

Received 4 August 2020 Accepted 1 September 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: powder diffraction; langbeinite structure type; multimetal phosphate; crystal structure.

CCDC reference: 2026681

Supporting information: this article has supporting information at journals.iucr.org/e

Rietveld refinement of the langbeinite-type phosphate $K_2Ni_{0.5}Hf_{1.5}(PO_4)_3$

Liang Zhou, ^a Denys S. Butenko, ^a Ivan V. Ogorodnyk, ^b Nickolai I. Klyui^c and Igor V. Zatovsky^a*

^aCollege of Physics, Jilin University 2699 Qianjin St., 130012 Changchun, People's Republic of China, ^bShimUkraine LLC, 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine, and ^cV. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 Pr. Nauki, 03028 Kyiv, Ukraine. *Correspondence e-mail: zvigo@yandex.ru

Polycrystalline potassium nickel(II) hafnium(IV) tris(orthophosphate), a langbeinite-type phosphate, was synthesized by a solid-state method and refers to langbeinite-type phosphates. The three-dimensional framework of the title compound is built up from two types of $[MO_6]$ octahedra [the *M* sites are occupied by Hf:Ni in ratios of 0.754 (8):0.246 (8) and 0.746 (8):0.254 (8), respectively] and $[PO_4]$ tetrahedra are connected *via* O vertices. The K⁺ cations are located in two positions within large cavities of the framework, having coordination numbers of 9 and 12. The Hf, Ni and K sites lie on threefold rotation axes, while the P and O atoms are situated in general positions.

1. Chemical context

Langbeinite-related complex oxides have a variety of interesting properties, for example, ferroelectricity or ferroelasticity (Norberg, 2002). In particular, complex phosphates of this type have attracted attention for their high thermal and chemical stability, and many different combinations for structural substitutions are possible (Wulff et al., 1992; Slobodyanik et al., 2012). These characteristics made it possible to propose the family of langbeinite-type phosphates as successful hosts for the immobilization of radioactive waste (Orlova et al., 2011). Moreover, in the last decade rare-earth (RE)-containing langbeinite-type phosphates have been studied intensively owing to their outstanding luminescent properties and applications in LEDs (Liang & Wang, 2011; Liu et al., 2016; Sadhasivam et al., 2017; Terebilenko et al., 2020). Accordingly, further studies of iso- and heterovalent substitution within the cationic sites of the langbeinite structure are important. Structural data for langbeinite-type Hf-containing phosphates are scarce and include only $K_{1.93}Mn_{0.53}Hf_{1.47}(PO_4)_3$ (Ogorodnyk *et al.*, 2007*a*) and K_2 YHf(PO₄)₃ (Ogorodnyk *et al.*, 2009).

In this report, we describe the powder X-ray refinement using the Rietveld method for the multimetal phosphate $K_2Ni_{0.5}Hf_{1.5}(PO_4)_3$ (I), structurally isotypic with the mineral langbeinite, $K_2Mg_2(SO_4)_3$ (Zemann & Zemann, 1957).

2. Structural commentary

As shown in Fig. 1, in the structure of (I) the K, Ni and Hf sites are localized on threefold rotation axes (Wyckoff position 4a), while the P and all O atoms occupy general sites (12 b). Two metallic sites (Hf,Ni)1 and (Hf,Ni)2 show mixed occupancy

Figure 1

A view of the asymmetric unit of $K_2Ni_{0.5}Hf_{1.5}(PO_4)_3$, with displacement spheres drawn at the 50% probability level.

with a Hf:Ni ratio of about 0.75:0.25 (nickel proportion 0.246 (8) for the *M*1 site and 0.254 (8) for the *M*2 site). A similar $M^{II}:M^{IV}$ ratio was also observed for isostructural phosphates of general composition $M^{I}M^{II}_{0.5}M^{IV}_{1.5}(PO_4)_3$, *viz.* K₂Ni_{0.5}Ti_{1.5}(PO₄)₃ (Ogorodnyk *et al.*, 2007*b*), Rb₂Ni_{0.5}Ti_{1.5}(PO₄)₃ (Strutynska *et al.*, 2015), K₂Co_{0.5}Ti_{1.5}(PO₄)₃ and K₂Mn_{0.5}Ti_{1.5}(PO₄)₃ (Zatovsky, 2014), K_{1.96}Mn_{0.57}Zr_{1.43}(PO₄)₃ and K_{1.93}Mn_{0.53}Hf_{1.47}(PO₄)₃ (Ogorodnyk *et al.*, 2007*a*).

The (Hf,Ni)-O distances in (I) are 1.989 (15) and 2.121 (14) Å for the [(Hf,Ni)1O₆] octahedron, and 2.131 (17) and 2.172 (16) Å for the [(Hf,Ni)2O₆] octahedron. The two independent [(Hf,Ni)O₆] octahedra are linked by three [PO₄] tetrahedra to form an $[M_2P_3O_{18}]$ building unit (Fig. 2). These building units are arranged along three directions (threefold

Figure 2

 $[M_2P_3O_{18}]$ building unit (highlighted in red frames) for (I). K⁺ cations are shown as blue spheres of arbitrary radius.

Table 1	
Selected geometric parameters (Å, °).	

K1-O1 ⁱ	2.854 (17)	K2-O4 ⁱⁱⁱ	3.372 (18)
K1-O4 ⁱⁱ	3.082 (17)	P1-O1	1.503 (15)
K1-O2 ⁱⁱ	3.103 (15)	P1-O2	1.533 (17)
$K2 - O3^{ii}$	2.944 (16)	P1-O3	1.48 (2)
$K2-O2^{iii}$	2.987 (18)	P1-O4	1.506 (18)
K2–O4 ⁱⁱ	3.041 (18)		
O1-P1-O2	110.2 (10)	O2-P1-O3	112.6 (10)
O1-P1-O3	107.4 (10)	O2-P1-O4	106.0 (10)
O1-P1-O4	120.1 (10)	O3-P1-O4	100.3 (11)

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (iii) $-z + 1, x + \frac{1}{2}, -y + \frac{3}{2}$.

rotation axes) and linked together *via* oxygen vertices, forming a three-dimensional framework structure. Pairs of K⁺ cations (two independent sites) are localized in large cavities of the resulting framework. The potassium cations are found in 9and 12-coordination by O atoms with K–O distances ranging from 2.854 (17) Å to 3.372 (18) Å (Table 1, Fig. 3), leading to distorted polyhedra. The [PO₄] tetrahedron shows considerable distortion (Table 1).

For (I), the calculation of BVS (bond-valence sums) was performed using the parameters for Hf from Brese & O'Keeffe (1991), for Ni from Brown (private communication, 2001) and for K, P from Brown & Altermatt (1985). The corresponding occupation of the *M* sites by Hf and Ni atoms was taken into account. The sum of BVS of the cations is +23.67 valence units (v.u.), which is close to the -24 v.u. required for the O atoms.

3. Synthesis and crystallization

Compound (I) was synthesized using a solid-state reaction method. A well-ground starting mixture of 3.157 g HfO_2 ,

Figure 3

Coordination polyhedra [K1O₉] and [K2O₁₂] for (**I**). Displacement spheres are drawn at the 50% probability level. [Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2};$ (ii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2};$ (iii) $-z + \frac{1}{2}, -x + 1, y + \frac{1}{2};$ (iv) $-y + 1, z + \frac{1}{2}, -x + \frac{3}{2};$ (v) $y + \frac{1}{2}, -z + \frac{1}{2}, -x + 1;$ (vi) $z + \frac{1}{2}, -x + \frac{3}{2}, -y + 1;$ (vi) $-z + 1, x + \frac{1}{2}, -y + \frac{3}{2};$ (viii) $-y + \frac{3}{2}, -z + 1, x + \frac{1}{2};$ (ix) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1].$

research communications

Figure 4 SEM image for (I) (Insert: image at higher magnification).

0.374 g NiO, 2.361 g KPO₃ and 1.150 g NH₄H₂PO₄ (molar ratio K:Ni:Hf:P = 4:1:3:6) was transferred to a ceramic crucible and pre-heated at 553 K for 2 h. The powder was re-ground, heated at 823 K for 3 h and then milled for 0.5 h in an agate mortar. The resulting fine powder was pressed into a pill and finally calcined at 1273 K for 100 h. The sample was ground before performing powder XRD data collection. Scanning electron microscopy (SEM, Magellan 400, recorded at 10 kV) showed that the obtained sample is an aggregate of small crystallites with a size less than 1 μ m (Fig. 4).

4. Refinement

The experimental, calculated and difference pattern are shown in Fig. 5. Crystal data, data collection and structure refinement details are summarized in Table 2. Structure refinement was performed using K_2 YHf(PO₄)₃ (Ogorodnyk *et al.*, 2009) as a starting model. A modified pseudo-Voigt

Figure 5

Rietveld refinement of $K_2Ni_{0.5}Hf_{1.5}(PO_4)_3$. Experimental (dots), calculated (red curve) and difference (blue curve) data for 2θ range $10-108^\circ$.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	K ₂ Ni _{0.5} Hf _{1.5} (PO ₄) ₃
M _r	660.19
Crystal system, space group	Cubic, $P2_13$
Temperature (K)	293
a (Å)	10.12201 (5)
$V(Å^3)$	1037.05 (1)
Z	4
Radiation type	Cu $K\alpha_1$, $\lambda = 1.540598$ Å
Specimen shape, size (mm)	Flat sheet, 15×15
Data collection	
Diffractometer	Haavaan Instrument Co. Ltd
Dimactometer	DX-2700B
Specimen mounting	Glass container
Data collection mode	Reflection
Scan method	Step
2θ values (°)	$2\theta_{\min} = 10.008 \ 2\theta_{\max} = 105.008$
	$2\theta_{\text{step}} = 0.020$
Refinement	
R factors and goodness of fit	R = 6111 $R = 7831$
A factors and goodness of in	$R_{\rm p} = 0.111, R_{\rm wp} = 7.051,$ $R_{\rm p} = 4.020, R_{\rm p} = 4.700$
	$R(F) = 3.21, \chi^2 = 4.410$
No. of parameters	107
No. of restraints	3

Computer programs: data-collection and reduction software supplied by instrument manufacturer (http://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html), *FULLPROF* (Rodriguez-Carvajal, 2020), *DIAMOND* (Brandenburg, 2006), *PLATON* (Spek, 2020), *WinGX* (Farrugia, 2012) and *enCIFer* (Allen *et al.*, 2004).

function (Thompson *et al.*, 1987) was used for the profile refinement. The similar shape of the transition-metal octahedra indicated that both M positions are occupied by Ni and Hf simultaneously. For the refinement of their occupancies their coordinates and U_{iso} values were constrained together, and the sum of occupancies constrained to unity for both sites.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. (2001). Private communication.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Liang, W. & Wang, Y. (2011). Mater. Chem. Phys. 127, 170-173.
- Liu, J., Duan, X., Zhang, Y., Li, Z., Yu, F. & Jiang, H. (2016). J. Alloys Compd. 660, 356–360.
- Norberg, S. T. (2002). Acta Cryst. B58, 743-749.
- Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2007*a*). J. Solid State Chem. **180**, 2838–2844.
- Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
- Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2009). Acta Cryst. E65, i63–i64.
- Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.
- Orlova, A. I., Koryttseva, A. K. & Loginova, E. E. (2011). Radiochemistry, 53, 51–62.
- Rodriguez-Carvajal, J. (2020). *FULLPROF*. Laboratoire Léon Brillouin (CEA–CNRS), France.

- Sadhasivam, S., Manivel, P., Jeganathan, K., Jayasankar, C. K. & Rajesh, N. P. (2017). *Mater. Lett.* 188, 399–402.
- Slobodyanik, N. S., Terebilenko, K. V., Ogorodnyk, I. V., Zatovsky, I. V., Seredyuk, M., Baumer, V. N. & Gütlich, P. (2012). *Inorg. Chem.* 51, 1380–1385.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Strutynska, N. Yu., Bondarenko, M. A., Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Puzan, A. N. (2015). *Cryst. Res. Technol.* 50, 549–555.
- Terebilenko, K. V., Nedilko, S. G., Chornii, V. P., Prokopets, V. M., Slobodyanik, M. S. & Boyko, V. V. (2020). RSC Adv. 10, 25763– 25772.
- Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
- Wulff, H., Guth, U. & Loescher, B. (1992). Powder Diffr. 7, 103–106. Zatovsky, I. V. (2014). Acta Cryst. E70, i41.
- Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409-413.

supporting information

Acta Cryst. (2020). E76, 1634-1637 [https://doi.org/10.1107/S2056989020012062]

Rietveld refinement of the langbeinite-type phosphate K₂Ni_{0.5}Hf_{1.5}(PO₄)₃

Liang Zhou, Denys S. Butenko, Ivan V. Ogorodnyk, Nickolai I. Klyui and Igor V. Zatovsky

Computing details

Data collection: Software supplied by instrument manufacturer (http://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html); cell refinement: *FULLPROF* (Rodriguez-Carvajal, 2020); data reduction: Software supplied by instrument manufacturer (http://www.haoyuanyiqi.com/en/xsxysy/s_23_30.html); program(s) used to solve structure: isomorphic replacement; program(s) used to refine structure: *FULLPROF* (Rodriguez-Carvajal, 2020); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *PLATON* (Spek, 2020), *WinGX* (Farrugia, 2012) and *enCIFer* (Allen *et al.*, 2004).

(I)

Crystal data	
K ₂ Ni _{0.5} Hf _{1.5} (PO ₄) ₃ $M_r = 660.19$ Cubic, P2 ₁ 3 Hall symbol: P 2ac 2ab 3 a = 10.12201 (5) Å V = 1037.05 (1) Å ³ Z = 4 $D_x = 4.228$ Mg m ⁻³	Cu $K\alpha$ radiation, $\lambda = 1.540598$ Å T = 293 K Particle morphology: tetrahedra yellow flat_sheet, 15×15 mm Specimen preparation: Prepared at 293 K and 101.3 kPa
Data collection	
Haoyuan Instrument Co. Ltd DX-2700B diffractometer Radiation source: X-ray tube, X-ray Graphite monochromator	Specimen mounting: glass container Data collection mode: reflection Scan method: step $2\theta_{\min} = 10.008^{\circ}, 2\theta_{\max} = 105.008^{\circ}, 2\theta_{step} = 0.020^{\circ}$
Refinement	
$R_{p} = 6.111$ $R_{wp} = 7.831$ $R_{exp} = 4.020$ $R_{Bragg} = 4.709$ $R(F) = 3.21$ 4751 data points Profile function: Thompson-Cox-Hastings	3 restraints 3 constraints Standard least squares refinement $(\Delta/\sigma)_{max} = 0.001$ Background function: Linear Interpolation between a set background points with refinable heights
pseudo-Voigt * Axial divergence asymmetry 107 parameters	Preferred orientation correction: Modified March's Function

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
K1	0.7042 (5)	0.7042 (5)	0.7042 (5)	0.028 (4)*	

K2	0.9319 (8)	0.9319 (8)	0.9319 (8)	0.044 (4)*	
Ni1	0.14423 (16)	0.14423 (16)	0.14423 (16)	0.0022 (12)*	0.246 (8)
Ni2	0.4147 (2)	0.4147 (2)	0.4147 (2)	0.0019 (12)*	0.254 (8)
Hf1	0.14423 (16)	0.14423 (16)	0.14423 (16)	0.0022 (12)*	0.754 (8)
Hf2	0.4147 (2)	0.4147 (2)	0.4147 (2)	0.0019 (12)*	0.746 (8)
P1	0.4624 (6)	0.2349 (10)	0.1229 (9)	0.004 (2)*	
01	0.3218 (13)	0.2314 (17)	0.0752 (16)	0.011 (6)*	
O2	0.5508 (14)	0.3023 (16)	0.0201 (15)	0.008 (4)*	
03	0.5028 (13)	0.0973 (17)	0.1500 (18)	0.008 (6)*	
04	0.4953 (16)	0.2985 (17)	0.2533 (14)	0.009 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³
?	?	?	?	?	?	?

Geometric parameters (Å, °)

K1—O1 ⁱ	2.854 (17)	Hf1—O1	2.121 (14)
K1—O4 ⁱⁱ	3.082 (17)	Hf1—O2 ^x	1.989 (15)
K1—O2 ⁱⁱ	3.103 (15)	Hf1—O1 ^{xi}	2.121 (14)
K1—O1 ⁱⁱⁱ	2.854 (17)	Hf1—O2 ^{xii}	1.989 (15)
K1—O4 ^{iv}	3.082 (17)	Hf2—O4	2.172 (16)
K1—O2 ^{iv}	3.103 (15)	Hf2—O3 ⁱ	2.131 (17)
K1—O1 ^v	2.854 (17)	Hf2—O4 ^{xi}	2.172 (16)
K1—O4 ^{vi}	3.082 (17)	Hf2—O3 ⁱⁱⁱ	2.131 (17)
$K1 - O2^{vi}$	3.103 (15)	Ni1—O1	2.121 (14)
K2—O3 ⁱⁱ	2.944 (16)	Ni1—O2 ^x	1.989 (15)
K2—O2 ^{vii}	2.987 (18)	Ni1—O1 ^{xi}	2.121 (14)
K2—O4 ⁱⁱ	3.041 (18)	Ni1—O2 ^{xii}	1.989 (15)
K2—O4 ^{vii}	3.372 (18)	Ni2—O4	2.172 (16)
K2—O3 ^{iv}	2.944 (16)	Ni2—O3 ⁱ	2.131 (17)
K2—O2 ^{viii}	2.987 (18)	Ni2—O4 ^{xi}	2.172 (16)
K2—O4 ^{iv}	3.041 (18)	Ni2—O3 ⁱⁱⁱ	2.131 (17)
K2—O4 ^{viii}	3.372 (18)	P1—O1	1.503 (15)
K2—O3 ^{vi}	2.944 (16)	P1—O2	1.533 (17)
K2—O2 ^{ix}	2.987 (18)	P1—O3	1.48 (2)
K2—O4 ^{vi}	3.041 (18)	P1—O4	1.506 (18)
K2—O4 ^{ix}	3.372 (18)		
01—Hf1—O2 ^x	90.8 (6)	01^{xi} —Ni1— 02^{x}	87.8 (6)
O1—Hf1—O1 ^{xi}	93.7 (6)	$O2^{x}$ —Ni1— $O2^{xii}$	87.7 (6)
O1—Hf1—O2 ^{xii}	175.2 (6)	O1 ^{xi} —Ni1—O2 ^{xii}	90.8 (6)
O1 ^{xi} —Hf1—O2 ^x	87.8 (6)	O3 ⁱ —Ni2—O4	95.2 (6)
O2 ^x —Hf1—O2 ^{xii}	87.7 (6)	O4—Ni2—O4 ^{xi}	94.5 (6)
O1 ^{xi} —Hf1—O2 ^{xii}	90.8 (6)	O3 ⁱⁱⁱ —Ni2—O4	168.5 (6)
O3 ⁱ —Hf2—O4	95.2 (6)	O3 ⁱ —Ni2—O4 ^{xi}	78.6 (6)
O4—Hf2—O4 ^{xi}	94.5 (6)	O3 ⁱ —Ni2—O3 ⁱⁱⁱ	92.7 (6)

supporting information

O3 ⁱⁱⁱ —Hf2—O4	168.5 (6)	O3 ⁱⁱⁱ —Ni2—O4 ^{xi}	95.2 (6)
$O3^{i}$ —Hf2—O4 ^{xi}	78.6 (6)	O1—P1—O2	110.2 (10)
O3 ⁱ —Hf2—O3 ⁱⁱⁱ	92.7 (6)	O1—P1—O3	107.4 (10)
O3 ⁱⁱⁱ —Hf2—O4 ^{xi}	95.2 (6)	O1—P1—O4	120.1 (10)
O1—Ni1—O2 ^x	90.8 (6)	O2—P1—O3	112.6 (10)
O1—Ni1—O1 ^{xi}	93.7 (6)	O2—P1—O4	106.0 (10)
O1—Ni1—O2 ^{xii}	175.2 (6)	O3—P1—O4	100.3 (11)

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+3/2, -y+1, z+1/2; (iii) -z+1/2, -x+1, y+1/2; (iv) -y+1, z+1/2, -x+3/2; (v) y+1/2, -z+1/2, -x+1/2; (vi) z+1/2, -x+3/2, -y+1; (vii) -z+1, x+1/2, -y+3/2; (viii) -y+3/2, -z+1, x+1/2; (ix) x+1/2, -y+3/2, -z+1; (x) x-1/2, -y+1/2, -z; (xi) z, x, y; (xii) -z, x-1/2, -y+1/2.