Crystal structures of four isomeric hydrogenbonded co-crystals of 6-methylquinoline with 2-chloro-4-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid, 3-chloro-2-nitrobenzoic acid and 4-chloro-2-nitrobenzoic acid

Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The structures of the four isomeric compounds of 6-methylquinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitrobenzoic acid-6-methylquinoline (1/1), (I), 2-chloro-5-nitrobenzoic acid-6-methylquinoline (1/1), (II), 3-chloro-2-nitrobenzoic acid-6methylquinoline (1/1), (III), and 4-chloro-2-nitrobenzoic acid-6-methylquinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base molecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O...N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)-(IV). In the hydrogen-bonded acid-base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π - π interactions between the quinoline ring system and the benzene ring of the acid molecule are observed. In addition, a π - π interaction between the benzene rings of adjacent acid molecules and a C-H...O hydrogen bond are observed in the crystal of (I), and C-H···O hydrogen bonds and O···Cl contacts occur in the crystals of (III) and (IV). These intermolecular interactions connect the acid and base molecules, forming a layer structure parallel to the bc plane in (I), a column along the *a*-axis direction in (II), a layer parallel to the *ab* plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over d_{norm} and shape index were generated to visualize the weak intermolecular interactions.

1. Chemical context

Properties of hydrogen bonds formed between organic acids and organic bases depend on the pK_a values of the acids and bases as well as intermolecular interactions in the crystals. In our ongoing study on crystal structures of the system of quinoline derivatives-chloro- and nitro-substituted benzoic acids, we have shown that three compounds of quinoline with 3-chloro-2-nitrobenzoic acid, 4-chloro-2-nitrobenzoic acid and 5-chloro-2-nitrobenzoic acid, the $\Delta p K_a$ $[pK_a(base) - pK_a(acid)]$ values of which are 3.08, 2.93 and 3.04, respectively, have a short double-well $O-H \cdots N/$ O···H−N hydrogen bond between the carboxy O atom and the aromatic N atom (Gotoh & Ishida, 2009). On the other hand, in 2-chloro-5-nitrobenzoic acid–quinoline (1/1) ($\Delta pK_a =$ 2.68; Gotoh & Ishida, 2009), 2-chloro-4-nitrobenzoic acid-

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 26 September 2020 Accepted 29 September 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2-chloro-4-nitrobenzoic acid; 2-chloro-5-nitrobenzoic acid; 3-chloro-2-nitrobenzoic acid; 4-chloro-2-nitrobenzoic acid; 6-methylquinoline; hydrogen bond; disorder; Hirshfeld surface.

CCDC references: 2034476; 2034475; 2034474; 2034473

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

quinoline (1/1) ($\Delta pK_a = 2.86$; Gotoh & Ishida, 2011), 3-chloro-2-nitrobenzoic acid-6-nitroquinolune (1/1) ($\Delta p K_a = 1.42$), 8-hydroxyquinolinium 3-chloro-2-nitrobenzoate ($\Delta p K_a$ = 3.02) and 3-chloro-2-nitrobenzoic acid-5-nitroquinoline (1/1) $(\Delta p K_a = 0.98)$ (Gotoh & Ishida, 2019*a*), 2-chloro-4-nitrobenzoic acid-5-nitroquinoline (1/1) ($\Delta pK_a = 0.76$), 5-chloro-2nitrobenzoic acid-5-nitroquinoline (1/1) ($\Delta p K_a = 0.94$) (Gotoh & Ishida, 2019b), such a short disordered hydrogen bond was not observed. We report here crystal structures of title four isomeric compounds, namely, 2-chloro-4-nitrobenzoic acid-6-methylquinoline (1/1), (I), 2-chloro-5-nitrobenzoic acid-6-methylquinoline (1/1), (II), 3-chloro-2nitrobenzoic acid-6-methylquinoline (1/1), (III), and 4-chloro-2-nitrobenzoic acid-6-methylquinoline (1/1), (IV), in order to extend our studies of short hydrogen bonding and weak intermolecular interactions in the system of quinoline derivatives-chloro- and nitro-substituted benzoic acids. The $\Delta p K_a$ values are 3.16, 2.98, 3.38 and 3.23, respectively, for (I)-(IV).

2. Structural commentary

The molecular structures of compounds (I)–(IV) are shown in Fig. 1. In each compound, the acid and base molecules are linked by a hydrogen bond between the carboxy group and the N atom of the base. In (I), (III) and (IV), short hydrogen bonds are observed with $N \cdots O$ distances of 2.5452 (12), 2.5640 (17) and 2.515 (2) Å, respectively. (Tables 1, 3 and 4).

Figure 1

Molecular structures of the title compounds (I)–(IV), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. In the hydrogen bonds between the carboxy group and the N atom of the base of compounds (I), (III) and (IV), the H atoms are each disordered over two positions. Dashed lines in (II) and (III) indicate the $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds.

Table 1				
Hydrogen-bond	geometry	(Å,	$^{\circ}$) for (I).	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1 - H1 \cdots N2$ $N2 - H2 \cdots O1$	0.85(2) 0.88(3)	1.70(2) 1.66(3)	2.5452 (12)	174 (3) 176 (3)
$C8-H8\cdots O4^{i}$	0.88 (5)	2.59	3.2307 (12)	125

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$

Fable 2				
Jydrogen-bond	geometry	(Å	°) for	(II)

Tydrogen-bolid geometry (A,) for (11).								
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$				
O1−H1···N2 C15−H15···O2	0.89 (2) 0.95	1.78 (2) 2.46	2.6569 (13) 3.3211 (14)	169 (2) 151				

Table 3

Hydrogen-bond geometry (Å, °) for (III).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1−H1···N2	0.85 (3)	1.72 (3)	2.5640 (17)	174 (3)
$N2-H2\cdots O1$	0.88(4)	1.69 (4)	2.5640 (17)	170 (4)
$C5-H5\cdots.O2^{i}$	0.95	2.44	3.3245 (19)	155
C8−H8···.O2	0.95	2.46	3.1438 (19)	129

Symmetry code: (i) x, y + 1, z.

Table 4

Hydrogen-bond geometry (Å, °) for (IV).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $O1-H1\cdots N2$ 0.84 (7) 1.70 (6) 2.514 (2) 163 (7) $N2-H2\cdots O1$ 0.87 (4) 1.67 (5) 2.514 (2) 162 (4) $C10-H10\cdots O2^i$ 0.95 2.54 3.364 (3) 145					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$D1 - H1 \cdots N2$ $N2 - H2 \cdots O1$ $C10 - H10 \cdots O2^{i}$	0.84 (7) 0.87 (4) 0.95	1.70 (6) 1.67 (5) 2.54	2.514 (2) 2.514 (2) 3.364 (3)	163 (7) 162 (4) 145

Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

In these hydrogen bonds, the H atoms are each disordered over two sites; the occupancies of the O site and the N site refined to 0.65 (3) and 0.35 (3), 0.59 (4) and 0.41 (4), and 0.48 (5) and 0.52 (5), respectively, for (I), (III) and (IV). In (II), the H atom in the hydrogen bond is located at the O site with an N···O distance of 2.6569 (13) Å (Table 2), being longer than those in (I), (III) and (IV). Weak C-H···O hydrogen bonds are each observed in the acid-base unit of (II) (C15-H15···O2; Table 2) and the unit of (III) (C8-H8···O2; Table 3).

In the hydrogen-bonded acid–base unit of compound (I), the quinoline ring system (N2/C8–C16) and the benzene ring (C1–C6) are almost coplanar with a dihedral angle of 1.11 (4)°, while the quinoline ring system and the carboxy group (O1/C7/O2) of the acid are twisted to each other with a dihedral angle of 28.59 (12)°. In the acid molecule, the benzene ring makes dihedral angles of 29.36 (12) and 8.24 (11)°, respectively, with the carboxy group and the nitro group (O3/N1/O4).

Similar to (I), the quinoline ring system (N2/C8–C16) in the hydrogen-bonded acid–base unit of (II) makes dihedral angles of 2.15 (4) and 24.51 (15)°, respectively, with the benzene ring and the carboxy group. The benzene ring makes dihedral angles of 22.63 (15) and 0.77 (14)°, respectively, with the carboxy group and the nitro group.

Compound (III) crystallizes in the non-centrosymmetric space group $P2_12_12_1$. In the acid-base unit, the quinoline ring system and the benzene ring of the acid are slightly twisted to each other with a dihedral angle of 14.50 (5)°. The quinoline ring system and the carboxy group are also slightly twisted with a dihedral angle of 12.55 (18)°. The benzene ring makes dihedral angles of 3.14 (18) and 85.04 (11)°, respectively, with the carboxy group and the nitro group.

Compound (IV) crystallizes in the non-centrosymmetric space group *Cc*. In the acid-base unit, the quinoline ring system and the benzene ring of the acid are twisted to each other with a dihedral angle of $30.39 (9)^{\circ}$. The quinoline ring system and the carboxy group are also twisted with a dihedral angle of $21.7 (3)^{\circ}$. The benzene ring makes dihedral angles of 16.4 (3) and 74.4 (3)°, respectively, with the carboxy group and the nitro group.

3. Supramolecular features

In the crystal of (I), the hydrogen-bonded acid-base units are linked by a C-H···O hydrogen bond (C8-H8···O4ⁱ; symmetry code as given in Table 1), forming a zigzag chain propagating along the *c*-axis direction (Fig. 2). The acid–base units, which are related to each other by an inversion center, are linked together via π - π interactions between the quinoline ring system and the benzene ring of the acid molecule, forming a centrosymmetric dimeric unit (Fig. 3); the centroid-centroid distances are 3.7217 (6) and 3.7216 (6) Å, respectively, for $Cg1\cdots Cg2^{iii}$ and $Cg1\cdots Cg3^{iii}$, where Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings, respectively [symmetry code: (iii) -x + 1, -y + 1, -z + 1]. The dimeric units are further linked into a column structure stacked along the *b*-axis direction through a weak π - π interaction between the benzene rings with $Cg1 \cdots Cg1^{iv}$ = 3.9401 (6) Å [symmetry code: (iv) -x + 1, -y + 2, -z + 1]. The molecular chains are thus stacked into a layer parallel to the *bc* plane *via* these $\pi - \pi$ interactions.

In the crystal of (II), the acid and base molecules are alternately stacked in a column *via* π - π interactions between the acid benzene ring and the quinoline ring system, so that

Figure 2

A packing diagram of (I), showing the hydrogen-bonded chain structure formed via the O-H···N/O····H-N and C-H···O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) $x, -y + \frac{2}{3}, z - \frac{1}{2}$; (ii) $x, -y + \frac{3}{3}, -z + \frac{1}{2}$.

Figure 3

A packing diagram of (I), showing the column structure formed *via* the π - π interactions (magenta dashed lines). H atoms except for in the O-H···N/O····H-N hydrogen bonds (green dashed lines) are omitted for clarity. *Cg*1, *Cg*2 and *Cg*3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings, respectively. Symmetry codes: (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

the hydrogen-bonded acid-base units related by an inversion center are linked into a column structure along the *a*-axis direction (Fig. 4). The centroid-centroid distances are 3.6438 (6), 3.5745 (6), 3.6560 (6) and 3.7375 (6) Å, respectively, for $Cg1\cdots Cg2^{i}$, $Cg1\cdots Cg2^{ii}$, $Cg1\cdots Cg3^{i}$ and $Cg1\cdots Cg3^{ii}$, where Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings, respectively [symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1]. There are no significant interactions between the columns.

In the crystal of (III), the hydrogen-bonded acid-base units are linked by a $C-H\cdots O$ hydrogen bond $(C5-H5\cdots O2^{i};$

A packing diagram of (II), showing the column structure formed *via* the π - π interactions (magenta dashed lines). H atoms not involved in the O-H···N and C-H···O hydrogen bonds (green dashed lines) are omitted for clarity. *Cg*1, *Cg*2 and *Cg*3 are the centroids of the C1–C6, N2/C8–C11/C16 and C11–C16 rings, respectively. Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

research communications

A packing diagram of (III), showing two tape structures (top and bottom) related by an inversion symmetry to each other, formed by $O-H \cdot \cdot \cdot N/$ O····H-N and C-H···O hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z.

symmetry code as in Table 3), forming a tape structure propagating along the *b*-axis direction (Fig. 5). The acid and base molecules are alternately stacked in a column along the a axis direction via π - π interactions between the acid ring and the quinoline ring system (Fig. 6), and thus the hydrogenbonded acid-base units form a layer lying parallel to the ab plane. The centroid-centroid distances are 3.6415 (8),

Figure 6

A packing diagram of (III), showing the column structure formed via the π - π interactions (magenta dashed lines). H atoms not involved in the $O-H \cdots N/O \cdots H-N$ and $C-H \cdots O$ hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings, respectively. Symmetry codes: (iii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Figure 7

A packing diagram of (IV), showing the zigzag chain structure along the c axis via O-H···N/O····H-N and C-H···O hydrogen bonds. H atoms not involved in the hydrogen bonds are omitted for clarity. Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

3.6126 (8) and 3.6393 (8) Å, respectively, for $Cg1\cdots Cg2^{iii}$, $Cg1\cdots Cg3^{iii}$ and $Cg1\cdots Cg3^{iv}$, where Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings, respectively [symmetry codes: (iii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$]. A short O···Cl contact $[O3···Cl1^{\vee} = 3.0934 (14) \text{ Å};$ symmetry code: (v) $x - \frac{1}{2}, -y + \frac{3}{2}, -z]$ is observed between the layers.

In the crystal of (IV), the hydrogen-bonded acid-base units are linked into a zigzag chain structure propagating along the c-axis direction (Fig. 7) via C−H···O hydrogen bonds (C10− H10···O2ⁱ; symmetry code as in Table 4). The chains are further linked into a sheet parallel to the bc plane via an O···Cl short contact $[O4 \cdot \cdot Cl1^{ii} = 3.017 (3) \text{ Å}; (ii) x, -y, z + \frac{1}{2}].$ Similar to (III), the acid and base molecules are alternately stacked in a column along the *a*-axis direction via π - π interactions between the acid ring and the quinoline ring system (Fig. 8), and thus the above sheets form a three-dimensional network. The centroid-centroid distances are 3.5813 (13), 3.7987 (14) and 3.7382 (14) Å, respectively, for $Cg1\cdots Cg2^{iii}$, $Cg1\cdots Cg3^{iii}$ and $Cg1\cdots Cg3^{iv}$, where Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/C16 and C11-C16 rings,

A packing diagram of (IV), showing the column structure formed via the π - π interactions (magenta dashed lines). H atoms not involved in the $O-H \cdots N/O \cdots H-N$ hydrogen bonds (green dashed lines) are omitted for clarity. Cg1, Cg2 and Cg3 are the centroids of the C1-C6, N2/C8-C11/ C16 and C11–C16 rings, respectively. Symmetry codes: (iii) $x - \frac{1}{2}, -y + \frac{1}{2}$ $z = \frac{1}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z = \frac{1}{2}$: (v) $x = \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

respectively [symmetry codes: (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) $x + \frac{1}{2}$, $-y + \frac{1}{2}, z - \frac{1}{2}$].

Hirshfeld surfaces for compounds (I)-(IV) mapped over d_{norm} and shape index (Turner et al., 2017; McKinnon et al., 2004, 2007) are shown in Fig. 9. The C-H···O interactions in (I), (III) and (IV) are viewed as faint-red spots on the d_{norm} surfaces (black arrows in Fig. 9). In addition to these interactions, the O···Cl contacts in (III) and (IV) are shown as faint-red spots (magenta arrows). The π - π interactions between the acid ring and the quinoline ring system in (I)-(IV) are indicated by blue and red triangles on the shape index surfaces (white circles in Fig. 9).

4. Database survey

A search of the Cambridge Structural Database (Version 5.41, last update May 2020: Groom et al., 2016) for organic cocrystals/salts of 6-methylquinoline with carboxylic acid derivatives showed two structures, namely, 6-methylquinoline hemikis(trans-but-2-enedioic acid) (Cambridge Structural Database refcode LASGUJ; Bekö et al., 2012), sesquikis(6methylquinoline) hemikis(quinoline) trans-but-2-enedioic acid (LASHAQ; Beko et al., 2012). A search for organic cocrystals/salts of 2-chloro-4-nitrobenzoic acid, 2-chloro-5nitrobenzoic acid, 3-chloro-2-nitrobenzoic acid and 4-chloro-2-nitrobenzoic acid gave 61, 12, 9 and 9 structures, respectively. Limiting the search for quinoline derivatives of these compounds gave 3, 2, 4 and 2 compounds, namely, for 2-chloro-4-nitrobenzoic acid: 2-chloro-4-nitrobenzoic acid-5nitroquinoline (NUBHEA; Gotoh & Ishida, 2019b), 8-hydroxyquinolinium 2-chloro-4-nitrobenzoate (WOPDEM; Babu & Chandrasekaran, 2014), 2-chloro-4-nitrobenzoic acidquinoline (1/1) (YAGFAP; Gotoh & Ishida, 2011), for 2-chloro-5-nitrobenzoic acid: 2-chloro-5-nitrobenzoic acidquinoline (1/1) (AJIWIA; Gotoh & Ishida, 2009), 8-hydroxy-2-methylquinolinium 2-chloro-5-nitrobenzoate dihydrate (HIHPIY; Tan, 2007), for 3-chloro-2-nitrobenzoic acid: 3-chloro-2-nitrobenzoic acid-quinoline (1/1) (AJIWOG, Gotoh & Ishida, 2009), 3-chloro-2-nitrobenzoic acid-5-nitroquinoline (1/1) (XOWVUD; Gotoh & Ishida, 2019a), 3-chloro-2-nitrobenzoic acid-6-nitroquinoline (1/1)(XOWWAK, Gotoh & Ishida, 2019a), 8-hydroxyquinolin-1ium 3-chloro-2-nitrobenzoate (XOWWEO; Gotoh & Ishida, 2019a), and for 4-chloro-2-nitrobenzoic acid: 4-chloro-2nitrobenzoic acid-quinoline (AJIWUM; Gotoh & Ishida, 2009), 4-hydroxyquinolin-1-ium 4-chloro-2-nitrobenzoate (WOVZOZ; Gotoh & Ishida, 2019c). Of these compounds, AJIWOG and AJIWUM show disordered $O-H \cdots N/$ O···H-N hydrogen bonds, while WOVZOZ shows a disorder structure in the $O-H \cdots O$ hydrogen bond accompanied by a keto-enol tautomerization in the base molecule.

Figure 9

Hirshfeld surfaces [front (top) and back (bottom) views] for the compounds of (I)–(IV) mapped over d_{norm} and shape index, indicating the C–H···O interactions (black arrows), O···Cl contacts (magenta arrows) and π - π interactions (white circles).

research communications

Table 5Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	C7H3.65CINO4·C10H9.35N	C ₇ H ₄ ClNO ₄ ·C ₁₀ H ₉ N	C ₇ H _{3.59} ClNO ₄ ·C ₁₀ H _{9.41} N	C7H3.48CINO4·C10H9.52N
M _r	344.74	344.74	344.75	344.75
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, P1	Orthorhombic, $P2_12_12_1$	Monoclinic, Cc
Temperature (K)	185	186	190	185
a, b, c (Å)	9.5055 (2), 8.3019 (4), 19.5865 (4)	6.8693 (3), 7.6482 (4), 15.1195 (4)	7.1156 (4), 7.5854 (4), 28.8599 (14)	7.4271 (6), 14.4348 (6), 16.2208 (7)
$lpha,eta,\gamma(^\circ)$	90, 95.7214 (7), 90	78.218 (3), 81.1923 (18), 77.754 (3)	90, 90, 90	90, 113.203 (3), 90
$V(Å^3)$	1537.94 (8)	754.89 (6)	1557.70 (14)	1598.35 (16)
Z	4	2	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.27	0.28	0.27	0.26
Crystal size (mm)	$0.40\times0.35\times0.35$	$0.45 \times 0.35 \times 0.30$	$0.30 \times 0.30 \times 0.17$	$0.28\times0.25\times0.20$
Data collection				
Diffractometer	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII
Absorption correction	Numerical (<i>NUMABS</i> ; Higashi, 1999)	Numerical (<i>NUMABS</i> ; Higashi, 1999)	Numerical (<i>NUMABS</i> ; Higashi, 1999)	Numerical (<i>NUMABS</i> ; Higashi, 1999)
T_{\min}, T_{\max}	0.887, 0.909	0.891, 0.920	0.938, 0.955	0.931, 0.949
No. of measured, independent and observed $[I > 2\sigma(I)]$	30539, 4487, 4065	15404, 4381, 3868	30061, 4532, 4365	16695, 4645, 4158
reflections	0.025	0.022	0.017	0.015
κ_{int}	0.023	0.023	0.017	0.013
$(\sin \theta/\lambda)_{\rm max}$ (A)	0.704	0.703	0.703	0.703
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.096, 1.06	0.036, 0.108, 1.05	0.028, 0.079, 1.06	0.030, 0.081, 1.09
No. of reflections	4487	4381	4532	4645
No. of parameters	225	222	225	225
No. of restraints	2	0	2	4
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.22	0.48, -0.26	0.31, -0.26	0.35, -0.16
Absolute structure	-	-	Flack x determined using 1821 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1899 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-	-	-0.014(8)	-0.023 (9)

Computer programs: PROCESS-AUTO (Rigaku, 2006), SHELXT (Sheldrick, 2015a), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020), CrystalStructure (Rigaku, 2018) and PLATON (Spek, 2020).

5. Synthesis and crystallization

Single crystals of the title compounds (I)-(IV) were obtained by slow evaporation from acetonitrile solutions of 6-methylquinoline with chloro-nitrobenzoic acids in a 1:1 molar ratio at room temperature [80 ml acetonitrile solution of 6-methylquinoline (0.20 g) and chloro-nitrobenzoic acid (0.28 g for each acid)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms in compounds (I)– (IV) were found in difference-Fourier maps. The O-bound H atom in (II) was refined freely; the refined distance is given in Table 2. For (I), (III) and (IV), H atoms in the $N \cdots H \cdots O$ hydrogen bonds were found to be disordered over two positions in difference-Fourier maps. Since the site-occupancy factors and isotropic displacement parameters are strongly collated, the positional parameters and occupancy factors were refined, with bond length restraints of N-H = 0.88 (1) Å and O-H = 0.84 (1) Å, and with $U_{iso}(H) = 1.5U_{eq}(N \text{ or } O)$; the refined distances are given in Tables 1, 3 and 4. Other H atoms were positioned geometrically (C-H = 0.95 Å) and treated as riding, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

References

- Babu, B. & Chandrasekaran, J. (2014). Private Communication (refcode WOPDEM). CCDC, Cambridge, England.
- Bekö, S. L., Schmidt, M. U. & Bond, A. D. (2012). CrystEngComm, 14, 1967–1971.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, 0534-0538.
- Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2883.
- Gotoh, K. & Ishida, H. (2019a). Acta Cryst. E75, 1552-1557.
- Gotoh, K. & Ishida, H. (2019b). Acta Cryst. E75, 1694-1699.
- Gotoh, K. & Ishida, H. (2019c). Acta Cryst. E75, 1853-1856.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku (2018). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tan, T. (2007). J. Mol. Struct. 840, 6-13.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net.

Acta Cryst. (2020). E76, 1701-1707 [https://doi.org/10.1107/S2056989020013134]

Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methylquinoline with 2-chloro-4-nitrobenzoic acid, 2-chloro-5-nitrobenzoic acid, 3chloro-2-nitrobenzoic acid and 4-chloro-2-nitrobenzoic acid

Kazuma Gotoh and Hiroyuki Ishida

Computing details

For all structures, data collection: *PROCESS-AUTO* (Rigaku, 2006); cell refinement: *PROCESS-AUTO* (Rigaku, 2006); data reduction: *PROCESS-AUTO* (Rigaku, 2006). Program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*) for (I), (II); *SHELXS97* (Sheldrick, 2008) for (III), (IV). Program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015*b*) for (I); *SHELXL-2018/3* (Sheldrick, 2015*b*) for (II); *SHELXL2016/6* (Sheldrick, 2015*b*) for (IV). For all structures, molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2018) and *PLATON* (Spek, 2020).

2-Chloro-4-nitrobenzoic acid-6-methylquinoline (1/1) (I)

Crystal data

$C_7H_{3.65}ClNO_4 \cdot C_{10}H_{9.35}N$
$M_r = 344.74$
Monoclinic, $P2_1/c$
a = 9.5055 (2) Å
<i>b</i> = 8.3019 (4) Å
c = 19.5865 (4) Å
$\beta = 95.7214 \ (7)^{\circ}$
V = 1537.94 (8) Å ³
Z = 4

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{\min} = 0.887, T_{\max} = 0.909$ 30539 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.06 F(000) = 712.00 $D_x = 1.489 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 26323 reflections $\theta = 3.1-30.2^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 185 KBlock, colorless $0.40 \times 0.35 \times 0.35 \text{ mm}$

4487 independent reflections 4065 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -13 \rightarrow 12$ $k = -11 \rightarrow 11$ $l = -27 \rightarrow 26$

4487 reflections225 parameters2 restraints

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0572P)^2 + 0.329P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.87370 (3)	0.79426 (3)	0.44087 (2)	0.03134 (8)	
01	0.42961 (8)	0.64577 (11)	0.42646 (5)	0.03635 (19)	
H1	0.401 (3)	0.576 (3)	0.3967 (11)	0.055*	0.65 (3)
O2	0.64551 (9)	0.55323 (11)	0.41332 (5)	0.0415 (2)	
O3	0.85703 (9)	1.17879 (11)	0.64471 (4)	0.03715 (19)	
O4	0.67137 (9)	1.12532 (11)	0.69548 (4)	0.03875 (19)	
N1	0.74667 (9)	1.10600 (10)	0.64913 (4)	0.02564 (17)	
N2	0.32928 (9)	0.44919 (10)	0.33444 (4)	0.02445 (16)	
H2	0.364 (4)	0.521 (4)	0.3649 (17)	0.037*	0.35 (3)
C1	0.61850 (9)	0.76377 (11)	0.49454 (4)	0.02042 (16)	
C2	0.75219 (9)	0.83696 (11)	0.49820 (4)	0.02126 (17)	
C3	0.79336 (9)	0.95089 (11)	0.54813 (5)	0.02240 (17)	
H3	0.883075	1.001906	0.549641	0.027*	
C4	0.70028 (10)	0.98778 (11)	0.59541 (4)	0.02162 (17)	
C5	0.56791 (10)	0.91744 (12)	0.59456 (5)	0.02394 (18)	
H5	0.506368	0.944280	0.628184	0.029*	
C6	0.52786 (10)	0.80690 (11)	0.54331 (5)	0.02350 (18)	
H6	0.436619	0.759387	0.541313	0.028*	
C7	0.56641 (10)	0.64206 (11)	0.44026 (5)	0.02361 (17)	
C8	0.40800 (11)	0.39905 (13)	0.28726 (5)	0.0284 (2)	
H8	0.500827	0.441308	0.287010	0.034*	
C9	0.36003 (12)	0.28509 (13)	0.23709 (5)	0.0314 (2)	
H9	0.418985	0.252719	0.203149	0.038*	
C10	0.22700 (12)	0.22130 (12)	0.23779 (5)	0.0291 (2)	
H10	0.193332	0.143923	0.204340	0.035*	
C11	0.14049 (10)	0.27092 (11)	0.28827 (5)	0.02387 (18)	
C12	0.00279 (11)	0.20841 (12)	0.29329 (5)	0.0285 (2)	
H12	-0.034075	0.128787	0.261562	0.034*	
C13	-0.07753 (11)	0.26074 (13)	0.34293 (6)	0.0294 (2)	
C14	-0.02173 (11)	0.38120 (13)	0.38945 (6)	0.0299 (2)	
H14	-0.078279	0.419813	0.423309	0.036*	
C15	0.11154 (11)	0.44368 (12)	0.38702 (5)	0.02705 (19)	

H15	0.146830	0.523118	0.419192	0.032*
C16	0.19535 (10)	0.38878 (11)	0.33634 (5)	0.02220 (17)
C17	-0.22358 (12)	0.19441 (16)	0.34909 (8)	0.0408 (3)
H17A	-0.290638	0.283656	0.350772	0.061*
H17B	-0.222599	0.130421	0.391184	0.061*
H17C	-0.252335	0.126106	0.309332	0.061*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02668 (13)	0.03764 (15)	0.03157 (13)	-0.00822 (9)	0.01214 (9)	-0.01037 (9)
01	0.0247 (4)	0.0378 (4)	0.0445 (4)	0.0002 (3)	-0.0067 (3)	-0.0172 (3)
O2	0.0293 (4)	0.0412 (5)	0.0547 (5)	-0.0052 (3)	0.0083 (3)	-0.0239 (4)
O3	0.0343 (4)	0.0387 (4)	0.0387 (4)	-0.0130 (3)	0.0050 (3)	-0.0133 (3)
O4	0.0452 (5)	0.0433 (5)	0.0297 (4)	-0.0057 (4)	0.0133 (3)	-0.0115 (3)
N1	0.0282 (4)	0.0247 (4)	0.0239 (4)	-0.0008 (3)	0.0022 (3)	-0.0028 (3)
N2	0.0244 (4)	0.0227 (4)	0.0254 (4)	-0.0023 (3)	-0.0015 (3)	-0.0010 (3)
C1	0.0196 (4)	0.0194 (4)	0.0219 (4)	-0.0016 (3)	0.0006 (3)	0.0011 (3)
C2	0.0195 (4)	0.0228 (4)	0.0219 (4)	-0.0016 (3)	0.0043 (3)	-0.0005 (3)
C3	0.0197 (4)	0.0235 (4)	0.0241 (4)	-0.0042 (3)	0.0024 (3)	-0.0010 (3)
C4	0.0235 (4)	0.0200 (4)	0.0211 (4)	-0.0012 (3)	0.0011 (3)	-0.0012 (3)
C5	0.0219 (4)	0.0258 (4)	0.0247 (4)	-0.0006 (3)	0.0055 (3)	-0.0004 (3)
C6	0.0193 (4)	0.0246 (4)	0.0268 (4)	-0.0033 (3)	0.0034 (3)	0.0000 (3)
C7	0.0247 (4)	0.0213 (4)	0.0247 (4)	-0.0042 (3)	0.0019 (3)	-0.0004 (3)
C8	0.0274 (4)	0.0280 (5)	0.0297 (5)	-0.0020 (4)	0.0029 (4)	0.0016 (4)
C9	0.0375 (5)	0.0320 (5)	0.0256 (4)	0.0002 (4)	0.0072 (4)	-0.0014 (4)
C10	0.0389 (5)	0.0267 (5)	0.0212 (4)	-0.0027 (4)	0.0000 (4)	-0.0031 (3)
C11	0.0276 (4)	0.0214 (4)	0.0214 (4)	-0.0014 (3)	-0.0038 (3)	0.0008 (3)
C12	0.0286 (5)	0.0257 (4)	0.0295 (5)	-0.0047 (3)	-0.0060 (4)	0.0000 (3)
C13	0.0238 (4)	0.0268 (4)	0.0366 (5)	-0.0010 (4)	-0.0017 (4)	0.0065 (4)
C14	0.0280 (5)	0.0274 (5)	0.0346 (5)	0.0035 (4)	0.0052 (4)	0.0015 (4)
C15	0.0292 (5)	0.0234 (4)	0.0282 (4)	0.0006 (3)	0.0011 (3)	-0.0032 (3)
C16	0.0237 (4)	0.0197 (4)	0.0223 (4)	-0.0004 (3)	-0.0023 (3)	0.0003 (3)
C17	0.0269 (5)	0.0399 (6)	0.0553 (7)	-0.0065 (4)	0.0026 (5)	0.0073 (5)

Geometric parameters (Å, °)

Cl1—C2	1.7262 (9)	С8—С9	1.4069 (14)
O1—C7	1.3019 (12)	C8—H8	0.9500
01—H1	0.847 (10)	C9—C10	1.3722 (16)
O2—C7	1.2111 (13)	С9—Н9	0.9500
O3—N1	1.2211 (12)	C10—C11	1.4091 (14)
O4—N1	1.2215 (11)	C10—H10	0.9500
N1—C4	1.4739 (12)	C11—C12	1.4206 (14)
N2—C8	1.3134 (13)	C11—C16	1.4205 (12)
N2-C16	1.3722 (12)	C12—C13	1.3656 (16)
N2—H2	0.883 (10)	C12—H12	0.9500
C1—C6	1.3954 (13)	C13—C14	1.4196 (15)

C1 $C2$	1 4030 (12)	C13 C17	1 5006 (15)
$C_1 = C_2$	1.4039(12) 1.5127(12)	C14 - C15	1.3090(15) 1.3741(15)
$C_1 = C_1$	1.3137(12) 1.2994(12)	C14 - C13	1.5741 (15)
	1.3884 (12)		0.9500
C3-C4	1.3774 (13)	C15—C16	1.4090 (14)
С3—Н3	0.9500	С15—Н15	0.9500
C4—C5	1.3857 (13)	C17—H17A	0.9800
C5—C6	1.3851 (13)	C17—H17B	0.9800
С5—Н5	0.9500	C17—H17C	0.9800
С6—Н6	0.9500		
C7—O1—H1	112.0 (19)	C10—C9—C8	119.17 (10)
O3—N1—O4	123.98 (9)	С10—С9—Н9	120.4
O3—N1—C4	118.49 (8)	С8—С9—Н9	120.4
O4—N1—C4	117.53 (8)	C9—C10—C11	119.80 (9)
C8—N2—C16	119.89 (8)	С9—С10—Н10	120.1
C8—N2—H2	119 (3)	C11—C10—H10	120.1
C16—N2—H2	121 (3)	C10—C11—C12	123.23 (9)
C6—C1—C2	118.13 (8)	C10—C11—C16	117.72 (9)
C6—C1—C7	118.10 (8)	C12—C11—C16	119.05 (9)
C2-C1-C7	123.77 (8)	C13—C12—C11	121.16 (9)
$C_{3}-C_{2}-C_{1}$	121.40 (8)	C13—C12—H12	119.4
C_{3} $-C_{2}$ $-C_{11}$	115.99(7)	C11 - C12 - H12	119.4
C1 - C2 - C11	122.60(7)	C12 - C13 - C14	118 79 (9)
CA = C3 = C2	122.00(7) 118.04(8)	C_{12} C_{13} C_{17}	121.65(10)
$C_4 = C_3 = C_2$	121.0	$C_{12} = C_{13} = C_{17}$	121.05(10)
$C_4 = C_5 = H_2$	121.0	$C_{14} = C_{13} = C_{17}$	119.30(10) 122.03(10)
$C_2 = C_3 = H_3$	121.0	C15 - C14 - C13	122.03 (10)
$C_3 = C_4 = C_5$	122.79 (8)	C13—C14—H14	119.0
C3-C4-NI	117.48 (8)	C13—C14—H14	119.0
C5—C4—N1	119.73 (8)	C14—C15—C16	119.36 (9)
C6C4	118.14 (8)	С14—С15—Н15	120.3
С6—С5—Н5	120.9	C16—C15—H15	120.3
C4—C5—H5	120.9	N2—C16—C15	119.48 (8)
C5—C6—C1	121.48 (8)	N2—C16—C11	120.93 (9)
С5—С6—Н6	119.3	C15—C16—C11	119.59 (9)
С1—С6—Н6	119.3	C13—C17—H17A	109.5
O2—C7—O1	125.07 (9)	C13—C17—H17B	109.5
O2—C7—C1	122.59 (9)	H17A—C17—H17B	109.5
O1—C7—C1	112.34 (8)	C13—C17—H17C	109.5
N2—C8—C9	122.47 (9)	H17A—C17—H17C	109.5
N2—C8—H8	118.8	H17B—C17—H17C	109.5
С9—С8—Н8	118.8		
C6—C1—C2—C3	-0.91 (13)	C16—N2—C8—C9	0.66 (15)
C7—C1—C2—C3	178.41 (8)	N2-C8-C9-C10	-1.13 (16)
C6—C1—C2—C11	-179.86 (7)	C8—C9—C10—C11	0.25 (16)
C7-C1-C2-C11	-0.55(13)	C9—C10—C11—C12	-178.73(9)
C1 - C2 - C3 - C4	1 56 (14)	C9-C10-C11-C16	0.97(14)
$C_1 = C_2 = C_3 = C_4$	-17942(7)	C10-C11-C12-C13	-170 60 (0)
011 - 02 - 03 - 07	1/).74(/)	010 - 011 - 012 - 013	1 / 7.09 (9)

C2—C3—C4—C5	-0.70 (14)	C16—C11—C12—C13	0.62 (14)
C2—C3—C4—N1	178.55 (8)	C11—C12—C13—C14	0.77 (15)
O3—N1—C4—C3	8.31 (13)	C11—C12—C13—C17	-179.57 (9)
O4—N1—C4—C3	-171.89 (9)	C12—C13—C14—C15	-1.57 (16)
O3—N1—C4—C5	-172.41 (9)	C17—C13—C14—C15	178.76 (10)
O4—N1—C4—C5	7.39 (13)	C13—C14—C15—C16	0.91 (15)
C3—C4—C5—C6	-0.78 (14)	C8—N2—C16—C15	-179.81 (9)
N1-C4-C5-C6	179.98 (8)	C8—N2—C16—C11	0.65 (14)
C4—C5—C6—C1	1.46 (14)	C14—C15—C16—N2	-179.02 (9)
C2-C1-C6-C5	-0.64 (14)	C14—C15—C16—C11	0.53 (14)
C7—C1—C6—C5	180.00 (8)	C10-C11-C16-N2	-1.45 (13)
C6—C1—C7—O2	-151.53 (10)	C12-C11-C16-N2	178.26 (9)
C2—C1—C7—O2	29.15 (15)	C10-C11-C16-C15	179.01 (9)
C6—C1—C7—O1	28.79 (12)	C12-C11-C16-C15	-1.28 (13)
C2—C1—C7—O1	-150.52 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
O1—H1…N2	0.85 (2)	1.70 (2)	2.5452 (12)	174 (3)
N2—H2…O1	0.88 (3)	1.66 (3)	2.5452 (12)	176 (3)
C8—H8····O4 ⁱ	0.95	2.59	3.2307 (13)	125

Z = 2

F(000) = 356.00

 $\theta = 3.1 - 30.1^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$

Block, colorless

 $0.45 \times 0.35 \times 0.30 \text{ mm}$

T = 186 K

 $D_{\rm x} = 1.517 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 13517 reflections

Symmetry code: (i) x, -y+3/2, z-1/2.

2-Chloro-5-nitrobenzoic acid-6-methylquinoline (1/1) (II)

Crystal data

 $C_7H_4CINO_4 \cdot C_{10}H_9N$ $M_r = 344.74$ Triclinic, $P\overline{1}$ a = 6.8693 (3) Å b = 7.6482 (4) Å c = 15.1195 (4) Å a = 78.218 (3)° $\beta = 81.1923$ (18)° $\gamma = 77.754$ (3)° V = 754.89 (6) Å³

Data collection

Rigaku R-AXIS RAPIDII	4381 independent reflections
diffractometer	3868 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.023$
ω scans	$\theta_{\rm max} = 30.0^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: numerical	$h = -9 \rightarrow 9$
(NUMABS; Higashi, 1999)	$k = -10 \rightarrow 10$
$T_{\min} = 0.891, \ T_{\max} = 0.920$	$l = -20 \rightarrow 21$
15404 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$	Secondary atom site location: difference Fourier map Hydrogen site location: mixed
$wR(F^2) = 0.108$	H atoms treated by a mixture of independent
S = 1.05	and constrained refinement
4381 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0662P)^2 + 0.1585P]$
222 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant direct methods	$\Delta ho_{ m max} = 0.48$ e Å ⁻³ $\Delta ho_{ m min} = -0.26$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	0.11678 (4)	0.98086 (4)	0.61864 (2)	0.03561 (10)
01	0.21038 (15)	0.43541 (12)	0.54709 (6)	0.0366 (2)
O2	0.28610 (18)	0.71213 (14)	0.49895 (6)	0.0478 (3)
O3	0.18489 (15)	0.29378 (13)	0.96192 (6)	0.0392 (2)
O4	0.25163 (16)	0.14131 (12)	0.85221 (6)	0.0405 (2)
N1	0.20962 (14)	0.28451 (13)	0.88057 (6)	0.02681 (18)
N2	0.29763 (14)	0.34416 (12)	0.38322 (6)	0.02569 (18)
C1	0.19890 (14)	0.60827 (13)	0.65842 (7)	0.02253 (19)
C2	0.15118 (15)	0.77299 (14)	0.69035 (7)	0.02393 (19)
C3	0.12289 (16)	0.77660 (14)	0.78333 (7)	0.0264 (2)
H3	0.091426	0.890115	0.803551	0.032*
C4	0.14004 (15)	0.61713 (14)	0.84642 (7)	0.0254 (2)
H4	0.119312	0.619066	0.909822	0.030*
C5	0.18819 (14)	0.45521 (13)	0.81441 (6)	0.02191 (18)
C6	0.21638 (15)	0.44738 (13)	0.72259 (7)	0.02259 (19)
H6	0.247515	0.333038	0.703216	0.027*
C7	0.23535 (16)	0.59389 (15)	0.55899 (7)	0.0274 (2)
C8	0.34550 (16)	0.16678 (15)	0.38795 (7)	0.0279 (2)
H8	0.346849	0.091817	0.446377	0.033*
C9	0.39475 (17)	0.08253 (14)	0.31103 (8)	0.0284 (2)
H9	0.429397	-0.046122	0.317664	0.034*
C10	0.39200 (16)	0.18891 (14)	0.22624 (7)	0.0267 (2)
H10	0.424134	0.134301	0.173486	0.032*
C11	0.34115 (14)	0.38015 (13)	0.21768 (7)	0.02121 (18)
C12	0.33604 (15)	0.50006 (14)	0.13253 (7)	0.02423 (19)
H12	0.364652	0.451051	0.078062	0.029*
C13	0.29069 (15)	0.68496 (14)	0.12730 (7)	0.02410 (19)
C14	0.24533 (16)	0.75428 (14)	0.20953 (8)	0.0271 (2)

H14	0.212931	0.882237	0.206693	0.032*	
C15	0.24652 (16)	0.64331 (14)	0.29307 (7)	0.0264 (2)	
H15	0.214505	0.694420	0.346914	0.032*	
C16	0.29544 (14)	0.45298 (13)	0.29885 (6)	0.02121 (18)	
C17	0.28690 (19)	0.81553 (17)	0.03801 (8)	0.0341 (2)	
H17A	0.323370	0.747133	-0.012173	0.051*	
H17B	0.382979	0.895687	0.034211	0.051*	
H17C	0.151890	0.888699	0.033913	0.051*	
H1	0.243 (3)	0.420 (3)	0.4899 (15)	0.064 (6)*	

Atomic displacement parameters $(Å^2)$

	U ¹¹	U ²²	U ³³	<i>U</i> ¹²	U ¹³	U^{23}
Cl1	0.03973 (16)	0.02267 (14)	0.03659 (16)	-0.00175 (10)	-0.00100 (11)	0.00595 (10)
01	0.0568 (6)	0.0320 (4)	0.0209 (4)	-0.0110 (4)	0.0014 (3)	-0.0059 (3)
02	0.0815 (8)	0.0429 (5)	0.0220 (4)	-0.0271 (5)	-0.0024 (4)	0.0010 (4)
03	0.0584 (6)	0.0364 (5)	0.0194 (4)	-0.0069 (4)	-0.0037 (3)	0.0005 (3)
04	0.0648 (6)	0.0216 (4)	0.0315 (4)	-0.0031 (4)	-0.0064 (4)	-0.0010 (3)
N1	0.0315 (4)	0.0243 (4)	0.0227 (4)	-0.0046 (3)	-0.0038 (3)	0.0002 (3)
N2	0.0299 (4)	0.0250 (4)	0.0208 (4)	-0.0049 (3)	-0.0029 (3)	-0.0012 (3)
C1	0.0227 (4)	0.0234 (5)	0.0203 (4)	-0.0042 (3)	-0.0029 (3)	-0.0012 (3)
C2	0.0222 (4)	0.0215 (4)	0.0262 (5)	-0.0043 (3)	-0.0032 (3)	0.0007 (3)
C3	0.0291 (5)	0.0209 (4)	0.0292 (5)	-0.0040 (4)	-0.0023 (4)	-0.0061 (4)
C4	0.0278 (5)	0.0265 (5)	0.0221 (4)	-0.0054 (4)	-0.0022 (3)	-0.0050 (4)
C5	0.0233 (4)	0.0213 (4)	0.0202 (4)	-0.0048 (3)	-0.0034 (3)	-0.0001 (3)
C6	0.0250 (4)	0.0213 (4)	0.0208 (4)	-0.0038 (3)	-0.0027 (3)	-0.0028 (3)
C7	0.0303 (5)	0.0297 (5)	0.0212 (5)	-0.0052 (4)	-0.0042 (4)	-0.0016 (4)
C8	0.0298 (5)	0.0249 (5)	0.0269 (5)	-0.0066 (4)	-0.0042 (4)	0.0027 (4)
C9	0.0310 (5)	0.0183 (4)	0.0347 (5)	-0.0046 (4)	-0.0040 (4)	-0.0015 (4)
C10	0.0308 (5)	0.0201 (4)	0.0293 (5)	-0.0050 (4)	-0.0006 (4)	-0.0065 (4)
C11	0.0217 (4)	0.0193 (4)	0.0226 (4)	-0.0049 (3)	-0.0014 (3)	-0.0035 (3)
C12	0.0274 (5)	0.0250 (5)	0.0203 (4)	-0.0060 (4)	-0.0013 (3)	-0.0039 (3)
C13	0.0252 (4)	0.0234 (5)	0.0230 (5)	-0.0067 (4)	-0.0047 (3)	0.0010 (3)
C14	0.0326 (5)	0.0188 (4)	0.0298 (5)	-0.0035 (4)	-0.0067 (4)	-0.0033 (4)
C15	0.0335 (5)	0.0209 (5)	0.0249 (5)	-0.0023 (4)	-0.0043 (4)	-0.0064 (4)
C16	0.0223 (4)	0.0204 (4)	0.0206 (4)	-0.0042 (3)	-0.0024 (3)	-0.0028 (3)
C17	0.0424 (6)	0.0308 (5)	0.0268 (5)	-0.0099 (5)	-0.0071 (4)	0.0059 (4)

Geometric parameters (Å, °)

C11—C2	1.7245 (10)	C8—C9	1.4055 (16)	
O1—C7	1.3106 (14)	C8—H8	0.9500	
O1—H1	0.89 (2)	C9—C10	1.3713 (15)	
O2—C7	1.2104 (14)	С9—Н9	0.9500	
O3—N1	1.2302 (12)	C10—C11	1.4134 (13)	
O4—N1	1.2192 (13)	C10—H10	0.9500	
N1C5	1.4686 (13)	C11—C16	1.4149 (13)	
N2—C8	1.3161 (14)	C11—C12	1.4205 (13)	

N2—C16	1.3737 (12)	C12—C13	1.3705 (14)
C1—C2	1.3972 (14)	C12—H12	0.9500
C1—C6	1.3984 (13)	C13—C14	1.4157 (15)
C1—C7	1.5084 (14)	C13—C17	1.5066 (14)
C2—C3	1.3946 (15)	C14—C15	1.3706 (15)
$C_3 - C_4$	1 3819 (15)	C14—H14	0.9500
C3—H3	0.9500	C15-C16	1 4103 (14)
C4-C5	1 3781 (14)	C15—H15	0.9500
C4—H4	0.9500	C17—H17A	0.9800
C5	1.3838(14)	C17_H17B	0.9800
C6 H6	0.0500	C17 H17C	0.9800
0-110	0.7500		0.9800
C7—O1—H1	112.6 (13)	С10—С9—Н9	120.5
O4—N1—O3	123.42 (10)	С8—С9—Н9	120.5
O4—N1—C5	118.51 (9)	C9—C10—C11	119.73 (10)
O3—N1—C5	118.07 (9)	С9—С10—Н10	120.1
C8—N2—C16	118.47 (9)	C11—C10—H10	120.1
C2—C1—C6	117.92 (9)	C10—C11—C16	117.36 (9)
C2—C1—C7	123.90 (9)	C10—C11—C12	123.30 (9)
C6—C1—C7	118.17 (9)	C16—C11—C12	119.33 (9)
C3—C2—C1	120.97 (9)	C13—C12—C11	121.38 (9)
C3—C2—Cl1	116.41 (8)	С13—С12—Н12	119.3
C1—C2—Cl1	122.59 (8)	C11—C12—H12	119.3
C4—C3—C2	120.83 (10)	C12—C13—C14	118.14 (9)
С4—С3—Н3	119.6	C12—C13—C17	122.58 (10)
С2—С3—Н3	119.6	C14—C13—C17	119.27 (10)
C5—C4—C3	117.86 (9)	C15—C14—C13	122.32 (9)
C5—C4—H4	121.1	C15—C14—H14	118.8
C3—C4—H4	121.1	C13—C14—H14	118.8
C4—C5—C6	122.59 (9)	C14—C15—C16	119.78 (9)
C4—C5—N1	118.54 (9)	C14—C15—H15	120.1
C6-C5-N1	118.86 (9)	С16—С15—Н15	120.1
C5—C6—C1	119.81 (9)	N2—C16—C15	118.88 (9)
С5—С6—Н6	120.1	N2—C16—C11	122.08 (9)
C1—C6—H6	120.1	C15—C16—C11	119.03 (9)
O2—C7—O1	124.98 (10)	С13—С17—Н17А	109.5
O2—C7—C1	123.97 (10)	С13—С17—Н17В	109.5
01—C7—C1	111.02 (9)	H17A—C17—H17B	109.5
N2-C8-C9	123.38 (10)	С13—С17—Н17С	109.5
N2—C8—H8	118.3	H17A—C17—H17C	109.5
C9—C8—H8	118.3	H17B—C17—H17C	109.5
C10—C9—C8	118.97 (10)		10,10
	1100) (10)		
C6—C1—C2—C3	0.31 (15)	C16—N2—C8—C9	0.03 (16)
C7—C1—C2—C3	-178.82 (10)	N2-C8-C9-C10	-0.48 (17)
C6—C1—C2—Cl1	-177.73 (7)	C8—C9—C10—C11	0.35 (16)
C7—C1—C2—Cl1	3.14 (14)	C9—C10—C11—C16	0.19 (15)
C1—C2—C3—C4	-0.43 (16)	C9—C10—C11—C12	179.57 (10)

C11 C2 C2 C4	1 = = = 2 (0)	G10 G11 G12 G12	150 25 (10)
C11 - C2 - C3 - C4	177.73 (8)	C10—C11—C12—C13	$-1^{7}/8.3^{7}(10)$
C2—C3—C4—C5	0.75 (16)	C16—C11—C12—C13	0.99 (15)
C3—C4—C5—C6	-1.02 (16)	C11—C12—C13—C14	-1.05 (15)
C3-C4-C5-N1	179.20 (9)	C11—C12—C13—C17	179.13 (9)
O4—N1—C5—C4	179.79 (10)	C12—C13—C14—C15	0.36 (16)
O3—N1—C5—C4	-0.50 (15)	C17—C13—C14—C15	-179.82 (10)
O4—N1—C5—C6	-0.01 (15)	C13—C14—C15—C16	0.40 (16)
O3—N1—C5—C6	179.71 (10)	C8—N2—C16—C15	-179.29 (10)
C4—C5—C6—C1	0.93 (16)	C8—N2—C16—C11	0.55 (15)
N1-C5-C6-C1	-179.29 (8)	C14—C15—C16—N2	179.39 (9)
C2-C1-C6-C5	-0.54 (15)	C14—C15—C16—C11	-0.45 (15)
C7—C1—C6—C5	178.64 (9)	C10-C11-C16-N2	-0.65 (14)
C2-C1-C7-O2	23.08 (17)	C12—C11—C16—N2	179.94 (9)
C6—C1—C7—O2	-156.05 (12)	C10-C11-C16-C15	179.19 (9)
C2-C1-C7-O1	-158.73 (10)	C12—C11—C16—C15	-0.22 (14)
C6—C1—C7—O1	22.14 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O1—H1…N2	0.89 (2)	1.78 (2)	2.6569 (13)	169 (2)
C15—H15…O2	0.95	2.46	3.3211 (14)	151

3-Chloro-2-nitrobenzoic acid-6-methylquinoline (1/1) (III)

Crystal data

 $C_7H_{3.59}$ ClNO₄· $C_{10}H_{9.41}$ N $M_r = 344.75$ Orthorhombic, $P2_12_12_1$ a = 7.1156 (4) Å b = 7.5854 (4) Å c = 28.8599 (14) Å V = 1557.70 (14) Å³ Z = 4F(000) = 712.00

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Higashi, 1999) $T_{min} = 0.938$, $T_{max} = 0.955$ 30061 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.079$ S = 1.06 $D_{\rm x} = 1.470 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 28109 reflections $\theta = 3.0-30.0^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 190 KBlock, colorless $0.30 \times 0.30 \times 0.17 \text{ mm}$

4532 independent reflections 4365 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -10 \rightarrow 9$ $k = -10 \rightarrow 10$ $l = -39 \rightarrow 40$

4532 reflections225 parameters2 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$
neighbouring sites	Absolute structure: Flack x determined using
H atoms treated by a mixture of independent and constrained refinement	1821 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 0.1455P]$ where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: -0.014 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.53139 (7)	0.88067 (5)	0.01741 (2)	0.03788 (11)	
01	0.27295 (18)	0.75649 (15)	0.22566 (4)	0.0324 (2)	
H1	0.236 (6)	0.671 (4)	0.2421 (12)	0.049*	0.59 (4)
O2	0.3168 (2)	0.54391 (16)	0.17307 (4)	0.0419 (3)	
03	0.2617 (2)	0.56590 (17)	0.07241 (4)	0.0410 (3)	
O4	0.55968 (19)	0.53587 (15)	0.08592 (5)	0.0385 (3)	
N1	0.41299 (18)	0.61877 (16)	0.08702 (4)	0.0263 (2)	
N2	0.18381 (18)	0.49896 (17)	0.27884 (4)	0.0260 (2)	
H2	0.203 (8)	0.585 (5)	0.2590 (16)	0.039*	0.41 (4)
C1	0.37616 (18)	0.84027 (16)	0.15112 (4)	0.0210(2)	
C2	0.42073 (19)	0.80125 (17)	0.10505 (4)	0.0216 (2)	
C3	0.4747 (2)	0.93226 (17)	0.07416 (4)	0.0240 (2)	
C4	0.4842 (2)	1.10660 (18)	0.08878 (5)	0.0265 (3)	
H4	0.520281	1.196857	0.067766	0.032*	
C5	0.4404 (2)	1.14758 (18)	0.13447 (5)	0.0272 (3)	
Н5	0.446936	1.266384	0.144760	0.033*	
C6	0.38715 (19)	1.01549 (18)	0.16517 (5)	0.0246 (2)	
H6	0.357703	1.045362	0.196302	0.030*	
C7	0.3188 (2)	0.69810 (18)	0.18471 (5)	0.0245 (3)	
C8	0.2211 (2)	0.3372 (2)	0.26449 (5)	0.0297 (3)	
H8	0.261320	0.320660	0.233404	0.036*	
C9	0.2039 (2)	0.18918 (19)	0.29319 (5)	0.0307 (3)	
H9	0.229500	0.074532	0.281546	0.037*	
C10	0.1493 (2)	0.21234 (19)	0.33840 (5)	0.0282 (3)	
H10	0.138409	0.113530	0.358444	0.034*	
C11	0.10940 (18)	0.38383 (19)	0.35510 (4)	0.0234 (2)	
C12	0.0566 (2)	0.4191 (2)	0.40170 (5)	0.0269 (3)	
H12	0.046576	0.324225	0.423028	0.032*	
C13	0.0200 (2)	0.5876 (2)	0.41648 (5)	0.0283 (3)	
C14	0.0319 (2)	0.7280 (2)	0.38397 (5)	0.0311 (3)	
H14	0.003183	0.844465	0.393774	0.037*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C15	0.0841 (2)	0.69943 (19)	0.33867 (5)	0.0292 (3)
H15	0.091762	0.795472	0.317624	0.035*
C16	0.12609 (19)	0.52672 (18)	0.32360 (5)	0.0233 (2)
C17	-0.0287 (3)	0.6272 (3)	0.46621 (5)	0.0399 (4)
H17A	-0.128360	0.716224	0.467272	0.060*
H17B	0.082912	0.671801	0.482279	0.060*
H17C	-0.072283	0.519138	0.481428	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0610(2)	0.03165 (18)	0.02096 (15)	-0.00237 (17)	0.01009 (15)	0.00035 (13)
01	0.0498 (7)	0.0250 (5)	0.0223 (5)	-0.0041 (5)	0.0099 (5)	-0.0005 (4)
O2	0.0751 (9)	0.0223 (5)	0.0282 (5)	-0.0037 (5)	0.0160 (6)	0.0008 (4)
03	0.0507 (7)	0.0332 (6)	0.0390 (6)	-0.0137 (5)	-0.0115 (5)	-0.0032 (5)
O4	0.0478 (6)	0.0249 (5)	0.0427 (6)	0.0058 (5)	0.0072 (5)	-0.0060 (5)
N1	0.0391 (6)	0.0201 (5)	0.0197 (5)	-0.0037 (5)	0.0015 (4)	-0.0007 (4)
N2	0.0325 (6)	0.0245 (5)	0.0209 (5)	-0.0020 (5)	0.0034 (4)	0.0025 (4)
C1	0.0240 (5)	0.0193 (5)	0.0199 (5)	-0.0003 (4)	0.0020 (4)	0.0011 (4)
C2	0.0258 (5)	0.0173 (5)	0.0215 (5)	-0.0005 (4)	0.0004 (4)	-0.0006 (4)
C3	0.0298 (6)	0.0222 (5)	0.0198 (5)	0.0002 (5)	0.0032 (5)	0.0012 (4)
C4	0.0324 (6)	0.0197 (5)	0.0274 (6)	-0.0006 (5)	0.0027 (5)	0.0033 (5)
C5	0.0341 (7)	0.0187 (5)	0.0289 (6)	0.0012 (5)	0.0029 (5)	-0.0017 (5)
C6	0.0300 (6)	0.0210 (5)	0.0228 (6)	0.0017 (5)	0.0037 (5)	-0.0021 (5)
C7	0.0302 (6)	0.0226 (6)	0.0209 (6)	-0.0012 (5)	0.0038 (5)	0.0029 (5)
C8	0.0375 (7)	0.0289 (7)	0.0227 (6)	-0.0030 (6)	0.0033 (5)	-0.0012 (5)
C9	0.0409 (8)	0.0219 (6)	0.0292 (7)	-0.0017 (6)	0.0016 (6)	-0.0021 (5)
C10	0.0349 (7)	0.0229 (6)	0.0268 (6)	-0.0034 (5)	0.0005 (5)	0.0030 (5)
C11	0.0247 (5)	0.0238 (5)	0.0218 (5)	-0.0027 (5)	-0.0009 (4)	0.0023 (5)
C12	0.0293 (6)	0.0307 (7)	0.0207 (6)	-0.0033 (5)	0.0006 (5)	0.0043 (5)
C13	0.0275 (6)	0.0346 (7)	0.0228 (6)	-0.0013 (5)	0.0025 (5)	-0.0005 (5)
C14	0.0346 (7)	0.0273 (6)	0.0313 (7)	0.0020 (6)	0.0062 (6)	-0.0014 (5)
C15	0.0356 (7)	0.0229 (6)	0.0291 (6)	0.0008 (5)	0.0051 (6)	0.0034 (5)
C16	0.0246 (5)	0.0234 (6)	0.0220 (6)	-0.0013 (4)	0.0012 (5)	0.0022 (5)
C17	0.0464 (9)	0.0483 (9)	0.0251 (7)	0.0006 (8)	0.0071 (6)	-0.0055 (7)

Geometric parameters (Å, °)

Cl1—C3	1.7316 (13)	С8—С9	1.401 (2)
O1—C7	1.3035 (17)	C8—H8	0.9500
O1—H1	0.847 (13)	C9—C10	1.372 (2)
O2—C7	1.2170 (18)	С9—Н9	0.9500
O3—N1	1.2238 (18)	C10—C11	1.416 (2)
O4—N1	1.2189 (18)	C10—H10	0.9500
N1-C2	1.4797 (17)	C11—C16	1.4197 (18)
N2	1.322 (2)	C11—C12	1.4217 (18)
N2-C16	1.3717 (17)	C12—C13	1.372 (2)
N2—H2	0.879 (14)	C12—H12	0.9500

G1 G(1 2010 (10)	C12 C14	1 (0)
	1.3918 (18)		1.421 (2)
C1—C2	1.3986 (17)	C13—C17	1.507 (2)
C1—C7	1.5065 (18)	C14—C15	1.376 (2)
C2—C3	1.3890 (17)	C14—H14	0.9500
C3—C4	1.3899 (19)	C15—C16	1.4124 (19)
C4—C5	1.3900 (19)	С15—Н15	0.9500
C4—H4	0.9500	C17—H17A	0.9800
C5—C6	1 3902 (19)	C17—H17B	0 9800
C5—H5	0.9500	C17—H17C	0.9800
C6 H6	0.9500		0.9000
0-110	0.9500		
C7 O1 H1	100 (2)	C_{10} C_{0} C_{8}	118 07 (14)
	109 (3)	C10 - C9 - C8	118.97 (14)
04—NI—03	125.11 (13)	C10—C9—H9	120.5
04—N1—C2	117.38 (12)	С8—С9—Н9	120.5
O3—N1—C2	117.42 (13)	C9—C10—C11	119.86 (13)
C8—N2—C16	119.84 (12)	C9—C10—H10	120.1
C8—N2—H2	117 (4)	C11—C10—H10	120.1
C16—N2—H2	123 (4)	C10-C11-C16	117.81 (12)
C6—C1—C2	117.80 (11)	C10-C11-C12	123.23 (13)
C6—C1—C7	120.75 (11)	C16—C11—C12	118.95 (13)
C2—C1—C7	121.45 (11)	C13—C12—C11	121.31 (13)
$C_{3}-C_{2}-C_{1}$	121 42 (12)	C13—C12—H12	1193
C_{3} C_{2} N_{1}	117.00(11)	C_{11} C_{12} H_{12}	119.3
$C_1 = C_2 = N_1$	121 58 (11)	C_{12} C_{12} C_{14}	119.5
C1 = C2 = N1	121.36(11)	C12 - C13 - C17	118.75(13)
$C_2 - C_3 - C_4$	119.96 (12)		121.67 (14)
C2_C3_C11	120.65 (10)	C14—C13—C17	119.56 (15)
C4—C3—Cl1	119.39 (10)	C15—C14—C13	121.68 (14)
C3—C4—C5	119.33 (12)	C15—C14—H14	119.2
C3—C4—H4	120.3	C13—C14—H14	119.2
C5—C4—H4	120.3	C14—C15—C16	119.71 (13)
C4—C5—C6	120.30 (12)	C14—C15—H15	120.1
С4—С5—Н5	119.9	C16—C15—H15	120.1
С6—С5—Н5	119.9	N2-C16-C15	119.72 (12)
C5—C6—C1	121.19(12)	N2-C16-C11	120.72 (12)
С5—С6—Н6	119.4	C15—C16—C11	119.55 (12)
C1—C6—H6	119.4	C_{13} C_{17} H_{17A}	109.5
02 $C7$ 01	125.02 (13)	C_{13} C_{17} H_{17R}	109.5
02 - 07 - 01	123.02(13) 120.00(12)		109.5
02 - C7 - C1	120.90(12)	$\Pi / A - C / - \Pi / B$	109.5
	114.08 (12)		109.5
N2-C8-C9	122.77 (13)	H1/A—C1/—H1/C	109.5
N2—C8—H8	118.6	H17B—C17—H17C	109.5
С9—С8—Н8	118.6		
C (C C 1 C 2 C 2)	0.1(2)	C^2 C^1 C^7 O^1	-176 01 (12)
$C_{0} - C_{1} - C_{2} - C_{3}$	0.1(2)	$C_2 - C_1 - C_1 - C_1$	-1/0.81(13)
C/-CI-C2-C3	-1/9.62(13)	10 - N2 - C8 - C9	0.2 (2)
Co-C1-C2-N1	180.00 (13)	N2-C8-C9-C10	-1.2 (3)
C7—C1—C2—N1	0.25 (19)	C8—C9—C10—C11	0.8 (2)
O4—N1—C2—C3	83.25 (16)	C9—C10—C11—C16	0.6 (2)

O3—N1—C2—C3	-93.42 (16)	C9—C10—C11—C12	-178.41 (14)
O4—N1—C2—C1	-96.63 (16)	C10-C11-C12-C13	179.70 (14)
O3—N1—C2—C1	86.70 (17)	C16-C11-C12-C13	0.7 (2)
C1—C2—C3—C4	-0.4(2)	C11—C12—C13—C14	1.2 (2)
N1—C2—C3—C4	179.77 (13)	C11—C12—C13—C17	-177.59 (14)
C1—C2—C3—Cl1	179.38 (10)	C12—C13—C14—C15	-1.8 (2)
N1-C2-C3-Cl1	-0.49 (18)	C17—C13—C14—C15	177.06 (15)
C2—C3—C4—C5	0.4 (2)	C13—C14—C15—C16	0.4 (2)
Cl1—C3—C4—C5	-179.37 (11)	C8—N2—C16—C15	-179.21 (15)
C3—C4—C5—C6	-0.2(2)	C8—N2—C16—C11	1.3 (2)
C4—C5—C6—C1	0.0 (2)	C14—C15—C16—N2	-177.94 (14)
C2-C1-C6-C5	0.1 (2)	C14—C15—C16—C11	1.6 (2)
C7—C1—C6—C5	179.82 (13)	C10-C11-C16-N2	-1.7 (2)
C6—C1—C7—O2	-176.84 (16)	C12-C11-C16-N2	177.42 (13)
C2-C1-C7-O2	2.9 (2)	C10-C11-C16-C15	178.81 (14)
C6—C1—C7—O1	3.4 (2)	C12-C11-C16-C15	-2.1 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D····A	D—H··· A
O1—H1…N2	0.85 (3)	1.72 (3)	2.5640 (17)	174 (3)
N2—H2…O1	0.88 (4)	1.69 (4)	2.5640 (17)	170 (4)
C5—H5O2 ⁱ	0.95	2.44	3.3245 (19)	155
С8—Н8О2	0.95	2.46	3.1438 (19)	129

Symmetry code: (i) x, y+1, z.

4-Chloro-2-nitrobenzoic acid-6-methylquinoline (1/1) (IV)

Crystal data

$C_7H_{3.48}CINO_4 \cdot C_{10}H_{9.52}N$	F(000) = 712.00
$M_r = 344.75$	$D_{\rm x} = 1.433 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Cc	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
a = 7.4271 (6) Å	Cell parameters from 14736 reflections
b = 14.4348 (6) Å	$\theta = 3.1 - 30.2^{\circ}$
c = 16.2208 (7) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 113.203 \ (3)^{\circ}$	T = 185 K
$V = 1598.35 (16) Å^3$	Block, colorless
Z = 4	$0.28 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPIDII	4645 independent reflections
diffractometer	4158 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.015$
ω scans	$\theta_{\rm max} = 30.0^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: numerical	$h = -10 \rightarrow 10$
(NUMABS; Higashi, 1999)	$k = -19 \rightarrow 20$
$T_{\min} = 0.931, \ T_{\max} = 0.949$	$l = -22 \rightarrow 22$
16695 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.081$ S = 1.09 4645 reflections 225 parameters 4 restraints Primary atom site location: structure-invariant	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 0.1089P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.35$ e Å ⁻³ $\Delta\rho_{min} = -0.16$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using
direct methods	Absolute structure. Flack x determined using 1899 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i>
map	<i>al.</i> , 2013) Absolute structure parameter: -0.023 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.60068 (7)	0.04982 (4)	0.11442 (3)	0.04410 (14)	
01	0.5629 (2)	0.26210 (10)	0.47141 (9)	0.0398 (3)	
H1	0.543 (10)	0.290 (4)	0.512 (3)	0.060*	0.48 (5)
02	0.5224 (3)	0.38723 (10)	0.38416 (11)	0.0448 (4)	
03	0.8822 (3)	0.13730 (13)	0.49214 (11)	0.0557 (5)	
O4	0.6225 (5)	0.05352 (14)	0.45694 (15)	0.0794 (8)	
N1	0.7212 (3)	0.11139 (11)	0.44056 (12)	0.0423 (4)	
N2	0.5616 (2)	0.36395 (11)	0.59693 (10)	0.0297 (3)	
H2	0.543 (8)	0.336 (3)	0.546 (2)	0.044*	0.52 (5)
C1	0.5733 (3)	0.23966 (12)	0.33064 (11)	0.0274 (3)	
C2	0.6451 (3)	0.14958 (13)	0.34899 (12)	0.0292 (3)	
C3	0.6568 (3)	0.09002 (13)	0.28407 (13)	0.0325 (4)	
H3	0.708220	0.029174	0.298910	0.039*	
C4	0.5909 (3)	0.12266 (15)	0.19705 (12)	0.0322 (4)	
C5	0.5203 (3)	0.21248 (15)	0.17566 (12)	0.0339 (4)	
Н5	0.478690	0.234289	0.115740	0.041*	
C6	0.5111 (3)	0.26997 (13)	0.24225 (12)	0.0311 (4)	
H6	0.461428	0.331090	0.227361	0.037*	
C7	0.5518 (3)	0.30391 (14)	0.39964 (12)	0.0306 (4)	
C8	0.5951 (3)	0.45366 (13)	0.59630 (12)	0.0317 (4)	
H8	0.593525	0.481201	0.542828	0.038*	
C9	0.6328 (3)	0.50947 (13)	0.67162 (14)	0.0353 (4)	
H9	0.653792	0.574126	0.669007	0.042*	
C10	0.6390 (3)	0.46968 (13)	0.74905 (13)	0.0337 (4)	
H10	0.666629	0.506454	0.801199	0.040*	
C11	0.6041 (3)	0.37319 (12)	0.75145 (12)	0.0282 (3)	
C12	0.6091 (3)	0.32621 (16)	0.82941 (12)	0.0350 (4)	

H12	0.637854	0.360018	0.883369	0.042*
C13	0.5730 (3)	0.23282 (16)	0.82796 (15)	0.0391 (4)
C14	0.5312 (3)	0.18307 (15)	0.74760 (17)	0.0401 (4)
H14	0.506395	0.118429	0.746653	0.048*
C15	0.5253 (3)	0.22500 (13)	0.67141 (14)	0.0354 (4)
H15	0.496495	0.189993	0.618127	0.042*
C16	0.5625 (2)	0.32146 (13)	0.67232 (12)	0.0277 (3)
C17	0.5805 (4)	0.1813 (2)	0.9099 (2)	0.0549 (6)
H17A	0.456380	0.148651	0.896253	0.082*
H17B	0.601873	0.225362	0.958894	0.082*
H17C	0.688173	0.136438	0.928067	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0500 (3)	0.0567 (3)	0.0311 (2)	-0.0080 (2)	0.02182 (19)	-0.0170 (2)
01	0.0611 (9)	0.0370 (7)	0.0260 (6)	0.0069 (7)	0.0223 (6)	-0.0011 (5)
O2	0.0707 (11)	0.0298 (7)	0.0430 (8)	-0.0030 (7)	0.0322 (8)	-0.0026 (6)
O3	0.0667 (11)	0.0593 (10)	0.0284 (7)	0.0180 (9)	0.0052 (7)	0.0040 (7)
O4	0.149 (2)	0.0547 (11)	0.0454 (10)	-0.0336 (13)	0.0493 (13)	0.0042 (9)
N1	0.0760 (13)	0.0273 (8)	0.0260 (7)	0.0026 (8)	0.0226 (8)	0.0006 (6)
N2	0.0320 (8)	0.0326 (7)	0.0246 (7)	0.0054 (6)	0.0113 (6)	-0.0020 (6)
C1	0.0325 (8)	0.0297 (8)	0.0230 (7)	-0.0069 (7)	0.0140 (6)	-0.0037 (6)
C2	0.0370 (9)	0.0307 (9)	0.0214 (7)	-0.0053 (7)	0.0133 (6)	-0.0006 (6)
C3	0.0390 (9)	0.0319 (9)	0.0300 (8)	-0.0065 (7)	0.0172 (7)	-0.0048 (7)
C4	0.0333 (9)	0.0428 (10)	0.0243 (8)	-0.0098 (7)	0.0154 (7)	-0.0110 (7)
C5	0.0347 (9)	0.0468 (10)	0.0216 (7)	-0.0056 (8)	0.0124 (7)	-0.0003 (7)
C6	0.0314 (9)	0.0365 (9)	0.0261 (8)	-0.0038 (7)	0.0122 (7)	0.0016 (7)
C7	0.0332 (9)	0.0344 (9)	0.0268 (8)	-0.0046 (7)	0.0145 (7)	-0.0047 (7)
C8	0.0341 (8)	0.0350 (9)	0.0271 (9)	0.0064 (7)	0.0133 (8)	0.0056 (7)
C9	0.0411 (10)	0.0260 (8)	0.0386 (9)	0.0021 (7)	0.0153 (8)	0.0004 (8)
C10	0.0389 (9)	0.0304 (8)	0.0304 (9)	0.0030(7)	0.0120 (7)	-0.0064 (7)
C11	0.0293 (8)	0.0309 (8)	0.0249 (7)	0.0040 (6)	0.0113 (6)	-0.0001 (6)
C12	0.0363 (10)	0.0443 (10)	0.0258 (8)	0.0066 (8)	0.0137 (7)	0.0039 (8)
C13	0.0313 (9)	0.0474 (11)	0.0418 (10)	0.0093 (8)	0.0177 (8)	0.0178 (9)
C14	0.0342 (10)	0.0320 (9)	0.0546 (12)	0.0012 (8)	0.0180 (9)	0.0083 (9)
C15	0.0365 (10)	0.0286 (8)	0.0395 (10)	0.0007 (7)	0.0133 (8)	-0.0044 (7)
C16	0.0269 (8)	0.0289 (8)	0.0273 (8)	0.0037 (6)	0.0108 (6)	-0.0006 (7)
C17	0.0506 (13)	0.0653 (15)	0.0552 (14)	0.0110 (11)	0.0276 (11)	0.0320 (12)

Geometric parameters (Å, °)

Cl1—C4	1.7273 (18)	С8—С9	1.397 (3)	
O1—C7	1.285 (2)	C8—H8	0.9500	
01—H1	0.836 (15)	C9—C10	1.365 (3)	
O2—C7	1.230 (3)	С9—Н9	0.9500	
O3—N1	1.217 (3)	C10—C11	1.420 (3)	
O4—N1	1.208 (3)	C10—H10	0.9500	

N1—C2	1.472 (2)	C11—C16	1.410(2)
N2—C8	1.319 (2)	C11—C12	1.423 (3)
N2—C16	1.365 (2)	C12—C13	1.373 (3)
N2—H2	0.873 (14)	С12—Н12	0.9500
C1 - C6	1 392 (2)	C13 - C14	1411(3)
C1 $C2$	1.392(2) 1 392(3)	C_{13} C_{17}	1.411(3) 1 505 (3)
C1 - C2	1.592(3) 1 510(2)	C13 - C17	1.303(3)
$C_1 = C_1$	1.310(2) 1.280(2)	C14 - C13	1.301(3)
$C_2 = C_3$	1.389 (3)	C14—H14	0.9500
C3—C4	1.382 (3)	C15—C16	1.418 (3)
С3—Н3	0.9500	C15—H15	0.9500
C4—C5	1.390 (3)	C17—H17A	0.9800
C5—C6	1.385 (3)	C17—H17B	0.9800
C5—H5	0.9500	C17—H17C	0.9800
С6—Н6	0.9500		
C7—O1—H1	122 (5)	C10—C9—C8	118.99 (17)
04-N1-03	125 (0)	С10—С9—Н9	120.5
$O_4 N_1 C_2$	125.5(2) 117.1(2)	$C_8 C_9 H_9$	120.5
$O_{1} = O_{1} = O_{2}$	117.1(2) 117.46(18)	$C_{0} = C_{10} = C_{11}$	120.3 110.82(17)
C_{1}^{0}	117.40(18) 120.80(15)	$C_{9} = C_{10} = C_{11}$	119.62 (17)
$C_8 N_2 = C_{16}$	120.89 (15)	C9—C10—H10	120.1
C8 - N2 - H2	113 (4)		120.1
C16—N2—H2	126 (4)	C16—C11—C10	118.13 (16)
C6—C1—C2	117.21 (16)	C16—C11—C12	118.45 (17)
C6—C1—C7	118.77 (16)	C10—C11—C12	123.42 (17)
C2—C1—C7	123.97 (16)	C13—C12—C11	121.08 (18)
C3—C2—C1	123.32 (17)	C13—C12—H12	119.5
C3—C2—N1	114.79 (16)	C11—C12—H12	119.5
C1—C2—N1	121.85 (16)	C12—C13—C14	119.07 (18)
C4—C3—C2	117.43 (18)	C12—C13—C17	122.1 (2)
С4—С3—Н3	121.3	C14—C13—C17	118.9 (2)
С2—С3—Н3	121.3	C15—C14—C13	121.93 (19)
C3—C4—C5	121.32 (17)	C15—C14—H14	119.0
C_{3} $-C_{4}$ $-C_{11}$	118 61 (16)	C13—C14—H14	119.0
$C_{5} - C_{4} - C_{11}$	120.06(14)	C14 - C15 - C16	119.38 (19)
C6-C5-C4	119 59 (16)	C_{14} C_{15} H_{15}	120.3
C6 C5 H5	120.2	C16 C15 H15	120.3
$C_4 = C_5 = H_5$	120.2	$N_{2} = C_{16} = C_{11}$	120.3 110.05(16)
	120.2	N2 = C16 = C15	119.95(10)
C_{3}	121.10 (18)	$N_2 - C_{10} - C_{13}$	119.90 (10)
С5—С6—Н6	119.4		120.08 (17)
С1—С6—Н6	119.4	C13—C17—H17A	109.5
02	125.94 (17)	C13—C17—H17B	109.5
O2—C7—C1	120.75 (16)	H17A—C17—H17B	109.5
O1—C7—C1	113.29 (16)	C13—C17—H17C	109.5
N2—C8—C9	122.19 (16)	H17A—C17—H17C	109.5
N2—C8—H8	118.9	H17B—C17—H17C	109.5
С9—С8—Н8	118.9		
C6—C1—C2—C3	0.0 (3)	C16—N2—C8—C9	0.0(3)
	(-)		(-)

C7—C1—C2—C3	177.39 (18)	N2-C8-C9-C10	1.3 (3)
C6-C1-C2-N1	177.83 (18)	C8—C9—C10—C11	-1.0 (3)
C7—C1—C2—N1	-4.8 (3)	C9-C10-C11-C16	-0.4 (3)
O4—N1—C2—C3	-73.6 (3)	C9-C10-C11-C12	179.57 (18)
O3—N1—C2—C3	102.9 (2)	C16-C11-C12-C13	-0.5 (3)
O4—N1—C2—C1	108.3 (2)	C10-C11-C12-C13	179.59 (19)
O3—N1—C2—C1	-75.1 (3)	C11—C12—C13—C14	0.3 (3)
C1—C2—C3—C4	-0.9 (3)	C11—C12—C13—C17	179.03 (19)
N1—C2—C3—C4	-178.83 (17)	C12—C13—C14—C15	-0.1 (3)
C2—C3—C4—C5	1.6 (3)	C17—C13—C14—C15	-178.90 (19)
C2—C3—C4—Cl1	-179.20 (14)	C13—C14—C15—C16	0.1 (3)
C3—C4—C5—C6	-1.6 (3)	C8—N2—C16—C11	-1.4 (3)
Cl1—C4—C5—C6	179.26 (14)	C8—N2—C16—C15	179.73 (18)
C4—C5—C6—C1	0.7 (3)	C10-C11-C16-N2	1.6 (3)
C2—C1—C6—C5	0.1 (3)	C12-C11-C16-N2	-178.32 (16)
C7—C1—C6—C5	-177.44 (17)	C10-C11-C16-C15	-179.54 (18)
C6—C1—C7—O2	-16.2 (3)	C12—C11—C16—C15	0.5 (3)
C2-C1-C7-O2	166.48 (19)	C14—C15—C16—N2	178.48 (17)
C6—C1—C7—O1	162.34 (17)	C14-C15-C16-C11	-0.4 (3)
C2-C1-C7-O1	-15.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N2	0.84 (7)	1.70 (6)	2.514 (2)	163 (7)
N2—H2…O1	0.87 (4)	1.67 (5)	2.514 (2)	162 (4)
C10—H10…O2 ⁱ	0.95	2.54	3.364 (3)	145

Symmetry code: (i) x, -y+1, z+1/2.