58148 (13)	0.29313 (13)	0.0722 (4)
H51	0.152 (3)	0.630 (2)	0.356 (2)	0.087*
H52	0.051 (3)	0.593 (2)	0.250 (2)	0.087*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0413 (6)	0.0353 (6)	0.0404 (6)	0.0049 (5)	0.0087 (5)	0.0154 (5)
C2	0.0584 (9)	0.0332 (7)	0.0429 (7)	0.0107 (6)	0.0162 (6)	0.0094 (6)
C3	0.0516 (8)	0.0308 (6)	0.0324 (6)	0.0051 (5)	0.0098 (6)	0.0057 (5)
N4	0.0371 (6)	0.0279 (5)	0.0311 (5)	0.0029 (4)	0.0096 (4)	0.0077 (4)
C5	0.0470 (8)	0.0315 (6)	0.0363 (7)	0.0019 (5)	0.0155 (6)	0.0049 (5)
C6	0.0536 (8)	0.0414 (7)	0.0320 (6)	0.0004 (6)	0.0118 (6)	0.0079 (5)

C21	0.0327 (6)	0.0270 (6)	0.0318 (6)	0.0005 (5)	0.0052 (5)	0.0060 (5)
C22	0.0338 (6)	0.0321 (6)	0.0365 (7)	0.0022 (5)	0.0077 (5)	0.0080 (5)
C23	0.0484 (8)	0.0401 (7)	0.0390 (7)	0.0001 (6)	0.0115 (6)	0.0141 (6)
C24	0.0540 (9)	0.0357 (7)	0.0460 (8)	0.0060 (6)	0.0022 (7)	0.0161 (6)
C25	0.0445 (8)	0.0382 (7)	0.0580 (9)	0.0130 (6)	0.0057 (7)	0.0111 (6)
C26	0.0375 (7)	0.0381 (7)	0.0459 (7)	0.0054 (5)	0.0125 (6)	0.0087 (6)
O22	0.0455 (6)	0.0506 (6)	0.0572 (6)	0.0148 (4)	0.0270 (5)	0.0240 (5)
C27	0.0554 (10)	0.0656 (10)	0.0750 (11)	0.0128 (8)	0.0392 (9)	0.0226 (9)
C31	0.0363 (7)	0.0269 (6)	0.0337 (6)	-0.0015 (5)	0.0072 (5)	0.0046 (5)
C32	0.0371 (7)	0.0359 (6)	0.0353 (6)	-0.0037 (5)	0.0113 (5)	0.0042 (5)
C33	0.0327 (7)	0.0377 (7)	0.0425 (7)	0.0049 (5)	0.0064 (5)	0.0007 (6)
C34	0.0440 (8)	0.0335 (7)	0.0413 (7)	0.0048 (5)	0.0038 (6)	0.0107 (6)
C35	0.0418 (7)	0.0367 (7)	0.0347 (7)	-0.0030 (5)	0.0107 (5)	0.0100 (5)
C36	0.0340 (7)	0.0360 (6)	0.0375 (7)	0.0032 (5)	0.0099 (5)	0.0070 (5)
C37	0.0465 (8)	0.0338 (7)	0.0375 (7)	-0.0006 (6)	0.0055 (6)	0.0098 (5)
O31	0.0658 (7)	0.0649 (7)	0.0502 (6)	0.0306 (6)	0.0137 (5)	0.0242 (5)
O32	0.0711 (8)	0.0732 (8)	0.0619 (7)	0.0061 (6)	0.0257 (6)	0.0399 (6)
N33	0.0409 (7)	0.0721 (10)	0.0583 (8)	0.0138 (7)	0.0086 (6)	0.0005 (7)
O33	0.0407 (7)	0.1309 (13)	0.0809 (9)	0.0122 (7)	0.0210 (6)	0.0204 (9)
O34	0.0697 (9)	0.0731 (9)	0.1238 (13)	0.0407 (7)	0.0150 (8)	0.0152 (8)
N35	0.0564 (8)	0.0689 (9)	0.0457 (7)	-0.0032 (7)	0.0170 (6)	0.0226 (6)
O35	0.1110 (12)	0.0950 (11)	0.0922 (10)	0.0168 (9)	0.0434 (9)	0.0664 (9)
O36	0.0691 (8)	0.1213 (12)	0.0645 (8)	0.0177 (8)	0.0387 (7)	0.0319 (8)
O41	0.0520 (7)	0.0584 (7)	0.0919 (9)	0.0049 (5)	0.0336 (6)	0.0231 (7)
O51	0.0665 (8)	0.0786 (9)	0.0674 (8)	0.0321 (7)	0.0051 (7)	0.0044 (7)

N1—C2	1.4826 (18)	C26—H26	0.9300
N1—C6	1.4860 (18)	O22—C27	1.4257 (17)
N1—H11	0.929 (16)	C27—H27A	0.9600
N1—H12	0.908 (16)	C27—H27B	0.9600
С2—С3	1.5143 (17)	C27—H27C	0.9600
C2—H2A	0.9700	C31—C32	1.3856 (19)
C2—H2B	0.9700	C31—C36	1.3903 (17)
C3—N4	1.4694 (16)	C31—C37	1.5237 (17)
С3—НЗА	0.9700	C32—C33	1.3820 (18)
С3—Н3В	0.9700	С32—Н32	0.9300
N4—C21	1.4300 (15)	C33—C34	1.3759 (19)
N4—C5	1.4638 (16)	C33—N33	1.4696 (19)
С5—С6	1.5086 (18)	C34—C35	1.372 (2)
С5—Н5А	0.9700	C34—H34	0.9300
С5—Н5В	0.9700	C35—C36	1.3803 (17)
С6—Н6А	0.9700	C35—N35	1.4727 (17)
С6—Н6В	0.9700	С36—Н36	0.9300
C21—C26	1.3866 (18)	C37—O32	1.2297 (17)
C21—C22	1.4080 (17)	C37—O31	1.2615 (18)
C22—O22	1.3709 (16)	N33—O34	1.2204 (19)

C22—C23	1.3881 (17)	N33—O33	1.2231 (19)
C23—C24	1.387 (2)	N35—O36	1.2150 (19)
С23—Н23	0.9300	N35—O35	1.2214 (18)
C24—C25	1.369 (2)	O41—H41	0.84 (2)
C24—H24	0.9300	O41—H42	0.91 (3)
C25—C26	1,3936 (19)	O51—H51	0.88 (2)
C25—H25	0.9300	051—H52	0.00(2)
020 1120	0.9500	001 1102	0.17 (2)
C2-N1-C6	110.76 (10)	C23—C24—H24	119.5
$C_2 = N_1 = H_{11}$	110.5 (10)	C_{24} C_{25} C_{26}	119.49 (13)
C6N1H11	108.2 (9)	C_{24} C_{25} C_{26} C_{25} C_{26}	120.3
$C_2 = N_1 = H_{12}$	113.0(10)	$C_{24} = C_{25} = H_{25}$	120.3
C6 N1 H12	106.6 (10)	$C_{20} = C_{20} = C$	120.3 121.23(13)
H11 N1 H12	107.6(13)	$C_{21} = C_{20} = C_{23}$	121.25 (15)
$\frac{111}{112}$	107.0(13) 110.82(11)	$C_{21} = C_{20} = H_{20}$	119.4
N1 = C2 = C3	110.62 (11)	$C_{23} = C_{20} = H_{20}$	117.4
N1 - C2 - H2A	109.5	$C_{22} = C_{22} = C_{27}$	117.00 (11)
$C_3 - C_2 - H_2 A$	109.5	022 - C27 - H27A	109.5
N1 - C2 - H2B	109.5	$U_{22} = U_{27} = H_{27}B$	109.5
C3—C2—H2B	109.5	H2/A—C2/—H2/B	109.5
H2A—C2—H2B	108.1	022—С27—Н27С	109.5
N4—C3—C2	110.21 (10)	H27A—C27—H27C	109.5
N4—C3—H3A	109.6	H27B—C27—H27C	109.5
С2—С3—НЗА	109.6	C32—C31—C36	119.65 (11)
N4—C3—H3B	109.6	C32—C31—C37	120.23 (11)
С2—С3—Н3В	109.6	C36—C31—C37	120.12 (12)
НЗА—СЗ—НЗВ	108.1	C33—C32—C31	118.99 (12)
C21—N4—C5	115.30 (10)	С33—С32—Н32	120.5
C21—N4—C3	112.57 (9)	С31—С32—Н32	120.5
C5—N4—C3	109.48 (10)	C34—C33—C32	122.75 (12)
N4—C5—C6	109.39 (11)	C34—C33—N33	117.76 (12)
N4—C5—H5A	109.8	C32—C33—N33	119.48 (13)
С6—С5—Н5А	109.8	C35—C34—C33	116.72 (12)
N4—C5—H5B	109.8	С35—С34—Н34	121.6
С6—С5—Н5В	109.8	С33—С34—Н34	121.6
H5A—C5—H5B	108.2	C34—C35—C36	122.99 (12)
N1—C6—C5	110.28 (11)	C_{34} C_{35} N_{35}	117.58 (12)
N1—C6—H6A	109.6	$C_{36} = C_{35} = N_{35}$	119.42 (12)
C5-C6-H6A	109.6	C_{35} C_{36} C_{31}	118 82 (12)
N1-C6-H6B	109.6	$C_{35} = C_{36} = H_{36}$	120.6
C5-C6-H6B	109.6	$C_{31} - C_{36} - H_{36}$	120.6
HEA CE HEB	109.0	032 037 031	125.08(13)
C_{26} C_{21} C_{22}	118.27(11)	032 - 037 - 031	123.98(13) 118.05(13)
$C_{20} = C_{21} = C_{22}$	123 70 (11)	031 037 031	115.05(13)
$C_{20} = C_{21} = N_{4}$	123.70(11) 118.02(11)	$O_{24} N_{22} O_{23}$	113.73(12) 124.40(15)
$C_{22} = C_{21} = 1N4$	110.02(11) 122.49(12)	$O_{24} = N_{22} = O_{22}$	124.40(13) 11957(15)
022 - 022 - 023	123.40(12)	0.34 - 10.35 - 0.33	110.37(13)
022 - 022 - 021	110.04(10)	033 - 1035 - 035	117.02(14)
123 - 022 - 021	120.48 (12)	U30—IN35—U35	124.28 (14)
C24—C23—C22	119.57 (13)	U36-N35-C35	118.33 (13)

C24—C23—H23 C22—C23—H23 C25—C24—C23 C25—C24—H24	120.2 120.2 120.95 (12) 119.5	O35—N35—C35 H41—O41—H42 H51—O51—H52	117.39 (15) 102 (2) 108 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -54.19(15)\\ 56.54(15)\\ 169.85(11)\\ -60.51(14)\\ -169.80(10)\\ 62.06(13)\\ 55.87(15)\\ -59.79(14)\\ -21.15(17)\\ 105.44(14)\\ 157.91(11)\\ -75.51(14)\\ 179.73(11)\\ 0.62(16)\\ -0.10(18)\\ -179.21(11)\\ -179.50(13)\\ 0.3(2)\\ -0.2(2)\\ -0.1(2)\\ -0.20(19)\\ 178.85(12)\\ 0.3(2)\\ 5.6(2)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.65 (18) \\ -178.27 (11) \\ 1.13 (19) \\ -177.30 (12) \\ -2.7 (2) \\ 175.77 (12) \\ 1.5 (2) \\ -178.66 (12) \\ 1.1 (2) \\ -178.69 (12) \\ -2.72 (18) \\ 177.21 (11) \\ 4.20 (18) \\ -175.73 (13) \\ -177.24 (13) \\ 2.83 (18) \\ 25.3 (2) \\ -156.20 (15) \\ -153.41 (14) \\ 25.1 (2) \\ 168.36 (14) \\ -11.8 (2) \\ -11.0 (2) \\ 168.77 (14) \end{array}$
C21—C22—O22—C27	-174.26 (12)	055-055-1155-055	100.77 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	D—H··· A
N1—H11…O31	0.929 (16)	1.771 (16)	2.6837 (16)	166.8 (15)
N1—H12···O41	0.911 (16)	1.939 (16)	2.8324 (19)	165.5 (14)
O41—H41…O32 ⁱ	0.84 (2)	1.99 (2)	2.8156 (19)	168 (2)
O41—H42…O51	0.90 (2)	1.91 (2)	2.810 (2)	172 (2)
O51—H51…O31 ⁱⁱ	0.90 (2)	1.91 (2)	2.810 (2)	172 (2)
O51—H52…O22 ⁱ	0.77 (2)	2.25 (2)	2.9544 (19)	153 (2)
C25—H25…O36 ⁱⁱ	0.93	2.58	3.433 (2)	153

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

4-(2-Methoxyphenyl)piperazin-1-ium 2,4,6-trinitrophenolate (XII)

Crystal data

 $C_{11}H_{17}N_2O^+ C_6H_2N_3O_7^ M_r = 421.33$ Triclinic, *P*1 a = 9.4151 (5) Å b = 9.8721 (5) Å c = 10.9572 (5) Å $a = 77.524 (4)^{\circ}$ $\beta = 81.360 (5)^{\circ}$ $\gamma = 81.002 (5)^{\circ}$ $V = 974.97 (9) Å^3$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD	12926 measured reflections
diffractometer	4279 independent reflections
Radiation source: Enhance (Mo) X-ray Source	3276 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.017$
ω scans	$\theta_{\rm max} = 27.8^\circ, \ \theta_{\rm min} = 2.9^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -12 \rightarrow 12$
$T_{\min} = 0.805, \ T_{\max} = 0.973$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 0.1566P]$
$wR(F^2) = 0.119$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
4279 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
85 restraints	Extinction correction: SHELXL,
Primary atom site location: difference Fourier	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.021 (3)
Hydrogen site location: mixed	

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Z = 2

F(000) = 440 $D_x = 1.435 \text{ Mg m}^{-3}$

 $\theta = 2.9 - 27.8^{\circ}$

 $\mu = 0.12 \text{ mm}^{-1}$

Plate, orange

 $0.48 \times 0.48 \times 0.24$ mm

T = 296 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4279 reflections

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.55402 (16)	0.61143 (13)	0.19946 (11)	0.0462 (3)	
H11	0.480 (2)	0.5879 (18)	0.2530 (16)	0.055*	
H12	0.6047 (19)	0.6597 (18)	0.2347 (16)	0.055*	
C2	0.64890 (19)	0.48431 (16)	0.17048 (14)	0.0534 (4)	
H2A	0.5924	0.4256	0.1420	0.064*	

H2B	0.6880	0.4312	0.2461	0.064*	
C3	0.77123 (17)	0.52432 (16)	0.07001 (13)	0.0497 (4)	
H3A	0.8326	0.5761	0.1013	0.060*	
H3B	0.8296	0.4405	0.0492	0.060*	
N4	0.71457 (12)	0.61034 (12)	-0.04332(10)	0.0418 (3)	
C5	0.62911 (16)	0.73798 (15)	-0.01273 (13)	0.0457 (3)	
H5A	0.5947	0.7967	-0.0883	0.055*	
H5B	0.6891	0.7898	0.0201	0.055*	
C6	0.50188 (16)	0.70175 (17)	0.08392(14)	0.0490 (4)	
H6A	0.4457	0.7868	0.1043	0.059*	
H6B	0.4398	0.6532	0.0499	0.059*	
C21	0.82215(14)	0.63009(17)	-0.14998(13)	0.0446(3)	
C22	0.87678 (16)	0.51580(19)	-0.20905(14)	0.0525(4)	
C23	0.97820(18)	0.5326(2)	-0.31534(16)	0.0525(1)	
H23	1.0151	0.4568	-0.3534	0.080*	
C24	1 02430 (19)	0.6610(3)	-0.36469(17)	0.0741 (6)	
H24	1 0912	0.6719	-0.4366	0.089*	
C25	0.97236 (19)	0.7728(2)	-0.30852(19)	0.009	
H25	1.0036	0.8594	-0.3426	0.0700(3)	
C26	0.87250(17)	0.0591 0.75717(19)	-0.19997(15)	0.005	
H26	0.8396	0.8330	-0.1610	0.0550 (4)	
022	0.82269(13)	0.39384(13)	-0.15675(12)	0.067	
C27	0.82205(13)	0.39304(13) 0.2687(2)	-0.1938(2)	0.0009(4) 0.0859(7)	
027 Н27 Δ	0.8927(2) 0.8424	0.1918	-0.1492	0.129*	
H27R	0.8921	0.2773	-0.2827	0.129*	
H27C	0.9909	0.2521	-0.1747	0.129*	
C31	0.29075(13)	0.2521 0.15664(13)	0.64803(12)	0.129 0.0362 (3)	
031	0.27727(12)	0.22396(11)	0.73386 (9)	0.0502(3)	
C32	0.27727(12) 0.32774(14)	0.22390(11) 0.20872(13)	0.75500(5) 0.51527(12)	0.0312(3)	
N32	0.32774(11) 0.35214(13)	0.35445(12)	0.31327(12) 0.47084(11)	0.0301(3) 0.0445(3)	
032	0.3202(2)	0.43611(12)	0.54139(13)	0.0911(5)	
033	0.3202(2) 0.40574(16)	0.38892(13)	0.36249(11)	0.0711(3)	
C33	0.40374(10) 0.34703(14)	0.38892(13) 0.12760(14)	0.30249(11) 0.42520(12)	0.0703(4) 0.0381(3)	
Н33	0.3709	0.12700 (14)	0.3409	0.046*	
C34	0.3707 (14)	-0.01230(14)	0.3407 0.46070 (13)	0.0393 (3)	
N34	0.35475(14)	-0.09763(14)	0.36584(13)	0.0595(3)	
034	0.33773(14) 0.38287(16)	-0.04191(13)	0.30304(13) 0.25521(11)	0.0301(3) 0.0731(4)	
035	0.34933(15)	-0.22433(12)	0.20021(11) 0.40011(12)	0.0791(4)	
C35	0.34735(13) 0.29789(14)	-0.07370(14)	0.58638(13)	0.0099(4)	
U35	0.29789 (14)	-0.1689	0.58058 (15)	0.0413 (3)	
C36	0.2907 0.27640 (15)	0.1089	0.0101 0.67410(13)	0.030	
N36	0.27049(13) 0.24422(18)	-0.05867(14)	0.07410(13) 0.80615(13)	0.0404(3)	0 850 (5)
N30 036	0.24422(10) 0.2154(2)	-0.1672(2)	0.80013(13)	0.0390(4)	0.850(5)
030	0.3134(3) 0.1305(3)	-0.1072(2) -0.0058(3)	0.84420(18)	0.0850(8) 0.1155(12)	0.850(3)
N27	0.1373(3)	-0.05867(14)	0.0003(2) 0.80615(12)	0.1133(12) 0.0500(4)	0.000(3)
1NJ / 038	0.24422 (10)	-0.00007(14)	0.00013(13)	0.0390 (4)	0.009 (4)
030	0.1277(10) 0.2202(19)	-0.077(3)	0.033(2) 0.8764(17)	0.074(3)	0.009 (4)
U39 N20	0.3392(18)	-0.077(3)	0.0/04(1/)	0.081(3)	0.009 (4)
1830	0.24422 (18)	-0.03867 (14)	0.80015 (13)	0.0390 (4)	0.080 (4)

O310	0.219 (3)	-0.1764 (12)	0.8390 (16)	0.074 (4)	0.080 (4)
O311	0.275 (3)	-0.0034 (19)	0.8882 (12)	0.084 (5)	0.080 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
N1	0.0592 (8)	0.0466 (7)	0.0358 (6)	-0.0182 (6)	0.0091 (5)	-0.0164 (5)
C2	0.0759 (11)	0.0414 (8)	0.0405 (8)	-0.0091 (7)	0.0051 (7)	-0.0101 (6)
C3	0.0557 (9)	0.0483 (8)	0.0401 (8)	0.0020 (7)	-0.0023 (6)	-0.0066 (6)
N4	0.0405 (6)	0.0504 (7)	0.0326 (6)	-0.0034 (5)	0.0021 (5)	-0.0102 (5)
C5	0.0490 (8)	0.0473 (8)	0.0384 (7)	-0.0022 (6)	-0.0017 (6)	-0.0083 (6)
C6	0.0478 (8)	0.0562 (9)	0.0443 (8)	-0.0028 (7)	0.0012 (6)	-0.0200 (7)
C21	0.0335 (7)	0.0627 (9)	0.0359 (7)	-0.0058 (6)	-0.0026 (5)	-0.0075 (6)
C22	0.0393 (7)	0.0748 (11)	0.0445 (8)	-0.0083 (7)	0.0029 (6)	-0.0190 (7)
C23	0.0459 (9)	0.1026 (15)	0.0524 (9)	-0.0098 (9)	0.0095 (7)	-0.0289 (10)
C24	0.0457 (9)	0.1197 (18)	0.0492 (10)	-0.0162 (10)	0.0118 (7)	-0.0081 (11)
C25	0.0446 (9)	0.0875 (14)	0.0697 (11)	-0.0201 (9)	0.0023 (8)	0.0086 (10)
C26	0.0427 (8)	0.0673 (10)	0.0532 (9)	-0.0103 (7)	-0.0022 (7)	-0.0040 (8)
O22	0.0631 (7)	0.0668 (8)	0.0754 (8)	-0.0114 (6)	0.0235 (6)	-0.0334 (6)
C27	0.0654 (12)	0.0845 (14)	0.1171 (18)	-0.0103 (10)	0.0152 (12)	-0.0576 (13)
C31	0.0339 (6)	0.0377 (7)	0.0377 (7)	-0.0051 (5)	-0.0007 (5)	-0.0108 (5)
O31	0.0628 (7)	0.0526 (6)	0.0424 (5)	-0.0143 (5)	0.0048 (5)	-0.0213 (5)
C32	0.0350 (6)	0.0334 (6)	0.0394 (7)	-0.0052 (5)	-0.0022 (5)	-0.0074 (5)
N32	0.0503 (7)	0.0376 (6)	0.0439 (7)	-0.0078 (5)	-0.0004 (5)	-0.0063 (5)
O32	0.1554 (15)	0.0395 (6)	0.0721 (9)	-0.0210 (8)	0.0280 (9)	-0.0198 (6)
O33	0.1042 (10)	0.0583 (7)	0.0468 (6)	-0.0345 (7)	0.0120 (6)	-0.0028 (5)
C33	0.0364 (6)	0.0435 (7)	0.0342 (6)	-0.0030 (5)	-0.0035 (5)	-0.0092 (5)
C34	0.0364 (7)	0.0417 (7)	0.0434 (7)	-0.0035 (5)	-0.0048 (5)	-0.0177 (6)
N34	0.0508 (7)	0.0505 (7)	0.0550 (8)	-0.0020 (6)	-0.0089 (6)	-0.0249 (6)
O34	0.1083 (11)	0.0670 (8)	0.0462 (7)	-0.0009 (7)	-0.0053 (6)	-0.0262 (6)
O35	0.0909 (9)	0.0500 (7)	0.0782 (8)	-0.0137 (6)	-0.0071 (7)	-0.0319 (6)
C35	0.0401 (7)	0.0345 (7)	0.0500 (8)	-0.0062 (5)	-0.0032 (6)	-0.0102 (6)
C36	0.0411 (7)	0.0395 (7)	0.0382 (7)	-0.0061 (6)	0.0004 (5)	-0.0050 (5)
N36	0.0847 (11)	0.0435 (8)	0.0447 (8)	-0.0127 (7)	0.0056 (7)	-0.0060 (6)
O36	0.1144 (18)	0.0577 (12)	0.0612 (10)	0.0080 (12)	-0.0148 (11)	0.0118 (8)
O37	0.153 (2)	0.0750 (15)	0.0736 (12)	0.0185 (14)	0.0626 (14)	0.0073 (10)
N37	0.0847 (11)	0.0435 (8)	0.0447 (8)	-0.0127 (7)	0.0056 (7)	-0.0060 (6)
O38	0.116 (10)	0.076 (9)	0.079 (9)	-0.015 (9)	0.010 (9)	-0.003 (9)
O39	0.095 (9)	0.072 (9)	0.051 (8)	0.024 (8)	-0.021 (7)	0.025 (8)
N38	0.0847 (11)	0.0435 (8)	0.0447 (8)	-0.0127 (7)	0.0056 (7)	-0.0060 (6)
O310	0.119 (10)	0.042 (7)	0.056 (7)	-0.011 (8)	-0.004 (8)	-0.001 (6)
O311	0.148 (10)	0.055 (8)	0.045 (7)	-0.019 (8)	0.014 (8)	-0.015 (6)

N1—C6	1.484 (2)	C25—C26	1.397 (2)
N1—C2	1.4866 (19)	C25—H25	0.9300
N1—H11	0.869 (18)	C26—H26	0.9300

N1—H12	0.900 (19)	O22—C27	1.417 (2)
C2—C3	1.506 (2)	С27—Н27А	0.9600
C2—H2A	0.9700	С27—Н27В	0.9600
C2—H2B	0.9700	С27—Н27С	0.9600
C3—N4	1.4661 (18)	C31—O31	1.2450 (15)
С3—НЗА	0.9700	C31—C32	1.4430 (18)
C3—H3B	0 9700	$C_{31} - C_{36}$	1 4492 (19)
N4—C21	1 4274 (17)	C_{32} - C_{33}	1 3749 (18)
N4_C5	1.4274(17) 1.4601(18)	C_{32} N_{32}	1.3749(10) 1 4583 (17)
C5 C6	1.4001(10)	N32 032	1.4505(17) 1.2080(16)
C5_H5A	0.0700	N32-032	1.2009(10)
C5 H5P	0.9700	$C_{22} C_{24}$	1.2101(10) 1.2777(10)
С5—ПЗВ	0.9700	C32_U32	1.3///(19)
	0.9700	C33—H33	0.9300
Сб—НбВ	0.9/00	034-035	1.3892 (19)
C21—C26	1.382 (2)	C34—N34	1.4454 (17)
C21—C22	1.411 (2)	N34—O34	1.2260 (17)
C22—O22	1.358 (2)	N34—O35	1.2326 (17)
C22—C23	1.388 (2)	C35—C36	1.3623 (19)
C23—C24	1.376 (3)	С35—Н35	0.9300
С23—Н23	0.9300	C36—N36	1.4643 (19)
C24—C25	1.367 (3)	N36—O36	1.199 (2)
C24—H24	0.9300	N36—O37	1.214 (2)
C6—N1—C2	111.24 (11)	C25—C24—H24	119.8
C6—N1—H11	109.0(11)	C23—C24—H24	119.8
C2—N1—H11	110.2 (11)	C_{24} C_{25} C_{26} C_{26}	120.14 (18)
C6N1H12	109.4(11)	C_{24} C_{25} C_{20} C_{25} C_{20} C_{25} C_{25} C_{25} C_{20} C_{25} C_{20} C_{25} C	110.0
C2N1H12	109.4(11) 108.7(11)	$C_{24} = C_{25} = H_{25}$	119.9
U11 N1 U12	108.7(11) 108.2(15)	$C_{20} = C_{20} = 1123$	120.64 (18)
$\frac{111}{111} - \frac{1112}{1112}$	100.3(13) 110.41(12)	$C_{21} = C_{20} = C_{23}$	120.04 (18)
N1 = C2 = C3	110.41 (12)	$C_{21} = C_{20} = H_{20}$	119.7
N1 - C2 - H2A	109.6	C23-C26-H26	119.7
$C_3 - C_2 - H_2 A$	109.6	$C_{22} = 0_{22} = C_{27}$	119.05 (13)
NI—C2—H2B	109.6	022—C27—H27A	109.5
C3—C2—H2B	109.6	O22—C27—H27B	109.5
H2A—C2—H2B	108.1	H27A—C27—H27B	109.5
N4—C3—C2	110.51 (13)	O22—C27—H27C	109.5
N4—C3—H3A	109.5	H27A—C27—H27C	109.5
С2—С3—НЗА	109.5	H27B—C27—H27C	109.5
N4—C3—H3B	109.5	O31—C31—C32	126.64 (12)
С2—С3—Н3В	109.5	O31—C31—C36	121.75 (12)
НЗА—СЗ—НЗВ	108.1	C32—C31—C36	111.56 (11)
C21—N4—C5	115.52 (11)	C33—C32—C31	123.98 (12)
C21—N4—C3	113.44 (11)	C33—C32—N32	116.28 (11)
C5—N4—C3	109.59 (11)	C31—C32—N32	119.70 (11)
N4—C5—C6	109.95 (12)	O32—N32—O33	122.28 (13)
N4—C5—H5A	109.7	O32—N32—C32	119.94 (12)
С6—С5—Н5А	109.7	O33—N32—C32	117.78 (12)
N4—C5—H5B	109.7	C32—C33—C34	119.57 (12)
			· · · · · · · - /

С6—С5—Н5В	109.7	С32—С33—Н33	120.2	
H5A—C5—H5B	108.2	С34—С33—Н33	120.2	
N1—C6—C5	109.85 (12)	C33—C34—C35	121.15 (12)	
N1—C6—H6A	109.7	C33—C34—N34	119.23 (12)	
С5—С6—Н6А	109.7	C35—C34—N34	119.56 (12)	
N1—C6—H6B	109.7	O34—N34—O35	122.70 (13)	
С5—С6—Н6В	109.7	O34—N34—C34	118.86 (13)	
H6A—C6—H6B	108.2	O35—N34—C34	118.41 (13)	
C26—C21—C22	118.49 (13)	C36—C35—C34	118.47 (12)	
C26—C21—N4	122.91 (14)	С36—С35—Н35	120.8	
C22—C21—N4	118.58 (13)	C34—C35—H35	120.8	
022-C22-C23	123.92 (16)	C35—C36—C31	125.23(12)	
022 - 022 - 021	116.04(12)	C_{35} C_{36} N_{36}	117 48 (12)	
C^{23} C^{22} C^{21}	120.03(16)	C_{31} $-C_{36}$ N_{36}	117.10(12) 117.20(12)	
C_{24} C_{23} C_{22} C_{21}	120.09(18)	036 - N36 - 037	124 53 (18)	
$C_{24} = C_{23} = C_{22}$	110.0	036 N36 C36	124.55(16) 118 10 (16)	
$C_{24} = C_{23} = H_{23}$	110.0	037 N36 C36	117.11(16)	
$C_{22} = C_{23} = \Pi_{23}$	119.9 120.37(16)	037-1130-230	117.11 (10)	
$C_{23} - C_{24} - C_{23}$	120.37 (10)			
C(N1 C2 C2	54 42 (19)	021 C21 C22 N22	0.5(2)	
$C_0 - N_1 - C_2 - C_3$	56 59 (17)	$C_{26} = C_{21} = C_{22} = N_{22}$	-0.3(2)	
N1 = C2 = C3 = N4	-30.38(17)	$C_{30} = C_{31} = C_{32} = N_{32}$	-1//./2(11)	
$C_2 = C_3 = N_4 = C_2 I$	-168.88(12)	C_{33} — C_{32} — N_{32} — O_{32}	1/0.90 (15)	
$C_2 = C_3 = N_4 = C_5$	60.37 (16)	$C_{31} = C_{32} = N_{32} = O_{32}$	-11.3(2)	
C21—N4—C5—C6	168.83 (12)	C33—C32—N32—O33	-9.62 (19)	
C3—N4—C5—C6	-61.53 (15)	C31—C32—N32—O33	168.23 (13)	
C2—N1—C6—C5	-55.55 (16)	C31—C32—C33—C34	0.0 (2)	
N4—C5—C6—N1	59.07 (15)	N32—C32—C33—C34	177.78 (11)	
C5—N4—C21—C26	17.82 (19)	C32—C33—C34—C35	-1.2(2)	
C3—N4—C21—C26	-109.92 (16)	C32—C33—C34—N34	-178.48 (12)	
C5—N4—C21—C22	-160.45 (13)	C33—C34—N34—O34	-3.1 (2)	
C3—N4—C21—C22	71.82 (17)	C35—C34—N34—O34	179.59 (14)	
C26—C21—C22—O22	-179.42 (14)	C33—C34—N34—O35	175.20 (13)	
N4—C21—C22—O22	-1.1 (2)	C35—C34—N34—O35	-2.1 (2)	
C26—C21—C22—C23	-0.3 (2)	C33—C34—C35—C36	2.4 (2)	
N4—C21—C22—C23	178.00 (14)	N34—C34—C35—C36	179.67 (12)	
O22—C22—C23—C24	178.03 (17)	C34—C35—C36—C31	-2.6 (2)	
C21—C22—C23—C24	-1.0(3)	C34—C35—C36—N36	-179.06 (13)	
C22—C23—C24—C25	1.0 (3)	O31—C31—C36—C35	-176.00(13)	
C23—C24—C25—C26	0.4 (3)	C32—C31—C36—C35	1.36 (19)	
C22—C21—C26—C25	1.7 (2)	O31—C31—C36—N36	0.5 (2)	
N4—C21—C26—C25	-176.60 (14)	C32—C31—C36—N36	177.86 (12)	
C24—C25—C26—C21	-1.7 (3)	C35—C36—N36—O36	44.8 (3)	
C23—C22—O22—C27	13.9 (3)	C31—C36—N36—O36	-132.0(2)	
$C_{21} - C_{22} - C_{27}$	-167.10(17)	C_{35} C_{36} N_{36} O_{37}	-129.6(3)	
031 - C31 - C32 - C33	177 16 (13)	C_{31} C_{36} N_{36} O_{37}	53 7 (3)	
C_{36} C_{31} C_{32} C_{33}	-0.05(18)			
000 001 002 000	0.00 (10)			
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
-----------------------------	-------------	------------	--------------	------------
N1—H11…O33	0.868 (18)	2.224 (18)	2.9120 (19)	136.1 (16)
N1—H12…O31 ⁱ	0.900 (18)	1.833 (18)	2.7142 (18)	165.9 (16)
N1—H12···O32 ⁱ	0.900 (19)	2.593 (17)	3.154 (2)	121.2 (13)
C6—H6A····O34 ⁱⁱ	0.97	2.56	3.423 (2)	148

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) –*x*+1, –*y*+1, –*z*+1; (ii) *x*, *y*+1, *z*.

4-(2-Methoxyphenyl)piperazin-1-ium hydrogen maleate (XIII)

Crystal data	
$C_{11}H_{17}N_2O^+ \cdot C_4H_3O_4^-$	Z = 4
$M_r = 308.33$	F(000) = 656
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.287 { m Mg} { m m}^{-3}$
a = 11.1076 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.1164 (6) Å	Cell parameters from 6817 reflections
c = 13.7649 (7) Å	$\theta = 2.6 - 27.9^{\circ}$
$\alpha = 80.353 (5)^{\circ}$	$\mu=0.10~\mathrm{mm^{-1}}$
$\beta = 78.353 \ (5)^{\circ}$	T = 296 K
$\gamma = 74.406 \ (5)^{\circ}$	Block, orange
$V = 1591.76 (16) \text{ Å}^3$	$0.48\times0.40\times0.36~mm$
Data collection	

11727 measured reflections
6817 independent reflections
4221 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.012$
$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
$h = -14 \rightarrow 11$
$k = -14 \rightarrow 10$
$l = -17 \rightarrow 16$
Primary atom site location: difference Fourier
map
Hydrogen site location: mixed
H atoms treated by a mixture of independent

Hydrogen site rotation. Inixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0662P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.15$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³

Special details

6817 reflections

415 parameters

0 restraints

S = 1.03

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
N11	0.34622 (12)	0.18907 (13)	0.37745 (11)	0.0623 (4)
H111	0.2917 (16)	0.2421 (16)	0.4214 (12)	0.075*
H112	0.3338 (15)	0.1085 (16)	0.3969 (11)	0.075*
C12	0.47834 (15)	0.19077 (16)	0.38284 (12)	0.0642 (4)
H12A	0.4969	0.1564	0.4493	0.077*
H12B	0.4870	0.2768	0.3702	0.077*
C13	0.57059 (14)	0.11410 (15)	0.30673 (11)	0.0570 (4)
H13A	0.6560	0.1195	0.3080	0.068*
H13B	0.5675	0.0265	0.3231	0.068*
N14	0.53919 (10)	0.16040 (11)	0.20732 (8)	0.0467 (3)
C15	0.41371 (12)	0.14755 (14)	0.20256 (12)	0.0562 (4)
H15A	0.4102	0.0602	0.2201	0.067*
H15B	0.3954	0.1744	0.1352	0.067*
C16	0.31747 (14)	0.22734 (15)	0.27418 (13)	0.0616 (4)
H16A	0.3182	0.3151	0.2542	0.074*
H16B	0.2335	0.2182	0.2724	0.074*
C121	0.63719 (12)	0.12322 (13)	0.12699 (10)	0.0455 (3)
C122	0.74375 (13)	0.17360 (14)	0.10986 (11)	0.0516 (4)
C123	0.83917 (14)	0.14329 (16)	0.02954 (12)	0.0636 (4)
H123	0.9099	0.1764	0.0188	0.076*
C124	0.83016 (15)	0.06460 (16)	-0.03458 (12)	0.0669 (5)
H124	0.8946	0.0451	-0.0884	0.080*
C125	0.72766 (15)	0.01536 (16)	-0.01957 (12)	0.0654 (4)
H125	0.7218	-0.0375	-0.0632	0.078*
C126	0.63143 (14)	0.04385 (14)	0.06097 (11)	0.0576 (4)
H126	0.5618	0.0092	0.0709	0.069*
O122	0.74475 (10)	0.25199 (11)	0.17621 (8)	0.0716 (3)
C127	0.84336 (17)	0.31480 (17)	0.15906 (15)	0.0774 (5)
H17A	0.8314	0.3660	0.2115	0.116*
H17B	0.9234	0.2540	0.1580	0.116*
H17C	0.8424	0.3671	0.0960	0.116*
N21	0.32610 (11)	0.68791 (12)	0.35465 (9)	0.0506 (3)
H211	0.2716 (14)	0.7345 (14)	0.4078 (11)	0.061*
H212	0.3068 (13)	0.6135 (14)	0.3614 (11)	0.061*
C22	0.45843 (14)	0.66671 (15)	0.37162 (11)	0.0559 (4)
H22A	0.4692	0.6135	0.4343	0.067*
H22B	0.4753	0.7466	0.3763	0.067*
C23	0.55121 (13)	0.60521 (13)	0.28769 (10)	0.0510 (4)
H23A	0.6371	0.5971	0.2979	0.061*
H23B	0.5404	0.5216	0.2872	0.061*
N24	0.53089 (10)	0.68033 (10)	0.19212 (8)	0.0443 (3)
C25	0.40353 (12)	0.68965 (15)	0.17454 (11)	0.0548 (4)
H25A	0.3914	0.6062	0.1757	0.066*
H25B	0.3920	0.7357	0.1094	0.066*
C26	0.30813 (13)	0.75658 (14)	0.25435 (11)	0.0549 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H26A	0.3179	0.8414	0.2509	0.066*
H26B	0.2231	0.7622	0.2434	0.066*
C221	0.63168 (12)	0.64911 (13)	0.11180 (10)	0.0454 (3)
C222	0.74589 (13)	0.68107 (14)	0.11058 (11)	0.0505 (4)
C223	0.84489 (15)	0.65473 (16)	0.03183 (13)	0.0660 (5)
H223	0.9205	0.6760	0.0311	0.079*
C224	0.83202 (17)	0.59725 (17)	-0.04533 (13)	0.0722 (5)
H224	0.8991	0.5797	-0.0977	0.087*
C225	0.72259 (17)	0.56616 (17)	-0.04537 (12)	0.0735 (5)
H225	0.7143	0.5275	-0.0977	0.088*
C226	0.62268 (16)	0.59194 (16)	0.03260 (11)	0.0641 (4)
H226	0.5477	0.5703	0.0317	0.077*
O222	0.75012 (10)	0.73834 (11)	0.18954 (8)	0.0683 (3)
C227	0.85515 (17)	0.78893 (18)	0.18703 (14)	0.0806 (6)
H27A	0.8449	0.8259	0.2473	0.121*
H27B	0.9316	0.7230	0.1816	0.121*
H27C	0.8601	0.8521	0.1305	0.121*
C31	0.21393 (13)	0.42548 (13)	0.52990 (11)	0.0491 (3)
O31	0.31437 (10)	0.44663 (10)	0.48375 (9)	0.0721 (3)
O32	0.17455 (10)	0.33051 (9)	0.52076 (8)	0.0630(3)
C32	0.13422 (14)	0.51635 (13)	0.59942 (11)	0.0527 (4)
H32	0.1710	0.5799	0.6060	0.063*
C33	0.01974 (14)	0.52237 (13)	0.65358 (11)	0.0515 (4)
H331	-0.0094	0.5890	0.6919	0.062*
C34	-0.06961 (14)	0.44152 (13)	0.66358 (11)	0.0493 (4)
O33	-0.03904 (10)	0.34388 (9)	0.61545 (8)	0.0587 (3)
H33	0.0541 (18)	0.3376 (15)	0.5724 (13)	0.088*
O34	-0.17286 (11)	0.46868 (11)	0.71631 (9)	0.0830 (4)
C41	0.21753 (13)	0.92641 (13)	0.50681 (10)	0.0472 (3)
O41	0.31284 (10)	0.95022 (9)	0.45083 (8)	0.0676 (3)
O42	0.18296 (10)	0.82652 (9)	0.50841 (8)	0.0661 (3)
C42	0.14234 (14)	1.02060 (13)	0.57458 (11)	0.0554 (4)
H42	0.1724	1.0926	0.5676	0.067*
C43	0.03981 (13)	1.01999 (13)	0.64339 (11)	0.0536 (4)
H431	0.0104	1.0921	0.6756	0.064*
C44	-0.03624 (14)	0.92597 (13)	0.67828 (11)	0.0525 (4)
O43	-0.01234 (11)	0.82687 (10)	0.63191 (9)	0.0756 (4)
H43	0.066 (2)	0.8219 (18)	0.5806 (15)	0.113*
O44	-0.12061 (12)	0.94251 (11)	0.74866 (9)	0.0869 (4)

Atomic displacement parameters $(Å^2)$

U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0488 (8)	0.0713 (10)	-0.0164 (6)	0.0283 (7)	-0.0197 (7)
0.0759 (11)	0.0497 (9)	-0.0144 (8)	0.0086 (8)	-0.0156 (8)
0.0685 (10)	0.0474 (9)	-0.0093 (7)	0.0035 (7)	-0.0095 (7)
0.0597 (7)	0.0451 (7)	-0.0136 (5)	0.0027 (5)	-0.0138 (6)
0.0619 (9)	0.0705 (10)	-0.0165 (7)	0.0024 (7)	-0.0226 (8)
	U ²² 0.0488 (8) 0.0759 (11) 0.0685 (10) 0.0597 (7) 0.0619 (9)	$\begin{array}{ccc} U^{22} & U^{33} \\ \hline 0.0488 \ (8) & 0.0713 \ (10) \\ 0.0759 \ (11) & 0.0497 \ (9) \\ 0.0685 \ (10) & 0.0474 \ (9) \\ 0.0597 \ (7) & 0.0451 \ (7) \\ 0.0619 \ (9) & 0.0705 \ (10) \end{array}$	U^{22} U^{33} U^{12} 0.0488 (8) 0.0713 (10) -0.0164 (6) 0.0759 (11) 0.0497 (9) -0.0144 (8) 0.0685 (10) 0.0474 (9) -0.0093 (7) 0.0597 (7) 0.0451 (7) -0.0136 (5) 0.0619 (9) 0.0705 (10) -0.0165 (7)	U^{22} U^{33} U^{12} U^{13} 0.0488 (8)0.0713 (10) -0.0164 (6)0.0283 (7)0.0759 (11)0.0497 (9) -0.0144 (8)0.0086 (8)0.0685 (10)0.0474 (9) -0.0093 (7)0.0035 (7)0.0597 (7)0.0451 (7) -0.0136 (5)0.0027 (5)0.0619 (9)0.0705 (10) -0.0165 (7)0.0024 (7)

C16	0.0389 (8)	0.0622 (10)	0.0817 (12)	-0.0128 (7)	0.0077 (8)	-0.0233 (9)
C121	0.0390 (7)	0.0525 (8)	0.0417 (8)	-0.0080 (6)	-0.0006 (6)	-0.0092 (6)
C122	0.0445 (8)	0.0603 (9)	0.0483 (8)	-0.0159 (7)	0.0038 (7)	-0.0111 (7)
C123	0.0460 (9)	0.0804 (11)	0.0586 (10)	-0.0186 (8)	0.0103 (7)	-0.0097 (9)
C124	0.0546 (10)	0.0855 (12)	0.0474 (9)	-0.0003 (9)	0.0066 (7)	-0.0172 (9)
C125	0.0637 (11)	0.0742 (11)	0.0550 (10)	0.0003 (8)	-0.0073 (8)	-0.0296 (8)
C126	0.0500 (9)	0.0654 (10)	0.0600 (10)	-0.0121 (7)	-0.0065 (7)	-0.0211 (8)
O122	0.0621 (7)	0.0907 (8)	0.0735 (8)	-0.0425 (6)	0.0152 (6)	-0.0346 (7)
C127	0.0680 (11)	0.0796 (12)	0.0960 (14)	-0.0367 (10)	-0.0123 (10)	-0.0126 (10)
N21	0.0459 (7)	0.0451 (7)	0.0560 (8)	-0.0138 (6)	0.0135 (6)	-0.0152 (6)
C22	0.0519 (9)	0.0666 (10)	0.0432 (8)	-0.0120 (7)	0.0029 (7)	-0.0064 (7)
C23	0.0446 (8)	0.0558 (9)	0.0463 (8)	-0.0096 (7)	0.0019 (6)	-0.0049 (7)
N24	0.0362 (6)	0.0554 (7)	0.0402 (6)	-0.0131 (5)	0.0009 (5)	-0.0085 (5)
C25	0.0415 (8)	0.0714 (10)	0.0518 (9)	-0.0156 (7)	-0.0011 (7)	-0.0133 (7)
C26	0.0394 (8)	0.0578 (9)	0.0632 (10)	-0.0095 (7)	0.0004 (7)	-0.0103 (8)
C221	0.0416 (8)	0.0494 (8)	0.0431 (8)	-0.0128 (6)	0.0017 (6)	-0.0076 (6)
C222	0.0456 (8)	0.0556 (9)	0.0497 (9)	-0.0182 (7)	0.0020(7)	-0.0063 (7)
C223	0.0464 (9)	0.0781 (11)	0.0677 (11)	-0.0225 (8)	0.0116 (8)	-0.0063 (9)
C224	0.0671 (11)	0.0813 (12)	0.0551 (10)	-0.0155 (9)	0.0207 (9)	-0.0132 (9)
C225	0.0785 (12)	0.0898 (13)	0.0520 (10)	-0.0218 (10)	0.0078 (9)	-0.0288 (9)
C226	0.0621 (10)	0.0839 (12)	0.0530 (10)	-0.0279 (9)	0.0021 (8)	-0.0242 (9)
O222	0.0581 (7)	0.0936 (8)	0.0664 (7)	-0.0409 (6)	0.0024 (5)	-0.0248 (6)
C227	0.0703 (12)	0.0969 (14)	0.0911 (14)	-0.0433 (10)	-0.0245 (10)	-0.0056 (11)
C31	0.0442 (8)	0.0477 (8)	0.0536 (9)	-0.0101 (6)	-0.0053 (7)	-0.0065 (7)
O31	0.0473 (6)	0.0693 (7)	0.0955 (9)	-0.0180 (5)	0.0097 (6)	-0.0181 (6)
O32	0.0595 (7)	0.0564 (6)	0.0738 (7)	-0.0217 (5)	0.0168 (5)	-0.0306 (5)
C32	0.0555 (9)	0.0422 (8)	0.0653 (10)	-0.0176 (7)	-0.0070 (8)	-0.0143 (7)
C33	0.0582 (9)	0.0408 (8)	0.0558 (9)	-0.0123 (7)	0.0004 (7)	-0.0180 (7)
C34	0.0545 (9)	0.0416 (8)	0.0479 (8)	-0.0125 (6)	0.0058 (7)	-0.0107 (6)
O33	0.0557 (6)	0.0550 (6)	0.0687 (7)	-0.0246 (5)	0.0121 (5)	-0.0255 (5)
O34	0.0722 (8)	0.0720 (8)	0.0981 (9)	-0.0285 (6)	0.0364 (7)	-0.0352 (7)
C41	0.0459 (8)	0.0441 (8)	0.0486 (8)	-0.0095 (6)	-0.0021 (7)	-0.0065 (6)
O41	0.0577 (7)	0.0555 (6)	0.0801 (8)	-0.0158 (5)	0.0177 (6)	-0.0139 (6)
O42	0.0704 (7)	0.0537 (6)	0.0733 (7)	-0.0257 (5)	0.0230 (6)	-0.0303 (5)
C42	0.0574 (9)	0.0424 (8)	0.0688 (10)	-0.0190 (7)	0.0029 (8)	-0.0180 (7)
C43	0.0555 (9)	0.0433 (8)	0.0620 (9)	-0.0114 (7)	0.0019 (7)	-0.0214 (7)
C44	0.0541 (9)	0.0486 (8)	0.0521 (9)	-0.0119 (7)	0.0051 (7)	-0.0161 (7)
O43	0.0816 (8)	0.0597 (7)	0.0857 (9)	-0.0368 (6)	0.0332 (7)	-0.0343 (6)
O44	0.0886 (9)	0.0869 (9)	0.0816 (9)	-0.0369 (7)	0.0373 (7)	-0.0372 (7)

Geometric parameters (Å, °)

N11—C16	1.487 (2)	N24—C221	1.4199 (15)
N11—C12	1.490 (2)	N24—C25	1.4566 (17)
N11—H111	0.927 (17)	C25—C26	1.5045 (18)
N11—H112	0.930 (16)	C25—H25A	0.9700
C12—C13	1.5068 (19)	C25—H25B	0.9700
C12—H12A	0.9700	C26—H26A	0.9700

C12 1112D	0.0700	C_{2} U_{2} D_{2}	0.0700
C12—H12B	0.9700	C20—H20B	0.9700
C13—N14	1.4556 (18)	C221—C226	1.383 (2)
С13—Н13А	0.9700	C221—C222	1.4027 (18)
C13—H13B	0.9700	C222—O222	1.3629 (17)
N14—C121	1.4155 (16)	C222—C223	1.3863 (19)
N14—C15	1.4541 (16)	C223—C224	1.376 (2)
C15—C16	1.5031 (19)	С223—Н223	0.9300
C15—H15A	0.9700	C224—C225	1.350 (2)
C15—H15B	0.9700	C224—H224	0.9300
C16—H16A	0.9700	C225—C226	1.384 (2)
C16—H16B	0.9700	С225—Н225	0.9300
C121—C126	1.3896 (19)	С226—Н226	0.9300
C121—C122	1.4034 (18)	O222—C227	1.4172 (17)
C122—O122	1.3673 (17)	С227—Н27А	0.9600
C122—C123	1.3853 (19)	С227—Н27В	0.9600
C123—C124	1 377 (2)	C227—H27C	0.9600
C123—H123	0.9300	$C_{31} = 0_{31}$	1 2281 (15)
$C_{123} = C_{125}$	1,357(2)	C_{31} C_{32}	1.2201 (15)
C124 - C123	0.0300	$C_{31} = C_{32}$	1.2793(10) 1.4004(10)
$C_{124} = 11124$	1 2000 (10)	C31—C32	1.4904(19)
C125 - C120	1.3889 (19)	C32_C33	1.5287 (18)
С125—Н125	0.9300	C32—R32	0.9300
C126—H126	0.9300	C33-C34	1.4814 (19)
0122	1.4123 (16)	C33—H331	0.9300
С127—Н17А	0.9600	C34—O34	1.2185 (16)
С127—Н17В	0.9600	C34—O33	1.2977 (16)
С127—Н17С	0.9600	O33—H33	1.074 (19)
N21—C22	1.4848 (19)	C41—O41	1.2400 (15)
N21—C26	1.4849 (19)	C41—O42	1.2643 (15)
N21—H211	0.974 (16)	C41—C42	1.4855 (19)
N21—H212	0.894 (14)	C42—C43	1.3269 (18)
C22—C23	1.5064 (18)	C42—H42	0.9300
C22—H22A	0.9700	C43—C44	1.4762 (19)
C22—H22B	0.9700	C43—H431	0.9300
C23—N24	1.4592 (17)	C44—O44	1.2046 (16)
С23—Н23А	0.9700	C44—O43	1.3044 (16)
C23—H23B	0.9700	O43—H43	1.00 (2)
C16—N11—C12	111 87 (11)	С22—С23—Н23А	109.6
C_{16} N11_H111	111.07(11) 111.2(11)	N24_C23_H23R	109.6
C12 N11 H111	111.2(11) 107.0(10)	$C_{22} C_{23} H_{23} $	109.6
C_{12} N_{11} H_{112}	107.9(10) 106.0(10)		109.0
C12 N11 H112	100.9(10)	$H_{23}A - C_{23} - H_{23}B$	100.1
	110.0(10)	$C_{221} = N_{24} = C_{23}$	110.82 (11)
$\Pi \Pi \Pi - \Pi \Pi - \Pi \Pi L$	108.4(13)	(221 - 1N24 - C23)	114.50 (11)
N11—C12—C13	110.06 (13)	$V_{23} = N_{24} = V_{23}$	110.09 (10)
N11—C12—H12A	109.6	N24—C25—C26	109.32 (12)
C13—C12—H12A	109.6	N24—C25—H25A	109.8
N11—C12—H12B	109.6	C26—C25—H25A	109.8
C13—C12—H12B	109.6	N24—C25—H25B	109.8

H12A—C12—H12B	108.2	C26—C25—H25B	109.8
N14—C13—C12	110.14 (12)	H25A—C25—H25B	108.3
N14—C13—H13A	109.6	N21—C26—C25	110.30 (12)
C12—C13—H13A	109.6	N21—C26—H26A	109.6
N14—C13—H13B	109.6	C25—C26—H26A	109.6
C12—C13—H13B	109.6	N21—C26—H26B	109.6
H13A—C13—H13B	108.1	C25—C26—H26B	109.6
C121—N14—C15	117.32 (11)	H26A—C26—H26B	108.1
C121—N14—C13	115.49 (11)	C226—C221—C222	117.72 (12)
C15—N14—C13	110.45 (11)	C226—C221—N24	123.68 (12)
N14—C15—C16	108.98 (12)	C222—C221—N24	118.57 (12)
N14—C15—H15A	109.9	O222—C222—C223	124.36 (13)
C16—C15—H15A	109.9	O222—C222—C221	115.74 (12)
N14—C15—H15B	109.9	C223—C222—C221	119.90 (14)
C16—C15—H15B	109.9	C224—C223—C222	120.46 (14)
H15A—C15—H15B	108.3	C224—C223—H223	119.8
N11—C16—C15	110.40 (13)	С222—С223—Н223	119.8
N11—C16—H16A	109.6	C225—C224—C223	120.36 (14)
C15—C16—H16A	109.6	C225—C224—H224	119.8
N11—C16—H16B	109.6	C223—C224—H224	119.8
C15—C16—H16B	109.6	C224—C225—C226	119.96 (15)
H16A—C16—H16B	108.1	C224—C225—H225	120.0
C126—C121—C122	117.83 (12)	C226—C225—H225	120.0
C126—C121—N14	123.65 (12)	C221—C226—C225	121.60 (14)
C122—C121—N14	118.45 (12)	C221—C226—H226	119.2
O122—C122—C123	124.19 (13)	C225—C226—H226	119.2
O122—C122—C121	115.76 (11)	C222—O222—C227	119.00 (12)
C123—C122—C121	120.05 (14)	O222—C227—H27A	109.5
C124—C123—C122	120.56 (14)	O222—C227—H27B	109.5
C124—C123—H123	119.7	H27A—C227—H27B	109.5
C122—C123—H123	119.7	O222—C227—H27C	109.5
C125—C124—C123	120.29 (14)	H27A—C227—H27C	109.5
C125—C124—H124	119.9	H27B—C227—H27C	109.5
C123—C124—H124	119.9	O31—C31—O32	123.42 (13)
C124—C125—C126	120.03 (14)	O31—C31—C32	117.74 (13)
С124—С125—Н125	120.0	O32—C31—C32	118.84 (12)
С126—С125—Н125	120.0	С31—О32—Н33	111.0 (7)
C125—C126—C121	121.23 (14)	C33—C32—C31	131.17 (13)
С125—С126—Н126	119.4	С33—С32—Н32	114.4
C121—C126—H126	119.4	С31—С32—Н32	114.4
C122—O122—C127	119.05 (12)	C32—C33—C34	131.27 (13)
O122—C127—H17A	109.5	С32—С33—Н331	114.4
O122—C127—H17B	109.5	С34—С33—Н331	114.4
H17A—C127—H17B	109.5	O34—C34—O33	120.32 (13)
O122—C127—H17C	109.5	O34—C34—C33	119.31 (13)
H17A—C127—H17C	109.5	O33—C34—C33	120.37 (12)
H17B—C127—H17C	109.5	С34—О33—Н33	108.8 (9)
C22—N21—C26	111.73 (11)	O41—C41—O42	122.92 (13)

C22—N21—H211	106.8 (8)	O41—C41—C42	117.54 (12)
C26—N21—H211	111.6 (9)	O42—C41—C42	119.54 (12)
C22—N21—H212	108.9 (10)	C41—O42—H43	112.1 (8)
C26—N21—H212	110.2 (10)	C43—C42—C41	131.25 (13)
H211—N21—H212	107.5 (12)	C43—C42—H42	114.4
N21—C22—C23	110.82 (12)	C41—C42—H42	114.4
N21—C22—H22A	109.5	C42—C43—C44	131.86 (13)
C23—C22—H22A	109.5	C42—C43—H431	114.1
N21—C22—H22B	109.5	C44—C43—H431	114.1
C23—C22—H22B	109.5	O44—C44—O43	120.81 (13)
H22A—C22—H22B	108.1	O44—C44—C43	119.49 (13)
N24—C23—C22	110.15 (12)	O43—C44—C43	119.69 (12)
N24—C23—H23A	109.6	C44—O43—H43	111.0 (11)
C16—N11—C12—C13	-52.90 (17)	C23—N24—C25—C26	62.57 (15)
N11—C12—C13—N14	56.09 (17)	C22—N21—C26—C25	54.13 (15)
C12-C13-N14-C121	161.93 (12)	N24—C25—C26—N21	-58.61 (15)
C12-C13-N14-C15	-61.98 (15)	C25—N24—C221—C226	-20.0(2)
C121—N14—C15—C16	-162.19 (12)	C23—N24—C221—C226	110.76 (16)
C13—N14—C15—C16	62.61 (16)	C25—N24—C221—C222	157.98 (13)
C12—N11—C16—C15	54.36 (16)	C23—N24—C221—C222	-71.22 (16)
N14—C15—C16—N11	-58.23 (16)	C226—C221—C222—O222	179.36 (13)
C15—N14—C121—C126	-19.4 (2)	N24—C221—C222—O222	1.2 (2)
C13—N14—C121—C126	113.61 (16)	C226—C221—C222—C223	-0.2 (2)
C15—N14—C121—C122	157.54 (13)	N24—C221—C222—C223	-178.34 (13)
C13—N14—C121—C122	-69.47 (16)	O222—C222—C223—C224	-179.56 (15)
C126—C121—C122—O122	179.46 (13)	C221—C222—C223—C224	0.0 (2)
N14—C121—C122—O122	2.4 (2)	C222—C223—C224—C225	0.2 (3)
C126—C121—C122—C123	-0.3(2)	C223—C224—C225—C226	-0.1(3)
N14—C121—C122—C123	-177.42 (14)	C222—C221—C226—C225	0.3 (2)
O122—C122—C123—C124	-179.23 (15)	N24—C221—C226—C225	178.33 (15)
C121—C122—C123—C124	0.5 (2)	C224—C225—C226—C221	-0.2(3)
C122—C123—C124—C125	-0.2(3)	C223—C222—O222—C227	8.1 (2)
C123—C124—C125—C126	-0.2(3)	C221—C222—O222—C227	-171.41 (14)
C124—C125—C126—C121	0.5 (2)	O31—C31—C32—C33	175.34 (16)
C122—C121—C126—C125	-0.2(2)	O32—C31—C32—C33	-4.3 (3)
N14—C121—C126—C125	176.77 (14)	C31—C32—C33—C34	-0.5(3)
C123—C122—O122—C127	5.1 (2)	C32—C33—C34—O34	-177.55 (16)
C121—C122—O122—C127	-174.63 (14)	C32—C33—C34—O33	1.4 (3)
C26—N21—C22—C23	-52.60(16)	Q41—C41—C42—C43	-177.97 (16)
N21—C22—C23—N24	55.64 (15)	O42—C41—C42—C43	1.8 (3)
C22—C23—N24—C221	164.83 (11)	C41—C42—C43—C44	0.5 (3)
C22—C23—N24—C25	-61.17 (14)	C42—C43—C44—O44	173.80 (18)
C221—N24—C25—C26	-164.61 (11)	C42—C43—C44—O43	-7.0 (3)
			× /

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O33—H33…O32	1.07 (2)	1.37 (2)	2.4447 (16)	177.7 (16)
O43—H43…O42	1.00 (2)	1.48 (2)	2.4707 (17)	174.0 (17)
N11—H111…O32	0.927 (17)	1.891 (17)	2.8122 (18)	172.3 (16)
N11—H112…O41 ⁱ	0.930 (17)	1.848 (17)	2.7725 (17)	172.9 (13)
N21—H211…O42	0.975 (15)	1.821 (15)	2.7926 (16)	174.5 (14)
N21—H212···O31	0.895 (15)	2.283 (15)	2.9776 (17)	134.4 (12)
N21—H212···O34 ⁱⁱ	0.895 (15)	2.428 (15)	3.1170 (18)	134.1 (12)
C16—H16A···O34 ⁱⁱ	0.97	2.55	3.341 (2)	138
C16—H16 <i>B</i> ····O44 ⁱⁱ	0.97	2.52	3.338 (2)	141
C25—H25 <i>B</i> ··· <i>Cg</i> 4 ⁱⁱⁱ	0.97	2.92	3.8440 (16)	159

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*, –*y*+1, –*z*+1; (iii) –*x*+1, –*y*, –*z*.

4-(2-Methoxyphenyl)piperazin-1-ium hydrogen fumarate (XIV)

Crystal data

 $C_{11}H_{17}N_2O^+ C_4H_3O_4^ M_r = 308.33$ Triclinic, *P*1 *a* = 7.8546 (4) Å *b* = 8.9626 (6) Å *c* = 11.2056 (8) Å *a* = 79.043 (5)° *β* = 87.715 (5)° *y* = 85.840 (5)° *V* = 772.15 (9) Å³

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min} = 0.867, \ T_{\max} = 0.967$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.105$ S = 1.063307 reflections 240 parameters 6 restraints Primary atom site location: difference Fourier map Z = 2 F(000) = 328 $D_x = 1.326 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3307 reflections $\theta = 2.6-27.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.48 \times 0.48 \times 0.34 \text{ mm}$

5533 measured reflections 3307 independent reflections 2608 reflections with $I > 2\sigma(I)$ $R_{int} = 0.009$ $\theta_{max} = 27.8^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -10 \rightarrow 5$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 14$

Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0552P)^2 + 0.0881P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.022 (4)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.47840 (14)	0.33032 (13)	0.75754 (9)	0.0496 (3)	
H11	0.5555	0.3715	0.7951	0.059*	
H12	0.4236	0.2650	0.8131	0.059*	
C2	0.56542 (16)	0.24842 (16)	0.66646 (12)	0.0521 (3)	
H2A	0.6417	0.1661	0.7071	0.063*	
H2B	0.6330	0.3178	0.6099	0.063*	
C3	0.43454 (16)	0.18491 (14)	0.59804 (12)	0.0478 (3)	
H3A	0.4922	0.1350	0.5367	0.057*	
H3B	0.3740	0.1092	0.6540	0.057*	
N4	0.31104 (13)	0.30552 (11)	0.53920 (9)	0.0435 (2)	
C5	0.22526 (17)	0.38282 (15)	0.63102 (12)	0.0499 (3)	
H5A	0.1632	0.3105	0.6890	0.060*	
H5B	0.1438	0.4621	0.5923	0.060*	
C6	0.35447 (19)	0.45212 (16)	0.69650 (13)	0.0561 (3)	
H6A	0.4148	0.5262	0.6389	0.067*	
H6B	0.2966	0.5042	0.7565	0.067*	
C21	0.19938 (15)	0.25100 (13)	0.46154 (11)	0.0427 (3)	
C22	0.26637 (16)	0.21262 (14)	0.35255 (11)	0.0463 (3)	
C23	0.16107 (18)	0.15988 (17)	0.27531 (13)	0.0576 (3)	
H23	0.2063	0.1337	0.2035	0.069*	
C24	-0.01099 (19)	0.14591 (19)	0.30429 (15)	0.0649 (4)	
H24	-0.0806	0.1102	0.2521	0.078*	
C25	-0.07834 (18)	0.18457 (18)	0.40935 (15)	0.0644 (4)	
H25	-0.1940	0.1763	0.4283	0.077*	
C26	0.02619 (17)	0.23620 (15)	0.48775 (13)	0.0532 (3)	
H26	-0.0207	0.2615	0.5594	0.064*	
O22	0.43698 (12)	0.23087 (12)	0.32891 (8)	0.0587 (3)	
C27	0.50598 (18)	0.20342 (16)	0.21566 (12)	0.0541 (3)	
H27A	0.6256	0.2200	0.2105	0.081*	
H27B	0.4904	0.1001	0.2090	0.081*	
H27C	0.4486	0.2715	0.1508	0.081*	
C31	0.7592 (6)	0.4912 (5)	0.9702 (5)	0.0396 (11)	0.572 (9)
031	0.7521 (6)	0.4322 (5)	0.8811 (5)	0.0587 (10)	0.572 (9)
O32	0.6295 (6)	0.5334 (6)	1.0339 (5)	0.0540 (9)	0.572 (9)
H32	0.5412	0.5112	1.0068	0.081*	0.286
C32	0.9263 (5)	0.5248 (3)	1.0179 (3)	0.0476 (11)	0.572 (9)
H32A	0.9320	0.6190	1.0756	0.057*	0.572 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C34	0.7860 (7)	0.4556 (8)	0.9314 (7)	0.0410 (14)	0.428 (9)
033	0.7520 (8)	0.4140 (9)	0.8394 (6)	0.0583 (12)	0.428 (9)
O34	0.6784 (8)	0.4985 (9)	1.0107 (5)	0.0557 (14)	0.428 (9)
H34	0.5809	0.4886	0.9913	0.084*	0.214
C33	0.9707 (5)	0.4644 (5)	0.9604 (4)	0.0472 (15)	0.428 (9)
H33A	1.0572	0.4552	0.8986	0.057*	0.428 (9)
C41	0.24159 (13)	0.01915 (13)	0.97848 (10)	0.0383 (3)	
O41	0.25523 (10)	0.12259 (12)	0.89098 (9)	0.0615 (3)	
O42	0.36567 (10)	-0.05149 (12)	1.04016 (8)	0.0574 (3)	
H42	0.4557	-0.0178	1.0112	0.086*	0.5
C42	0.07112 (13)	-0.03520 (14)	1.02179 (10)	0.0393 (3)	
H42A	0.0657	-0.1221	1.0818	0.047*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0464 (6)	0.0605 (7)	0.0424 (5)	-0.0165 (5)	-0.0024 (4)	-0.0058 (5)
C2	0.0406 (7)	0.0675 (8)	0.0470 (7)	-0.0047 (6)	-0.0008(5)	-0.0071 (6)
C3	0.0443 (7)	0.0494 (7)	0.0489 (7)	0.0028 (5)	-0.0057 (5)	-0.0081 (5)
N4	0.0452 (6)	0.0427 (5)	0.0427 (5)	-0.0007 (4)	-0.0064 (4)	-0.0076 (4)
C5	0.0524 (7)	0.0463 (7)	0.0513 (7)	0.0047 (5)	-0.0088 (6)	-0.0114 (5)
C6	0.0666 (9)	0.0500(7)	0.0535 (8)	-0.0074 (6)	-0.0068 (6)	-0.0121 (6)
C21	0.0432 (6)	0.0374 (6)	0.0463 (6)	-0.0015 (5)	-0.0077 (5)	-0.0043 (5)
C22	0.0416 (6)	0.0481 (7)	0.0496 (7)	-0.0042(5)	-0.0059 (5)	-0.0088(5)
C23	0.0527 (8)	0.0692 (9)	0.0557 (8)	-0.0046 (6)	-0.0071 (6)	-0.0227 (7)
C24	0.0501 (8)	0.0785 (10)	0.0735 (10)	-0.0069 (7)	-0.0142 (7)	-0.0292 (8)
C25	0.0400 (7)	0.0780 (10)	0.0783 (10)	-0.0063 (7)	-0.0053 (7)	-0.0211 (8)
C26	0.0451 (7)	0.0573 (8)	0.0582 (8)	-0.0007 (6)	-0.0026 (6)	-0.0142 (6)
O22	0.0458 (5)	0.0834 (7)	0.0526 (5)	-0.0150 (5)	0.0024 (4)	-0.0235 (5)
C27	0.0530 (8)	0.0604 (8)	0.0467 (7)	-0.0043 (6)	0.0009 (6)	-0.0050 (6)
C31	0.035 (2)	0.0441 (19)	0.040 (3)	-0.0097 (16)	-0.0107 (19)	-0.0044 (15)
O31	0.0420 (13)	0.0858 (19)	0.060 (3)	-0.0113 (11)	-0.0172 (19)	-0.038 (2)
O32	0.0362 (19)	0.081 (2)	0.0480 (18)	-0.0149 (14)	-0.0069 (14)	-0.0143 (13)
C32	0.037 (2)	0.0607 (15)	0.0489 (17)	-0.0106 (11)	-0.0115 (12)	-0.0157 (12)
C34	0.033 (2)	0.053 (3)	0.039 (4)	-0.0108 (19)	-0.008 (2)	-0.011 (2)
O33	0.0441 (15)	0.086 (3)	0.054 (3)	-0.0188 (15)	-0.015 (2)	-0.028 (2)
O34	0.039 (4)	0.089 (4)	0.044 (3)	-0.017 (3)	-0.010 (2)	-0.0188 (19)
C33	0.033 (2)	0.068 (2)	0.044 (2)	-0.0125 (15)	-0.0099 (15)	-0.0141 (18)
C41	0.0237 (5)	0.0535 (7)	0.0386 (6)	-0.0081 (4)	0.0017 (4)	-0.0091 (5)
O41	0.0273 (4)	0.0793 (7)	0.0671 (6)	-0.0118 (4)	-0.0007 (4)	0.0162 (5)
O42	0.0222 (4)	0.0826 (7)	0.0590 (6)	-0.0101 (4)	-0.0031 (4)	0.0110 (5)
C42	0.0254 (5)	0.0516 (6)	0.0407 (6)	-0.0093 (4)	0.0010 (4)	-0.0058 (5)

Geometric parameters (Å, °)

N1—C2	1.4845 (17)	C24—H24	0.9300
N1—C6	1.4907 (17)	C25—C26	1.3883 (19)
N1—H11	0.8900	С25—Н25	0.9300

N1 U12	0.8000	С26 Ш26	0.0300
$C_2 - C_3$	1 5108 (18)	022-027	1 4175 (16)
$C_2 = H_2 \Lambda$	0.0700	$C_{22} = C_{27}$	0.9600
$C_2 = H_2 R$	0.9700	C_{27} H_{27R}	0.9600
C_2 — H_2D C_3 N_4	1.4738(15)	$C_2 / - H_2 / B$	0.9000
$C_2 = U_2 \Lambda$	0.0700	$C_2 / - I_1 / C_2$	1 221 (4)
	0.9700	C_{21}	1.221(4)
C3—H3B	0.9700	$C_{31} = 0.32$	1.296 (5)
N4	1.4318 (15)	$C_{31} - C_{32}$	1.508 (4)
N4—C5	1.4630 (16)	032—H32	0.8200
C5—C6	1.5093 (18)	С32—Н32А	1.1605
C5—H5A	0.9700	C34—O33	1.207 (6)
С5—Н5В	0.9700	C34—O34	1.294 (6)
С6—Н6А	0.9700	C34—C33	1.510 (5)
С6—Н6В	0.9700	O34—H34	0.8200
C21—C26	1.3906 (18)	C33—H33A	0.9611
C21—C22	1.4033 (18)	C41—O41	1.2219 (14)
C22—O22	1.3710 (16)	C41—O42	1.2752 (14)
C22—C23	1.3877 (18)	C41—C42	1.4895 (14)
C23—C24	1.386 (2)	O42—H42	0.8200
С23—Н23	0.9300	$C42-C42^{i}$	1.307 (2)
C24—C25	1.365 (2)	C42—H42A	0.9300
C2—N1—C6	110.03 (10)	C23—C22—C21	120.06 (12)
C2—N1—H11	109.7	C24—C23—C22	120.53 (13)
C6—N1—H11	109.7	C24—C23—H23	119.7
C2—N1—H12	109.7	C22—C23—H23	119.7
C6—N1—H12	109.7	$C_{25} - C_{24} - C_{23}$	120.04 (13)
H11_N1_H12	108.2	$C_{25} = C_{24} = H_{24}$	120.01 (15)
N1 - C2 - C3	109.88 (10)	C_{23} C_{24} H_{24}	120.0
N1 - C2 - H2A	109.33 (10)	$C_{23} = C_{24} = C_{25} = C_{26}$	110.89 (13)
$C_3 C_2 H_2 \Lambda$	109.7	$C_{24} = C_{25} = C_{26}$	120.1
N1 C2 H2P	109.7	$C_{24} = C_{25} = H_{25}$	120.1
N1 - C2 - H2B	109.7	$C_{20} = C_{23} = H_{23}$	120.1 121.48(12)
	109.7	$C_{23} = C_{20} = C_{21}$	121.46 (15)
$\Pi 2A - C_2 - \Pi 2D$	106.2	$C_{23} = C_{20} = H_{20}$	119.5
N4 - C3 - C2	111.55 (10)	C21—C26—H26	119.5
N4-C3-H3A	109.3	$C_{22} = O_{22} = C_{27}$	117.72 (10)
C2—C3—H3A	109.3	O_{22} — C_{2} /— H_{2} /A	109.5
N4—C3—H3B	109.3	O22—C27—H27B	109.5
С2—С3—Н3В	109.3	Н27А—С27—Н27В	109.5
НЗА—СЗ—НЗВ	108.0	O22—C27—H27C	109.5
C21—N4—C5	115.02 (10)	H27A—C27—H27C	109.5
C21—N4—C3	112.31 (9)	H27B—C27—H27C	109.5
C5—N4—C3	109.65 (9)	O31—C31—O32	125.7 (4)
N4—C5—C6	110.19 (11)	O31—C31—C32	122.3 (5)
N4—C5—H5A	109.6	O32—C31—C32	112.0 (5)
С6—С5—Н5А	109.6	C31—O32—H32	109.5
N4—C5—H5B	109.6	C31—C32—H32A	120.8
С6—С5—Н5В	109.6	O33—C34—O34	126.6 (6)

H5A—C5—H5B	108.1	O33—C34—C33	119.4 (6)
N1—C6—C5	109.74 (11)	O34—C34—C33	114.0 (5)
N1—C6—H6A	109.7	С34—О34—Н34	109.5
С5—С6—Н6А	109.7	С34—С33—Н33А	119.0
N1—C6—H6B	109.7	O41—C41—O42	125.06 (10)
С5—С6—Н6В	109.7	O41—C41—C42	120.88 (10)
H6A—C6—H6B	108.2	O42—C41—C42	114.07 (10)
C26—C21—C22	118.00 (11)	C41—O42—H42	109.5
C26—C21—N4	123.21 (11)	C42 ⁱ —C42—C41	122.20 (14)
C22—C21—N4	118.79 (11)	C42 ⁱ —C42—H42A	118.9
O22—C22—C23	123.60 (12)	C41—C42—H42A	118.9
O22—C22—C21	116.34 (10)		
C6—N1—C2—C3	-56.53 (14)	C26—C21—C22—C23	-0.80 (19)
N1-C2-C3-N4	56.82 (14)	N4—C21—C22—C23	-179.82 (11)
C2-C3-N4-C21	172.63 (10)	O22—C22—C23—C24	-179.23 (14)
C2-C3-N4-C5	-58.17 (13)	C21—C22—C23—C24	0.6 (2)
C21—N4—C5—C6	-172.92 (10)	C22—C23—C24—C25	0.2 (2)
C3—N4—C5—C6	59.39 (13)	C23—C24—C25—C26	-0.7 (2)
C2—N1—C6—C5	58.42 (14)	C24—C25—C26—C21	0.5 (2)
N4—C5—C6—N1	-60.04 (14)	C22—C21—C26—C25	0.3 (2)
C5—N4—C21—C26	-15.65 (17)	N4-C21-C26-C25	179.22 (12)
C3—N4—C21—C26	110.69 (13)	C23—C22—O22—C27	4.19 (19)
C5—N4—C21—C22	163.31 (11)	C21—C22—O22—C27	-175.63 (11)
C3—N4—C21—C22	-70.35 (14)	$O41$ — $C41$ — $C42$ — $C42^{i}$	-8.0 (2)
C26—C21—C22—O22	179.03 (11)	O42—C41—C42—C42 ⁱ	172.10 (15)
N4—C21—C22—O22	0.02 (17)		

Symmetry code: (i) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	D··· A	D—H··· A
N1—H11…O31	0.89	2.01	2.894 (5)	171
N1—H11…O33	0.89	1.73	2.584 (7)	160
N1—H12···O41	0.89	1.97	2.8251 (15)	161
O32—H32…O32 ⁱⁱ	0.82	1.54	2.355 (7)	176
O34—H34…O34 ⁱⁱ	0.82	2.03	2.820 (9)	161
O42—H42…O42 ⁱⁱⁱ	0.82	1.62	2.4352 (12)	177

Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y, -z+2.

4-(2-Methoxyphenyl)piperazin-1-ium hydrogen (2*R*,3*R*)-tartrate 1.698-hydrate (XV)

<i>c</i> = 17.788 (3) Å
$\beta = 101.58 \ (2)^{\circ}$
$V = 920.8 (2) \text{ Å}^3$
Z = 2
F(000) = 398

$D_x = 1.345 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2896 reflections $\theta = 3.1-27.9^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$ T = 296 K Plate, colourless $0.36 \times 0.32 \times 0.12 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{min} = 0.956, T_{max} = 0.987$	3655 measured reflections 2895 independent reflections 2062 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -9 \rightarrow 6$ $l = -23 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.081$ S = 0.97 2895 reflections 263 parameters 4 restraints Primary atom site location: difference Fourier map Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0402P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.17 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 493 quotients [(<i>I</i> ⁺)-(<i>I</i> ⁻)]/[(<i>I</i> ⁺)+(<i>I</i> ⁻)] (Parsons <i>et al.</i> , 2013)

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.4545 (5)	0.3626 (4)	0.31605 (16)	0.0472 (7)	
H11	0.517 (5)	0.295 (5)	0.3458 (19)	0.057*	
H12	0.341 (5)	0.371 (6)	0.3245 (18)	0.057*	
C2	0.4519 (5)	0.2806 (5)	0.23968 (19)	0.0514 (9)	
H2A	0.3910	0.1588	0.2356	0.062*	
H2B	0.5760	0.2611	0.2328	0.062*	
C3	0.3538 (5)	0.4111 (4)	0.17851 (18)	0.0454 (8)	
H3A	0.3539	0.3575	0.1283	0.055*	
H3B	0.2280	0.4258	0.1839	0.055*	
N4	0.4437 (3)	0.5952 (4)	0.18516 (13)	0.0393 (6)	
C5	0.4369 (5)	0.6791 (5)	0.25945 (16)	0.0441 (8)	
H5A	0.3106	0.6953	0.2639	0.053*	
H5B	0.4941	0.8029	0.2633	0.053*	

C6	0.5333 (5)	0.5553 (4)	0.32330 (19)	0.0521 (10)	
H6A	0.6621	0.5488	0.3217	0.063*	
H6B	0.5219	0.6093	0.3723	0.063*	
C21	0.3879 (5)	0.7242 (5)	0.12346 (16)	0.0416 (8)	
C22	0.5099 (5)	0.8649 (5)	0.11148 (18)	0.0515 (9)	
C23	0.4638 (6)	0.9900 (6)	0.0511 (2)	0.0665 (11)	
H23	0.5453	1.0842	0.0435	0.080*	
C24	0.2984 (7)	0.9750 (7)	0.0025 (2)	0.0749 (13)	
H24	0.2678	1.0590	-0.0383	0.090*	
C25	0.1785 (6)	0.8393 (7)	0.0131 (2)	0.0695 (12)	
H25	0.0662	0.8300	-0.0205	0.083*	
C26	0.2227 (5)	0.7140 (6)	0.07395 (18)	0.0546 (9)	
H26	0.1390	0.6219	0.0812	0.066*	
O22	0.6727 (4)	0.8666 (4)	0.16178 (15)	0.0723 (8)	
C27	0.8158 (6)	0.9858 (8)	0.1471 (3)	0.0936 (15)	
H27A	0.9212	0.9712	0.1875	0.140*	
H27B	0.8463	0.9511	0.0990	0.140*	
H27C	0.7762	1.1153	0.1449	0.140*	
C31	0.8601 (4)	0.0130 (4)	0.38558 (16)	0.0321 (7)	
O31	0.8264 (3)	0.1842 (3)	0.36938 (12)	0.0422 (5)	
O32	0.7484 (3)	-0.1056 (3)	0.39964 (13)	0.0484 (6)	
C32	1.0532 (4)	-0.0580 (4)	0.38922 (16)	0.0300 (7)	
H32A	1.0927	-0.0187	0.3423	0.036*	
O33	1.0645 (3)	-0.2564 (3)	0.39473 (13)	0.0431 (6)	
H33	0.985 (5)	-0.285 (6)	0.414 (2)	0.065*	
C33	1.1809 (3)	0.0309 (4)	0.45784 (14)	0.0292 (7)	
H33A	1.1800	0.1684	0.4506	0.035*	
O34	1.1191 (3)	-0.0087 (3)	0.52580 (11)	0.0405 (5)	
H34	1.162 (5)	-0.109 (6)	0.544 (2)	0.061*	
C34	1.3725 (4)	-0.0400 (4)	0.46138 (16)	0.0307 (7)	
O35	1.4553 (3)	-0.1271 (3)	0.51524 (11)	0.0479 (6)	
O36	1.4319 (3)	-0.0004 (3)	0.39858 (11)	0.0351 (5)	
H36	1.537 (5)	-0.036 (6)	0.4062 (17)	0.053*	
O41	0.0854 (4)	0.4055 (4)	0.31999 (16)	0.0612 (8)	
H41	0.068 (6)	0.512 (7)	0.336 (2)	0.092*	
H42	-0.004 (6)	0.335 (7)	0.329 (2)	0.092*	
O51	-0.1304 (7)	0.4856 (9)	0.1775 (2)	0.104 (2)	0.698 (9)
H51	-0.051 (9)	0.470 (13)	0.228 (2)	0.157*	0.698 (9)
H52	-0.225 (8)	0.573 (10)	0.185 (4)	0.157*	0.698 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0576 (19)	0.0355 (16)	0.0460 (17)	-0.0002 (16)	0.0043 (15)	0.0093 (14)
C2	0.063 (2)	0.0322 (18)	0.061 (2)	0.0033 (17)	0.0179 (18)	0.0013 (16)
C3	0.057 (2)	0.0362 (19)	0.0443 (18)	-0.0014 (17)	0.0143 (15)	-0.0036 (14)
N4	0.0462 (16)	0.0352 (14)	0.0382 (14)	0.0025 (13)	0.0127 (12)	0.0025 (12)
C5	0.060 (2)	0.0325 (17)	0.0389 (17)	-0.0028 (17)	0.0080 (16)	0.0031 (15)

C6	0.065 (2)	0.040 (2)	0.0468 (18)	-0.0102 (18)	-0.0007 (17)	0.0083 (15)
C21	0.053 (2)	0.0404 (19)	0.0355 (16)	0.0091 (16)	0.0186 (15)	0.0017 (15)
C22	0.064 (2)	0.047 (2)	0.0475 (19)	0.002 (2)	0.0208 (17)	0.0074 (18)
C23	0.093 (3)	0.054 (2)	0.062 (2)	0.005 (2)	0.037 (2)	0.015 (2)
C24	0.104 (4)	0.067 (3)	0.058 (2)	0.024 (3)	0.026 (2)	0.026 (2)
C25	0.074 (3)	0.077 (3)	0.053 (2)	0.018 (3)	0.003 (2)	0.009 (2)
C26	0.056 (2)	0.057 (2)	0.0502 (19)	0.009 (2)	0.0081 (17)	0.0031 (19)
O22	0.0621 (16)	0.0759 (19)	0.0786 (17)	-0.0177 (16)	0.0137 (14)	0.0213 (16)
C27	0.078 (3)	0.091 (3)	0.118 (4)	-0.030 (3)	0.034 (3)	0.010 (3)
C31	0.0235 (14)	0.0325 (18)	0.0411 (15)	0.0001 (14)	0.0084 (12)	-0.0038 (14)
O31	0.0316 (11)	0.0350 (13)	0.0616 (13)	0.0062 (10)	0.0129 (10)	0.0057 (11)
O32	0.0248 (10)	0.0384 (13)	0.0869 (16)	-0.0026 (10)	0.0224 (10)	0.0027 (12)
C32	0.0268 (15)	0.0240 (15)	0.0419 (15)	0.0009 (12)	0.0130 (12)	-0.0027 (13)
O33	0.0312 (12)	0.0296 (12)	0.0749 (16)	-0.0031 (10)	0.0256 (11)	-0.0055 (11)
C33	0.0243 (14)	0.0284 (16)	0.0364 (15)	0.0027 (12)	0.0098 (12)	0.0044 (13)
O34	0.0407 (12)	0.0439 (14)	0.0424 (11)	0.0089 (11)	0.0212 (10)	0.0037 (11)
C34	0.0244 (14)	0.0311 (15)	0.0368 (15)	-0.0018 (13)	0.0063 (13)	-0.0025 (14)
O35	0.0388 (12)	0.0597 (15)	0.0442 (12)	0.0126 (12)	0.0058 (10)	0.0128 (12)
O36	0.0200 (9)	0.0436 (13)	0.0435 (11)	0.0026 (10)	0.0104 (9)	0.0042 (10)
O41	0.0671 (17)	0.0429 (16)	0.0847 (18)	-0.0022 (14)	0.0415 (14)	-0.0044 (13)
O51	0.104 (4)	0.137 (5)	0.072 (3)	0.042 (4)	0.020 (2)	0.004 (3)

Geometric parameters (Å, °)

N1—C2	1.473 (4)	C25—C26	1.386 (5)
N1—C6	1.479 (4)	C25—H25	0.9300
N1—H11	0.79 (4)	C26—H26	0.9300
N1—H12	0.90 (4)	O22—C27	1.427 (5)
C2—C3	1.500 (4)	C27—H27A	0.9600
C2—H2A	0.9700	C27—H27B	0.9600
C2—H2B	0.9700	C27—H27C	0.9600
C3—N4	1.458 (4)	C31—O32	1.244 (4)
С3—НЗА	0.9700	C31—O31	1.257 (4)
С3—Н3В	0.9700	C31—C32	1.518 (4)
N4—C21	1.423 (4)	C32—O33	1.406 (3)
N4—C5	1.458 (4)	C32—C33	1.526 (4)
С5—С6	1.499 (4)	C32—H32A	0.9800
C5—H5A	0.9700	O33—H33	0.78 (4)
С5—Н5В	0.9700	C33—O34	1.406 (3)
С6—Н6А	0.9700	C33—C34	1.508 (4)
С6—Н6В	0.9700	C33—H33A	0.9800
C21—C26	1.368 (4)	O34—H34	0.82 (4)
C21—C22	1.394 (5)	C34—O35	1.201 (3)
C22—O22	1.359 (4)	C34—O36	1.312 (3)
C22—C23	1.381 (5)	O36—H36	0.81 (3)
C23—C24	1.363 (6)	O41—H41	0.83 (5)
С23—Н23	0.9300	O41—H42	0.88 (5)
C24—C25	1.352 (6)	O51—H51	0.98 (2)

С24—Н24	0.9300	O51—H52	0.97 (2)
C2—N1—C6	111.9 (3)	C22—C23—H23	120.1
C2—N1—H11	106 (2)	C25—C24—C23	120.7 (4)
C6—N1—H11	109 (3)	C25—C24—H24	119.7
C2—N1—H12	110 (2)	C23—C24—H24	119.7
C6—N1—H12	107 (3)	C_{24} C_{25} C_{26}	120.0(4)
H11_N1_H12	112 (4)	C_{24} C_{25} H_{25}	120.0
N1-C2-C3	109.9(3)	$C_{26} = C_{25} = H_{25}$	120.0
N1-C2-H2A	109.7	$C_{21} - C_{26} - C_{25}$	120.0 120.9(4)
$C_3 - C_2 - H_2 A$	109.7	$C_{21} = C_{26} = H_{26}$	119.6
N1-C2-H2B	109.7	$C_{25} - C_{26} - H_{26}$	119.6
$C_3 - C_2 - H_2B$	109.7	$C_{22} = 0_{22} = 0_{22} = 0_{22}$	119.0 119.4(3)
$H_2A = C_2 = H_2B$	108.2	022 - 022 - 027 022 - 027 - H27A	109.5
N4 - C3 - C2	109.8 (3)	022 - 027 - H27R 022 - 027 - H27R	109.5
N4—C3—H3A	109.7	H27A - C27 - H27B	109.5
$C_2 = C_3 = H_3 \Delta$	109.7	022 - 027 - H270	109.5
N4_C3_H3B	109.7	$H_{27} = C_{27} = H_{27} C_{27}$	109.5
$C_2 = C_3 = H_3B$	109.7	$H_{27B} = C_{27} = H_{27C}$	109.5
$H_3 \Delta C_3 H_3 B$	109.7	032-031-031	107.5 125.6(3)
$C_{21}N_{4}C_{3}$	116.2	032 - 031 - 031	125.0(3) 116.1(2)
$C_{21} = N_{4} = C_{5}$	110.7(2) 112.4(2)	031 C31 C32	110.1(2) 118.2(3)
$C_2 N_4 C_5$	112.4(2) 109.7(2)	033 C32 C31	110.2(3)
$C_3 = N_4 = C_5$	109.7(2) 110.5(3)	033 - 032 - 031	112.1(2)
$N4 = C5 = U5 \Lambda$	100.5	C_{21} C_{22} C_{23}	109.0(2)
N4 - C5 - H5A	109.5	$C_{31} = C_{32} = C_{33}$	109.0 (2)
$C_0 - C_3 - H_5 R$	109.5	C_{21} C_{22} H_{22A}	108.5
M = C = H S B	109.5	$C_{31} = C_{32} = H_{32A}$	108.5
	109.5	$C_{22} = C_{22} = H_{22}$	108.3
NI CE CE	100.1	C32—O35—H35	103(3)
NI = C6 = U6A	110.4 (5)	034 - 033 - 034	111.0(2)
NI = CO = HOA	109.0	034-032-032	110.2(2)
C_{3} — C_{0} — $H_{0}A$	109.0	C_{34} C_{33} C_{32} L_{32A}	109.5 (2)
	109.0	034—033—H33A	108.4
	109.6	C34—C33—H33A	108.4
H6A - C6 - H6B	108.1	C32—C33—H33A	108.4
$C_{26} = C_{21} = C_{22}$	118.2 (3)	C33—034—H34	110(3)
$C_{20} = C_{21} = N_4$	123.4 (3)	035 - 034 - 036	125.5 (3)
C22—C21—N4	118.3 (3)	035 - 034 - 033	122.5 (3)
022 - C22 - C23	123.9 (4)	036-034-033	112.0(2)
022-022-021	115.7 (3)	C34—O36—H36	106 (2)
$C_{23} = C_{22} = C_{21}$	120.5 (3)	H41—O41—H42	106 (4)
C24—C23—C22	119.7 (4)	H51—O51—H52	106 (3)
C24—C23—H23	120.1		
C6—N1—C2—C3	-54.9 (4)	C23—C24—C25—C26	0.3 (6)
N1-C2-C3-N4	58.6 (4)	C22—C21—C26—C25	0.6 (5)
C2-C3-N4-C21	169.1 (3)	N4-C21-C26-C25	-177.5 (3)
C2—C3—N4—C5	-61.7 (3)	C24—C25—C26—C21	-0.7 (6)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -169.8 (2) \\ -111.3 (3) \\ 68.3 (3) \\ -66.8 (3) \\ 56.6 (3) \\ 56.6 (3) \\ 179.9 (2) \\ 3.2 (4) \\ -119.2 (3) \\ -178.9 (3) \\ 58.7 (3) \end{array}$
--	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H11…O31	0.79 (4)	2.40 (4)	3.028 (4)	137 (3)
N1—H11···O36 ⁱ	0.79 (4)	2.43 (4)	2.977 (4)	128 (3)
N1—H11…O35 ⁱⁱ	0.79 (4)	2.50 (3)	2.942 (3)	117 (3)
N1—H12…O41	0.89 (4)	1.91 (4)	2.792 (5)	168 (3)
O33—H33…O34 ⁱⁱⁱ	0.77 (4)	2.14 (4)	2.800 (3)	144 (4)
O34—H34…O31 ⁱⁱⁱ	0.82 (4)	2.11 (4)	2.836 (3)	148 (3)
O36—H36…O32 ^{iv}	0.81 (4)	1.68 (4)	2.478 (3)	167 (3)
O41—H41···O33 ^v	0.82 (5)	1.94 (5)	2.753 (4)	167 (3)
O41—H42···O31 ⁱ	0.87 (5)	1.90 (5)	2.766 (4)	169 (3)
O51—H51…O41	0.98 (4)	1.80 (5)	2.776 (5)	172 (9)
O51—H52···O22 ⁱ	0.97 (7)	2.22 (7)	3.054 (7)	144 (6)
O51—H52…N4 ⁱ	0.97 (7)	2.48 (6)	3.307 (6)	143 (5)
C23—H23··· <i>Cg</i> 2 ^{vi}	0.93	2.91	3.722 (4)	147

Symmetry codes: (i) x-1, y, z; (ii) -x+2, y+1/2, -z+1; (iii) -x+2, y-1/2, -z+1; (iv) x+1, y, z; (v) x-1, y+1, z; (vi) -x+1, y+1/2, -z.