COMMUNICATIONS

ISSN 2056-9890

Received 27 August 2020
Accepted 8 September 2020

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; hydroflux synthesis; thallium; oxide iodide; single-crystal XRD.

CCDC reference: 2030857

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Hydroflux synthesis and crystal structure of $\mathrm{Tl}_{3} \mathrm{IO}$

Ralf Albrecht, ${ }^{\text {a }}$ Heinrich Menning, ${ }^{\text {a }}$ Thomas Doert ${ }^{\text {a }}$ and Michael Ruck ${ }^{\text {a, }, ~}{ }^{*}$

 Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany. *Correspondence e-mail: michael.ruck@tu-dresden.de

Single-crystals of thallium(I) iodide oxide $\mathrm{Tl}_{3} \mathrm{IO}$ were obtained as by-product in a hydroflux synthesis at 473 K for 10 h . A potassium hydroxide hydroflux with a water-base molar ratio of 1.6 and the starting materials $\mathrm{TlNO}_{3}, \mathrm{RhI}_{3}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ was used, resulting in a few black needle-shaped crystals. X-ray diffraction on a single-crystal revealed the hexagonal space group $P 6_{3} / m m c$ (No. 194) with lattice parameters $a=7.1512$ (3) \AA and $c=6.3639$ (3) $\AA . \mathrm{Tl}_{3} \mathrm{IO}$ crystallizes as hexagonal anti-perovskite (anti- BaNiO_{3} type) and is thus structurally related to the alkali-metal halide/auride oxides $M_{3} X \mathrm{O}(M=\mathrm{K}$, $\mathrm{Rb}, \mathrm{Cs} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{Au})$. The oxygen atoms center thallium octahedra. The [OTl_{6}] octahedra share trans faces, forming a linear chain along [001]. Twelve thallium atoms surround each iodine atom in an $\left[\mathrm{ITl}_{12}\right]$ anti-cuboctahedron. Thallium and iodine atoms together form a hexagonal close-sphere packing, in which every fourth octahedral void is occupied by oxygen.

1. Chemical context

The class of alkali-metal halide/auride oxides comprises several compounds with the general formula $M_{3} X \mathrm{O}(M=\mathrm{K}$, $\mathrm{Rb}, \mathrm{Cs} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{Au})$ (Sitta et al., 1991a,b; Feldmann \& Jansen, 1995a,b,c; Sabrowsky et al., 1996), $\mathrm{Li}_{3} \mathrm{BrO}$ (Wortmann et al., 1989), $\mathrm{Na}_{3} X^{\prime} \mathrm{O}\left(X^{\prime}=\mathrm{Cl}, \mathrm{Br}\right)$ (Sabrowsky et al., 1988; Hippler et al., 1990). These ternary oxides crystallize typically as anti-perovskites, i.e. in the cubic anti- CaTiO_{3} type. The cesium derivatives $\mathrm{Cs}_{3} \mathrm{BrO}, \mathrm{Cs}_{3} \mathrm{IO}$ and $\mathrm{Cs}_{3} \mathrm{AuO}$ adopt hexagonal anti-perovskite structures (anti- BaNiO_{3} type), whereas the $\mathrm{Cs}_{3} \mathrm{ClO}$ crystallizes as anti- $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ type and thus does not form a perovskite structure. The crystal structure of $\mathrm{Rb}_{3} \mathrm{IO}$ has both face and corner-sharing $\left[\mathrm{ORb}_{6}\right]$ octahedra (anti-BaFeO_{3-x} type). The adopted structure type depends on the size of the alkali-metal and halide/auride ions and their ratio. The stability range of the different perovskite phases can be estimated by using Goldschmidt's tolerance factor, where larger M and X ions tend to destabilize the cubic antiperovskite structure resulting in the hexagonal polymorph (Babel, 1969; Feldmann \& Jansen, 1995b).

For the synthesis of the title compound, the hydroflux method was used, which can be classified as intermediate between hydrothermal and flux synthesis (Chance et al., 2013). An approximately equimolar mixture of alkali-metal hydroxide (typically NaOH or KOH) and water is used as reaction medium (Albrecht et al., 2020a). Good solubility of oxides and hydroxides, highly crystalline reaction products suitable for single-crystal X-ray diffraction analysis, comparably low reaction temperatures and a pressureless setup are essential advantages of the hydroflux method. In this communication,

Table 1
Atomic coordinates and equivalent isotropic displacement parameters (in $10^{4} \AA^{2}$) in $\mathrm{Tl}_{3} \mathrm{IO}$ at 100 (1) K.

Atom	Wyckoff symbol	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Tl	$6 h$	$0.1608(1)$	$0.3216(1)$	$1 / 4$	$47(1)$
I	$2 d$	$2 / 3$	$1 / 3$	$1 / 4$	$53(1)$
O	$2 a$	0	0	0	$68(7)$

we report on the synthesis and crystal structure analysis of the thallium(I) iodide oxide $\mathrm{Tl}_{3} \mathrm{IO}$.

2. Structural commentary

Single-crystal X-ray diffraction on a black needle revealed the composition $\mathrm{Tl}_{3} \mathrm{IO}$ and a hexagonal structure in the space group $P 6_{3} / m m c$ (no. 194) with lattice parameters $a=$ 7.1512 (3) \AA and $c=6.3639$ (3) \AA at 100 (1) $\mathrm{K} . \mathrm{Tl}_{3} \mathrm{IO}$ crystallizes as hexagonal anti-perovskite (anti- BaNiO_{3} type; Fig. 1, Tables 1 and 2). The asymmetric unit consists of three atoms, thallium (site symmetry $m m 2$, Wyckoff position $6 h$), iodine $(\overline{6} m 2,2 d)$ and oxygen ($\overline{3} m ., 2 a$). The oxygen atoms center thallium octahedra. The $\left[\mathrm{OTl}_{6}\right]$ octahedra share trans faces, forming a linear chain along [001]. Twelve thallium atoms surround each iodine atom in a $\left[\mathrm{ITl}_{12}\right]$ anti-cuboctahedron (triangular orthobicupola). Thallium and iodine atoms together form a hexagonal close-sphere packing, in which every fourth octahedral void is occupied by oxygen. Thus, also the thallium atom centers an anti-cuboctahedron, which has the composition $\left[\mathrm{Tl}\left(\mathrm{I}_{4} \mathrm{Tl}_{8}\right)\right]$.

The $\left[\mathrm{OTl}_{6}\right]$ octahedron is slightly elongated along the chain direction. The $\mathrm{O}-\mathrm{Tl}$ bond length of 2.549 (1) \AA is about 1% longer than in $\mathrm{Tl}_{2} \mathrm{O}$, at 2.517 (1) \AA (Sabrowsky, 1971). The $\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}$ angles along the chain parallel to c are $94.8(1)^{\circ}$. The shortest $\mathrm{Tl} \cdots \mathrm{Tl}$ distances in $\mathrm{Tl}_{3} \mathrm{IO}$ are with 3.449 (1) \AA, very similar to those in thallium metal, which has $\mathrm{Tl} \cdots \mathrm{Tl}$ distances of 3.405 (1) and 3.455 (1) \AA in its hexagonal sphere packing (Barrett, 1958). Accordingly, the [$\left.\mathrm{ITl}_{12}\right]$ anticuboctahedra are also stretched along [001], with $\mathrm{Tl}-\mathrm{I}$ distances of

Figure 1
Crystal structure of $\mathrm{Tl}_{3} \mathrm{IO}$ in $\mathrm{P6}_{3} / m m c$, highlighting the one-dimensional chains consisting of $\left[\mathrm{OTl}_{6}\right]$ octahedra. Ellipsoids enclose 99% of the probability density of the atoms.

Table 2
Anisotropic displacement parameters (in $10^{4} \AA^{2}$) in $\mathrm{Tl}_{3} \mathrm{IO}$ at 100 (1) K.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{12}	U_{13}
Tl	$38(1)$	$24(1)$	$73(1)$	0	0	$12(1)$
I	$42(1)$	$42(1)$	$77(2)$	0	0	$21(1)$
O	$68(10)$	$68(10)$	$68(19)$	0	0	$34(5)$

3.576 (1) \AA and 3.833 (1) A. Although thallium(I) has a larger ionic radius ($1.70 \AA$ for c.n. $=12$; Shannon, 1976) than potassium ($1.64 \AA$ for c.n. $=12$), the $M-\mathrm{O}, M \cdots M$ and the average $M-\mathrm{I}$ distances in $\mathrm{Tl}_{3} \mathrm{IO}$ are smaller than in $\mathrm{K}_{3} \mathrm{IO}$ by 3.5%, 7.5% and 1%, respectively (Feldmann \& Jansen, 1995b).

3. Synthesis and crystallization

Thallium(I) iodide oxide, $\mathrm{Tl}_{3} \mathrm{IO}$, was synthesized in a potassium hydroxide hydroflux. The reaction was carried out in a PTFE-lined 50 mL Berghof type DAB-2 stainless steel autoclave starting from TlNO_{3} (0.38 mmol ; abcr, 99.5%), RhI_{3} (0.06 mmol ; abcr, 99%), and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(0.19 \mathrm{mmol}$; VEB Laborchemie Apolda, 99\%). Water and potassium hydroxide (86%, Fisher Scientific) in the molar ratio of $1.6: 1.0$ were added to these compounds. The sealed autoclave was heated at a heating rate of $2 \mathrm{~K} \mathrm{~min}^{-1}$ to 473 K and after 10 h cooled to room temperature at a rate of $0.1 \mathrm{~K} \mathrm{~min}^{-1}$. The reaction product after washing with water mainly consisted of thallium(I) iodide, thallium(III) oxide, barium carbonate and a brown powder of an unidentified rhodium-containing compound. A few black single crystals of $\mathrm{Tl}_{3} \mathrm{IO}$ with a needlelike morphology were found, which are sensitive to water and other protic solvents. In contact with water, the $\mathrm{Tl}_{3} \mathrm{IO}$ crystals immediately turn yellow, probably due to the formation of thallium(I) hydroxide and thallium(I) iodide, which are both yellow. Energy-dispersive X-ray spectroscopy on $\mathrm{Tl}_{3} \mathrm{IO}$ singlecrystals revealed a disproportionately high oxygen content, indicating surface decomposition.

Several experiments failed to exchange rhodium(III) iodide with other iodine sources like potassium iodide, copper(I) iodide or silver(I) iodide. Likewise, experiments without barium nitrate were not successful. However, when both starting materials were used, $\mathrm{Tl}_{3} \mathrm{IO}$ was obtained reproducibly, also at reaction temperatures of 423 K or 523 K . Similarly, the hydrothermal synthesis of $\mathrm{Na}_{3}\left[\mathrm{Tl}(\mathrm{OH})_{6}\right]$ starting from thallium(I) sulfate required heavy metal salts like bismuth nitrate (Giesselbach, 2002). The oxidation of thallium(I) to thallium(III) in this reaction was achieved by oxygen in alkaline solutions (Rich, 2007).

The alkali-metal oxide halides $M_{3} X \mathrm{O}$ are reported to be very sensitive to traces of moisture or carbon dioxide due to their highly basic nature (Feldmann \& Jansen, 1995b). Remarkably, $\mathrm{Tl}_{3} \mathrm{IO}$ crystallizes in the presence of water from the hydroflux. In other experiments, we synthesized a water sensitive oxohydroxoferrate (Albrecht et al., 2019) or an oxidation sensitive manganate(V) from hydroflux (Albrecht et al., 2020b). Obviously, the activity of water is dramatically reduced in these aqueous salt melts.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3.

Funding information

This work was financially supported by the Deutsche Forschungsgemeinschaft (project-id: 438795198).

References

Albrecht, R., Doert, T. \& Ruck, M. (2019). ChemistryOpen 8, 13991406.

Albrecht, R., Doert, T. \& Ruck, M. (2020a). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000031
Albrecht, R., Doert, T. \& Ruck, M. (2020b). Z. Anorg. Allg. Chem. In the press. https://doi.org/10.1002/zaac.202000065.
Babel, D. (1969). Z. Anorg. Allg. Chem. 369, 117-130.
Barrett, C. S. (1958). Phys. Rev. 110, 1071-1072.
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chance, W. M., Bugaris, D. E., Sefat, A. S. \& zur Loye, H.-K. (2013). Inorg. Chem. 52, 11723-11733.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Feldmann, C. \& Jansen, M. (1995a). Z. Anorg. Allg. Chem. 621, 201206.

Feldmann, C. \& Jansen, M. (1995b). Z. Anorg. Allg. Chem. 621, 19071912.

Feldmann, C. \& Jansen, M. (1995c). Z. Naturforsch. Teil B, 50, 14151416.

Giesselbach, M. (2002). Neue komplexe Hydroxide, Oxidhydroxide und Oxide von schweren Hauptgruppenmetallen. PhD Thesis, Universität Köln, Germany.
Hippler, K., Sitta, S., Vogt, P. \& Sabrowsky, H. (1990). Acta Cryst. C46, 736-738.
Rich, R. (2007). Inorganic Reactions in Water, p. 321. Berlin Heidelberg: Springer-Verlag.
Sabrowsky, H. (1971). Z. Anorg. Allg. Chem. 381, 266-279.
Sabrowsky, H., Feldbaum-Möller, E., Fischer, K., Sitta, S., Vogt, P. \& Winter, V. (1996). Z. Anorg. Allg. Chem. 622, 153-156.

Table 3
Experimental details.
Crystal data
Chemical formula $\mathrm{Tl}_{3} \mathrm{IO}$
M_{r}
Crystal system, space group
Temperature (K)
a, c (\AA)
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.018,0.041,1.29$
No. of reflections 480
No. of parameters
10
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$
$\mathrm{Tl}_{3} \mathrm{IO}$
756.01

Hexagonal, $P 6_{3} / m m c$
100
7.1512 (3), 6.3639 (3)
281.85 (3)

2
Mo $K \alpha$
90.87
$0.09 \times 0.05 \times 0.03$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Sabrowsky, H., Paszkowski, K., Reddig, D. \& Vogt, P. (1988). Z. Naturforsch. Teil B, 43, 238-239.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sitta, S., Hippler, K., Vogt, P. \& Sabrowsky, H. (1991a). Z. Anorg. Allg. Chem. 597, 197-200.
Sitta, S., Hippler, K., Vogt, P. \& Sabrowsky, H. (1991b). Z. Kristallogr. 196, 193-196.
Wortmann, R., Sitta, S. \& Sabrowsky, H. (1989). Z. Naturforsch. Teil $B, 44,1348-1350$.

supporting information

Acta Cryst. (2020). E76, 1638-1640 [https://doi.org/10.1107/S2056989020012359]
Hydroflux synthesis and crystal structure of $\mathrm{TI}_{3} \mathrm{IO}$
Ralf Albrecht, Heinrich Menning, Thomas Doert and Michael Ruck

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Thallium(I) iodide oxide

Crystal data

$\mathrm{Tl}_{3} \mathrm{IO}$
$M_{r}=756.01$
Hexagonal, $\mathrm{Pb}_{3} / \mathrm{mmc}$
$a=7.1512$ (3) A
$c=6.3639(3) \AA$
$V=281.85(3) \AA^{3}$
$Z=2$
$F(000)=608$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min }=0.113, T_{\text {max }}=0.749$
15853 measured reflections
$D_{\mathrm{x}}=8.908 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8223 reflections
$\theta=3.2-46.5^{\circ}$
$\mu=90.87 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, black
$0.09 \times 0.05 \times 0.03 \mathrm{~mm}$

480 independent reflections
442 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=45.0^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-14 \rightarrow 14$
$k=-11 \rightarrow 14$
$l=-11 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.041$
$S=1.29$
480 reflections
10 parameters
0 restraints
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0193 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.80 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-2.01 \mathrm{e}^{-3}$
Extinction correction: SHELXL-2016/6 (Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0035 (2)

supporting information

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
Tl	$0.16078(2)$	$0.32156(2)$	0.250000	$0.00465(5)$
I	0.666667	0.333333	0.250000	$0.00534(7)$
O	0.000000	0.000000	0.000000	$0.0068(7)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tl	$0.00378(6)$	$0.00238(6)$	$0.00733(9)$	$0.00119(3)$	0.000	0.000
I	$0.00418(9)$	$0.00418(9)$	$0.00765(18)$	$0.00209(5)$	0.000	0.000
O	$0.0068(10)$	$0.0068(10)$	$0.0068(19)$	$0.0034(5)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Tl}-\mathrm{Tl}{ }^{\mathrm{i}}$	3.4494 (3)	$\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	3.7538 (1)
$\mathrm{Tl}-\mathrm{Tl}^{\mathrm{ii}}$	3.7538 (1)	$\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	3.7018 (3)
$\mathrm{Tl}-\mathrm{Tl}{ }^{\text {iii }}$	3.7538 (1)	$\mathrm{Tl}-\mathrm{Tl}{ }^{\text {viii }}$	3.7018 (3)
$\mathrm{Tl}-\mathrm{Tl}^{\text {iv }}$	3.4494 (3)	Tl-O	2.5490 (1)
$\mathrm{Tl}-\mathrm{Tl}{ }^{\mathrm{v}}$	3.7538 (1)	$\mathrm{Tl}-\mathrm{O}^{\text {ix }}$	2.5490 (1)
$\mathrm{Tl}{ }^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{iv}}$	60.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {viii }}$	132.580 (2)
$\mathrm{Tl}^{\text {iv }}-\mathrm{Tl}-\mathrm{Tl}^{\text {liii }}$	62.648 (2)	$\mathrm{O}^{\text {ix }}-\mathrm{Tl}-\mathrm{Tl}^{\text {viii }}$	132.580 (2)
$\mathrm{Tl}^{\mathrm{vii}}-\mathrm{Tl}-\mathrm{Tl}^{\text {vi }}$	90.0	$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\text {iv }}$	47.420 (2)
$\mathrm{Tl}^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}^{\text {viii }}$	180.0	$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{i}}$	47.420 (2)
$\mathrm{Tl}^{\mathrm{v}}-\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	115.917 (5)	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	42.580 (2)
$\mathrm{Tl}^{\text {iv }}-\mathrm{Tl}-\mathrm{Tl}^{\text {viii }}$	120.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {iv }}$	47.420 (2)
$\mathrm{Tl}^{\mathrm{li}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{v}}$	149.235 (3)	$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	132.580 (2)
Tl - $\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	120.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	132.580 (2)
$\mathrm{Tl}{ }^{\text {iii }}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	149.235 (3)	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{i}}$	47.420 (2)
$\mathrm{Tl}^{\mathrm{iv}}-\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	180.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{v}}$	108.774 (4)
$\mathrm{Tl}^{\mathrm{iv}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	90.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {ii }}$	42.580 (2)
$\mathrm{Tl}^{\text {viii }}$ - $\mathrm{Tl}-\mathrm{Tl}^{\text {vii }}$	60.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{Tl}^{\text {vi }}$	108.774 (4)
$\mathrm{Tl}^{\mathrm{v}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	54.704 (4)	$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	42.580 (2)
$\mathrm{Tl}^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{ji}}$	62.648 (2)	O^{ix} - $\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	108.774 (4)
$\mathrm{Tl}^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}{ }^{\text {iii }}$	90.0	$\mathrm{O}-\mathrm{Tl}-\mathrm{O}^{\text {ix }}$	77.242 (5)
$\mathrm{Tl}^{\text {iv }}-\mathrm{Tl}-\mathrm{Tl}^{\text {ii }}$	90.0	$\mathrm{Tl}^{\mathrm{x}}-\mathrm{O}-\mathrm{Tl}^{\mathrm{i}}$	94.839 (4)
T ${ }^{\text {viii }}$ - $\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	90.0	$\mathrm{Tl}^{\mathrm{x}}-\mathrm{O}-\mathrm{Tl}{ }^{\text {iii }}$	85.161 (4)
Tl ${ }^{\text {viii }}$ - $\mathrm{Tl}-\mathrm{Tl}{ }^{\text {ii }}$	117.352 (2)	$\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}^{\mathrm{x}}$	180.0
$\mathrm{Tl}{ }^{\text {ii }}-\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	54.704 (4)	$\mathrm{Tl}^{\text {iv- }}-\mathrm{O}-\mathrm{Tl}^{\mathrm{i}}$	85.161 (4)
$\mathrm{Tl}^{\text {vii }}-\mathrm{Tl}-\mathrm{Tl}^{\text {ii }}$	90.0	$\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}^{\text {ii }}$	94.840 (4)

$\mathrm{Tl}^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}^{\text {vi }}$	62.648 (2)	$\mathrm{Tl}^{\text {iv }}-\mathrm{O}-\mathrm{Tl}^{\text {iii }}$	94.839 (4)
$\mathrm{Tl}^{\mathrm{i}}-\mathrm{Tl}-\mathrm{Tl}^{v}$	90.0	$\mathrm{Tl}^{\mathrm{x}}-\mathrm{O}-\mathrm{Tl}^{\text {li }}$	85.160 (4)
$\mathrm{Tl}^{\text {viii }}-\mathrm{Tl}-\mathrm{Tl}^{\text {vi }}$	117.352 (2)	$\mathrm{Tl}{ }^{\text {ii }}-\mathrm{O}-\mathrm{Tl}^{\mathrm{i}}$	94.839 (4)
$\mathrm{Tl}^{\mathrm{iv}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{v}}$	62.648 (2)	$\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}^{\text {iv }}$	85.160 (4)
$\mathrm{Tl}^{\mathrm{li}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{vi}}$	115.917 (5)	$\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}{ }^{\text {iii }}$	94.840 (4)
$\mathrm{Tl}^{\text {viii }}-\mathrm{Tl}-\mathrm{Tl}^{v}$	90.0	$\mathrm{Tl}^{\mathrm{x}}-\mathrm{O}-\mathrm{Tl}^{\text {iv }}$	94.840 (4)
$\mathrm{Tl}^{\text {vii }}$ - $\mathrm{Tl}-\mathrm{Tl}^{\mathrm{v}}$	117.352 (2)	$\mathrm{Tl}^{\mathrm{ii}}-\mathrm{O}-\mathrm{Tl}^{\text {iii }}$	85.161 (4)
$\mathrm{Tl}^{\mathrm{vii}}$ - $\mathrm{Tl}-\mathrm{Tl}^{\text {iii }}$	117.352 (2)	$\mathrm{Tl}{ }^{\text {iii }}-\mathrm{O}-\mathrm{Tl}^{\text {iv }}$	180.0
$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\text {ii }}$	108.774 (4)	$\mathrm{Tl}^{\mathrm{i}}-\mathrm{O}-\mathrm{Tl}^{\text {iii }}$	180.0
$\mathrm{O}^{\mathrm{ix}}-\mathrm{Tl}-\mathrm{Tl}^{\mathrm{v}}$	42.580 (2)	$\mathrm{Tl}-\mathrm{O}-\mathrm{Tl}^{\mathrm{i}}$	85.160 (4)

Symmetry codes: (i) $-y, x-y, z$; (ii) $x-y, x,-z$; (iii) $y,-x+y,-z$; (iv) $-x+y,-x, z$; (v) $y,-x+y,-z+1$; (vi) $x-y, x,-z+1$; (vii) $-x+y,-x+1, z$; (viii) $-y+1$, $x-y+1, z$; (ix) $-x,-y, z+1 / 2$; (x) $-x,-y,-z$.

