

Received 10 August 2020 Accepted 17 September 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; synchrotron; highpressure synthesis; cobalt phosphide; $M_{12}P_7$ phase.

CCDC references: 2032430; 2032429

Supporting information: this article has supporting information at journals.iucr.org/e

The novel high-pressure/high-temperature compound Co₁₂P₇ determined from synchrotron data

Claire Zurkowski,^a* Barbara Lavina,^b Stella Chariton,^c Sergey Tkachev,^c Vitali Prakapenka^c and Andrew Campbell^a

^aUniversity of Chicago, Department of the Geophysical Sciences, 5734 S. Ellis Ave, Chicago IL, 60637, USA, ^bX-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA, and ^cUniversity of Chicago, GeoSoilEnviro Center for Advanced Radiation Sources, Chicago, IL 60637, USA. *Correspondence e-mail: czurkowski@uchicago.edu

The structural properties of cobalt phosphides were investigated at high pressures and temperatures to better understand the behavior of metal-rich phosphides in Earth and planetary interiors. Using single-crystal X-ray diffraction synchrotron data and a laser-heated diamond anvil cell, we discovered a new high pressure-temperature (*HP*–*HT*) cobalt phosphide, $Co_{12}P_7$, dodecacobalt heptaphosphide, synthesized at 27 GPa and 1740 K, and at 48 GPa and 1790 K. $Co_{12}P_7$ adopts a structure initially proposed for $Cr_{12}P_7$ (space-group type $P\overline{0}$, Z = 1), consisting of chains of edge-sharing CoP_5 square pyramids and chains of corner-sharing CoP_4 tetrahedra. This arrangement leaves space for trigonal–prismatic channels running parallel to the *c* axis. Coupled disordering of metal and phosphorus atoms has been observed in this structure for related $M_{12}P_7$ (M = Cr, V) compounds, but all Co and P sites are ordered in $Co_{12}P_7$. All atomic sites in this crystal structure are situated on special positions. Upon decompression to ambient conditions, peak broadening and loss of reflections at high angles was observed, suggesting phase instability.

1. Chemical context

Cobalt phosphides have previously been examined in the context of binary phase relations and thermodynamics (Okamoto & Massalski, 1990; Schlesinger, 2002) and have gained attention for their unique conductive properties (Prins & Bussell, 2012; Popczun et al., 2014; Pan et al., 2016; Pramanik et al., 2017), magnetic properties (Fujii et al., 1988; Jeitschko et al., 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989), and ability to store lanthanide cations (Jeitschko et al., 1978). Cobalt phosphides also serve as structural analogs to iron-rich phosphides and sulfides in planetary core-forming alloys. Previous studies of CoP and Co₂P indicate that their phase relations tend to precede in pressure the stability of isostructural Fe-phosphides and Fe-sulfides (Rundqvist, 1960; Ellner & Mittemeijer, 2001; Dera et al., 2008; Tateno et al., 2019; Rundqvist, 1962; Ono & Kikegawa, 2006; Ono et al. 2008). Hence, understanding the behavior of cobalt phosphides at high pressures provides insight into the ultra-high pressure behavior of iron sulfides and phosphides.

There are few structures reported in the literature for transition-metal phosphides with the composition $M_{12}P_7$. Baurecht *et al.* (1971) first examined $Cr_{12}P_7$ and determined that it adopts a hexagonal lattice with space group $P\overline{6}$, Z = 1.

research communications

Table 1			
Selected structural	parameters for	or Co ₁₂ P ₇ at	48 GPa.

Group	Maximal bond length (Å)	minimal bond length (Å)	Polyhedron volume ($Å^3$)	Distortion index
CoP ₄ (Co0–P4, –P5, –P6)	2.102 (2)	2.063 (2)	4.5433	0.00656
CoP_5 (Co1-P4, -P5)	2.220 (4)	2.147 (4)	8.1257	0.01085
CoP_5 (Co2-P4, -P5, -P6)	2.317 (2)	2.197 (4)	9.0766	0.01432
CoP ₅ (Co3–P4, –P5)	2.219 (3)	2.194 (3)	8.3239	0.00514

The structure consists of columns of alternating tetrahedral and pyramidal polyhedra and columns of stacked triangularprismatic polyhedra extending along the *c*-axis direction. Chromium atoms occupy half of all possible tetrahedral and pyramidal sites while the triangular-prismatic sites are empty (Baurecht *et al.*, 1971). The polyhedra in the unit cell can be described as $Cr_9^P Cr_3^T$ [] $_2^{Pr}P_7$ (P = pyramidal, T = tetrahedral, Pr = trigonal-prismatic, [] = empty site) (Maaref *et al.*, 1981). Coupled disordering of two half-atoms of the corresponding metal with two half-atoms of phosphorus within the tetrahedral and pyramidal sites has been observed in this structure for compounds Th_7S_{12} , $V_{12}P_7$, and $Cr_{12}P_7$, increasing the symmetry to the $P6_3/m$ space group (Zachariasen, 1949; Olofsson & Ganglberger 1970; Chun & Carpenter, 1979).

At ambient conditions the $M_{12}P_7$ composition is not observed in the binary systems with M = Co, Ni, Fe. Dhahri (1996) concluded that $Co_{12}P_7$, $Ni_{12}P_7$ and $Fe_{12}P_7$ do not occur in the $Cr_{12}P_7$ structure type at ambient conditions because, unlike Cr and V, the elements Co, Ni and Fe do not preferentially occupy pyramidal sites. In support of this conclusion, the $Zn_2Fe_{12}P_7$ structure type ($P\overline{6}$, Z = 1) with many structural similarities to the $Cr_{12}P_7$ structure type, has been observed in $Ln_2M_{12}P_7$ (Ln = rare-earth element; M = Co, Ni, Fe) compounds where the pyramidal-to-tetrahedral site ratio is 1:3 (Jeitschko *et al.*, 1978; Jeitschko & Jaberg, 1980; Reehuis & Jeitschko, 1989). Ordering is present in the Co-, Fe-, Ni-rich $Zn_2Fe_{12}P_7$ isomorphs (Jeitschko *et al.*, 1984). No other struc-

Figure 1

Crystal structure of $Co_{12}P_7$ based on the 48 GPa data set with atoms of the asymmetric unit labeled. CoP_4 tetrahedra are shaded in cyan and CoP_5 square pyramids are shaded in violet.

ture types for the composition $M_{12}P_7$ (M = Co, Ni, Fe) have been reported so far.

The effect of pressure and temperature on stabilizing Co in both the tetrahedral and pyramidal sites and ordering of Co and P in the $Cr_{12}P_7$ -type structure has not been examined previously. In the current study, we report the synthesis of a $Co_{12}P_7$ phase at 27 GPa and 1750 K, and at 48 GPa and 1790 K; both phases are isostructural and crystallize in space group $P\overline{6}$. Structure refinements revealed that Co and P sites are ordered in the high P-T structure and Co atoms occupy tetrahedral and pyramidal coordinations. Using single-crystal diffraction techniques, we report refined atomic coordinate sites of $Co_{12}P_7$ at 48 GPa and 15 GPa.

2. Structural commentary

Refinement of the structure confirms that Co_{12}P_7 assumes the ordered Cr_{12}P_7 structure type (Baurecht *et al.*, 1971; Chun & Carpenter, 1979). Two of the Co sites (Co0, Co1) occupy Wyckoff position 3 *j* (point group symmetry *m.*), the other two Co sites (Co2, Co3) Wyckoff position 3 *k* (*m.*.), one P site (P5) Wyckoff position 3 *j*, one P site (P4) Wyckoff position 3 *k*, and one P site (P6) Wyckoff position 1 *a* ($\overline{6}$.). The Co sites occupy tetrahedral (cyan) and pyramidal (violet) sites as imaged in Fig. 1. Chains of edge-sharing CoP₅ square pyramids and chains of corner-sharing CoP₄ tetrahedra build up the framework with trigonal–prismatic channels running parallel to the *c* axis.

Ranges of interatomic Co–P distances and polyhedral volumes are provided in Table 1 and Fig. 2 with CoP₄ tetrahedra represented by a cyan polyhedron and CoP₅ pyramids represented by violet polyhedra. CoO atoms occupy a distorted tetrahedral site with one P atom at a short distance, two at

Co-P polyhedra as observed in the $Co_{12}P_7$ structure (48 GPa data set) showing varying degrees of volume and distortion, quantified in Table 1. CoP_4 tetrahedra are shaded in cyan and CoP_5 square pyramids are shaded in violet. Displacement ellipsoids are drawn at the 50% probability level.

Table 2Experimental details.

	48 GPa	15 GPa
Crystal data		
Chemical formula	$Co_{12}P_7$	$Co_{12}P_7$
М.	923.95	923.95
Crystal system, space group	Hexagonal, $P\overline{6}$	Hexagonal, $P\overline{6}$
Temperature (K)	293	293
a, c(Å)	7.9700 (14), 3.2034 (4)	8.253 (5), 3.2902 (18)
$V(Å^3)$	176.22 (7)	194.1 (3)
Z	1	1
Radiation type	Synchrotron, $\lambda = 0.29521$ Å	Synchrotron, $\lambda = 0.3344$ Å
$\mu (\mathrm{mm}^{-1})$	2.47	3.17
Crystal size (mm)	$0.01 \times 0.01 \times 0.01$	$0.01\times0.01\times0.01$
Data collection		
Diffractometer	13IDD @ APS	13BMD @ APS
Absorption correction	Multi-scan (CrysAlis PRO; Rigaku OD, 2018)	Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T_{\min}, T_{\max}	0.789, 1.000	0.546, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	336, 292, 279	592, 321, 253
R _{int}	0.006	0.055
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.874	0.762
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.096, 1.12	0.053, 0.105, 1.11
No. of reflections	292	321
No. of parameters	32	32
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	2.35, -1.81	1.70, -1.74
Absolute structure	Flack x determined using 75 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 78 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.42 (6)	0.4 (2)

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

intermediate distances and one at a long distance (Table 1, Fig. 2). Co1 and Co2 atoms occupy square pyramids with two intermediate and two long interatomic distances at the base. Co3 atoms occupy a less distorted square pyramid with two elongated and two truncated bonds at the base (Fig. 2). Interatomic distances at 48 GPa range from 2.063 (2)–2.102 (2) Å in the tetrahedral polyhedra, 2.147 (4)–2.220 (4) Å for Co1-P polyhedra, 2.197 (4)–2.317 (2) Å for Co2-P polyhedra and 2.194 (3)–2.219 (3) Å for Co3-P polyhedra (Table 1). These interatomic distances are comparable to those observed in Co₂P and CoP (Rundqvist 1960, 1962).

A grain of Co_{12}P_7 was decompressed to ambient conditions where 44 total reflections were identified in reciprocal space and indexed to a unit cell of a = 8.47 (1) Å, c = 3.37 (1) Å. These unit-cell parameters are in agreement with the pressure-volume trend observed, but peak broadening and loss of reflections at high angles may reflect the onset of phase instability on decompression.

3. Synthesis and crystallization

The synthesis of $Co_{12}P_7$ was performed at high pressures and temperatures in a laser-heated diamond anvil cell (LHDAC). Two samples were loaded for this study in which $Co_{12}P_7$ was synthesized at 26.9 (8) GPa and 1740 (110) K and 48.2 (5) GPa and 1790 (200) K, respectively. Pressure was generated in BX-90-type (70° angular opening) diamond anvil cells (DACs) with 300 µm culet, Boehler–Almax type diamonds and seats. Co–P samples and a ruby sphere for pressure calibration were loaded into a sample chamber drilled from a rhenium gasket. The chamber was subsequently filled with compressed neon gas (Rivers *et al.*, 2008). Pressure was determined using the ruby fluorescence scale and the Ne equation of state (Mao & Bell, 1976; Fei *et al.*, 2007).

Samples were heated from both sides with 100W Yb-doped fiber lasers at beamline 13-ID-D (GeoSoilEnviroCARS) of the Advanced Photon Source (APS), Argonne National Laboratory. Heating cycles typically lasted ~15 minutes at target temperatures prior to quench. The lasers were shaped with ~15 μ m flat tops and temperature was measured spectroradiometrically from a 6 μ m central region of the laser heated spot using a gray body approximation (Heinz & Jeanloz, 1987). Axial temperature gradients through the sample were accounted for by applying a 3% correction on temperature measurements (Campbell *et al.*, 2007, 2009).

Upon quench from high temperatures, high-pressure samples consisted of agglomerates of $Co_{12}P_7$ and *Pnma* Co_2P (Rundqvist, 1960) crystals of variable grain sizes up to ~5 µm in diameter. Grains of target phases were identified in reciprocal space and sorted out from the scattering contribution of other grains, neon and diamond. Diffraction data were processed using Dioptas (Prescher & Prakapenka, 2015) and *CrysAlis Pro* (Rigaku OD, 2018). Decompression data were collected for both samples in two experimental stations; here we report two selected refinements of the $Co_{12}P_7$ structure at 48.2 (5) GPa and 15.4 (2) GPa.

4. Refinement

Crystal data, data collection and structure refinement details at 48 GPa and 15 GPa are summarized in Table 2.

Monochromatic X-ray diffraction measurements took place at beamlines 13-ID-D (2 μ m x 3 μ m beam, $\lambda = 0.2952$ Å) and 13-BM-D (5 μ m × 8 μ m beam, $\lambda = 0.3344$ Å) at APS (Table 2). Diffraction measurements were collected at synthesis pressures and upon decompression. At target pressure steps, 10 x 10 μ m still image maps were collected in 2 μ m steps around the heated region. At selected map locations exhibiting the largest crystallites, rotation images were collected spanning $\pm 30^{\circ}$ at a rate of 1s per 0.5° step.

Grains of Co₁₂P₇ identified in reciprocal space were indexed to a primitive hexagonal lattice. Analysis of systematic absences indicated space group $P\overline{6}$ with Z = 1. Two grains from distinct loadings and measured at different beamlines were selected for structural refinements as they showed the largest number of observed reflections and good statistical parameters (Table 2). Structure factors measured in microdiffraction in the LHDAC show some well-known limitations, such as limited resolution and redundancy, reflections overlapped by parasitic scattering, diamond diffraction (Loveday et al., 1990) and, more notably, variable volume of illuminated crystal during rotation. As could be expected, we identified eight and five outlier reflections in the refinements for the 48 GPa and 15 GPa data sets, respectively, and omitted them in the final calculations. Based on the ratio 'observed reflections/refined parameters' and statistical tests (Hamilton, 1965), we concluded that the P sites should be refined with isotropic displacement parameters (U_{iso}) whereas the Co sites could be refined with anisotropic displacement parameters. After convergence, site occupancies of Co atoms and P atoms were released in alternate runs. Within uncertainty (< 1.2% for Co and < 1.3% for P), all sites are fully occupied.

Funding information

Portions of this work were performed at GeoSoilEnviroCARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415) and Department of Energy – GeoSciences (DE-FG02–94ER14466). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02–06CH11357. This material is based upon work supported by a National Science Foundation Graduate Research Fellowship to CZ. This work was also supported by the National Science Foundation by grant EAR – 1651017 to AC.

References

Baurecht, H. E., Boller, H. & Nowotny, H. (1971). Monats. Chem. 102, 373–384.

- Campbell, A. J., Danielson, L., Righter, K., Seagle, C. T., Wang, Y. & Prakapenka, V. B. (2009). *Earth Planet. Sci. Lett.* **286**, 556–564.
- Campbell, A. J., Seagle, C. T., Heinz, D. L., Shen, G. & Prakapenka, V. B. (2007). *Phys. Earth Planet. Inter.* 162, 119–128.
- Chun, H. K. & Carpenter, G. B. (1979). Acta Cryst. B35, 30-33.
- Dera, P., Lavina, B., Borkowski, L. A., Prakapenka, V. B., Sutton, S. R., Rivers, M. L., Downs, R. T., Boctor, N. Z. & Prewitt, C. T. (2008). Geophys. Res. Lett. 35, 110301.
- Dhahri, E. (1996). J. Phys. Condens. Matter, 8, 4351-4360.
- Ellner, M. & Mittemeijer, E. J. (2001). Z. Anorg. Allg. Chem. 627, 2257–2260.
- Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G. & Prakapenka, V. (2007). *PNAS*, **104**, 9182–9186.
- Fujii, S., Ishida, S. & Asano, S. (1988). J. Phys. F: Met. Phys. 18, 971– 980.
- Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
- Heinz, D. L. & Jeanloz, R. (1987). High Press. Res. Miner. Phys. 2, 113–127.
- Jeitschko, W., Braun, D. J., Ashcraft, R. H. & Marchand, R. (1978). J. Solid State Chem. 25, 309–313.
- Jeitschko, W. & Jaberg, B. (1980). Z. Anorg. Allg. Chem. 467, 95– 104.
- Jeitschko, W., Meisen, U. & Scholz, U. D. (1984). *J. Solid State Chem.* **55**, 331–336.
- Loveday, J. S., McMahon, M. I. & Nelmes, R. J. (1990). J. Appl. Cryst. 23, 392–396.
- Maaref, S., Madar, R., Chaudouet, P., Senateur, J. P. & Fruchart, R. (1981). J. Solid State Chem. 40, 131–135.
- Mao, H. K. & Bell, P. M. (1976). Science, 191, 851-852.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Okamoto, H. & Massalski, T. B. (1990). Editors. *Binary Alloy Phase Diagrams*. OH, USA: ASM International.
- Olofsson, O. & Ganglberger, E. (1970). Acta Chem. Scand. 24, 2389–2396.
- Ono, S. & Kikegawa, T. (2006). Am. Mineral. 91, 1941–1944.
- Ono, S., Oganov, A. R., Brodholt, J. P., Vočadlo, L., Wood, I. G., Lyakhov, A., Glass, C. W., Côté, A. S. & Price, G. D. (2008). *Earth Planet. Sci. Lett.* 272, 481–487.
- Pan, Y., Lin, Y., Chen, Y., Liu, Y. & Liu, C. (2016). J. Mater. Chem. A, 4, 4745–4754.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S. & Schaak, R. E. (2014). Angew. Chem. 126, 5531–5534.
- Pramanik, M., Tominaka, S., Wang, Z. L., Takei, T. & Yamauchi, Y. (2017). Angew. Chem. 129, 13693–13697.
- Prescher, C. & Prakapenka, V. B. (2015). *High. Press. Res.* 35, 223–230.
- Prins, R. & Bussell, M. E. (2012). Catal. Lett. 142, 1413-1436.
- Reehuis, M. & Jeitschko, W. (1989). J. Phys. Chem. Solids, 50, 563– 569.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Rivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M. & Jacobsen, S. D. (2008). *High Pressure Res.* 28, 273–292.
- Rundqvist, S. (1960). Acta Chem. Scand. 14, 1961-1979.
- Rundqvist, S. (1962). Acta Chem. Scand. 16, 1-19.
- Schlesinger, M. E. (2002). Chem. Rev. 102, 4267-4302.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S. & Hirao, N. (2019). *Geophys. Res. Lett.* **46**, 11944–11949.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zachariasen, W. H. (1949). Acta Cryst. 2, 288-291.

Acta Cryst. (2020). E76, 1665-1668 [https://doi.org/10.1107/S2056989020012657]

The novel high-pressure/high-temperature compound Co12P7 determined from synchrotron data

Claire Zurkowski, Barbara Lavina, Stella Chariton, Sergey Tkachev, Vitali Prakapenka and **Andrew Campbell**

Computing details

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Dodecacobalt heptaphosphide (Co12P7_at_48GPa)

Crystal data	
$Co_{12}P_7$ $M_r = 923.95$ Hexagonal, $P\overline{6}$ $a = 7.9700 (14) \text{ Å}$ $c = 3.2034 (4) \text{ Å}$ $V = 176.22 (7) \text{ Å}^3$ $Z = 1$ $F(000) = 429$	$D_x = 8.706 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.29521 \text{ Å}$ Cell parameters from 292 reflections $\theta = 2.3-14.9^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 293 K Irregular, black $0.01 \times 0.01 \times 0.01 \text{ mm}$
Data collection	
13IDD @ APS diffractometer Radiation source: synchrotron ω scans Absorption correction: multi-scan (<i>CrysAlisPro</i> ; Rigaku OD, 2018) $T_{min} = 0.789, T_{max} = 1.000$ 336 measured reflections	292 independent reflections 279 reflections with $I > 2\sigma(I)$ $R_{int} = 0.006$ $\theta_{max} = 15.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -6 \rightarrow 8$ $k = -10 \rightarrow 9$ $l = -5 \rightarrow 5$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.12 292 reflections 32 parameters 0 restraints	$\begin{split} &w = 1/[\sigma^2(F_o{}^2) + (0.0802P)^2] \\ &where P = (F_o{}^2 + 2F_c{}^2)/3 \\ &(\Delta/\sigma)_{max} < 0.001 \\ &\Delta\rho_{max} = 2.35 \text{ e } \text{Å}{}^{-3} \\ &\Delta\rho_{min} = -1.81 \text{ e } \text{Å}{}^{-3} \\ &\text{Absolute structure: Flack x determined using 75} \\ &\text{quotients } [(I^+){-}(I^-)]/[(I^+){+}(I^-)] \text{ (Parsons et al., 2013)} \\ &\text{Absolute structure parameter: 0.42 (6)} \end{split}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co0	0.0185 (3)	0.2676 (3)	0.0000	0.0047 (4)	
Col	0.1313 (3)	0.6239 (3)	0.0000	0.0047 (4)	
Co2	0.2161 (3)	0.2037 (4)	0.5000	0.0071 (4)	
Co3	0.5185 (3)	0.1341 (3)	0.5000	0.0051 (4)	
P4	0.1693 (5)	0.4529 (5)	0.5000	0.0062 (6)*	
Р5	0.4454 (5)	0.2795 (6)	0.0000	0.0050 (6)*	
P6	0.0000	0.0000	0.0000	0.0069 (9)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Co0	0.0044 (8)	0.0030 (8)	0.0062 (5)	0.0015 (7)	0.000	0.000	
Col	0.0038 (8)	0.0024 (7)	0.0071 (8)	0.0009 (6)	0.000	0.000	
Co2	0.0081 (8)	0.0069 (9)	0.0079 (6)	0.0049 (7)	0.000	0.000	
Co3	0.0038 (8)	0.0028 (8)	0.0069 (7)	0.0005 (6)	0.000	0.000	

Geometric parameters (Å, °)

2.0629 (18)	Co2—Co3	2.730 (2)
2.091 (4)	Co3—P5 ^{xi}	2.194 (3)
2.102 (2)	Co3—P5 ^{xii}	2.194 (3)
2.102 (2)	Co3—P4 ^{viii}	2.197 (5)
2.458 (2)	Co3—P5 ^{vii}	2.218 (3)
2.458 (2)	Co3—P5	2.219 (3)
2.4710 (19)	Co3—Co0 ^{viii}	2.458 (2)
2.4710 (19)	Co3—Co0 ^{ix}	2.458 (2)
2.497 (2)	Co3—Co3 ^{xii}	2.474 (3)
2.497 (2)	Co3—Co3 ^{xiii}	2.475 (3)
2.514 (3)	Co3—Co1 ^{viii}	2.578 (2)
2.515 (2)	Co3—Co1 ^{ix}	2.578 (2)
2.147 (4)	P4—Co0 ^{vii}	2.102 (2)
2.180 (3)	P4—Co1 ^x	2.180 (3)
2.180 (3)	P4—Co1 ^{iv}	2.180 (3)
2.220 (3)	P4—Co3 ⁱ	2.197 (5)
2.220 (3)	P4—Co1 ^{vii}	2.220 (3)
2.515 (2)	P4—P4 ^{iv}	2.674 (6)
2.546 (3)	P4—P4 ^v	2.674 (6)
2.546 (3)	P5—Co0 ^{viii}	2.091 (4)
2.578 (2)	P5—Co1 ^{iv}	2.147 (4)
	2.0629 (18) 2.091 (4) 2.102 (2) 2.102 (2) 2.458 (2) 2.458 (2) 2.4710 (19) 2.4710 (19) 2.497 (2) 2.497 (2) 2.514 (3) 2.515 (2) 2.147 (4) 2.180 (3) 2.220 (3) 2.220 (3) 2.515 (2) 2.546 (3) 2.578 (2)	$2.0629 (18)$ $Co2-Co3$ $2.091 (4)$ $Co3-P5^{xi}$ $2.102 (2)$ $Co3-P5^{xii}$ $2.102 (2)$ $Co3-P5^{xii}$ $2.458 (2)$ $Co3-P5^{vii}$ $2.458 (2)$ $Co3-P5^{vii}$ $2.4710 (19)$ $Co3-Co0^{viii}$ $2.4710 (19)$ $Co3-Co3^{xii}$ $2.497 (2)$ $Co3-Co3^{xiii}$ $2.497 (2)$ $Co3-Co3^{xiii}$ $2.514 (3)$ $Co3-Co1^{viii}$ $2.515 (2)$ $Co3-Co1^{viii}$ $2.147 (4)$ $P4-Co1^{vii}$ $2.180 (3)$ $P4-Co1^{x}$ $2.180 (3)$ $P4-Co1^{vii}$ $2.220 (3)$ $P4-Co1^{vii}$ $2.515 (2)$ $P4-P4^{iv}$ $2.546 (3)$ $P5-Co0^{viii}$

	2578(2)	$\mathbf{D}5 = \mathbf{C}_{\mathbf{a}}2\mathbf{x}$	2104(2)
$C_{01} = C_{03}$	2.578(2)	15 - Co3	2.194(3)
$C_{01} = C_{02}$	2.039(2)	15 - 0.05	2.194(3)
C_{02} F_{4}	2.197(4)	F_{3} C_{2}	2.218(3)
C_{02} P3	2.275(3)	$P_{3} = C_{0}^{2}$	2.275(3)
C02—P5	2.275(5)		2.0629 (18)
$C_0 2 = P_0$	2.31/4(17)	$P_{0} = C_{0} Q_{M}$	2.0629 (18)
$C_0 2 - P_0^{\text{vir}}$	2.31/4 (17)	P6	2.31/4 (17)
	2.4/10 (19)	P6-Co2***	2.3174 (17)
Co2—Co0 ^{vm}	2.497 (2)	P6—Co2 ⁿ	2.3174 (17)
Co2—Co0 ^{IX}	2.497 (2)	P6—Co2 ^m	2.3175 (17)
Co2—Co1 ^x	2.639 (2)	$P6-Co2^{1}$	2.3175 (17)
Co2—Co1 ^w	2.639 (2)		
P6Co0P5 ⁱ	96.84 (13)	Р4—Со2—Со3	138.57 (14)
P6—Co0—P4	116.54 (11)	Р5—Со2—Со3	51.66 (8)
P5 ⁱ Co0P4	114.33 (11)	P5 ^{vii} —Co2—Co3	51.66 (8)
P6—Co0—P4 ⁱⁱ	116.54 (11)	P6—Co2—Co3	106.26 (8)
$P5^{i}$ —Co0—P4 ⁱⁱ	114.33 (11)	P6 ^{vii} —Co2—Co3	106.26 (8)
$P4$ — C_00 — $P4^{ii}$	99.31 (14)	$Co0^{vii}$ — $Co2$ — $Co3$	139.47 (4)
P6—Co0—Co3 ⁱⁱⁱ	126 74 (6)	$C_00-C_02-C_03$	139 47 (4)
P5 ⁱ -Co0-Co3 ⁱⁱⁱ	57.69 (9)	$Co0^{viii}$ — $Co2$ — $Co3$	55.89 (7)
P4— $Co0$ — $Co3$ ⁱⁱⁱ	116.61 (12)	$Co0^{ix}$ — $Co2$ — $Co3$	55.89 (7)
$P4^{ii} - C_0 0 - C_0 3^{iii}$	56.96 (11)	Col^{x} $Co2$ $Co3$	96.63 (8)
$P6-Co0-Co3^{i}$	126 74 (6)	$Co1^{iv}$ — $Co2$ — $Co3$	96.63 (8)
$P5^{i}$ Co0 Co3 ⁱ	57 69 (9)	$P5^{xi}$ $Co3$ $P5^{xii}$	93 78 (15)
$P4-Co0-Co3^{i}$	56 96 (11)	$P5^{xi}$ $Co3$ $P4^{viii}$	107 43 (14)
$P4^{ii}$ Co0 Co3 ⁱ	116 61 (12)	$P5^{xii}$ C_03 $P4^{viii}$	107.43(14) 107.43(14)
$C_{03}^{iii} - C_{00} - C_{03}^{ii}$	81 31 (9)	$P_{2}^{xi} = C_{0}^{2} = P_{2}^{yi}$	77 38 (14)
$P_{0} = C_{0} = C_{0} = C_{0}^{2}$	60.60 (6)	$P_{2} = C_{2} = C_{2} = C_{2}$	146.60 (16)
$P_{0} = C_{00} = C_{02}^{ii}$	120.60(8)	$P_{13} = C_{03} = P_{13}$	140.09(10) 105.86(14)
$P_{1} = C_{0} = C_{0$	129.00(8) 116.07(12)	14 - C03 - 15	105.80(14)
P4 = C00 = C02	110.07(13) 56.72(11)	$r_{5} - c_{05} - r_{5}$	140.09(10)
$\Gamma 4^{} C 00 - C 02^{}$	30.73(11)	$P_{3}^{\text{m}} = C_{03}^{\text{m}} = P_{3}^{\text{m}}$	105.86(14)
	98.20 (5)	P4 ^{····} —C03—P3	105.86(14)
$C_{03} = C_{00} = C_{02}$	1/0.85 (9)	$P5^{**}$ —C03—P5	92.44 (15)
P6-C00-C02	60.69 (6) 1 2 0.60 (8)	$P5^{$	160.35 (15)
P5 - C00 - C02	129.60 (8)	$P5^{\text{AH}} = C03 = C00^{\text{AH}}$	89.46 (9)
P4 - C0 - C02	56./5 (11)		55.51 (7)
P4 ⁿ —Co0—Co2	116.07 (13)	$P5^{vn}$ —Co3—Co0 ^{vin}	109.66 (12)
$Co3^{\text{m}}$ — $Co0$ — $Co2$	1/0.85 (9)		52.82 (11)
	98.20 (5)	$P5^{xi}$ —Co3—Co0 ^{ix}	89.46 (9)
$Co2^n$ — $Co0$ — $Co2$	80.81 (8)	$P5^{xn}$ —Co3—Co 0^{ix}	160.35 (15)
P6—Co0—Co2 ^m	60.19 (6)	$P4^{vm}$ —Co3—Co0 ^{ix}	53.31 (7)
P5 ¹ —Co0—Co2 ¹¹¹	58.60 (11)	$P5^{vii}$ —Co3—Co0 ^{ix}	52.82 (11)
P4—Co0—Co2 ^m	169.97 (10)	P5—Co3—Co0 ^{1x}	109.66 (12)
P4 ⁿ —Co0—Co2 ^m	90.40 (8)	$Co0^{vin}$ — $Co3$ — $Co0^{ix}$	81.32 (9)
$Co3^{m}$ — $Co0$ — $Co2^{m}$	66.85 (7)	$P5^{xi}$ —Co3—Co3 ^{xii}	56.36 (10)
Co3 ¹ —Co0—Co2 ⁱⁱⁱ	116.27 (10)	P5 ^{xii} —Co3—Co3 ^{xii}	56.36 (10)
Co2 ⁿ —Co0—Co2 ⁱⁱⁱ	71.44 (10)	P4 ^{vin} —Co3—Co3 ^{xii}	151.84 (16)

Co2—Co0—Co2 ⁱⁱⁱ	120.88 (10)	P5 ^{vii} —Co3—Co3 ^{xii}	93.38 (11)
P6Co0Co2 ⁱ	60.19 (6)	P5—Co3—Co3 ^{xii}	93.38 (11)
P5 ⁱ —Co0—Co2 ⁱ	58.60 (11)	Co0 ^{viii} —Co3—Co3 ^{xii}	138.36 (5)
P4—Co0—Co2 ⁱ	90.40 (8)	Co0 ^{ix} —Co3—Co3 ^{xii}	138.36 (5)
P4 ⁱⁱ —Co0—Co2 ⁱ	169.97 (10)	P5 ^{xi} —Co3—Co3 ^{xiii}	93.99 (11)
Co3 ⁱⁱⁱ —Co0—Co2 ⁱ	116.27 (10)	P5 ^{xii} —Co3—Co3 ^{xiii}	93.99 (11)
Co3 ⁱ Co0Co2 ⁱ	66.85 (7)	P4 ^{viii} —Co3—Co3 ^{xiii}	148.16 (16)
Co2 ⁱⁱ —Co0—Co2 ⁱ	120.88 (10)	P5 ^{vii} —Co3—Co3 ^{xiii}	55.42 (11)
Co2—Co0—Co2 ⁱ	71.44 (10)	P5—Co3—Co3 ^{xiii}	55.42 (11)
Co2 ⁱⁱⁱ —Co0—Co2 ⁱ	79.79 (9)	Co0 ^{viii} —Co3—Co3 ^{xiii}	105.12 (10)
P6Co0Co1	165.52 (9)	Co0 ^{ix} —Co3—Co3 ^{xiii}	105.12 (10)
P5 ⁱ —Co0—Co1	97.64 (13)	Co3 ^{xii} —Co3—Co3 ^{xiii}	60.0
P4Co0Co1	56.65 (9)	P5 ^{xi} —Co3—Co1 ^{viii}	107.55 (12)
P4 ⁱⁱ —Co0—Co1	56.65 (9)	P5 ^{xii} —Co3—Co1 ^{viii}	52.72 (10)
Co3 ⁱⁱⁱ —Co0—Co1	62.44 (6)	P4 ^{viii} —Co3—Co1 ^{viii}	54.71 (8)
Co3 ⁱ —Co0—Co1	62.44 (6)	P5 ^{vii} —Co3—Co1 ^{viii}	160.55 (15)
Co2 ⁱⁱ —Co0—Co1	109.16 (7)	P5—Co3—Co1 ^{viii}	92.62 (8)
Co2—Co0—Co1	109.16 (7)	Co0 ^{viii} —Co3—Co1 ^{viii}	59.83 (7)
Co2 ⁱⁱⁱ —Co0—Co1	128.86 (7)	Co0 ^{ix} —Co3—Co1 ^{viii}	107.89 (10)
Co2 ⁱ —Co0—Co1	128.86 (7)	Co3 ^{xii} —Co3—Co1 ^{viii}	105.04 (11)
P6—Co0—Co1 ^{iv}	104.70 (9)	Co3 ^{xiii} —Co3—Co1 ^{viii}	140.36 (4)
P5 ⁱ —Co0—Co1 ^{iv}	158.46 (14)	P5 ^{xi} —Co3—Co1 ^{ix}	52.72 (10)
P4Co0Co1 ^{iv}	55.49 (9)	P5 ^{xii} —Co3—Co1 ^{ix}	107.55 (12)
P4 ⁱⁱ —Co0—Co1 ^{iv}	55.49 (9)	P4 ^{viii} —Co3—Co1 ^{ix}	54.71 (8)
Co3 ⁱⁱⁱ —Co0—Co1 ^{iv}	107.42 (7)	P5 ^{vii} —Co3—Co1 ^{ix}	92.62 (8)
Co3 ⁱ —Co0—Co1 ^{iv}	107.42 (7)	P5—Co3—Co1 ^{ix}	160.55 (15)
Co2 ⁱⁱ —Co0—Co1 ^{iv}	63.90 (7)	Co0 ^{viii} —Co3—Co1 ^{ix}	107.89 (10)
Co2—Co0—Co1 ^{iv}	63.90 (7)	Co0 ^{ix} —Co3—Co1 ^{ix}	59.83 (7)
Co2 ⁱⁱⁱ —Co0—Co1 ^{iv}	133.74 (7)	Co3 ^{xii} —Co3—Co1 ^{ix}	105.04 (11)
Co2 ⁱ —Co0—Co1 ^{iv}	133.74 (7)	Co3 ^{xiii} —Co3—Co1 ^{ix}	140.36 (4)
Co1—Co0—Co1 ^{iv}	60.82 (8)	Co1 ^{viii} —Co3—Co1 ^{ix}	76.82 (8)
$P5^v$ —Co1—P4 v	108.68 (12)	P5 ^{xi} —Co3—Co2	130.38 (8)
$P5^{v}$ —Co1—P4 vi	108.68 (12)	P5 ^{xii} —Co3—Co2	130.38 (8)
$P4^{v}$ —Co1—P 4^{vi}	94.55 (18)	P4 ^{viii} —Co3—Co2	82.57 (13)
P5 ^v —Co1—P4 ⁱⁱ	108.29 (12)	P5 ^{vii} —Co3—Co2	53.49 (10)
P4 ^v —Co1—P4 ⁱⁱ	143.01 (13)	P5—Co3—Co2	53.49 (10)
$P4^{vi}$ —Co1—P 4^{ii}	74.85 (14)	Co0 ^{viii} —Co3—Co2	57.26 (7)
P5 ^v —Co1—P4	108.29 (12)	Co0 ^{ix} —Co3—Co2	57.26 (7)
P4 ^v —Co1—P4	74.85 (14)	Co3 ^{xii} —Co3—Co2	125.59 (11)
P4 ^{vi} —Co1—P4	143.01 (13)	Co3 ^{xiii} —Co3—Co2	65.59 (11)
P4 ⁱⁱ —Co1—P4	92.36 (16)	Co1 ^{viii} —Co3—Co2	116.75 (8)
P5 ^v —Co1—Co0	89.08 (13)	Co1 ^{ix} —Co3—Co2	116.75 (8)
P4 ^v —Co1—Co0	127.10 (9)	Co0—P4—Co0 ^{vii}	99.31 (14)
P4 ^{vi} —Co1—Co0	127.10 (9)	Co0—P4—Co1 ^x	144.1 (2)
P4 ⁱⁱ —Co1—Co0	52.26 (8)	Co0 ^{vii} —P4—Co1 ^x	71.92 (7)
P4—Co1—Co0	52.26 (8)	Co0-P4-Co1 ^{iv}	71.92 (7)
P5 ^v —Co1—Co0 ^v	91.74 (12)	Co0 ^{vii} —P4—Co1 ^{iv}	144.1 (2)
$P4^{v}$ —Co1—Co0 ^v	52.58 (9)	Co1 ^x —P4—Co1 ^{iv}	94.55 (17)

P4 ^{vi} —Co1—Co0 ^v	52.58 (9)	Co0—P4—Co2	70.15 (11)
P4 ⁱⁱ Co1Co0 ^v	127.40 (9)	Co0 ^{vii} —P4—Co2	70.15 (11)
P4Co1Co0 ^v	127.40 (9)	Co1 ^x —P4—Co2	74.16 (12)
Co0—Co1—Co0 ^v	179.18 (8)	Co1 ^{iv} —P4—Co2	74.16 (12)
P5 ^v —Co1—Co1 ^v	151.31 (16)	Co0—P4—Co3 ⁱ	69.73 (11)
P4 ^v —Co1—Co1 ^v	55.38 (11)	$Co0^{vii}$ —P4— $Co3^i$	69.73 (11)
P4 ^{vi} —Co1—Co1 ^v	55.38 (11)	Co1 ^x —P4—Co3 ⁱ	132.68 (9)
P4 ⁱⁱ —Co1—Co1 ^v	91.21 (10)	$Co1^{iv}$ —P4—Co3 ⁱ	132.68 (9)
P4—Co1—Co1 ^v	91.21 (10)	Co2—P4—Co3 ⁱ	116.01 (16)
Co0—Co1—Co1 ^v	119.61 (8)	Co0—P4—Co1	71.09 (7)
Co0 ^v —Co1—Co1 ^v	59.56 (10)	Co0 ^{vii} —P4—Co1	140.9 (2)
P5 ^v —Co1—Co1 ^{iv}	148.69 (16)	Co1 ^x —P4—Co1	136.84 (16)
P4 ^v —Co1—Co1 ^{iv}	92.13 (10)	Co1 ^{iv} —P4—Co1	70.69 (9)
P4 ^{vi} —Co1—Co1 ^{iv}	92.13 (10)	Co2—P4—Co1	133.80 (8)
P4 ⁱⁱ —Co1—Co1 ^{iv}	53.93 (10)	Co3 ⁱ —P4—Co1	71.42 (12)
P4—Co1—Co1 ^{iv}	53.93 (10)	Co0—P4—Co1 ^{vii}	140.9 (2)
Co0—Co1—Co1 ^{iv}	59.61 (8)	Co0 ^{vii} —P4—Co1 ^{vii}	71.09 (7)
Co0 ^v —Co1—Co1 ^{iv}	119.56 (10)	Co1 ^x —P4—Co1 ^{vii}	70.69 (9)
Co1 ^v —Co1—Co1 ^{iv}	60.0	$Co1^{iv}$ —P4—Co 1^{vii}	136.84 (17)
P5 ^v —Co1—Co3 ⁱⁱⁱ	54.42 (8)	Co2—P4—Co1 ^{vii}	133.80 (8)
P4 ^v —Co1—Co3 ⁱⁱⁱ	163.07 (13)	Co3 ⁱ —P4—Co1 ^{vii}	71.42 (12)
P4 ^{vi} —Co1—Co3 ⁱⁱⁱ	92.51 (9)	Co1—P4—Co1 ^{vii}	92.36 (16)
P4 ⁱⁱ —Co1—Co3 ⁱⁱⁱ	53.87 (11)	Co0—P4—P4 ^{iv}	125.14 (14)
P4—Co1—Co3 ⁱⁱⁱ	107.88 (12)	$Co0^{vii}$ P4 P4	125.14 (14)
Co0—Co1—Co3 ⁱⁱⁱ	57.72 (8)	$Co1^x$ —P4—P4 ^{iv}	53.25 (12)
Co0 ^v —Co1—Co3 ⁱⁱⁱ	122.84 (8)	$Co1^{iv}$ P4 P4	53.25 (12)
Co1 ^v —Co1—Co3 ⁱⁱⁱ	139.67 (4)	Co2—P4—P4 ^{iv}	94.4 (2)
Co1 ^{iv} —Co1—Co3 ⁱⁱⁱ	102.97 (11)	$Co3^{i}$ P4 P4	149.6 (2)
P5 ^v —Co1—Co3 ⁱ	54.42 (8)	Co1—P4—P4 ^{iv}	87.91 (10)
$P4^{v}$ —Co1—Co3 ⁱ	92.51 (9)	$Co1^{vii}$ P4 P4	87.91 (10)
P4 ^{vi} —Co1—Co3 ⁱ	163.07 (13)	Co0—P4—P4 ^v	122.98 (14)
P4 ⁱⁱ —Co1—Co3 ⁱ	107.88 (12)	$Co0^{vii}$ P4 P4	122.98 (14)
P4Co1Co3 ⁱ	53.87 (11)	$Co1^{x}$ $P4$ $P4^{v}$	88.73 (10)
Co0—Co1—Co3 ⁱ	57.72 (8)	$Co1^{iv}$ $P4$ $P4^{v}$	88.73 (10)
Co0 ^v —Co1—Co3 ⁱ	122.84 (8)	Co2—P4—P4 ^v	154.4 (2)
Co1 ^v —Co1—Co3 ⁱ	139.67 (4)	$Co3^{i}$ $P4$ $P4^{v}$	89.6 (2)
Co1 ^{iv} —Co1—Co3 ⁱ	102.97 (11)	Co1—P4—P4 ^v	51.90 (11)
Co3 ⁱⁱⁱ —Co1—Co3 ⁱ	76.82 (8)	$Co1^{vii}$ P4 P4	51.90 (11)
P5 ^v —Co1—Co2 ^v	55.58 (8)	$P4^{iv}$ $P4$ $P4$ $P4^{v}$	60.0
P4 ^v —Co1—Co2 ^v	53.20 (10)	Co0 ^{viii} —P5—Co1 ^{iv}	126.72 (19)
P4 ^{vi} —Co1—Co2 ^v	107.02 (11)	Co0 ^{viii} —P5—Co3 ^{xiii}	132.10 (9)
P4 ⁱⁱ —Co1—Co2 ^v	163.76 (12)	Co1 ^{iv} —P5—Co3 ^{xiii}	72.86 (12)
P4—Co1—Co2 ^v	94.83 (9)	Co0 ^{viii} —P5—Co3 ^{xiv}	132.10 (9)
Co0—Co1—Co2 ^v	123.33 (7)	$Co1^{iv}$ —P5—Co 3^{xiv}	72.86 (12)
Co0 ^v —Co1—Co2 ^v	57.23 (6)	Co3 ^{xiii} —P5—Co3 ^{xiv}	93.78 (15)
Co1 ^v —Co1—Co2 ^v	103.16 (10)	Co0 ^{viii} —P5—Co3 ⁱⁱ	69.48 (13)
Co1 ^{iv} —Co1—Co2 ^v	140.65 (5)	Co1 ^{iv} —P5—Co3 ⁱⁱ	133.45 (8)
Co3 ⁱⁱⁱ —Co1—Co2 ^v	109.96 (9)	Co3 ^{xiii} —P5—Co3 ⁱⁱ	133.08 (18)

Co3 ⁱ —Co1—Co2 ^v	65.62 (7)	Co3 ^{xiv} —P5—Co3 ⁱⁱ	68.22 (10)
P4—Co2—P5	103.71 (12)	Co0 ^{viii} —P5—Co3	69.48 (13)
P4—Co2—P5 ^{vii}	103.71 (12)	Co1 ^{iv} —P5—Co3	133.45 (8)
P5—Co2—P5 ^{vii}	89.59 (15)	Co3 ^{xiii} —P5—Co3	68.22 (10)
P4—Co2—P6	103.35 (9)	Co3 ^{xiv} —P5—Co3	133.08 (18)
P5—Co2—P6	85.20 (8)	Co3 ⁱⁱ —P5—Co3	92.44 (15)
P5 ^{vii} —Co2—P6	152.92 (13)	Co0 ^{viii} —P5—Co2	69.66 (13)
P4—Co2—P6 ^{vii}	103.35 (9)	Co1 ^{iv} —P5—Co2	73.26 (11)
Р5—Со2—Р6 ^{vii}	152.92 (13)	Co3 ^{xiii} —P5—Co2	78.50 (8)
P5 ^{vii} —Co2—P6 ^{vii}	85.20 (8)	Co3 ^{xiv} —P5—Co2	146.03 (19)
P6—Co2—P6 ^{vii}	87.44 (8)	Co3 ⁱⁱ —P5—Co2	139.1 (2)
P4—Co2—Co0 ^{vii}	53.12 (8)	Co3—P5—Co2	74.85 (8)
P5—Co2—Co0 ^{vii}	155.85 (14)	Co0 ^{viii} —P5—Co2 ⁱⁱ	69.66 (13)
P5 ^{vii} —Co2—Co0 ^{vii}	89.95 (7)	Co1 ^{iv} —P5—Co2 ⁱⁱ	73.25 (11)
P6—Co2—Co0 ^{vii}	105.40 (8)	Co3 ^{xiii} —P5—Co2 ⁱⁱ	146.03 (19)
P6 ^{vii} —Co2—Co0 ^{vii}	50.91 (5)	Co3 ^{xiv} —P5—Co2 ⁱⁱ	78.50 (8)
P4—Co2—Co0	53.12 (8)	Co3 ⁱⁱ —P5—Co2 ⁱⁱ	74.85 (8)
P5—Co2—Co0	89.95 (7)	Co3—P5—Co2 ⁱⁱ	139.1 (2)
P5 ^{vii} —Co2—Co0	155.85 (14)	Co2—P5—Co2 ⁱⁱ	89.59 (15)
P6—Co2—Co0	50.91 (5)	Co0 ⁱ —P6—Co0	120.0
P6 ^{vii} —Co2—Co0	105.40 (8)	Co0 ⁱ —P6—Co0 ^{viii}	120.0
Co0 ^{vii} —Co2—Co0	80.81 (8)	Co0—P6—Co0 ^{viii}	120.0
P4—Co2—Co0 ^{viii}	140.08 (4)	$Co0^{i}$ —P6— $Co2^{xv}$	69.24 (6)
P5—Co2—Co0 ^{viii}	51.74 (11)	Co0—P6—Co2 ^{xv}	136.27 (4)
P5 ^{vii} —Co2—Co0 ^{viii}	106.53 (11)	$Co0^{viii}$ —P6— $Co2^{xv}$	68.40 (6)
P6—Co2—Co0 ^{viii}	50.57 (5)	$Co0^{i}$ —P6— $Co2^{viii}$	69.24 (6)
P6 ^{vii} —Co2—Co0 ^{viii}	104.56 (10)	Co0—P6—Co2 ^{viii}	136.27 (4)
Co0 ^{vii} —Co2—Co0 ^{viii}	149.98 (11)	Co0 ^{viii} —P6—Co2 ^{viii}	68.40 (6)
Co0—Co2—Co0 ^{viii}	91.97 (7)	Co2 ^{xv} —P6—Co2 ^{viii}	87.45 (8)
P4Co2Co0 ^{ix}	140.08 (4)	Co0 ⁱ —P6—Co2	136.27 (4)
P5Co2Co0 ^{ix}	106.54 (11)	Co0—P6—Co2	68.40 (6)
P5 ^{vii} —Co2—Co0 ^{ix}	51.74 (11)	Co0 ^{viii} —P6—Co2	69.24 (6)
P6—Co2—Co0 ^{ix}	104.56 (10)	Co2 ^{xv} —P6—Co2	137.63 (3)
P6 ^{vii} —Co2—Co0 ^{ix}	50.57 (5)	Co2 ^{viii} —P6—Co2	77.49 (6)
Co0 ^{vii} —Co2—Co0 ^{ix}	91.97 (7)	Co0 ⁱ —P6—Co2 ⁱⁱ	136.27 (4)
Co0—Co2—Co0 ^{ix}	149.98 (11)	Co0—P6—Co2 ⁱⁱ	68.40 (6)
Co0 ^{viii} —Co2—Co0 ^{ix}	79.79 (9)	Co0 ^{viii} —P6—Co2 ⁱⁱ	69.24 (6)
P4—Co2—Co1 ^x	52.64 (9)	Co2 ^{xv} —P6—Co2 ⁱⁱ	77.49 (6)
P5—Co2—Co1 ^x	103.19 (12)	Co2 ^{viii} —P6—Co2 ⁱⁱ	137.64 (3)
P5 ^{vii} —Co2—Co1 ^x	51.16 (10)	Co2—P6—Co2 ⁱⁱ	87.44 (8)
P6—Co2—Co1 ^x	155.65 (9)	Co0 ⁱ —P6—Co2 ⁱⁱⁱ	68.40 (6)
P6 ^{vii} —Co2—Co1 ^x	94.13 (4)	Co0—P6—Co2 ⁱⁱⁱ	69.24 (6)
Co0 ^{vii} —Co2—Co1 ^x	58.87 (6)	Co0 ^{viii} —P6—Co2 ⁱⁱⁱ	136.27 (4)
Co0—Co2—Co1 ^x	105.65 (9)	Co2 ^{xv} —P6—Co2 ⁱⁱⁱ	77.49 (6)
Co0 ^{viii} —Co2—Co1 ^x	149.97 (10)	Co2 ^{viii} —P6—Co2 ⁱⁱⁱ	137.63 (3)
Co0 ^{ix} —Co2—Co1 ^x	95.00 (6)	Co2—P6—Co2 ⁱⁱⁱ	137.63 (3)
P4—Co2—Co1 ^{iv}	52.64 (9)	Co2 ⁱⁱ —P6—Co2 ⁱⁱⁱ	77.49 (6)
P5—Co2—Co1 ^{iv}	51.16 (10)	Co0 ⁱ —P6—Co2 ⁱ	68.40 (6)

P5 ^{vii} —Co2—Co1 ^{iv}	103.19 (13)	Co0—P6—Co2 ⁱ	69.24 (6)
P6-Co2-Co1 ^{iv}	94.13 (4)	Co0 ^{viii} —P6—Co2 ⁱ	136.27 (4)
P6 ^{vii} —Co2—Co1 ^{iv}	155.65 (9)	$Co2^{xv}$ —P6— $Co2^{i}$	137.63 (3)
Co0 ^{vii} —Co2—Co1 ^{iv}	105.65 (9)	Co2 ^{viii} —P6—Co2 ⁱ	77.49 (6)
Co0—Co2—Co1 ^{iv}	58.87 (6)	Co2—P6—Co2 ⁱ	77.49 (6)
Co0 ^{viii} —Co2—Co1 ^{iv}	95.00 (6)	Co2 ⁱⁱ —P6—Co2 ⁱ	137.63 (3)
Co0 ^{ix} —Co2—Co1 ^{iv}	149.97 (10)	Co2 ⁱⁱⁱ —P6—Co2 ⁱ	87.44 (8)
Co1 ^x —Co2—Co1 ^{iv}	74.74 (7)		

Symmetry codes: (i) -*y*, *x*-*y*, *z*; (ii) *x*, *y*, *z*-1; (iii) -*y*, *x*-*y*, *z*-1; (iv) -*y*+1, *x*-*y*+1, *z*; (v) -*x*+*y*, -*x*+1, *z*; (vi) -*x*+*y*, -*x*+1, *z*-1; (vii) *x*, *y*, *z*+1; (viii) -*x*+*y*, -*x*, *z*; (ix) -*x*+*y*, -*x*+1, *z*, (iv) -*y*+1, *x*-*y*, *z*; (ix) -*x*+*y*, -*x*+1, *z*, (iv) -*x*+*y*, -*x*+1, *z*-1; (vii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*+1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*-1; (iv) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*-1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*-1; (viii) -*x*+*y*, -*x*, *z*+1; (viii) -*x*+*y*, -*x*, *z*-1.

(Co12P7_at_15GPa)

Crystal data $Co_{12}P_7$ $D_{\rm x} = 7.905 {\rm Mg} {\rm m}^{-3}$ $M_r = 923.95$ Synchrotron radiation, $\lambda = 0.3344$ Å Hexagonal, P6 Cell parameters from 249 reflections a = 8.253 (5) Å $\theta = 2.9 - 14.7^{\circ}$ $\mu = 3.17 \text{ mm}^{-1}$ c = 3.2902 (18) ÅV = 194.1 (3) Å³ T = 293 KZ = 1Irregular, black F(000) = 429 $0.01 \times 0.01 \times 0.01$ mm Data collection 13BMD @ APS 321 independent reflections diffractometer 253 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.055$ Radiation source: synchrotron $\theta_{\text{max}} = 14.8^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ /w scan $h = -11 \rightarrow 12$ Absorption correction: multi-scan $k = -9 \rightarrow 8$ (CrysAlisPro; Rigaku OD, 2018) $T_{\rm min} = 0.546, T_{\rm max} = 1.000$ $l = -4 \rightarrow 4$ 592 measured reflections Refinement $w = 1/[\sigma^2(F_0^2) + (0.0219P)^2 + 2.8589P]$ Refinement on F^2 where $P = (F_0^2 + 2F_c^2)/3$ Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $(\Delta/\sigma)_{\rm max} < 0.001$ $wR(F^2) = 0.105$ $\Delta \rho_{\text{max}} = 1.70 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.74 \text{ e } \text{\AA}^{-3}$ S = 1.11321 reflections Absolute structure: Flack x determined using 78 32 parameters quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al.,

Special details

0 restraints

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2013)

Absolute structure parameter: 0.4 (2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co0	0.0153 (6)	0.2651 (6)	0.0000	0.0114 (8)	
Co1	0.1320 (7)	0.6234 (7)	0.0000	0.0123 (9)	
Co2	0.2135 (6)	0.2038 (8)	0.5000	0.0151 (9)	
Co3	0.5195 (7)	0.1363 (7)	0.5000	0.0107 (9)	
P4	0.1656 (11)	0.4503 (11)	0.5000	0.0102 (15)*	
P5	0.4425 (12)	0.2809 (13)	0.0000	0.0086 (15)*	
P6	0.0000	0.0000	0.0000	0.012 (3)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Co0	0.014 (2)	0.016 (2)	0.0072 (18)	0.009 (2)	0.000	0.000	
Col	0.019 (2)	0.016 (2)	0.003 (2)	0.0101 (18)	0.000	0.000	
Co2	0.024 (2)	0.020 (3)	0.005 (2)	0.014 (2)	0.000	0.000	
Co3	0.011 (2)	0.012 (2)	0.008 (2)	0.0052 (16)	0.000	0.000	

Geometric parameters (Å, °)

Co0—P6	2.128 (5)	Co2—Co1 ^{iv}	2.731 (5)
Co0—P5 ⁱ	2.148 (10)	Со2—Со3	2.846 (7)
Co0—P4	2.165 (6)	Co3—P5 ^{xi}	2.263 (7)
Co0—P4 ⁱⁱ	2.165 (6)	Co3—P5 ^{xii}	2.263 (7)
Co0—Co3 ⁱⁱⁱ	2.538 (5)	Co3—P4 ^{viii}	2.266 (10)
Co0—Co3 ⁱ	2.538 (5)	Co3—P5 ^{vii}	2.301 (8)
Co0—Co2 ⁱⁱ	2.543 (6)	Co3—P5	2.301 (8)
Co0—Co2	2.543 (6)	Co3—Co3 ^{xiii}	2.536 (9)
Co0—Co2 ⁱⁱⁱ	2.571 (6)	Co3—Co3 ^{xii}	2.536 (9)
Co0—Co2 ⁱ	2.571 (6)	Co3—Co0 ^{viii}	2.538 (5)
Co0—Co1	2.612 (7)	Co3—Co0 ^{ix}	2.538 (5)
Co0—Co1 ^{iv}	2.634 (7)	Co3—Co1 ^{viii}	2.674 (5)
Co1—P5 ^v	2.202 (10)	Co3—Co1 ^{ix}	2.674 (5)
Co1—P4 ^v	2.266 (7)	P4—Co0 ^{vii}	2.165 (6)
Co1—P4 ^{vi}	2.266 (7)	P4—Co1 ^x	2.266 (7)
Co1—P4 ⁱⁱ	2.284 (7)	P4—Co1 ^{iv}	2.266 (7)
Co1—P4	2.285 (7)	P4—Co3 ⁱ	2.266 (10)
Co1—Co1 ^v	2.624 (9)	P4—Co1 ^{vii}	2.285 (7)
Co1—Co1 ^{iv}	2.624 (9)	P5—Co0 ^{viii}	2.148 (10)
Co1—Co0 ^v	2.634 (7)	P5—Co1 ^{iv}	2.202 (10)
Co1—Co3 ⁱⁱⁱ	2.674 (5)	P5—Co3 ^{xiii}	2.263 (7)
Co1—Co3 ⁱ	2.674 (5)	P5—Co3 ^{xiv}	2.263 (7)
Co1—Co2 ^v	2.731 (5)	P5—Co3 ⁱⁱ	2.301 (8)
Co2—P4	2.258 (9)	P5—Co2 ⁱⁱ	2.341 (7)
Co2—P5 ^{vii}	2.341 (7)	P6—Co0 ⁱ	2.128 (5)
Co2—P5	2.341 (7)	P6—Co0 ^{viii}	2.128 (5)
Co2—P6	2.383 (4)	P6—Co2 ^{xv}	2.383 (4)

Co2—P6 ^{vii}	2.383 (4)	P6—Co2 ⁱⁱⁱ	2.383 (4)
Co2—Co0 ^{vii}	2.543 (6)	P6—Co2 ⁱ	2.383 (4)
Co2—Co0 ^{viii}	2.571 (6)	P6—Co2 ^{viii}	2.383 (4)
Co2—Co0 ^{ix}	2.571 (6)	P6—Co2 ⁱⁱ	2.383 (4)
Co2—Co1 ^x	2.731 (5)		
$P6-Co0-P5^{i}$	96.9 (3)	P5 ^{vii} —Co2—Co1 ^{iv}	102.3 (3)
P6—Co0—P4	116.4 (2)	P5—Co2—Co1 ^{iv}	50.7 (2)
P5 ⁱ —Co0—P4	114.7 (3)	P6—Co2—Co1 ^{iv}	94.84 (11)
P6—Co0—P4 ⁱⁱ	116.4 (2)	P6 ^{vii} —Co2—Co1 ^{iv}	156.4 (2)
P5 ⁱ —Co0—P4 ⁱⁱ	114.7 (3)	Co0 ^{vii} —Co2—Co1 ^{iv}	106.0 (2)
P4—Co0—P4 ⁱⁱ	98.9 (4)	Co0—Co2—Co1 ^{iv}	59.81 (15)
P6—Co0—Co3 ⁱⁱⁱ	127.43 (16)	Co0 ^{viii} —Co2—Co1 ^{iv}	94.89 (12)
P5 ⁱ —Co0—Co3 ⁱⁱⁱ	58.1 (2)	Co0 ^{ix} —Co2—Co1 ^{iv}	148.9 (2)
P4—Co0—Co3 ⁱⁱⁱ	116.1 (3)	Co1 ^x —Co2—Co1 ^{iv}	74.08 (17)
P4 ⁱⁱ —Co0—Co3 ⁱⁱⁱ	56.9 (2)	P4—Co2—Co3	138.5 (3)
P6-Co0-Co3 ⁱ	127.43 (16)	P5 ^{vii} —Co2—Co3	51.6 (2)
P5 ⁱ —Co0—Co3 ⁱ	58.1 (2)	P5—Co2—Co3	51.6 (2)
P4—Co0—Co3 ⁱ	56.9 (2)	P6—Co2—Co3	106.1 (2)
P4 ⁱⁱ —Co0—Co3 ⁱ	116.1 (3)	P6 ^{vii} —Co2—Co3	106.1 (2)
Co3 ⁱⁱⁱ —Co0—Co3 ⁱ	80.8 (2)	Co0 ^{vii} —Co2—Co3	139.57 (11)
P6—Co0—Co2 ⁱⁱ	60.57 (16)	Co0—Co2—Co3	139.58 (11)
$P5^{i}$ —Co0—Co2 ⁱⁱ	129.6 (2)	Co0 ^{viii} —Co2—Co3	55.61 (16)
P4—Co0—Co2 ⁱⁱ	115.7 (3)	$Co0^{ix}$ — $Co2$ — $Co3$	55.61 (16)
$P4^{ii}$ —Co0—Co2 ⁱⁱ	56 6 (2)	Col^{x} $Co2$ $Co3$	95 9 (2)
C_{03}^{iii} C_{00} C_{02}^{iii}	98.44(12)	$Co1^{iv}$ — $Co2$ — $Co3$	95 9 (2)
$C_{0}3^{i}$ $C_{0}0$ $C_{0}2^{ii}$	170.2(3)	$P5^{xi}$ $Co3$ $P5^{xii}$	93 3 (4)
P6-Co0-Co2	60 57 (16)	$P5^{xi}$ Co3 $P4^{viii}$	1065(3)
$P5^{i}$ Co0 Co2	1296(2)	$P5^{xii}$ $Co3$ $P4^{viii}$	106.5(3)
P4-Co0-Co2	56.6(2)	$P5^{xi}$ Co3 $P5^{vii}$	79.0 (4)
$P4^{ii}$ —Co0—Co2	1157(3)	$P5^{xii}$ $Co3$ $P5^{vii}$	1481(4)
C_{03}^{iii} C_{00} C_{02}^{iii}	170.2(3)	$P4^{viii}$ $Co3 P5^{vii}$	105.1(1)
C_{03}^{i} C_{00} C_{02}^{i}	9844(12)	$P5^{xi}$ Co3 P5	105.5(5) 148.1(4)
$Co2^{ii}$ Co0 Co2	90.44 (12) 80.6 (2)	$P5^{xii}$ Co3 P5	79.0(4)
$P_{6} = C_{00} = C_{02}^{111}$	60.0(2)	P_{4} V_{iii} C_{03} P_{5}	105 3 (3)
$P_{0}^{i} = C_{0}^{i} = C_{0}^{i} = C_{0}^{i}$	58.7(2)	$P_{4} = C_{0} = P_{1}$	105.5(5)
$P_{1} = C_{00} = C_{02}$	38.7(2)	$\begin{array}{c} \mathbf{P} 5 \\ \mathbf{P} 5 \\ \mathbf{F} 5 \\$	91.3(4)
$P_{4}^{ii} = C_{2}^{0} = C_{2}^{0} = C_{2}^{0}$	170.1(3)	$P_{5}^{xii} = C_{0}^{2} = C_{0}^{2}^{xiii}$	95.1 (3)
C_{2}^{2}	90.7(2)	P_{4} P_{4} P_{4} P_{2} P_{2	95.1(3)
$C_{03}^{ii} = C_{00}^{ii} = C_{02}^{iii}$	07.70(14)	$P5^{ii}$ $Co2$ $Co2^{iii}$	140.1(4)
$C_{00} = C_{00} = C_{02} = C_{02}$	110.8(2)	$P_{5} = -C_{05} = -C_{05} = -C_{05}$	55.5 (5) 55.5 (2)
$C_{02} = C_{00} = C_{02} = C_{02}$	(1.4(2))	$P_{2} = C_{0} = C_{0} = C_{0}$	55.5 (5) 57.0 (2)
$C_{02} = C_{00} = C_{02}^{ii}$	120.0(2)	$P5^{iii} = C_{12} = C_{12} 2^{iii}$	57.0 (5) 57.0 (2)
$r_0 - c_{00} - c_{02}$	00.0/(15)	$P3^{m} - C03 - C03^{m}$	5/.0(3)
$r_{3} - C_{00} - C_{02}$	58.7 (2) 00.7 (2)	P4''''	151.9 (4)
$P4-C00-C02^{4}$	90.7 (2)	P5'''-C03-C03'''	94.1 (3)
$P4^{}C00^{}C02^{-1}$	1/0.1 (3)	$P_{2} = C_{03} = C_{03} = C_{03}$	94.1 (3)
$Co3^{m}$ — $Co0$ — $Co2^{i}$	116.8 (2)	$\begin{array}{c} \text{Co3}^{\text{xm}} \\ \text{Co3}^{\text{xm}} \\$	60.0
$Co3^{1}$ — $Co0$ — $Co2^{1}$	67.70 (14)	$P5^{xi}$ —Co3—Co0 ^{viii}	159.3 (3)

120.6 (2)	P5 ^{xii} —Co3—Co0 ^{viii}	89.59 (18)
71.4 (2)	P4 ^{viii} —Co3—Co0 ^{viii}	53.20 (19)
79.6 (2)	P5 ^{vii} —Co3—Co0 ^{viii}	108.5 (3)
164.3 (3)	P5—Co3—Co0 ^{viii}	52.4 (2)
98.8 (3)	Co3 ^{xiii} —Co3—Co0 ^{viii}	105.1 (2)
56.2 (2)	Co3 ^{xii} —Co3—Co0 ^{viii}	138.58 (11)
56.2 (2)	P5 ^{xi} —Co3—Co0 ^{ix}	89.59 (18)
62.53 (14)	P5 ^{xii} —Co3—Co0 ^{ix}	159.3 (3)
62.53 (14)	P4 ^{viii} —Co3—Co0 ^{ix}	53.20 (19)
108.4 (2)	P5 ^{vii} —Co3—Co0 ^{ix}	52.4 (2)
108.4 (2)	P5Co3Co0 ^{ix}	108.5 (3)
129.67 (15)	Co3 ^{xiii} —Co3—Co0 ^{ix}	105.1 (2)
129.67 (15)	Co3 ^{xii} —Co3—Co0 ^{ix}	138.58 (11)
104.29 (19)	Co0 ^{viii} —Co3—Co0 ^{ix}	80.8 (2)
158.8 (3)	P5 ^{xi} —Co3—Co1 ^{viii}	106.4 (3)
55.3 (2)	P5 ^{xii} —Co3—Co1 ^{viii}	52.2 (2)
55.3 (2)	P4 ^{viii} —Co3—Co1 ^{viii}	54.34 (19)
107.12 (19)	P5 ^{vii} —Co3—Co1 ^{viii}	159.6 (3)
107.12 (19)	P5—Co3—Co1 ^{viii}	93.3 (2)
63.65 (16)	Co3 ^{xiii} —Co3—Co1 ^{viii}	140.83 (9)
63.65 (16)	Co3 ^{xii} —Co3—Co1 ^{viii}	105.3 (2)
133.59 (16)	Co0 ^{viii} —Co3—Co1 ^{viii}	60.09 (15)
133.59 (16)	Co0 ^{ix} —Co3—Co1 ^{viii}	107.4 (2)
60.0 (2)	P5 ^{xi} —Co3—Co1 ^{ix}	52.2 (2)
108.1 (2)	P5 ^{xii} —Co3—Co1 ^{ix}	106.4 (3)
108.1 (2)	P4 ^{viii} —Co3—Co1 ^{ix}	54.34 (19)
93.1 (4)	P5 ^{vii} —Co3—Co1 ^{ix}	93.3 (2)
108.0 (3)	P5—Co3—Co1 ^{ix}	159.6 (3)
144.0 (3)	Co3 ^{xiii} —Co3—Co1 ^{ix}	140.83 (9)
76.3 (3)	Co3 ^{xii} —Co3—Co1 ^{ix}	105.3 (2)
108.0 (3)	Co0 ^{viii} —Co3—Co1 ^{ix}	107.4 (2)
76.3 (3)	Co0 ^{ix} —Co3—Co1 ^{ix}	60.09 (15)
144.0 (3)	Co1 ^{viii} —Co3—Co1 ^{ix}	75.95 (16)
92.1 (4)	P5 ^{xi} —Co3—Co2	131.18 (19)
89.0 (3)	P5 ^{xii} —Co3—Co2	131.18 (19)
128.2 (2)	P4 ^{viii} —Co3—Co2	82.0 (3)
128.2 (2)	P5 ^{vii} —Co3—Co2	52.8 (2)
51.9 (2)	Р5—Со3—Со2	52.8 (2)
51.9 (2)	Co3 ^{xiii} —Co3—Co2	66.1 (3)
150.6 (4)	Co3 ^{xii} —Co3—Co2	126.1 (3)
55.1 (2)	Co0 ^{viii} —Co3—Co2	56.70 (15)
55.1 (2)	Co0 ^{ix} —Co3—Co2	56.70 (15)
92.1 (2)	Co1 ^{viii} —Co3—Co2	116.37 (18)
92.1 (2)	Col ^{ix} —Co3—Co2	116.37 (18)
120.4 (2)	Co0—P4—Co0 ^{vii}	98.9 (4)
149.4 (4)	Co0—P4—Co2	70.2 (2)
92.6 (2)	Co0 ^{vii} —P4—Co2	70.2 (2)
92.6 (2)	Co0—P4—Co1 ^x	144.1 (4)
	120.6 (2) 71.4 (2) 79.6 (2) 164.3 (3) 98.8 (3) 56.2 (2) 56.2 (2) 62.53 (14) 62.53 (14) 108.4 (2) 108.4 (2) 129.67 (15) 129.67 (15) 104.29 (19) 158.8 (3) 55.3 (2) 55.3 (2) 107.12 (19) 107.12 (19) 107.12 (19) 63.65 (16) 63.65 (16) 133.59 (16) 63.65 (16) 133.59 (16) 60.0 (2) 108.1 (2) 108.1 (2) 108.1 (2) 108.1 (2) 93.1 (4) 108.0 (3) 76.3 (3) 144.0 (3) 76.3 (3) 144.0 (3) 92.1 (4) 89.0 (3) 128.2 (2) 128.2 (2) 51.9 (2) 51.9 (2) 55.1 (2) 92.1 (2) 92.1 (2) 92.1 (2) 120.4 (2) 149.4 (4) 92.6 (2) 92.6 (2)	120.6 (2) $P5^{xii} - Co3 - Co0^{viii}$ 71.4 (2) $P4^{vii} - Co3 - Co0^{viii}$ 79.6 (2) $P5^{vii} - Co3 - Co0^{viii}$ 98.8 (3) $Co3^{vii} - Co3 - Co0^{viii}$ 56.2 (2) $Co3^{vii} - Co3 - Co0^{vii}$ 56.2 (2) $P5^{vii} - Co3 - Co0^{vii}$ 62.53 (14) $P5^{vii} - Co3 - Co0^{vii}$ 62.53 (14) $P5^{vii} - Co3 - Co0^{vii}$ 108.4 (2) $P5^{vii} - Co3 - Co0^{vii}$ 108.4 (2) $P5^{vii} - Co3 - Co0^{vii}$ 129.67 (15) $Co3^{vii} - Co3 - Co0^{vii}$ 104.29 (19) $Co0^{viii} - Co3 - Co1^{viii}$ 104.29 (19) $Co0^{viii} - Co3 - Co1^{viii}$ 155.3 (2) $P5^{vii} - Co3 - Co1^{viii}$ 107.12 (19) $P5^{vi} - Co3 - Co1^{viii}$ 107.12 (19) $P5^{vi} - Co3 - Co1^{viii}$ 133.59 (16) $Co0^{vii} - Co3 - Co1^{viii}$ 133.59 (16) $Co0^{vii} - Co3 - Co1^{viii}$ 133.59 (16) $Co0^{vii} - Co3 - Co1^{vii}$ 108.1 (2) $P5^{vii} - Co3 - Co1$

P4 ⁱⁱ —Co1—Co1 ^{iv}	54.4 (2)	Co0 ^{vii} —P4—Co1 ^x	72.93 (17)
P4Co1Co1 ^{iv}	54.4 (2)	Co2—P4—Co1 ^x	74.3 (3)
Co0—Co1—Co1 ^{iv}	60.4 (2)	Co0-P4-Co1 ^{iv}	72.93 (17)
Co1 ^v —Co1—Co1 ^{iv}	60.0	$Co0^{vii}$ —P4— $Co1^{iv}$	144.1 (4)
P5 ^v —Co1—Co0 ^v	91.0 (3)	Co2—P4—Co1 ^{iv}	74.3 (3)
P4 ^v Co1Co0 ^v	51.8 (2)	$Co1^x$ —P4— $Co1^{iv}$	93.1 (4)
P4 ^{vi} —Co1—Co0 ^v	51.8 (2)	Co0—P4—Co3 ⁱ	69.9 (3)
P4 ⁱⁱ —Co1—Co0 ^v	128.0 (2)	$Co0^{vii}$ —P4— $Co3^i$	69.9 (3)
P4Co1Co0 ^v	128.0 (2)	Co2—P4—Co3 ⁱ	116.5 (4)
Co0—Co1—Co0 ^v	180.0 (2)	$Co1^{x}$ P4 Co 3^{i}	133.35 (18)
Co1 ^v —Co1—Co0 ^v	59.6 (2)	$Co1^{iv}$ —P4—Co3 ⁱ	133.35 (18)
Co1 ^{iv} —Co1—Co0 ^v	119.6 (2)	Co0—P4—Co1	71.84 (17)
P5 ^v —Co1—Co3 ⁱⁱⁱ	54.26 (19)	Co0 ^{vii} —P4—Co1	141.5 (4)
P4 ^v —Co1—Co3 ⁱⁱⁱ	162.3 (3)	Co2—P4—Co1	133.94 (18)
P4 ^{vi} —Co1—Co3 ⁱⁱⁱ	93.40 (17)	Co1 ^x —P4—Co1	135.3 (4)
P4 ⁱⁱ —Co1—Co3 ⁱⁱⁱ	53.7 (2)	Co1 ^{iv} —P4—Co1	70.4 (2)
P4—Co1—Co3 ⁱⁱⁱ	107.1 (3)	Co3 ⁱ —P4—Co1	72.0 (3)
Co0—Co1—Co3 ⁱⁱⁱ	57.38 (16)	Co0—P4—Co1 ^{vii}	141.5 (4)
Co1 ^v —Co1—Co3 ⁱⁱⁱ	140.25 (9)	Co0 ^{vii} —P4—Co1 ^{vii}	71.84 (17)
Co1 ^{iv} —Co1—Co3 ⁱⁱⁱ	103.5 (2)	Co2—P4—Co1 ^{vii}	133.94 (18)
Co0 ^v —Co1—Co3 ⁱⁱⁱ	122.64 (18)	Co1 ^x —P4—Co1 ^{vii}	70.4 (2)
P5 ^v —Co1—Co3 ⁱ	54.26 (19)	$Co1^{iv}$ —P4—Co 1^{vii}	135.3 (4)
P4 ^v —Co1—Co3 ⁱ	93.40 (17)	Co3 ⁱ —P4—Co1 ^{vii}	72.0 (3)
P4 ^{vi} —Co1—Co3 ⁱ	162.3 (3)	Co1—P4—Co1 ^{vii}	92.1 (4)
P4 ⁱⁱ —Co1—Co3 ⁱ	107.1 (3)	Co0 ^{viii} —P5—Co1 ^{iv}	127.8 (5)
P4Co1Co3 ⁱ	53.7 (2)	Co0 ^{viii} —P5—Co3 ^{xiii}	131.9 (2)
Co0—Co1—Co3 ⁱ	57.38 (15)	Co1 ^{iv} —P5—Co3 ^{xiii}	73.6 (3)
Co1 ^v —Co1—Co3 ⁱ	140.25 (9)	Co0 ^{viii} —P5—Co3 ^{xiv}	131.9 (2)
Co1 ^{iv} —Co1—Co3 ⁱ	103.5 (2)	$Co1^{iv}$ —P5—Co 3^{xiv}	73.6 (3)
Co0 ^v —Co1—Co3 ⁱ	122.64 (18)	Co3 ^{xiii} —P5—Co3 ^{xiv}	93.3 (4)
Co3 ⁱⁱⁱ —Co1—Co3 ⁱ	75.95 (16)	Co0 ^{viii} —P5—Co3	69.5 (3)
P5 ^v —Co1—Co2 ^v	55.41 (19)	Co1 ^{iv} —P5—Co3	133.9 (2)
P4 ^v —Co1—Co2 ^v	52.7 (2)	Co3 ^{xiii} —P5—Co3	67.5 (2)
P4 ^{vi} —Co1—Co2 ^v	105.6 (3)	Co3 ^{xiv} —P5—Co3	131.1 (4)
P4 ⁱⁱ —Co1—Co2 ^v	163.3 (3)	Co0 ^{viii} —P5—Co3 ⁱⁱ	69.5 (3)
P4Co1Co2 ^v	95.17 (19)	Co1 ^{iv} —P5—Co3 ⁱⁱ	133.9 (2)
Co0—Co1—Co2 ^v	123.5 (2)	Co3 ^{xiii} —P5—Co3 ⁱⁱ	131.1 (4)
Co1 ^v —Co1—Co2 ^v	102.6 (2)	Co3 ^{xiv} —P5—Co3 ⁱⁱ	67.5 (2)
Co1 ^{iv} —Co1—Co2 ^v	140.73 (11)	Co3—P5—Co3 ⁱⁱ	91.3 (4)
Co0 ^v —Co1—Co2 ^v	56.54 (14)	Co0 ^{viii} —P5—Co2	69.7 (3)
Co3 ⁱⁱⁱ —Co1—Co2 ^v	109.6 (2)	Co1 ^{iv} —P5—Co2	73.8 (2)
Co3 ⁱ —Co1—Co2 ^v	66.10 (15)	Co3 ^{xiii} —P5—Co2	79.62 (16)
P4—Co2—P5 ^{vii}	103.7 (3)	Co3 ^{xiv} —P5—Co2	147.3 (4)
P4—Co2—P5	103.7 (3)	Co3—P5—Co2	75.6 (2)
P5 ^{vii} —Co2—P5	89.3 (3)	Co3 ⁱⁱ —P5—Co2	139.2 (4)
P4—Co2—P6	103.6 (2)	Co0 ^{viii} —P5—Co2 ⁱⁱ	69.7 (3)
P5 ^{vii} —Co2—P6	152.7 (3)	Co1 ^{iv} —P5—Co2 ⁱⁱ	73.8 (2)
P5—Co2—P6	85.31 (18)	Co3 ^{xiii} —P5—Co2 ⁱⁱ	147.3 (4)

P4-Co2-P6 ^{vii}	103.6 (2)	Co3 ^{xiv} —P5—Co2 ⁱⁱ	79.62 (16)
P5 ^{vii} —Co2—P6 ^{vii}	85.30 (18)	Co3—P5—Co2 ⁱⁱ	139.2 (4)
P5-Co2-P6 ^{vii}	152.7 (3)	Co3 ⁱⁱ —P5—Co2 ⁱⁱ	75.6 (2)
P6—Co2—P6 ^{vii}	87.33 (17)	Co2—P5—Co2 ⁱⁱ	89.3 (3)
P4-Co2-Co0 ^{vii}	53.20 (19)	Co0 ⁱ —P6—Co0 ^{viii}	120.0
P5 ^{vii} —Co2—Co0 ^{vii}	90.21 (18)	Co0 ⁱ —P6—Co0	120.0
P5-Co2-Co0 ^{vii}	155.9 (3)	Co0 ^{viii} —P6—Co0	120.0
P6-Co2-Co0 ^{vii}	105.4 (2)	Co0 ⁱ —P6—Co2 ^{xv}	69.23 (17)
P6 ^{vii} —Co2—Co0 ^{vii}	51.06 (12)	Co0 ^{viii} —P6—Co2 ^{xv}	68.36 (17)
P4—Co2—Co0	53.20 (19)	Co0—P6—Co2 ^{xv}	136.33 (9)
P5 ^{vii} —Co2—Co0	155.9 (3)	Co0 ⁱ —P6—Co2 ⁱⁱⁱ	68.36 (17)
P5—Co2—Co0	90.21 (18)	Co0 ^{viii} —P6—Co2 ⁱⁱⁱ	136.33 (9)
P6—Co2—Co0	51.06 (12)	Co0—P6—Co2 ⁱⁱⁱ	69.23 (17)
P6 ^{vii} —Co2—Co0	105.4 (2)	Co2 ^{xv} —P6—Co2 ⁱⁱⁱ	77.58 (13)
Co0 ^{vii} —Co2—Co0	80.6 (2)	Co0 ⁱ —P6—Co2 ⁱ	68.36 (17)
P4—Co2—Co0 ^{viii}	140.20 (12)	Co0 ^{viii} —P6—Co2 ⁱ	136.33 (9)
P5 ^{vii} —Co2—Co0 ^{viii}	106.2 (3)	Co0—P6—Co2 ⁱ	69.23 (17)
P5—Co2—Co0 ^{viii}	51.6 (2)	Co2 ^{xv} —P6—Co2 ⁱ	137.59 (6)
P6—Co2—Co0 ^{viii}	50.70 (12)	Co2 ⁱⁱⁱ —P6—Co2 ⁱ	87.34 (17)
P6 ^{vii} —Co2—Co0 ^{viii}	104.5 (2)	Co0 ⁱ —P6—Co2 ^{viii}	69.23 (17)
Co0 ^{vii} —Co2—Co0 ^{viii}	150.1 (2)	Co0 ^{viii} —P6—Co2 ^{viii}	68.36 (17)
Co0—Co2—Co0 ^{viii}	92.22 (16)	Co0—P6—Co2 ^{viii}	136.33 (9)
P4-Co2-Co0 ^{ix}	140.20 (12)	Co2 ^{xv} —P6—Co2 ^{viii}	87.34 (17)
P5 ^{vii} —Co2—Co0 ^{ix}	51.6 (2)	Co2 ⁱⁱⁱ —P6—Co2 ^{viii}	137.59 (6)
P5-Co2-Co0 ^{ix}	106.2 (3)	Co2 ⁱ —P6—Co2 ^{viii}	77.58 (13)
P6-Co2-Co0 ^{ix}	104.5 (2)	Co0 ⁱ —P6—Co2 ⁱⁱ	136.33 (9)
$P6^{vii}$ —Co2—Co 0^{ix}	50.70 (12)	Co0 ^{viii} —P6—Co2 ⁱⁱ	69.23 (17)
$Co0^{vii}$ — $Co2$ — $Co0^{ix}$	92.22 (16)	Co0—P6—Co2 ⁱⁱ	68.37 (17)
Co0—Co2—Co0 ^{ix}	150.1 (2)	Co2 ^{xv} —P6—Co2 ⁱⁱ	77.58 (13)
Co0 ^{viii} —Co2—Co0 ^{ix}	79.6 (2)	Co2 ⁱⁱⁱ —P6—Co2 ⁱⁱ	77.58 (13)
P4—Co2—Co1 ^x	52.99 (19)	Co2 ⁱ —P6—Co2 ⁱⁱ	137.59 (6)
P5 ^{vii} —Co2—Co1 ^x	50.7 (2)	Co2 ^{viii} —P6—Co2 ⁱⁱ	137.59 (6)
P5—Co2—Co1 ^x	102.3 (3)	Co0 ⁱ —P6—Co2	136.33 (9)
P6—Co2—Co1 ^x	156.4 (2)	Co0 ^{viii} —P6—Co2	69.23 (17)
P6 ^{vii} —Co2—Co1 ^x	94.84 (11)	Co0—P6—Co2	68.37 (17)
Co0 ^{vii} —Co2—Co1 ^x	59.81 (15)	Co2 ^{xv} —P6—Co2	137.59 (6)
Co0—Co2—Co1 ^x	106.0 (2)	Co2 ⁱⁱⁱ —P6—Co2	137.59 (6)
Co0 ^{viii} —Co2—Co1 ^x	148.9 (2)	Co2 ⁱ —P6—Co2	77.58 (13)
Co0 ^{ix} —Co2—Co1 ^x	94.89 (12)	Co2 ^{viii} —P6—Co2	77.58 (13)
P4—Co2—Co1 ^{iv}	52.99 (19)	Co2 ⁱⁱ —P6—Co2	87.33 (17)

Symmetry codes: (i) -y, x-y, z; (ii) x, y, z-1; (iii) -y, x-y, z-1; (iv) -y+1, x-y+1, z; (v) -x+y, -x+1, z; (vi) -x+y, -x+1, z-1; (vii) x, y, z+1; (viii) -x+y, -x, z; (ix) -x+y, -x, z+1; (x) -y+1, x-y, z+1; (xi) -y+1, x-y, z+1; (xii) -x+y, -x, z+1; (x) -x+y, -x+1, z-1; (xv) -x+y, -x, z-1.