



Received 20 July 2020 Accepted 31 August 2020

Edited by J. T. Mague, Tulane University, USA

**Keywords:** macrocycle; conformation; planar chirality; crystal structure.

CCDC references: 1944828; 1944827; 1944826

Supporting information: this article has supporting information at journals.iucr.org/e

### Structures of three disubstituted [13]-macrodilactones reveal effects of substitution on macrocycle conformation

Kelli M. Rutledge,<sup>a</sup> Caleb Griesbach,<sup>a</sup> Brandon Q. Mercado<sup>b\*</sup> and Mark W. Peczuh<sup>a\*</sup>

<sup>a</sup>Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA, and <sup>b</sup>Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520, USA. \*Correspondence e-mail: brandon.mercado@yale.edu, mark.peczuh@uconn.edu

The synthesis and crystal structures of three new disubstituted [13]-macrodilactones, namely, *trans*-4,8-dimethyl-1,10-dioxacyclotridec-5-ene-2,9-dione,  $C_{13}H_{20}O_4$ , **I**, *cis*-4-(4-bromophenyl)-13-methyl-1,10-dioxacyclotridec-5-ene-2,9dione  $C_{18}H_{21}BrO_4$ , **II**, and *trans*-11-methyl-4-phenyl-1,10-dioxacyclotridec-5ene-2,9-dione,  $C_{18}H_{22}O_4$ , **III**, are reported and their conformations are put in the context of other [13]-macrodilactone structures reported previously. Together, they show that the number, location, and relative disposition of groups attached at the termini of planar units of the [13]-macrodilactones subtly influence their aspect ratios.

#### 1. Chemical context

Macrocyclic rings adopt particular conformations by balancing the contributions of multiple, local domain features. We have studied the synthesis, structure, and function of a specific family of macrocycles, the [13]-macrodilactones. These macrocycles, which are made more rigid by ester and alkene planar units, minimize transannular interactions of substituents at stereogenic centers along their backbone. The overall effect of the number of atoms in the ring, the planar units, and the stereogenic centers promotes the adoption of a conformation that contains an element of planar chirality.



The modularity of macrocycles lends to their attractiveness as scaffolds for the development of new bioactive compounds (Whitty *et al.*, 2017; Yudin, 2015; Driggers *et al.*, 2008). Macrocycles have mini-domains of a few atoms that can influence the conformation of the ring, modulate rigidity/ flexibility, and tune their physicochemical and biochemical properties (Whitty *et al.*, 2016; Larsen *et al.*, 2015). For the [13]macrodilactone motif exemplified by *trans*-4,8-dimethyl-1,10-

dioxacyclotridec-5-ene-2,9-dione I in Fig. 1, two four-atom





### research communications



Figure 1

Ribbon motif of [13]-macrodilactones. (a) Structure and number of [13]macrodilactones using compound I as an illustration. (b) Schematic of the ring showing the three planar units: two esters (brown) and alkene (blue). Key atoms at the termini of the planar units are marked with asterisks. (c) Molecular structure of I from X-ray data.

ester units (C13/O1/C2/C3 and C8/C9/O10/C11) are linked via a central carbon (C12) and one trans-2-butenyl moiety (atoms C4–C7). By virtue of the planarity of the multi-atom units, the ring is significantly stiffened compared to a saturated thirteenmembered ring. The conformation, which is informally referred to as the 'ribbon' conformation, arises from a balance between the number of atoms that make up the ring and the nature of the planar units that reduce its flexibility. There is a planar chirality associated with the macrocycle (only the Rconfigured plane, pR, form is shown for I) that arises from the asymmetry around the alkene unit as it orients itself perpendicular to the mean plane of the macrocycle. The planar chirality of the [13]-macrodilactones is directly analogous to that of E-cyclooctene (Fyvie & Peczuh, 2008a,b; Eliel & Wilen, 1994). Viewed from above (parallel to the alkene), the ribbon appears roughly triangular (Fig. 1c, top), with a long axis and a short axis.

Here we report on the synthesis and solid-state structural characterization of [13]-macrodilactones **I**, **II**, and **III**. These new structures, along with eight more previously reported [13]-macrodilactone structures, are analyzed to assess how substitution at specific atoms of the backbone influences the conformation.

#### 2. Structural commentary

Each of the new structures has two stereogenic centers. The synthetic routes were not stereoselective, and the products

were isolated as racemates. Consequently, each compound crystallized as a racemate. The stereogenic centers of compounds **I**, **II**, and **III** seen in Fig. 2 establish only the relative stereochemistry observed in the asymmetric unit for each one. The only common feature of **I**, **II**, and **III** is the [13]-macrodilactone core. All bond distances and angles are in the expected ranges and unexceptional. A more in depth analysis of molecular aspect ratios can be found in the *Database survey*.

#### 3. Database survey

A survey of the Cambridge Structural Database (CSD) yielded a total of 17 structures of [13]-macrodilactones, counting the three new structures reported here (Table 1). Of these structures, 11 share the same fundamental ribbon conformation described earlier. Comparison of their structures in light of their substitution patterns along the macro-



#### Figure 2

The molecular structures of I, II, and III with 50% displacement ellipsoid probability levels. Note that the structures here are of the *pS*-configured planar chirality.

Table 1

Substitution patterns and refcodes for [13]-macrodilactones.

Cpd. = compound identifier in Fig. 3, Conf. = conformer adopted in the crystal structure and Subs. = substituted positions on [13]-macrodilactone.

| Entry | Cpd. | Conf.  | Subs.     | cis/trans | Refcode | Citation                         |
|-------|------|--------|-----------|-----------|---------|----------------------------------|
| 1     | а    | ribbon | 11,13     | trans     | URILEO  | Ma & Peczuh (2013)               |
| 2     | b    | ribbon | 11 (mono) | -         | KOHLAV  | Fyvie & Peczuh (2008a)           |
| 3     | с    | ribbon | 3 (mono)  | -         | XUFKOA  | Magpusao, Rutledgeet al. (2015)  |
| 4     | _    | ribbon | D-gluco   | trans     | XOCWIW  | Fyvie & Peczuh (2008b)           |
| 5     | d    | ribbon | 3,8       | trans     | XUFLAN  | Magpusao, Rutledge et al. (2016) |
| 6     | е    | ribbon | _         | -         | IJEHAI  | Magpusao, Rutledge et al. (2016) |
| 7     | f    | ribbon | 3,11      | cis       | IJEHOW  | Magpusao, Rutledge et al. (2016) |
| 8     | g    | ribbon | 4,13      | cis       | II      | This work (CCDC 1944827)         |
| 9     | ň    | ribbon | 4,8       | trans     | I       | This work (CCDC 1944826)         |
| 10    | i    | ribbon | 4 (mono)  | -         | ECOYED  | Rutledge, Hamlin et al. (2017)   |
| 11    | i    | ribbon | 3,13      | trans     | IJEHEM  | Magpusao, Rutledge et al. (2016) |
| 10    | _    | other  | 4 (mono)  | -         | ECOYED  |                                  |
| 12    | _    | other  | 11,13     | cis       | URILAK  | Ma & Peczuh (2013)               |
| 3     | с    | other  | 3 (mono)  | -         | XUFKOA  | · · ·                            |
| 13    | _    | other  | 11,13     | cis       | URILAK  | Ma & Peczuh (2013)               |
| 14    | _    | other  | 3,11      | trans     | IJEHUC  | Magpusao, Rutledge et al. (2016) |
| 15    | k    | ribbon | 4,11      | trans     | III     | This work (CCDC 1944828)         |
| 16    | _    | other  | 3,8       | cis       | XUFKUG  | Magpusao, Rutledge et al. (2016) |
| 17    | _    | other  | 8,11      | cis       | IJEHIQ  | Magpusao, Rutledge et al. (2016) |

cyclic backbone revealed subtle differences in their conformations. Aspect ratio, defined as the ratio of the C12-tocentroid of C5 and C6 (length, or long-axis) and the C2-to-C9 carbonyl carbon distance (width, or short-axis) of the macrocyclic ring, was our metric to express the changes in conformation. By virtue of the cyclic structure, compression along one axis leads to expansion along the complementary one, and *vice versa*, affecting the aspect. Note that structure *e* (Fig. 3) is of the unsubstituted [13]-macrodilactone, containing



Figure 3 Length wid

Length, width, and aspect ratios of *pS*-configured [13]-macrodilactones in the ribbon conformation. The inset shows the distances measured in the macrocycles. All error bars are shown to  $3\sigma$ , but some are smaller than the marker chosen to represent the point. The boxes highlight data from compounds **I** (*h*), **II** (*g*), and **III** (*k*) in this report. All distances are shown in Å.

no pendant groups along its backbone; it represents a reference point for comparisons amongst the other substituted macrocycles.

Subtle differences in the aspect ratios of the [13]-macrodilactones depicted in Fig. 3 were attributed to the location and number but not size of groups attached to the ring, which we found remarkable. For example, the positioning of a single substituted atom affected the aspect ratio as exemplified by b, c, and i. Trends for di-substituted [13]-macrodilactones separated into two groups. In the first group are the 'symmetrical' di-substituted compounds: trans-11,13- (a), trans -3,8- (d), and trans-4,8- (h, compound I). The trend for this group largely follows that in the monosubstituted series. That is, the aspect ratio increased slightly when substitutions were made on either end of the ester units but decreased upon substitution at the allylic carbons. The second group of di-substituted macrocycles is a catch-all that collects compounds where the substituted carbons are either on the same side of the ring relative to its long-axis [cis-4,13- (g, compound II) and trans-3,13 (j)] or opposite sides [cis-3,11 (f) and trans-4,11 (k, compound III)]. These compounds pit substitutions at a site (C11/13) that stretches the long-axis with sites that either also extend (C3/C8) or compress (C4/C7) it. A clear rationale to explain relationships between these substitution patterns and their aspect ratios was not apparent. One observation was that any substitution at the allylic positions tended to compress the aspect ratios of all the [13]-macrodilactones. Aspect ratios ranged from 1.16 on the low end (q, compound III) to 1.32 (a)on the high end. That represents a 14% change in aspect ratio linked only to the number and location of substituted carbons along the backbone of the [13]-macrodilactone structure.

#### 4. Computational analysis of conformations

To ascertain whether the solid-state structures were representative of their local minimum-energy conformations, gas-



Figure 4

Overlays of crystallographic (green) and the DFT-optimized (black) structures for compounds a, f, g (II), h (I), and k (III).

phase computational optimizations were performed on the new [13]-macrodilactones I-III and also compounds a and e in Fig. 3. The pR conformers from the X-ray data were optimized via DFT using the Schrödinger Maestro application Jaguar (Bochevarov et al., 2013). Four different levels of theory, chosen because of their large number of basis functions and their inclusion of bromine orbitals, were used with the calculation. B3LYD-D3/CC-PVDC, M06-2X-D3/CC-PVDZ, B3LYD-D3/LACVP\*\*, and M06-2X-D3/LACVP\*\*. B3LYD-D3 was chosen because of its widespread use and M06-2X-D3 was chosen for its ability to accurately describe non-covalent interactions within the macrocycles (Grimme, 2011). Single point energy calculations were run on both the conformer from the crystallographic data and the conformer optimized at the B3LYD-D3/CC-PVDC level of theory. RMSD values comparing the 13 non-hydrogen atoms of the macrocycle ring were calculated comparing crystallographic structure and DFT-optimized conformers (Fig. 4). Values that express the average RMSD across the different DFT calculations ranged from 0.055 to 0.251 Å (Table S3 in the supporting information). The low values suggest that [13]-macrodilactones do not significantly change their conformations upon optimization.

#### 5. Supramolecular features

The crystal structures of **I**, **II** and **III** were searched for nonbonded interactions that may influence the measurements reported in Fig. 2. The program *Mercury* (Macrae, *et al.*, 2020) highlighted close contacts, which are defined as less than or equal to the sum of the van der Waals radii of atom pairs (Rowland *et al.*, 1996). In **I**, a contact of 3.188 (4) Å between the carbonyl oxygen O17 and methylene carbon C11 in the molecule generated by the *c*-glide operation was identified. Molecules associated with this contact line up along [001]. In **II**, a Br···Br contact of 3.6466 (2) Å was identified where Br1 is near the crystallographic 2<sub>1</sub> screw axis. Sequential applications of this symmetry operation generate a zigzag pattern of Br···Br contacts along [010]. In **III**, a contact of 3.386 (4) Å between C3 and the *para* carbon, C18, of the pendant phenyl ring is generated by the the  $2_1$  screw axis and repeats along [001]. These distances fall well within what is observed in other solid state structures and no attractive interactions were found in **I**, **II**, or **III** (see Figures S1 to S7 in the supporting information).

#### 6. Synthesis and crystallization

As shown in Fig. 5, [13]-macrodilactones I, II, and III were prepared by an established synthetic route that entailed sequential acylation reactions, followed by macrocyclization *via* ring closing metathesis (RCM) (Magpusao *et al.*, 2015, 2016). Because the syntheses were not stereo-controlled and each of the new compounds contained two stereogenic centers, two diastereomeric products (each racemic) arose for each macrocycle. The diastereomers of I, II, and III in Fig. 4 are the ones that gave rise to the 'ribbon' conformers presented herein. See the supporting information for additional details on the synthesis of compounds I–III. Single crystals of the compounds were prepared by slow diffusion of



hexane vapor into ethyl acetate:hexanes solutions of the compounds.

#### General

3-Bromo-phenyl-4-pentenoic acid, 3-phenyl-4-pentenoic acid and monoacylated 3-methyl-3-hydroxypropyl-4-pentenoate were prepared as previously described (Magpusao *et al.*, 2015). Unless stated otherwise, all acylations were conducted at 273 K and allowed to warm to room temperature over 12 h. Reactions were monitored using TLC. Spots on TLC plates were visualized with UV light and *p*-anisaldehyde or ceric ammonium molybdate (CAM) stains. Chromatography was performed on silica gel and solvent systems were based on the  $R_{\rm f}$  values. <sup>1</sup>H NMR spectra were referenced to CDCl<sub>3</sub> proton ( $\delta$  H 7.27 ppm) and <sup>13</sup>C NMR to the CDCl<sub>3</sub> carbon ( $\delta$  C 77.2 ppm).

#### 1,3-Di-(3-methyl-4-pentenoyloxy)-propane

Into a 25 mL round-bottom flask were added dicyclohexylcarbodiimide (DCC) (1.08 eq.), N,N-dimethylaminopyridine (DMAP) (0.3 eq.) and dichloromethane (DCM) (7mL) and the solution was cooled to 273 K under nitrogen. Then 3-methyl-4-pentenoic acid (1.0 eq.) was added and the mixture stirred at the same temperature for 30 minutes until a white suspension formed. A solution of 1,3-butanediol (0.5 eq.) in DCM (3 mL) was then added and the mixture was stirred overnight at room temperature. After completion of the reaction, the mixture was filtered through a short pad of celite, rinsed with DCM, and solvent from the filtrates was removed under reduced pressure. The residue was then dissolved in cold ether to precipitate excess dicyclohexyl urea (DCU), filtered through a pad of celite, and rinsed with additional ether. Ether from the combined filtrates was removed under reduced pressure and the residue was purified by column chromatography (10:90 EtOAc:Hex) to give a clear colorless oil (43%). R<sub>f</sub> 0.47 (10:90 EtOAc:Hex); <sup>1</sup>H NMR  $(CDCl_3)$  400 MHz  $\delta$  5.73 (*ddd*, *J* = 17.2, 10.2, 7.3 Hz, 2H), 4.96 (*dd*, *J* = 22.3, 17.2 Hz, 4H), 4.13 (*dd*, *J* = 6.33, 6.33 Hz, 4H), 2.65 (s, J = 7.0, 7.0, 7.0, 7.0, 7.0, 7.0, 7.0 Hz, 2H), 2.29 (dddd or dq, J = 22.1, 14.8, 14.8, 14.8 Hz, 4H), 1.94 (*ddd* or *dq*, *J* = 12.5, 6.2, 6.2, 6.2 Hz, 2H), 1.03 (d, J = 6.6 Hz, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz 8 172.4, 142.5, 113.5, 61.0, 41.4, 34.6, 28.2, 19.9; TOF HRMS (DART) m/z calculated for  $C_{15}H_{24}O_4 [MH]^+$  calculated 269.1753, found 269.1749.

#### Sequential acylation method

To a 25 mL round-bottom flask was added DCM (7 mL), dicyclohexylcarbodiimide (DCC) (1.08 eq.) and *N*,*N*-dimethylaminopyridine (DMAP) (0.3 eq.) and the mixture was cooled to 273 K. 4-Pentenoic acid (1.0 eq.) was added and the mixture was stirred at the same temperature for 30 min until a white suspension was observed. Then, 1,3-propanediol or 1,3butanediol (1.0 eq.) in DCM (3 mL) was added and the mixture was stirred overnight at room temperature. After completion of the reaction, the mixture was filtered through a short pad of celite, rinsed with DCM and solvent from the filtrates was removed under reduced pressure. The residue was then dissolved in cold ether to precipitate excess DCU, filtered through a pad of celite, and rinsed with additional ether. The crude residue was purified by silica gel column chromatography (15:85 EtOAc:Hex) to give the monoacylated product. The same procedure, where the mono-acylated alcohol was used in place of the diol, was then followed for the second acylation.

### *1-[3-(p-Bromophenyl)-4-pentenoyloxy]-1-methylpropyl-4-pentenoate*

Synthesis followed the sequential acylation method above to give the compound in 70% yield as a colorless oil.  $R_{\rm f}$  0.56 (hexanes: EtOAc 80:20); <sup>1</sup>H NMR (CDCl<sub>3</sub>) 400 MHz  $\delta$  7.42 (*d*, J = 8.31 Hz, 2H), 7.09 (*d*, J = 8.3 Hz, 2H), 5.93 (*dddd*, J = 16.8, 10.3, 6.5, 1.7 Hz, 1H), 5.8 (*m*, 1H), 5.01 (*m*, 5H), 4.02 (*m*, 2H), 3.81 (*ddd*, J = 7.5, 7.5, 7.5 Hz, 1H), 2.73 (*m*, 1H), 2.64 (*ddd*, J = 15.3, 7.9, 0 Hz, 1H) 2.38 (*m*, 4H), 1.81 (*m*, 2H), 1.17 (*d*, J = 6.3 Hz, 2H), 1.12 (*d*, J = 6.3 Hz, 1H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz  $\delta$  173.1, 171.2, 141.5, 139.9, 136.8, 131.8, 129.6, 120.8, 115.7, 115.4, 68.3, 60.7, 45.3, 40.4, 34.9, 33.7, 29.0, 20.1.

3-(3-Phenyl-4-pentenoyloxy)-1-methylpropyl-4-pentenoate

The synthesis followed the sequential acylation method above to give the compound in 74% yield as a yellow oil.  $R_{\rm f}$  0.22 (hexanes: EtOAc 95:5); <sup>1</sup>H NMR (CDCl<sub>3</sub>) 400 MHz  $\delta$  7.32 (*m*, 2H), 7.21 (*m*, 3H), 5.98 (*ddd*, *J* = 18.2, 10.14, 7.8 Hz, 1H), 5.81 (*m*, 1H), 5.0 (*m*, 5H), 4.21 (*m*, 2H), 3.86 [*ddd* (or *dt*), *J* = 7.4, 7.4, 7.4 Hz, 1H], 2.80 (*dd*, *J* = 15.1, 8.12 Hz, 1H), 2.70 (*dd*, *J* = 15.1, 7.4 Hz, 1H), 2.40 (*m*, 4H), 1.78 (*m*, 2H) 1.21 (*d*, 3H, *J* = 5.6 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz  $\delta$  172.6, 171.8, 142.5, 140.4, 136.8, 128.7, 127.7, 126.8, 115.7, 115.0, 67.9, 60.9, 45.7, 40.3, 34.9, 33.9, 29.0, 20.2.

#### **General RCM Method**

Under an atmosphere of nitrogen, Grubbs' secondgeneration catalyst (0.10 eq.) was added to a solution of the diene in sufficient toluene so that the [diene]  $\leq 10 \text{ m}M$ . The mixture was heated to 383 K for 18 h. When the reaction was complete, the toluene was removed under reduced pressure to give a residue that was purified by column chromatography.

trans-4,8-Dimethyl-1,10-dioxacyclotridec-5-ene-2,9-dione (I)

Followed the general method of RCM in 21% overall yield (3:2 *cis:trans*) as a white solid. Compound **I** is the *trans* isomer;  $R_f$  0.45 (hexanes: EtOAc 80:20) (higher  $R_f$ , *trans*); <sup>1</sup>HNMR (CDCl<sub>3</sub>) 400 MHz  $\delta$  5.80 (*dd*, J = 5.9, 2.6 Hz, 2H), 4.43 (*ddd*, J = 11.1, 8.8, 6.8 Hz, 2H), 3.91 (*dd*, J = 4.0, 4.0 Hz, 1H), 3.88 (*dd*, J = 4.0, 4.0 Hz, 1H), 2.61 (*m*, 2H), 2.30 (*dd*, J = 13.4, 3.2 Hz, 2H), 2.11 (*dd*, J = 12.7, 12.7 Hz, 2H), 2.00 (*dddd*, J = 9.5, 9.5, 4.0, 4.0 Hz, 2H), 1.03 (*d*, J = 6.9 Hz, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz  $\delta$  173.2, 134.3, 59.8, 42.5, 35.9, 25.6, 21.6; TOF HRMS (DART) m/z [M+H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>21</sub>O<sub>4</sub>, calculated 241.1440, found 241.1440.

cis-4-Phenyl-13-methyl-1,10-dioxacyclotridec-5-ene-2,9-dione (**II**)

Followed the general method of RCM in overall 44% yield (2:3 *cis:trans*). Compound **II** is the *cis* isomer and was isolated as a white solid. m.p. 370–374 K;  $R_f$  0.46 (hexanes: EtOAc 80:20) (higher  $R_f$ , *cis*); <sup>1</sup>H NMR (CDCl<sub>3</sub>) 400 MHz  $\delta$  7.43 (*d*, *J* = 8.5 Hz, 2H), 7.10 (*d*, *J* = 8.5 Hz, 2H), 5.59 (*ddd*, *J* = 15.0, 8.7, 5.4 Hz, 1H), 5.44 (*dd*, *J* = 15.2, 9.0 Hz, 1H), 5.11 (*m*, 1H), 4.35 (*ddd*, *J* = 11.9, 11.9, 3.7 Hz, 1H), 3.95 (*ddd*, *J* = 11.3, 5.2, 2.4 Hz, 1H), 3.81 (*ddd*, *J* = 8.3, 8.3, 8.3 Hz, 1H), 2.55 (*m*, 2H), 2.32 (*m*, 4H), 2.04 (*m*, 1H), 1.81 (*dddd* or *ddt*, *J* = 14.6, 6.0, 3.3, 3.3 Hz,

### research communications

 Table 2

 Experimental details.

|                                                                              | (I)                                         | (II)                                                | (III)                                                                                                      |
|------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Crystal data                                                                 |                                             |                                                     |                                                                                                            |
| Chemical formula                                                             | $C_{12}H_{20}O_4$                           | $C_{18}H_{21}BrO_4$                                 | $C_{10}H_{22}O_4$                                                                                          |
| <i>M</i>                                                                     | 240.29                                      | 381.26                                              | 302.35                                                                                                     |
| Crystal system, space group                                                  | Monoclinic, $P2_1/c$                        | Monoclinic. $P2_1/n$                                | Orthorhombic, $Pna2_1$                                                                                     |
| Temperature (K)                                                              | 93                                          | 93                                                  | 93                                                                                                         |
| a, b, c (Å)                                                                  | 8.0547 (6), 18.7875 (14), 8.9660 (7)        | 15.3128 (3), 5.55594 (11),<br>20.5689 (4)           | 11.2952 (8), 20.9595 (15),<br>6.6840 (5)                                                                   |
| $\alpha, \beta, \gamma$ (°)                                                  | 90, 102,530 (6), 90                         | 90, 95,7658 (18), 90                                | 90, 90, 90                                                                                                 |
| $V(A^3)$                                                                     | 1324.49 (18)                                | 1741.08 (6)                                         | 1582.4 (2)                                                                                                 |
| Z                                                                            | 4                                           | 4                                                   | 4                                                                                                          |
| Radiation type                                                               | Μο Κα                                       | Cu <i>Kα</i>                                        | Μο Κα                                                                                                      |
| $\mu (\mathrm{mm}^{-1})^{\mathrm{M}}$                                        | 0.09                                        | 3.37                                                | 0.09                                                                                                       |
| Crystal size (mm)                                                            | $0.18\times0.17\times0.16$                  | $0.20\times0.19\times0.10$                          | $0.32 \times 0.20 \times 0.20$                                                                             |
| Data collection                                                              |                                             |                                                     |                                                                                                            |
| Diffractometer                                                               | Rigaku Mercury275R CCD                      | Rigaku Saturn 944+ CCD                              | Rigaku Mercury275R CCD                                                                                     |
| Absorption correction                                                        | Multi-scan ( <i>REQAB</i> ; Jacobson, 1998) | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2015) | Multi-scan ( <i>REQAB</i> ; Jacobson, 1998)                                                                |
| $T_{\min}, T_{\max}$                                                         | 0.705, 1.000                                | 0.823, 1.000                                        | 0.815, 1.000                                                                                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 17742, 2341, 1835                           | 59208, 3075, 3000                                   | 26669, 3664, 3410                                                                                          |
| R <sub>int</sub>                                                             | 0.131                                       | 0.040                                               | 0.045                                                                                                      |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.595                                       | 0.596                                               | 0.653                                                                                                      |
| Refinement                                                                   |                                             |                                                     |                                                                                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.085, 0.230, 1.09                          | 0.027, 0.062, 1.10                                  | 0.050, 0.128, 1.15                                                                                         |
| No. of reflections                                                           | 2341                                        | 3075                                                | 3664                                                                                                       |
| No. of parameters                                                            | 156                                         | 209                                                 | 201                                                                                                        |
| No. of restraints                                                            | 0                                           | 0                                                   | 1                                                                                                          |
| H-atom treatment                                                             | H-atom parameters constrained               | H-atom parameters constrained                       | H-atom parameters constrained                                                                              |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.53, -0.27                                 | 0.51, -0.52                                         | 0.26, -0.20                                                                                                |
| Absolute structure                                                           | -                                           | _                                                   | Flack x determined using 1473<br>quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$<br>(Parsons <i>et al.</i> , 2013) |
| Absolute structure parameter                                                 | _                                           | -                                                   | 0.4 (5)                                                                                                    |

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), CrysAlis PRO (Rigaku OD, 2015), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 and SHELXL2013/2 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and CIFTAB2014/2 (Sheldrick, 2014).

1H), 1.30 (d, J = 6.2 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz  $\delta$  174.0, 171.7, 142.2, 133.2, 132.0, 130.3, 129.0, 67.5, 60.5, 45.5, 41.5, 34.5, 33.5, 29.0, 20.7.

*trans-4-Phenyl-11-methyl-1,10-dioxacyclotridec-5-ene-2,9dione* (**III**)

Followed the general method of RCM in 89% overall yield 2:3 *cis:trans*). Compound **III** is the *trans* isomer, a yellow solid. m.p 359–362 K;  $R_f$  0.45 (hexanes: EtOAc 80:20) (higher  $R_f$ , *trans*); <sup>1</sup>H NMR (CDCl<sub>3</sub>) 400 MHz  $\delta$  7.33 (*m*, 2H), 7.24 (*m*, 3H), 5.59 (*dd*, J = 15.5, 8.5 Hz, 1H), 5.53 (*ddd*, J = 15.9, 8.7, 5.1 Hz, 1H), 5.14 (*m*, 1H), 4.35 (*ddd*, J = 14.9, 11.4, 3.5 Hz, 1H), 3.94 (*ddd*, J = 12.4, 7.3, 1.3 Hz, 1H), 3.74 (*ddd*, J = 11.9, 8.8, 3.8, 1H), 2.61 (*dd*, J = 12.9, 12.9 Hz, 1H), 2.20 (*m*, 1H), 2.1 (*dddd*, J = 18.6, 9.5, 5.7, 4.1 Hz, 1H), 1.8 (*m*, 1H), 1.31 (*d*, J = 6.19 Hz, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 100 MHz  $\delta$  173.0, 172.9, 143.3, 134.5, 129.0, 128.9, 127.1, 126.9, 66.8, 60.6, 47.1, 41.9, 34.3, 33.4, 28.1, 20.7.

#### 7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. For all three structures, no evidence of disorder was found and no special restraints or constraints were required to achieve a stable refinement model. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95–0.99 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$  for CH and CH<sub>2</sub> groups and  $U_{iso}(H) = 1.5U_{eq}(C)$  for CH<sub>3</sub> groups.

#### Acknowledgements

The authors thank Trevor Hamlin for helpful conversations.

#### **Funding information**

Funding for this research was provided by: National Science Foundation (grant No. 0957626).

#### References

- Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J. & Friesner, R. A. (2013). *Int. J. Quantum Chem.* **113**, 2110–2142.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Driggers, E. M., Hale, S. P., Lee, J. & Terrett, N. K. (2008). *Nat. Rev. Drug Discov.* 7, 608–624.

- Eliel, E. L. & Wilen, S. H. (1994). Chirality in Molecules Devoid of Chiral Centers, in Stereochemistry of Organic Compounds, pp 1172–1175. New York: John Wiley & Sons.
- Fyvie, W. S. & Peczuh, M. W. (2008a). Chem. Commun. pp. 4028–4030.
- Fyvie, W. S. & Peczuh, M. W. (2008b). J. Org. Chem. 73, 3626–3629.
- Grimme, S. (2011). WIREs Comput. Mol. Sci. 1, 211–228.
- Jacobson, R. (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Larsen, E. M., Wilson, M. R. & Taylor, R. E. (2015). *Nat. Prod. Rep.* **32**, 1183–1206.
- Ma, J. & Peczuh, M. W. (2013). J. Org. Chem. 78, 7414-7422.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Magpusao, A. N., Rutledge, K., Mercado, B. & Peczuh, M. W. (2015). Org. Biomol. Chem. 13, 5086–5089.
- Magpusao, A. N., Rutledge, K. M., Hamlin, T. A., Lawrence, J.-M., Mercado, B. Q., Leadbeater, N. E. & Peczuh, M. W. (2016). *Chem. Eur. J.* 22, 6001–6011.

- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Rutledge, K. M., Hamlin, T. A., Baldisseri, D., Bickelhaupt, F. M. & Peczuh, M. W. (2017). *Chem. Asian J.* **12**, 2623–2633.
- Sheldrick, G. M. (2014). CIFTAB2014/2. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Whitty, A., Viarengo, L. A. & Zhong, M. (2017). *Org. Biomol. Chem.* **15**, 7729–7735.
- Whitty, A., Zhong, M., Viarengo, L. A., Beglov, D., Hall, D. R. & Vajda, S. (2016). *Drug Discovery Today*, **21**, 712–717.
- Yudin, A. K. (2015). Chem. Sci. 6, 30-49.

#### Acta Cryst. (2020). E76, 1617-1623 [https://doi.org/10.1107/S2056989020012037]

# Structures of three disubstituted [13]-macrodilactones reveal effects of substitution on macrocycle conformation

### Kelli M. Rutledge, Caleb Griesbach, Brandon Q. Mercado and Mark W. Peczuh

#### **Computing details**

For all structures, data collection: *CrystalClear-SM Expert* (Rigaku, 2011). Cell refinement: *CrystalClear-SM Expert* (Rigaku, 2011) for (I), (III); *CrysAlis PRO* (Rigaku OD, 2015) for (II). Data reduction: *CrystalClear-SM Expert* (Rigaku, 2011) for (I), (III); *CrysAlis PRO* (Rigaku OD, 2015) for (II). For all structures, program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009). Software used to prepare material for publication: *CIFTAB2014/2* (Sheldrick, 2014) for (I), (III); *SHELXL2013/2* (Sheldrick, 2015b) for (II).

trans-4,8-Dimethyl-1,10-dioxacyclotridec-5-ene-2,9-dione (I)

#### Crystal data

 $C_{13}H_{20}O_4$   $M_r = 240.29$ Monoclinic,  $P2_{1/c}$  a = 8.0547 (6) Å b = 18.7875 (14) Å c = 8.9660 (7) Å  $\beta = 102.530$  (6)° V = 1324.49 (18) Å<sup>3</sup> Z = 4

#### Data collection

Rigaku Mercury275R CCD diffractometer Radiation source: Sealed Tube Detector resolution: 6.8 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (*REQAB*; Jacobson, 1998)  $T_{\min} = 0.705, T_{\max} = 1.000$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.085$  $wR(F^2) = 0.230$ S = 1.092341 reflections 156 parameters F(000) = 520  $D_x = 1.205 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 687 reflections  $\theta = 2.2-27.9^{\circ}$   $\mu = 0.09 \text{ mm}^{-1}$  T = 93 KPrism, colorless  $0.18 \times 0.17 \times 0.16 \text{ mm}$ 

17742 measured reflections 2341 independent reflections 1835 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.131$  $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.2^\circ$  $h = -9 \rightarrow 9$  $k = -22 \rightarrow 22$  $I = -10 \rightarrow 10$ 

0 restraints Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.1386P)^2 + 0.4739P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} < 0.001$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.53 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.27 \text{ e } \text{\AA}^{-3}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5 times Ueq(C) for CH3 groups.

|      | x          | y            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|------------|--------------|------------|-----------------------------|--|
| 01   | 0.5209 (3) | 0.33574 (11) | 0.6049 (2) | 0.0443 (6)                  |  |
| O10  | 0.8844 (3) | 0.38480 (10) | 0.5944 (2) | 0.0426 (6)                  |  |
| O14  | 0.3382 (3) | 0.42433 (13) | 0.5285 (3) | 0.0583 (7)                  |  |
| O17  | 0.9157 (3) | 0.31352 (11) | 0.4047 (2) | 0.0441 (6)                  |  |
| C2   | 0.3918 (4) | 0.36655 (17) | 0.5079 (3) | 0.0419 (7)                  |  |
| C3   | 0.3224 (4) | 0.32154 (16) | 0.3709 (3) | 0.0409 (7)                  |  |
| H3A  | 0.2054     | 0.3064       | 0.3736     | 0.049*                      |  |
| H3B  | 0.3932     | 0.2782       | 0.3740     | 0.049*                      |  |
| C4   | 0.3199 (4) | 0.36195 (15) | 0.2221 (3) | 0.0387 (7)                  |  |
| H4   | 0.2743     | 0.4108       | 0.2317     | 0.046*                      |  |
| C5   | 0.4992 (3) | 0.36868 (15) | 0.1969 (3) | 0.0378 (7)                  |  |
| H5   | 0.5469     | 0.3282       | 0.1584     | 0.045*                      |  |
| C6   | 0.5933 (4) | 0.42558 (15) | 0.2237 (3) | 0.0372 (7)                  |  |
| H6   | 0.5432     | 0.4665       | 0.2580     | 0.045*                      |  |
| C7   | 0.7736 (4) | 0.43256 (15) | 0.2055 (3) | 0.0384 (7)                  |  |
| H7   | 0.8039     | 0.3891       | 0.1526     | 0.046*                      |  |
| C8   | 0.8940 (4) | 0.43846 (15) | 0.3605 (3) | 0.0401 (7)                  |  |
| H8A  | 1.0097     | 0.4494       | 0.3460     | 0.048*                      |  |
| H8B  | 0.8573     | 0.4784       | 0.4179     | 0.048*                      |  |
| C9   | 0.8998 (3) | 0.37194 (15) | 0.4516 (3) | 0.0369 (7)                  |  |
| C11  | 0.8732 (4) | 0.32312 (17) | 0.6890 (3) | 0.0450 (8)                  |  |
| H11A | 0.9884     | 0.3077       | 0.7422     | 0.054*                      |  |
| H11B | 0.8174     | 0.2832       | 0.6252     | 0.054*                      |  |
| C12  | 0.7703 (4) | 0.34428 (18) | 0.8036 (3) | 0.0464 (8)                  |  |
| H12A | 0.7449     | 0.3013       | 0.8584     | 0.056*                      |  |
| H12B | 0.8387     | 0.3768       | 0.8797     | 0.056*                      |  |
| C13  | 0.6064 (4) | 0.38033 (17) | 0.7309 (3) | 0.0460 (8)                  |  |
| H13A | 0.5341     | 0.3861       | 0.8064     | 0.055*                      |  |
| H13B | 0.6293     | 0.4280       | 0.6928     | 0.055*                      |  |
|      |            |              |            |                             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C15  | 0.2026 (4) | 0.32451 (17) | 0.0917 (4) | 0.0468 (8) |
|------|------------|--------------|------------|------------|
| H15A | 0.2431     | 0.2758       | 0.0830     | 0.070*     |
| H15B | 0.2010     | 0.3503       | -0.0037    | 0.070*     |
| H15C | 0.0874     | 0.3231       | 0.1109     | 0.070*     |
| C16  | 0.7922 (4) | 0.49735 (17) | 0.1094 (4) | 0.0498 (8) |
| H16A | 0.7628     | 0.5403       | 0.1602     | 0.075*     |
| H16B | 0.7159     | 0.4928       | 0.0087     | 0.075*     |
| H16C | 0.9100     | 0.5008       | 0.0974     | 0.075*     |
|      |            |              |            |            |

| Atomic displacement parameters $(Å^2)$ |  |
|----------------------------------------|--|
|----------------------------------------|--|

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0427 (12) | 0.0569 (13) | 0.0360 (11) | 0.0046 (9)   | 0.0147 (10) | -0.0001 (9)  |
| O10 | 0.0475 (12) | 0.0532 (12) | 0.0304 (11) | 0.0040 (9)   | 0.0158 (9)  | -0.0037 (8)  |
| O14 | 0.0538 (14) | 0.0732 (16) | 0.0481 (14) | 0.0204 (12)  | 0.0117 (11) | -0.0121 (11) |
| O17 | 0.0451 (12) | 0.0523 (13) | 0.0410 (12) | 0.0014 (9)   | 0.0231 (10) | -0.0055 (9)  |
| C2  | 0.0361 (15) | 0.0590 (19) | 0.0358 (16) | 0.0042 (13)  | 0.0194 (13) | 0.0013 (13)  |
| C3  | 0.0316 (15) | 0.0555 (18) | 0.0400 (17) | 0.0003 (12)  | 0.0176 (13) | 0.0009 (12)  |
| C4  | 0.0322 (15) | 0.0514 (17) | 0.0364 (15) | 0.0003 (12)  | 0.0161 (12) | -0.0003 (12) |
| C5  | 0.0335 (15) | 0.0539 (17) | 0.0308 (14) | 0.0020 (12)  | 0.0175 (12) | -0.0032 (12) |
| C6  | 0.0385 (15) | 0.0481 (16) | 0.0297 (14) | 0.0040 (12)  | 0.0179 (12) | 0.0002 (11)  |
| C7  | 0.0354 (15) | 0.0519 (17) | 0.0337 (15) | -0.0015 (12) | 0.0202 (12) | -0.0026 (11) |
| C8  | 0.0352 (15) | 0.0516 (17) | 0.0391 (16) | -0.0020 (12) | 0.0205 (13) | -0.0053 (12) |
| C9  | 0.0248 (13) | 0.0525 (18) | 0.0360 (15) | 0.0018 (11)  | 0.0120 (12) | -0.0047 (12) |
| C11 | 0.0493 (18) | 0.0552 (18) | 0.0341 (16) | 0.0086 (13)  | 0.0170 (14) | 0.0017 (12)  |
| C12 | 0.0477 (18) | 0.063 (2)   | 0.0306 (15) | 0.0076 (14)  | 0.0136 (14) | -0.0013 (13) |
| C13 | 0.0502 (18) | 0.0589 (19) | 0.0320 (15) | 0.0054 (14)  | 0.0161 (14) | -0.0041 (12) |
| C15 | 0.0391 (17) | 0.0627 (19) | 0.0418 (17) | -0.0038 (14) | 0.0161 (14) | -0.0009 (14) |
| C16 | 0.0486 (19) | 0.065 (2)   | 0.0422 (17) | -0.0030 (15) | 0.0247 (16) | 0.0033 (14)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 01—C2   | 1.334 (4) | С7—Н7    | 1.0000    |
|---------|-----------|----------|-----------|
| O1—C13  | 1.454 (4) | C8—C9    | 1.488 (4) |
| О10—С9  | 1.335 (3) | C8—H8A   | 0.9900    |
| O10-C11 | 1.450 (4) | C8—H8B   | 0.9900    |
| O14—C2  | 1.197 (4) | C11—C12  | 1.506 (4) |
| О17—С9  | 1.192 (3) | C11—H11A | 0.9900    |
| C2—C3   | 1.496 (4) | C11—H11B | 0.9900    |
| C3—C4   | 1.532 (4) | C12—C13  | 1.501 (4) |
| С3—НЗА  | 0.9900    | C12—H12A | 0.9900    |
| С3—Н3В  | 0.9900    | C12—H12B | 0.9900    |
| C4—C15  | 1.508 (4) | C13—H13A | 0.9900    |
| C4—C5   | 1.515 (4) | C13—H13B | 0.9900    |
| C4—H4   | 1.0000    | C15—H15A | 0.9800    |
| C5—C6   | 1.302 (4) | C15—H15B | 0.9800    |
| С5—Н5   | 0.9500    | C15—H15C | 0.9800    |
| C6—C7   | 1.502 (4) | C16—H16A | 0.9800    |
|         |           |          |           |

| С6—Н6                           | 0.9500                 | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800               |
|---------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C7—C8                           | 1.516 (4)              | C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800               |
| C7—C16                          | 1.517 (4)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                 |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| C2-01-C13                       | 115.3 (2)              | H8A—C8—H8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.9                |
| C9-010-C11                      | 116.5 (2)              | O17—C9—O10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.0 (3)            |
| O14—C2—O1                       | 123.3 (3)              | O17—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124.9 (3)            |
| O14—C2—C3                       | 123.8 (3)              | O10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112.1 (2)            |
| O1—C2—C3                        | 112.9 (3)              | O10-C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.5 (2)            |
| C2—C3—C4                        | 111.5 (2)              | O10-C11-H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.2                |
| С2—С3—НЗА                       | 109.3                  | C12—C11—H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.2                |
| С4—С3—Н3А                       | 109.3                  | O10—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.2                |
| С2—С3—Н3В                       | 109.3                  | C12—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.2                |
| C4—C3—H3B                       | 109.3                  | H11A—C11—H11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.5                |
| H3A—C3—H3B                      | 108.0                  | C13—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 112.7(2)             |
| C15-C4-C5                       | 112.4 (2)              | C13— $C12$ — $H12A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.1                |
| $C_{15} - C_{4} - C_{3}$        | 1094(2)                | C11— $C12$ — $H12A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.1                |
| $C_{5} - C_{4} - C_{3}$         | 109.1(2)<br>109.8(2)   | C13 - C12 - H12R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.1                |
| $C_{15}$ $C_{4}$ $H_{4}$        | 109.8 (2)              | C11— $C12$ — $H12B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.1                |
| $C_{2}$                         | 108.4                  | H12A - C12 - H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.8                |
| $C_3 C_4 H_4$                   | 108.4                  | $\begin{array}{c} 112 \\ 01 \\ 01 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 012 \\ 0$ | 107.3                |
| $C_{5}$                         | 100.4<br>125.2(2)      | 01 - 013 - 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.3 (2)            |
| C6 C5 H5                        | 123.2 (2)              | $C_{12}$ $C_{13}$ $H_{13A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.2                |
| $C_{4}$ $C_{5}$ $H_{5}$         | 117.4                  | C12 - C13 - H13R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.2                |
| $C_{4}$                         | 117.4<br>126.1 (2)     | $C_{12}$ $C_{12}$ $H_{12}$ $H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.2                |
| $C_{5} = C_{6} = U_{6}$         | 120.1 (5)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.2                |
| С3—С6—Н6                        | 117.0                  | $\Pi I S A - C I S - \Pi I S B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.5                |
| C/-Cb-Hb                        | 11/.0                  | C4 = C15 = H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| $C_{0} - C_{1} - C_{8}$         | 110.4 (2)              | C4—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| $C_{0}$ $C_{1}$ $C_{10}$        | 110.4 (2)              | HISA—CIS—HISB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
|                                 | 109.8 (2)              | C4—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| С6—С/—Н/                        | 108.7                  | HI5A—CI5—HI5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| С8—С/—Н/                        | 108.7                  | HI5B—CI5—HI5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C16—C/—H7                       | 108.7                  | C/C16H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5                |
| C9—C8—C7                        | 112.3 (2)              | C7—C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| С9—С8—Н8А                       | 109.1                  | H16A—C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| С7—С8—Н8А                       | 109.1                  | C7—C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| С9—С8—Н8В                       | 109.1                  | H16A—C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C7—C8—H8B                       | 109.1                  | H16B—C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| C13 O1 C2 O14                   | -6.6(1)                | C6 $C7$ $C8$ $C9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.3 (3)             |
| $C_{13} = 01 = C_2 = 014$       | 173 1 (2)              | $C_{0} = C_{1} = C_{8} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -171.8(2)            |
| C13 - 01 - C2 - C3              | 173.1(2)               | C10 - C7 - C8 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1/1.0(2)<br>-5.1(4) |
| 014 - 02 - 03 - 04              | _125 8 (2)             | $C_{11} = 010 = C_{2} = 017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.1(4)              |
| 01 - 02 - 03 - 04               | -123.8(2)<br>-162.7(2) | C11 - C10 - C9 - C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/4./(2)             |
| $C_2 = C_3 = C_4 = C_1^2$       | -102.7(2)              | $C_{1} = C_{2} = C_{2} = C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.0 (4)             |
| 12 - 13 - 14 - 13               | /3.0 (3)               | $C_{1} - C_{2} - C_{2} - C_{11} - C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -132.2(2)            |
| C13 - C4 - C3 - C6              | 130.5 (3)              | $C_{9}$ — $C_{10}$ — $C_{11}$ — $C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -151.1(3)            |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$ | -101.5(3)              | C10-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.6 (4)             |
| C4—C5—C6—C7                     | 177.4 (3)              | C2-01-C13-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -166.3(2)            |

| C5—C6—C7—C8  | -109.7 (3) | C11—C12—C13—O1 | 50.5 (4) |
|--------------|------------|----------------|----------|
| C5—C6—C7—C16 | 128.7 (3)  |                |          |

F(000) = 784

 $\theta = 2.1 - 66.6^{\circ}$ 

 $\mu = 3.37 \text{ mm}^{-1}$ 

Block, colorless

 $0.20 \times 0.19 \times 0.10 \text{ mm}$ 

 $\theta_{\rm max} = 66.8^\circ, \ \theta_{\rm min} = 3.4^\circ$ 

59208 measured reflections 3075 independent reflections

3000 reflections with  $I > 2\sigma(I)$ 

T = 93 K

 $R_{\rm int} = 0.040$ 

 $h = -18 \rightarrow 18$ 

 $k = -6 \rightarrow 6$ 

 $D_{\rm x} = 1.454 {\rm Mg} {\rm m}^{-3}$ 

Cu *K* $\alpha$  radiation,  $\lambda = 1.54184$  Å

Cell parameters from 41470 reflections

cis-4-(4-Bromophenyl)-13-methyl-1,10-dioxacyclotridec-5-ene-2,9-dione (II)

#### Crystal data

 $C_{18}H_{21}BrO_4$  $M_r = 381.26$ Monoclinic,  $P2_1/n$ a = 15.3128 (3) Å b = 5.55594 (11) Åc = 20.5689 (4) Å $\beta = 95.7658 \ (18)^{\circ}$ V = 1741.08 (6) Å<sup>3</sup> Z = 4

#### Data collection

Rigaku Saturn 944+ CCD diffractometer Radiation source: microfocus rotating anode Detector resolution: 22.2 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015)  $T_{\rm min}$ 

#### Ref

| $T_{\rm min} = 0.823, \ T_{\rm max} = 1.000$    | $l = -24 \rightarrow 24$                              |
|-------------------------------------------------|-------------------------------------------------------|
| Refinement                                      |                                                       |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.027$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.062$                               | neighbouring sites                                    |
| S = 1.10                                        | H-atom parameters constrained                         |
| 3075 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0186P)^2 + 2.082P]$      |
| 209 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.51 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{ m min} = -0.52$ e Å <sup>-3</sup>       |

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5times Ueq(C) for CH3 groups.

|          | x                          | v                      | Z                        | $U_{iso}^*/U_{aa}$ |
|----------|----------------------------|------------------------|--------------------------|--------------------|
| <br>Br1  | 0 67994 (2)                | 1 25106 (4)            | 0 26935 (2)              | 0.02712(8)         |
| 01       | 0.07779(2)                 | 1.25100(4)             | 0.20935 (2)              | 0.02712(0)         |
| 010      | 0.27479(0)<br>0.08625(0)   | 0.5070(2)<br>0.6437(3) | 0.32299(0)<br>0.45484(7) | 0.0222 (3)         |
| 010      | 0.03023(9)<br>0.32471(11)  | 0.0437(3)              | 0.45930(8)               | 0.0297(3)          |
| 013      | 0.32471(11)<br>0.08714(12) | 0.2793(3)              | 0.45950 (8)              | 0.0301(4)          |
| C2       | 0.08714(12)<br>0.32620(13) | 1.0133(3)<br>0.4847(4) | 0.40904(8)<br>0.47004(9) | 0.0246(4)          |
| C2       | 0.32029(13)<br>0.38505(13) | 0.4847(4)              | 0.47904(9)<br>0.45684(0) | 0.0240(4)          |
|          | 0.38393 (13)               | 0.6777 (4)             | 0.43084 (9)              | 0.0235 (4)         |
| пра пра  | 0.4470                     | 0.0480                 | 0.4739                   | 0.030*             |
|          | 0.3074<br>0.38106 (12)     | 0.8309                 | 0.4721<br>0.38145 (0)    | $0.030^{\circ}$    |
|          | 0.38130 (12)               | 0.0708 (4)             | 0.36143 (9)              | 0.0245 (4)         |
| П4<br>С5 | 0.3803                     | 0.3038<br>0.7741 (4)   | 0.3009<br>0.35257(0)     | $0.029^{\circ}$    |
| U5       | 0.29400 (13)               | 0.7/41(4)              | 0.33237 (9)              | 0.02/1 (4)         |
|          | 0.2047<br>0.22075 (14)     | 0.9422                 | 0.3339<br>0.22272(10)    | 0.032              |
|          | 0.23073 (14)               | 0.0403 (4)             | 0.32272(10)<br>0.3177    | 0.0311 (3)         |
|          | 0.2410<br>0.14240(14)      | 0.4733                 | 0.3177                   | 0.037              |
|          | 0.14240 (14)               | 0.7303 (4)             | 0.29040 (10)             | 0.0334 (5)         |
|          | 0.1272                     | 0.0740                 | 0.2317                   | 0.040*             |
|          | 0.1452                     | 0.9140                 | 0.2940                   | 0.0220 (5)         |
|          | 0.07030 (13)               | 0.0035 (5)             | 0.33969 (10)             | 0.0339 (3)         |
| HðA      | 0.0120                     | 0.7011                 | 0.3167                   | 0.041*             |
| H8B      | 0.0/31                     | 0.4879                 | 0.3478                   | 0.041*             |
| C9       | 0.08167 (14)               | 0.7959 (4)             | 0.40389 (11)             | 0.0316 (5)         |
|          | 0.10483 (14)               | 0.7529 (4)             | 0.51898 (10)             | 0.0313 (5)         |
| HIIA     | 0.0512                     | 0.8289                 | 0.5328                   | 0.038*             |
| HIIB     | 0.1506                     | 0.8782                 | 0.5178                   | 0.038*             |
| C12      | 0.13630 (13)               | 0.5550 (4)             | 0.56615 (9)              | 0.0275 (4)         |
| H12A     | 0.0858                     | 0.4510                 | 0.5737                   | 0.033*             |
| H12B     | 0.1582                     | 0.6286                 | 0.6085                   | 0.033*             |
| C13      | 0.20832 (12)               | 0.3996 (4)             | 0.54275 (9)              | 0.0231 (4)         |
| H13      | 0.1840                     | 0.3031                 | 0.5041                   | 0.028*             |
| C14      | 0.24961 (14)               | 0.2320 (4)             | 0.59525 (10)             | 0.0290 (5)         |
| H14A     | 0.2794                     | 0.3270                 | 0.6310                   | 0.043*             |
| H14B     | 0.2923                     | 0.1275                 | 0.5767                   | 0.043*             |
| H14C     | 0.2038                     | 0.1331                 | 0.6120                   | 0.043*             |
| C16      | 0.45741 (12)               | 0.8154 (4)             | 0.35657 (9)              | 0.0213 (4)         |
| C17      | 0.48886 (12)               | 1.0298 (4)             | 0.38536 (9)              | 0.0239 (4)         |
| H17      | 0.4642                     | 1.0888                 | 0.4228                   | 0.029*             |
| C18      | 0.55561 (13)               | 1.1589 (4)             | 0.36022 (9)              | 0.0240 (4)         |
| H18      | 0.5769                     | 1.3044                 | 0.3803                   | 0.029*             |
| C19      | 0.59046 (12)               | 1.0712 (4)             | 0.30541 (9)              | 0.0217 (4)         |
| C20      | 0.56177 (13)               | 0.8585 (4)             | 0.27595 (9)              | 0.0241 (4)         |
| H20      | 0.5871                     | 0.7998                 | 0.2387                   | 0.029*             |
| C21      | 0.49528 (13)               | 0.7323 (4)             | 0.30178 (9)              | 0.0239 (4)         |
| H21      | 0.4750                     | 0.5859                 | 0.2818                   | 0.029*             |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|-------------|--------------|
| Br1 | 0.02422 (12) | 0.02824 (13) | 0.03034 (13) | -0.00158 (8) | 0.00974 (8) | 0.00148 (8)  |
| O1  | 0.0221 (6)   | 0.0222 (7)   | 0.0230 (6)   | -0.0016 (6)  | 0.0054 (5)  | -0.0003(5)   |
| O10 | 0.0267 (7)   | 0.0356 (8)   | 0.0258 (7)   | -0.0019 (6)  | -0.0033 (6) | -0.0008 (6)  |
| O15 | 0.0445 (9)   | 0.0246 (8)   | 0.0427 (9)   | 0.0027 (7)   | 0.0216 (7)  | 0.0000 (7)   |
| O22 | 0.0656 (12)  | 0.0349 (10)  | 0.0395 (9)   | 0.0091 (9)   | 0.0059 (8)  | -0.0002 (8)  |
| C2  | 0.0246 (10)  | 0.0255 (11)  | 0.0242 (9)   | 0.0040 (8)   | 0.0048 (8)  | 0.0025 (8)   |
| C3  | 0.0221 (9)   | 0.0291 (11)  | 0.0250 (10)  | -0.0001 (8)  | 0.0035 (8)  | 0.0038 (8)   |
| C4  | 0.0230 (10)  | 0.0272 (11)  | 0.0237 (10)  | -0.0003 (8)  | 0.0041 (8)  | 0.0008 (8)   |
| C5  | 0.0228 (10)  | 0.0340 (12)  | 0.0245 (10)  | 0.0015 (9)   | 0.0030 (8)  | 0.0028 (9)   |
| C6  | 0.0331 (11)  | 0.0340 (12)  | 0.0264 (10)  | 0.0019 (10)  | 0.0037 (8)  | -0.0019 (9)  |
| C7  | 0.0300 (11)  | 0.0421 (13)  | 0.0268 (10)  | -0.0016 (10) | -0.0027 (9) | -0.0007 (10) |
| C8  | 0.0237 (10)  | 0.0476 (14)  | 0.0292 (11)  | -0.0040 (10) | -0.0039 (8) | -0.0011 (10) |
| С9  | 0.0222 (10)  | 0.0410 (14)  | 0.0315 (11)  | 0.0060 (9)   | 0.0026 (8)  | 0.0016 (10)  |
| C11 | 0.0299 (11)  | 0.0360 (12)  | 0.0277 (11)  | 0.0070 (10)  | 0.0017 (9)  | -0.0070 (9)  |
| C12 | 0.0235 (10)  | 0.0353 (12)  | 0.0241 (10)  | -0.0010 (9)  | 0.0047 (8)  | -0.0027 (9)  |
| C13 | 0.0241 (9)   | 0.0239 (10)  | 0.0214 (9)   | -0.0055 (8)  | 0.0034 (7)  | 0.0004 (8)   |
| C14 | 0.0356 (11)  | 0.0287 (11)  | 0.0225 (10)  | -0.0013 (9)  | 0.0023 (8)  | 0.0034 (9)   |
| C16 | 0.0194 (9)   | 0.0227 (10)  | 0.0217 (9)   | 0.0025 (8)   | 0.0014 (7)  | 0.0035 (8)   |
| C17 | 0.0234 (9)   | 0.0260 (10)  | 0.0230 (9)   | 0.0023 (8)   | 0.0065 (7)  | -0.0018 (8)  |
| C18 | 0.0246 (10)  | 0.0220 (10)  | 0.0254 (9)   | 0.0000 (8)   | 0.0025 (8)  | -0.0018 (8)  |
| C19 | 0.0181 (9)   | 0.0245 (10)  | 0.0226 (9)   | 0.0021 (8)   | 0.0024 (7)  | 0.0043 (8)   |
| C20 | 0.0264 (10)  | 0.0257 (10)  | 0.0207 (9)   | 0.0044 (8)   | 0.0052 (8)  | -0.0004 (8)  |
| C21 | 0.0270 (10)  | 0.0221 (10)  | 0.0223 (9)   | 0.0002 (8)   | 0.0013 (8)  | -0.0006 (8)  |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| Br1—C19 | 1.9053 (19) | C8—H8B   | 0.9900    |
|---------|-------------|----------|-----------|
| O1—C2   | 1.338 (2)   | C11—C12  | 1.513 (3) |
| O1—C13  | 1.466 (2)   | C11—H11A | 0.9900    |
| О10—С9  | 1.343 (3)   | C11—H11B | 0.9900    |
| O10—C11 | 1.454 (2)   | C12—C13  | 1.516 (3) |
| O15—C2  | 1.210 (3)   | C12—H12A | 0.9900    |
| О22—С9  | 1.216 (3)   | C12—H12B | 0.9900    |
| C2—C3   | 1.509 (3)   | C13—C14  | 1.515 (3) |
| C3—C4   | 1.546 (3)   | C13—H13  | 1.0000    |
| С3—НЗА  | 0.9900      | C14—H14A | 0.9800    |
| С3—Н3В  | 0.9900      | C14—H14B | 0.9800    |
| C4—C5   | 1.508 (3)   | C14—H14C | 0.9800    |
| C4—C16  | 1.519 (3)   | C16—C17  | 1.395 (3) |
| C4—H4   | 1.0000      | C16—C21  | 1.397 (3) |
| С5—С6   | 1.329 (3)   | C17—C18  | 1.390 (3) |
| С5—Н5   | 0.9500      | C17—H17  | 0.9500    |
| С6—С7   | 1.503 (3)   | C18—C19  | 1.384 (3) |
| С6—Н6   | 0.9500      | C18—H18  | 0.9500    |
| С7—С8   | 1.540 (3)   | C19—C20  | 1.379 (3) |
|         |             |          |           |

| C7—H7A                  | 0.9900            | C20—C21                      | 1.385 (3)    |
|-------------------------|-------------------|------------------------------|--------------|
| С7—Н7В                  | 0.9900            | C20—H20                      | 0.9500       |
| C8—C9                   | 1.506 (3)         | C21—H21                      | 0.9500       |
| C8—H8A                  | 0.9900            |                              |              |
|                         |                   |                              |              |
| C2—O1—C13               | 116.31 (15)       | C12—C11—H11A                 | 110.2        |
| C9—O10—C11              | 115.81 (18)       | O10-C11-H11B                 | 110.2        |
| O15—C2—O1               | 123.73 (19)       | C12—C11—H11B                 | 110.2        |
| O15—C2—C3               | 124.10 (18)       | H11A—C11—H11B                | 108.5        |
| O1—C2—C3                | 112.16 (17)       | C11—C12—C13                  | 113.90 (16)  |
| C2—C3—C4                | 109.70 (17)       | C11—C12—H12A                 | 108.8        |
| С2—С3—НЗА               | 109.7             | C13—C12—H12A                 | 108.8        |
| С4—С3—Н3А               | 109.7             | C11—C12—H12B                 | 108.8        |
| С2—С3—Н3В               | 109.7             | C13—C12—H12B                 | 108.8        |
| C4—C3—H3B               | 109.7             | H12A—C12—H12B                | 107.7        |
| НЗА—СЗ—НЗВ              | 108.2             | O1—C13—C14                   | 109.62 (15)  |
| C5—C4—C16               | 111.08 (17)       | O1—C13—C12                   | 105.93 (16)  |
| C5—C4—C3                | 109.77 (16)       | C14—C13—C12                  | 112.85 (16)  |
| C16—C4—C3               | 112.43 (16)       | 01-C13-H13                   | 109.5        |
| C5-C4-H4                | 107.8             | C14—C13—H13                  | 109.5        |
| C16—C4—H4               | 107.8             | C12— $C13$ — $H13$           | 109.5        |
| $C_3 - C_4 - H_4$       | 107.8             | C13— $C14$ — $H14A$          | 109.5        |
| C6 - C5 - C4            | 107.0<br>124.3(2) | C13 $C14$ $H14B$             | 109.5        |
| C6 C5 H5                | 117.8             | $H_{14A} = C_{14} + H_{14B}$ | 109.5        |
| C4 C5 H5                | 117.8             | $C_{13} = C_{14} = H_{14}C$  | 109.5        |
| $C_{4}$                 | 117.0<br>124.2(2) |                              | 109.5        |
| $C_{5} = C_{6} = U_{6}$ | 124.2 (2)         | H14A - C14 - H14C            | 109.5        |
| $C_{3}$                 | 117.9             | H14B - C14 - H14C            | 109.3        |
| C/C0H0                  | 11/.9             | C1/-C16-C21                  | 118.13 (18)  |
| $C_{0} = C_{1} = C_{8}$ | 111.78 (18)       | C1/-C16-C4                   | 122.13 (17)  |
| $C_{0}$ $C_{-}$ $H/A$   | 109.3             | $C_{21}$ $-C_{16}$ $-C_{4}$  | 119.71 (18)  |
| С8—С/—Н/А               | 109.3             | C18—C17—C16                  | 121.21 (18)  |
| С6—С7—Н7В               | 109.3             | C18—C17—H17                  | 119.4        |
| С8—С7—Н7В               | 109.3             | C16—C17—H17                  | 119.4        |
| H7A—C7—H7B              | 107.9             | C19—C18—C17                  | 118.67 (19)  |
| C9—C8—C7                | 110.59 (18)       | C19—C18—H18                  | 120.7        |
| С9—С8—Н8А               | 109.5             | C17—C18—H18                  | 120.7        |
| С7—С8—Н8А               | 109.5             | C20—C19—C18                  | 121.85 (18)  |
| C9—C8—H8B               | 109.5             | C20—C19—Br1                  | 119.21 (14)  |
| C7—C8—H8B               | 109.5             | C18—C19—Br1                  | 118.94 (15)  |
| H8A—C8—H8B              | 108.1             | C19—C20—C21                  | 118.62 (18)  |
| O22—C9—O10              | 123.5 (2)         | C19—C20—H20                  | 120.7        |
| O22—C9—C8               | 124.8 (2)         | C21—C20—H20                  | 120.7        |
| О10—С9—С8               | 111.6 (2)         | C20—C21—C16                  | 121.52 (19)  |
| O10-C11-C12             | 107.42 (17)       | C20—C21—H21                  | 119.2        |
| O10-C11-H11A            | 110.2             | C16—C21—H21                  | 119.2        |
|                         |                   |                              |              |
| C13—O1—C2—O15           | -5.6 (3)          | C2—O1—C13—C12                | -155.41 (15) |
| C13—O1—C2—C3            | 174.13 (15)       | C11—C12—C13—O1               | 50.0 (2)     |

| $\begin{array}{c} 015 - C2 - C3 - C4 \\ 01 - C2 - C3 - C4 \\ C2 - C3 - C4 - C5 \\ C2 - C3 - C4 - C16 \\ C16 - C4 - C5 - C6 \\ C3 - C4 - C5 - C6 \\ C4 - C5 - C6 - C7 \\ C5 - C6 - C7 - C8 \end{array}$ | 47.6 (3)                                                                                  | C11—C12—C13—C14                                                                                               | 169.98 (18)                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                                                                                        | -132.13 (17)                                                                              | C5—C4—C16—C17                                                                                                 | 84.5 (2)                                                                      |
|                                                                                                                                                                                                        | 71.6 (2)                                                                                  | C3—C4—C16—C17                                                                                                 | -38.9 (3)                                                                     |
|                                                                                                                                                                                                        | -164.23 (16)                                                                              | C5—C4—C16—C21                                                                                                 | -93.3 (2)                                                                     |
|                                                                                                                                                                                                        | 128.0 (2)                                                                                 | C3—C4—C16—C21                                                                                                 | 143.29 (18)                                                                   |
|                                                                                                                                                                                                        | -107.0 (2)                                                                                | C21—C16—C17—C18                                                                                               | 0.4 (3)                                                                       |
|                                                                                                                                                                                                        | 177.34 (19)                                                                               | C4—C16—C17—C18                                                                                                | -177.39 (18)                                                                  |
|                                                                                                                                                                                                        | -105.8 (3)                                                                                | C16—C17—C18—C19                                                                                               | 0.3 (3)                                                                       |
| C11—O10—C9—O22<br>C11—O10—C9—C8<br>C7—C8—C9—O22<br>C7—C8—C9—O10<br>C9—O10—C11—C12<br>O10—C11—C12—C13<br>C2—O1—C13—C14                                                                                  | -4.3 (3)<br>174.89 (16)<br>54.0 (3)<br>-125.2 (2)<br>-161.83 (17)<br>49.7 (2)<br>82.6 (2) | C17—C18—C19—Br1<br>C18—C19—C20—C21<br>Br1—C19—C20—C21<br>C19—C20—C21—C16<br>C17—C16—C21—C20<br>C4—C16—C21—C20 | 178.45 (14)<br>1.0 (3)<br>-178.54 (14)<br>-0.2 (3)<br>-0.5 (3)<br>177.35 (18) |

trans-11-Methyl-4-phenyl-1,10-dioxacyclotridec-5-ene-2,9-dione (III)

Crystal data

 $C_{18}H_{22}O_4$   $M_r = 302.35$ Orthorhombic, *Pna2*<sub>1</sub> a = 11.2952 (8) Å b = 20.9595 (15) Å c = 6.6840 (5) Å  $V = 1582.4 (2) \text{ Å}^3$  Z = 4 F(000) = 648

#### Data collection

| Rigaku Mercury275R CCD                           |
|--------------------------------------------------|
| diffractometer                                   |
| Radiation source: Sealed Tube                    |
| Detector resolution: 6.8 pixels mm <sup>-1</sup> |
| $\omega$ scans                                   |
| Absorption correction: multi-scan                |
| (REQAB; Jacobson, 1998)                          |
| $T_{\min} = 0.815, T_{\max} = 1.000$             |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.050$  $wR(F^2) = 0.128$ S = 1.153664 reflections 201 parameters 1 restraint Primary atom site location: dual Secondary atom site location: difference Fourier map  $D_x = 1.269 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 576 reflections  $\theta = 2.6-27.5^{\circ}$  $\mu = 0.09 \text{ mm}^{-1}$ T = 93 KPrism, colorless  $0.32 \times 0.20 \times 0.20 \text{ mm}$ 

26669 measured reflections 3664 independent reflections 3410 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.045$  $\theta_{max} = 27.7^{\circ}, \theta_{min} = 2.7^{\circ}$  $h = -14 \rightarrow 14$  $k = -27 \rightarrow 27$  $l = -8 \rightarrow 8$ 

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.8966P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.26$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.20$  e Å<sup>-3</sup> Extinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc\*=kFc[1+0.001xFc<sup>2</sup>\lambda<sup>3</sup>/sin(2 $\theta$ )]<sup>-1/4</sup> Extinction coefficient: 0.012 (3) Absolute structure: Flack x determined using 1473 quotients  $[(I^+)-(I^-)]/[(I^+)+(I^-)]$  (Parsons et al., 2013)

#### Absolute structure parameter: 0.4 (5)

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were first found in the difference map, then generated geometrically and refined as riding atoms with C-H distances = 0.95 - 0.99 angstroms and Uiso(H) = 1.2 times Ueq(C) for CH and CH2 groups and Uiso(H) = 1.5times Ueq(C) for CH3 groups.

|      | x            | у            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|------------|-----------------------------|
| 01   | 0.15097 (18) | 0.56820 (10) | 0.5040 (3) | 0.0233 (4)                  |
| O10  | 0.08596 (17) | 0.70330 (9)  | 0.6331 (3) | 0.0221 (4)                  |
| O14  | 0.13825 (19) | 0.55047 (11) | 0.1764 (4) | 0.0299 (5)                  |
| 015  | 0.2504 (2)   | 0.73924 (11) | 0.7780 (4) | 0.0338 (5)                  |
| C2   | 0.1964 (2)   | 0.55372 (12) | 0.3251 (5) | 0.0227 (6)                  |
| C3   | 0.3271 (2)   | 0.54399 (13) | 0.3346 (5) | 0.0238 (6)                  |
| H3A  | 0.3477       | 0.5027       | 0.2718     | 0.029*                      |
| H3B  | 0.3528       | 0.5427       | 0.4761     | 0.029*                      |
| C4   | 0.3912 (2)   | 0.59802 (13) | 0.2261 (4) | 0.0221 (6)                  |
| H4   | 0.3547       | 0.6031       | 0.0907     | 0.026*                      |
| C5   | 0.3778 (2)   | 0.65980 (13) | 0.3371 (5) | 0.0217 (5)                  |
| Н5   | 0.4104       | 0.6627       | 0.4679     | 0.026*                      |
| C6   | 0.3236 (2)   | 0.71018 (13) | 0.2639 (5) | 0.0228 (5)                  |
| H6   | 0.2880       | 0.7067       | 0.1356     | 0.027*                      |
| C7   | 0.3150 (3)   | 0.77242 (14) | 0.3707 (5) | 0.0249 (6)                  |
| H7A  | 0.3313       | 0.8074       | 0.2751     | 0.030*                      |
| H7B  | 0.3761       | 0.7740       | 0.4767     | 0.030*                      |
| C8   | 0.1937 (3)   | 0.78283 (13) | 0.4646 (5) | 0.0236 (6)                  |
| H8A  | 0.1850       | 0.8280       | 0.5058     | 0.028*                      |
| H8B  | 0.1309       | 0.7730       | 0.3660     | 0.028*                      |
| C9   | 0.1814 (3)   | 0.74016 (13) | 0.6434 (5) | 0.0231 (6)                  |
| C11  | 0.0719 (2)   | 0.65729 (13) | 0.7937 (4) | 0.0227 (6)                  |
| H11  | 0.1511       | 0.6395       | 0.8309     | 0.027*                      |
| C12  | -0.0051 (3)  | 0.60478 (14) | 0.7118 (5) | 0.0249 (6)                  |
| H12A | -0.0009      | 0.5679       | 0.8039     | 0.030*                      |
| H12B | -0.0882      | 0.6199       | 0.7106     | 0.030*                      |
| C13  | 0.0263 (2)   | 0.58247 (14) | 0.5055 (5) | 0.0252 (6)                  |
| H13A | -0.0200      | 0.5439       | 0.4709     | 0.030*                      |
| H13B | 0.0082       | 0.6161       | 0.4063     | 0.030*                      |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C15  | 0.5218 (2) | 0.58492 (13) | 0.1992 (4) | 0.0215 (5) |  |
|------|------------|--------------|------------|------------|--|
| C16  | 0.5869 (2) | 0.54591 (13) | 0.3230 (5) | 0.0238 (6) |  |
| H16  | 0.5477     | 0.5230       | 0.4262     | 0.029*     |  |
| C17  | 0.7081 (3) | 0.53929 (14) | 0.3008 (5) | 0.0261 (6) |  |
| H17  | 0.7515     | 0.5124       | 0.3885     | 0.031*     |  |
| C18  | 0.7656 (2) | 0.57231 (13) | 0.1494 (5) | 0.0258 (6) |  |
| H18  | 0.8487     | 0.5678       | 0.1318     | 0.031*     |  |
| C19  | 0.7017 (3) | 0.61141 (14) | 0.0255 (5) | 0.0260 (6) |  |
| H19  | 0.7411     | 0.6342       | -0.0778    | 0.031*     |  |
| C20  | 0.5811 (3) | 0.61804 (14) | 0.0487 (5) | 0.0250 (6) |  |
| H20  | 0.5382     | 0.6454       | -0.0384    | 0.030*     |  |
| C21  | 0.0176 (3) | 0.68939 (15) | 0.9724 (5) | 0.0283 (6) |  |
| H21A | 0.0712     | 0.7226       | 1.0218     | 0.043*     |  |
| H21B | 0.0041     | 0.6578       | 1.0781     | 0.043*     |  |
| H21C | -0.0581    | 0.7087       | 0.9340     | 0.043*     |  |
|      |            |              |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0202 (9)  | 0.0267 (10) | 0.0231 (10) | 0.0027 (8)   | 0.0020 (8)   | 0.0009 (8)   |
| O10 | 0.0216 (9)  | 0.0228 (9)  | 0.0219 (10) | -0.0017 (7)  | 0.0008 (8)   | 0.0030 (8)   |
| O14 | 0.0291 (11) | 0.0330 (11) | 0.0276 (11) | 0.0007 (9)   | -0.0002 (10) | -0.0049 (9)  |
| 015 | 0.0318 (11) | 0.0428 (12) | 0.0268 (11) | -0.0113 (10) | -0.0055 (9)  | 0.0017 (10)  |
| C2  | 0.0238 (13) | 0.0185 (12) | 0.0258 (14) | -0.0023 (10) | 0.0036 (12)  | -0.0009 (11) |
| C3  | 0.0218 (13) | 0.0204 (12) | 0.0291 (14) | 0.0008 (10)  | 0.0050 (12)  | 0.0017 (11)  |
| C4  | 0.0212 (12) | 0.0207 (12) | 0.0244 (14) | -0.0001 (10) | 0.0024 (11)  | 0.0007 (10)  |
| C5  | 0.0213 (12) | 0.0223 (12) | 0.0215 (12) | -0.0002 (10) | 0.0023 (11)  | 0.0001 (10)  |
| C6  | 0.0230 (12) | 0.0234 (12) | 0.0221 (13) | -0.0003 (10) | 0.0019 (11)  | -0.0012 (11) |
| C7  | 0.0247 (13) | 0.0198 (12) | 0.0302 (16) | 0.0003 (11)  | 0.0055 (12)  | 0.0009 (11)  |
| C8  | 0.0229 (13) | 0.0206 (12) | 0.0273 (14) | 0.0020 (10)  | 0.0011 (11)  | 0.0026 (11)  |
| C9  | 0.0235 (13) | 0.0207 (13) | 0.0249 (13) | -0.0006 (10) | 0.0016 (11)  | 0.0002 (11)  |
| C11 | 0.0219 (12) | 0.0245 (13) | 0.0218 (14) | 0.0006 (10)  | 0.0012 (11)  | 0.0056 (11)  |
| C12 | 0.0243 (13) | 0.0242 (13) | 0.0262 (14) | -0.0011 (11) | 0.0046 (11)  | 0.0028 (11)  |
| C13 | 0.0212 (13) | 0.0274 (13) | 0.0272 (15) | -0.0002 (10) | 0.0034 (12)  | -0.0020 (12) |
| C15 | 0.0218 (12) | 0.0207 (12) | 0.0221 (13) | -0.0006 (10) | 0.0017 (11)  | -0.0015 (10) |
| C16 | 0.0234 (13) | 0.0250 (13) | 0.0230 (13) | -0.0007 (10) | 0.0005 (12)  | 0.0018 (11)  |
| C17 | 0.0243 (13) | 0.0255 (13) | 0.0284 (15) | 0.0016 (10)  | 0.0007 (11)  | -0.0017 (11) |
| C18 | 0.0204 (12) | 0.0249 (13) | 0.0321 (15) | -0.0013 (10) | 0.0014 (12)  | -0.0060 (12) |
| C19 | 0.0259 (13) | 0.0244 (13) | 0.0278 (14) | -0.0030 (11) | 0.0050 (12)  | -0.0005 (11) |
| C20 | 0.0260 (13) | 0.0226 (12) | 0.0264 (14) | 0.0003 (11)  | 0.0042 (11)  | 0.0009 (11)  |
| C21 | 0.0313 (14) | 0.0307 (14) | 0.0230 (14) | 0.0012 (12)  | 0.0039 (12)  | 0.0004 (12)  |

### Geometric parameters (Å, °)

| 01—C2   | 1.336 (4)                           | C11—C21                       | 1.502 (4)           |  |
|---------|-------------------------------------|-------------------------------|---------------------|--|
| O1—C13  | 1.440 (3)                           | C11—C12                       | 1.506 (4)           |  |
| О10—С9  | 1.328 (3)                           | C11—H11                       | 1.0000              |  |
| O10—C11 | 1.452 (3)                           | C12—C13                       | 1.498 (4)           |  |
| 010     | 1.440 (3)<br>1.328 (3)<br>1.452 (3) | C11—C12<br>C11—H11<br>C12—C13 | 1.0000<br>1.498 (4) |  |

| O14—C2                   | 1.194 (4) | C12—H12A                    | 0.9900               |
|--------------------------|-----------|-----------------------------|----------------------|
| О15—С9                   | 1.191 (4) | C12—H12B                    | 0.9900               |
| C2—C3                    | 1.491 (4) | С13—Н13А                    | 0.9900               |
| C3—C4                    | 1.527 (4) | С13—Н13В                    | 0.9900               |
| C3—H3A                   | 0.9900    | C15—C16                     | 1.376 (4)            |
| C3—H3B                   | 0.9900    | C15—C20                     | 1.394 (4)            |
| C4—C5                    | 1.500 (4) | C16—C17                     | 1.383 (4)            |
| C4—C15                   | 1.512 (4) | C16—H16                     | 0.9500               |
| C4—H4                    | 1.0000    | C17—C18                     | 1.388 (4)            |
| C5—C6                    | 1 315 (4) | C17—H17                     | 0.9500               |
| C5—H5                    | 0.9500    | C18 - C19                   | 1,370(4)             |
| C6-C7                    | 1 490 (4) | C18—H18                     | 0.9500               |
| С6—Н6                    | 0.9500    | C19-C20                     | 1.378(4)             |
| C7-C8                    | 1 523 (4) | C19 - H19                   | 0.9500               |
| C7—H7A                   | 0.9900    | $C_{20}$ H20                | 0.9500               |
| C7—H7B                   | 0.9900    | C21—H21A                    | 0.9500               |
| $C_{8}$                  | 1 499 (4) | C21_H21R                    | 0.9800               |
| C8 H8A                   | 0.0000    | $C_{21}$ H21C               | 0.9800               |
| C8 H8B                   | 0.9900    | 021—11210                   | 0.9800               |
| Co—110D                  | 0.9900    |                             |                      |
| C2-01-C13                | 115.4 (2) | C21—C11—C12                 | 112.3 (2)            |
| C9-010-C11               | 115.9 (2) | 010—C11—H11                 | 109.5                |
| 014-02-01                | 123.2 (3) | C21—C11—H11                 | 109.5                |
| 014-02-03                | 1249(3)   | C12—C11—H11                 | 109.5                |
| 01-C2-C3                 | 1119(3)   | C13 - C12 - C11             | 115.2 (2)            |
| $C_2 - C_3 - C_4$        | 110.4(2)  | C13—C12—H12A                | 108 5                |
| $C_2 - C_3 - H_3 A$      | 109.6     | $C_{11} - C_{12} - H_{12A}$ | 108.5                |
| C4—C3—H3A                | 109.6     | C13—C12—H12B                | 108.5                |
| C2—C3—H3B                | 109.6     | C11—C12—H12B                | 108.5                |
| C4—C3—H3B                | 109.6     | H12A—C12—H12B               | 107.5                |
| H3A-C3-H3B               | 108.1     | 01-C13-C12                  | 107.6(2)             |
| $C_{5}-C_{4}-C_{15}$     | 108 3 (2) | 01-C13-H13A                 | 110.2                |
| $C_{5}-C_{4}-C_{3}$      | 110.9(2)  | C12—C13—H13A                | 110.2                |
| $C_{15} - C_{4} - C_{3}$ | 112.6(2)  | 01-C13-H13B                 | 110.2                |
| C5-C4-H4                 | 108.3     | C12—C13—H13B                | 110.2                |
| C15 - C4 - H4            | 108.3     | H13A—C13—H13B               | 108.5                |
| C3—C4—H4                 | 108.3     | C16-C15-C20                 | 118.2(3)             |
| C6-C5-C4                 | 123.8 (3) | $C_{16} - C_{15} - C_{4}$   | 123.9(3)             |
| С6—С5—Н5                 | 118.1     | $C_{20}$ $C_{15}$ $C_{4}$   | 123.9(3)<br>117.7(2) |
| C4—C5—H5                 | 118.1     | $C_{15}$ $C_{16}$ $C_{17}$  | 121.6(3)             |
| $C_{5}$ $C_{6}$ $C_{7}$  | 123 7 (3) | $C_{15} - C_{16} - H_{16}$  | 119.2                |
| C5—C6—H6                 | 118.1     | C17 - C16 - H16             | 119.2                |
| C7—C6—H6                 | 118.1     | C16-C17-C18                 | 119.4 (3)            |
| $C_{6} - C_{7} - C_{8}$  | 112 5 (2) | C16—C17—H17                 | 120.3                |
| C6-C7-H7A                | 109.1     | C18—C17—H17                 | 120.3                |
| C8 - C7 - H7A            | 109.1     | C19-C18-C17                 | 119 5 (3)            |
| C6-C7-H7B                | 109.1     | C19-C18-H18                 | 120.2                |
| C8-C7-H7B                | 109.1     | C17-C18-H18                 | 120.2                |
|                          | 107.1     |                             | 140.4                |

| 107.8      | C18—C19—C20                                                                                                                                                                                                                                                                                                                         | 120.8 (3)                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 109.1 (2)  | С18—С19—Н19                                                                                                                                                                                                                                                                                                                         | 119.6                                                |
| 109.9      | С20—С19—Н19                                                                                                                                                                                                                                                                                                                         | 119.6                                                |
| 109.9      | C19—C20—C15                                                                                                                                                                                                                                                                                                                         | 120.4 (3)                                            |
| 109.9      | С19—С20—Н20                                                                                                                                                                                                                                                                                                                         | 119.8                                                |
| 109.9      | C15—C20—H20                                                                                                                                                                                                                                                                                                                         | 119.8                                                |
| 108.3      | C11—C21—H21A                                                                                                                                                                                                                                                                                                                        | 109.5                                                |
| 124.1 (3)  | C11—C21—H21B                                                                                                                                                                                                                                                                                                                        | 109.5                                                |
| 123.5 (3)  | H21A—C21—H21B                                                                                                                                                                                                                                                                                                                       | 109.5                                                |
| 112.4 (3)  | C11—C21—H21C                                                                                                                                                                                                                                                                                                                        | 109.5                                                |
| 109.6 (2)  | H21A—C21—H21C                                                                                                                                                                                                                                                                                                                       | 109.5                                                |
| 106.2 (2)  | H21B—C21—H21C                                                                                                                                                                                                                                                                                                                       | 109.5                                                |
|            |                                                                                                                                                                                                                                                                                                                                     |                                                      |
| -2.5 (4)   | O10-C11-C12-C13                                                                                                                                                                                                                                                                                                                     | 44.7 (3)                                             |
| 176.1 (2)  | C21—C11—C12—C13                                                                                                                                                                                                                                                                                                                     | 164.5 (2)                                            |
| 67.8 (4)   | C2-01-C13-C12                                                                                                                                                                                                                                                                                                                       | -173.5 (2)                                           |
| -110.8 (3) | C11—C12—C13—O1                                                                                                                                                                                                                                                                                                                      | 51.2 (3)                                             |
| 68.5 (3)   | C5-C4-C15-C16                                                                                                                                                                                                                                                                                                                       | 96.9 (3)                                             |
| -169.9 (2) | C3—C4—C15—C16                                                                                                                                                                                                                                                                                                                       | -26.2 (4)                                            |
| 118.9 (3)  | C5—C4—C15—C20                                                                                                                                                                                                                                                                                                                       | -78.3 (3)                                            |
| -117.0 (3) | C3—C4—C15—C20                                                                                                                                                                                                                                                                                                                       | 158.6 (3)                                            |
| -177.2 (3) | C20-C15-C16-C17                                                                                                                                                                                                                                                                                                                     | 0.1 (4)                                              |
| -102.7 (3) | C4—C15—C16—C17                                                                                                                                                                                                                                                                                                                      | -175.1 (3)                                           |
| 72.7 (3)   | C15—C16—C17—C18                                                                                                                                                                                                                                                                                                                     | -0.5 (4)                                             |
| -3.5 (4)   | C16—C17—C18—C19                                                                                                                                                                                                                                                                                                                     | 0.6 (4)                                              |
| 175.8 (2)  | C17—C18—C19—C20                                                                                                                                                                                                                                                                                                                     | -0.4 (5)                                             |
| 54.4 (4)   | C18—C19—C20—C15                                                                                                                                                                                                                                                                                                                     | -0.1 (5)                                             |
| -125.0 (3) | C16—C15—C20—C19                                                                                                                                                                                                                                                                                                                     | 0.2 (4)                                              |
| 82.1 (3)   | C4—C15—C20—C19                                                                                                                                                                                                                                                                                                                      | 175.6 (3)                                            |
| -156.3 (2) |                                                                                                                                                                                                                                                                                                                                     |                                                      |
|            | 107.8<br>109.1 (2)<br>109.9<br>109.9<br>109.9<br>109.9<br>108.3<br>124.1 (3)<br>123.5 (3)<br>112.4 (3)<br>109.6 (2)<br>106.2 (2)<br>-2.5 (4)<br>176.1 (2)<br>67.8 (4)<br>-110.8 (3)<br>68.5 (3)<br>-169.9 (2)<br>118.9 (3)<br>-177.2 (3)<br>-102.7 (3)<br>-3.5 (4)<br>175.8 (2)<br>54.4 (4)<br>-125.0 (3)<br>82.1 (3)<br>-156.3 (2) | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |