

Received 12 May 2020 Accepted 21 August 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; dihydrofuranyl group (DHF); Hirshfeld atom refinement (HAR); Hirshfeld surface analysis; C—H···O hydrogen bonds.

CCDC references: 2024677; 2024676; 2024675; 2024674

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures, Hirshfeld atom refinements and Hirshfeld surface analyses of tris(4,5-dihydrofuran-2-yl)methylsilane and tris(4,5-dihydrofuran-2-yl)phenylsilane

Anna Krupp, Eva Rebecca Barth, Rana Seymen and Carsten Strohmann*

Technische Universität Dortmund, Fakultät Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The title compounds, $C_{13}H_{18}O_3Si$ (1) and $C_{18}H_{20}O_3Si$ (2), represent functionalizable dihydrofuranylsilanes, which permit substitution by a variety of nucleophiles. The crystal structures of 1 and 2 display weak intermolecular $C-H\cdots O$ hydrogen-bonding interactions (quantified by Hirshfeld surface analysis), leading to a two-dimensional supramolecular network for 1 and a onedimensional supramolecular network for 2. The crystal structures of 1 and 2 were refined both on the basis of the independent atom model (IAM) and the Hirshfeld atom refinement (HAR) approach, and the results are comparatively discussed.

1. Chemical context

Tris(4,5-dihydrofuran-2-yl)methylsilane (1) and -phenylsilane (2) are interesting starting materials for the selective synthesis of functionalized organosilanes in molecular chemistry.

In the 1980s, Lukevits and co-workers first introduced the dihydrofuranyl group (DHF) as a substitutable silicon-carbon leaving group (Gevorgyan et al., 1989). The DHF group allows substitution by a number of nucleophiles including hydrides, lithiated amides, lithium alkyls and alcohols (Lukevits et al., 1993). Multiple nucleophilic substitutions using chlorosilanes show high reactivity and low selectivity. In general, the Si-O bond shows high reactivity and selectivity compared to the less or even non-reactive Si-C bond. Nonetheless, the DHF group shows a significant increase in reactivity and selectivity in the bond cleavage of Si-C bonds, which can extend the selectivity profile of functionalized organosilanes (Koller et al., 2017). Furthermore, the pre-coordination by a methoxy group plays an important role in the control of reactions with metalcontaining nucleophiles and leads to the question of whether this also applies to the DHF group (Barth et al., 2019). In order to understand the coordination possibilities, the alignment of the dihydrofuranyl group and thus the arrangement of the oxygen atoms in the crystal structure are interesting. In this

Table 1 Selected geometric parameters of compound 1 (Å, °).

	IAM	HAR		IAM	HAR
Si1-C1 Si1-C5 Si1-C9	1.8664 (8) 1.8640 (8) 1.8610 (8)	1.8663 (5) 1.8643 (5) 1.8628 (5)	C1-Si1-C5 C1-Si1-C9 C1-Si1-C13	111.25 (4) 106.48 (4) 109.38 (4)	111.33 (2) 106.55 (2) 109.36 (2)
Si1-C13	1.8559 (9)	1.8570 (5)	C5-Si1-C9 C5-Si1-C13	107.10 (4) 110.92 (4)	107.14 (2) 110.86 (2)
C1-C2 C5-C6 C9-C10	1.3312 (11) 1.3315 (12) 1.3273 (12)	1.3356 (6) 1.3357 (6) 1.3294 (7)	C9-Si1-C13	111.61 (4)	111.52 (2)

context, we here report the crystal structures of **1** and **2**, both refined on basis of the independent atom model (IAM) and a Hirshfeld atom refinement (HAR) approach.

2. Structural commentary

The molecular structure of compound **1** is illustrated in Fig. 1, and selected bond lengths and angles using the results of IAM and HAR refinements are given in Table 1. In the molecule of **1**, the Si–C bond lengths of the silicon–DHF groups are in a typical range and slightly longer than the silicon–methyl bond length. However, all Si–C bonds are as expected (Allen *et al.*, 1987). The silicon atom in **1** has a slightly distorted tetrahedral environment, as shown by the deviation of the C–Si–C angles from the ideal value of 109.47°. This flexibility is often observed for Si–C single bonds (Otte *et al.*, 2017; Glidewell & Sheldrick, 1971; Kückmann *et al.*, 2005). The length of each of the C—C double bonds of the DHF groups (C1—C2, C5—C6, C9—C10) also corresponds well with the literature (Allen *et al.*, 1987).

Figure 1

The molecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

Table 2			
Selected geometric parameters of compound	2	(Å,	°).

	IAM	HAR		IAM	HAR
Si1-C1	1.8633 (9)	1.8643 (5)	C1-Si1-C5	107.26 (4)	107.29 (2)
Si1-C5	1.8638 (9)	1.8646 (5)	C1-Si1-C9	107.99 (4)	108.03 (2)
Si1-C9	1.8670 (9)	1.8680 (5)	C1-Si1-C13	112.97 (4)	112.96 (2)
Si1-C13	1.8662 (9)	1.8672 (5)	C5-Si1-C9	112.15 (4)	112.08 (2)
			C5-Si1-C13	109.53 (4)	109.47 (2)
C1-C2	1.3314 (12)	1.3350 (7)	C9-Si1-C13	107.01 (4)	107.08 (2)
C5 - C6	1.3317 (12)	1.3348 (7)			
C9-C10	1.3348 (12)	1.3356 (7)			
-					

The molecular structure of compound **2** is depicted in Fig. 2, and selected bond lengths and angles using the results of IAM and HAR refinements are collated in Table 2. The Si-C bond lengths and angles in the molecule of **2** differ only marginally from those of **1**. In **2**, there is a weak intramolecular C2–H2···O3 hydrogen-bonding interaction between the H2 atom of the C1=C2 group of one DHF molecule and the O3 atom of a neighbouring DHF group (Table 4), leading to a graph-set motif $S_1^1(6)$ (Etter *et al.*, 1990).

The Si-C bond lengths and C-Si-C angles of the IAM and HAR refinements coincide well. Slight deviations in the C=C double bond of the DHF group can be observed and the trend shows that the double bonds from HAR refinement are slightly longer.

3. Hirshfeld atom refinements

The independent atom model (IAM) approach for crystalstructure refinement cannot reliably model bonding electrons or any distortion of the electron density. An approach that takes this into consideration is Hirshfeld atom refinement

Figure 2

The molecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

research communications

Table 3	
Hydrogen-bond geometry (Å, $^{\circ}$) for 1 .	

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$\begin{array}{c} C6-H6\cdots O1^{i}\\ C8-H8A\cdots O3^{ii}\end{array}$	0.912 (15) 1.005 (16)	2.658 (15) 2.587 (15)	3.4264 (12) 3.3291 (13)	142.5 (12) 130.5 (11)
$C11-H11A\cdots O2^{i}$	0.944 (19)	2.538 (19)	3.4369 (14)	159.2 (15)

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

Table 4

Hydrogen-bond geometry (Å, °) for 2.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} C16{-}H16{\cdots}O2^i\\ C2{-}H2{\cdots}O3\end{array}$	0.987 (18)	2.474 (18)	3.4394 (13)	165.9 (15)
	0.995 (17)	2.809 (17)	3.4238 (13)	120.6 (12)

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

(HAR), which uses aspherical atomic scattering factors calculated from tailor-made *ab initio* quantum-mechanical electron densities. This approach allows for an accurate localization of hydrogen atoms, bonding electrons and an anisotropic refinement of hydrogen atoms (Jayatilaka & Dittrich, 2008; Capelli *et al.*, 2014).

In previous (unpublished) structure refinements of compounds with dihydrofuranyl rings performed by our group, we observed slight disorders of the oxygen atom and the methine atom of the dihydrofuranyl ring. Therefore, results of HARs for such compounds are interesting in order to draw conclusions about the residual electron densities to exclude and/or model disorder. For **1** and **2**, the minimum and maximum values of residual electron density are significantly

Figure 3

The crystal packing of compound **1** in a view along the *a* axis. C-H···O hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$].

Table 5	
C-H bond length (Å) of the methine groups for IAM and HAI	۲ for
compounds 1 and 2.	

	1			2		
IAM HAR	C2-H2 0.9500 1.084 (6)	C6-H6 0.912 $(15)^a$ 1.070 (6)	C10—H10 0.9500 1.088 (7)	C2 $-$ H2 0.995 (17) ^{<i>a</i>} 1.079 (7)	C6-H6 0.9500 1.077 (7)	C10-H10 0.9500 1.049 (8)

Note: (a) Hydrogen atoms were refined independently.

lower than those of IAM results (1: IAM $\Delta \rho_{\min} = -0.21 \text{ e } \text{Å}^{-3}$, $\Delta \rho_{\max} = 0.55 \text{ e } \text{Å}^{-3}$; HAR $\Delta \rho_{\min,\max} = \pm 0.21 \text{ e } \text{Å}^{-3}$; **2**: IAM $\Delta \rho_{\min} = -0.23 \text{ e } \text{Å}^{-3}$, $\Delta \rho_{\max} = 0.47 \text{ e } \text{Å}^{-3}$; HAR $\Delta \rho_{\min} = -0.17 \text{ e } \text{Å}^{-3}$, $\Delta \rho_{\max} = 0.26 \text{ e } \text{Å}^{-3}$). In all cases, the residual densities do not indicate any disorder. For compound **1**, the residual electron density on the basis of the HAR refinement is close to O1 and H8A and for **2** is near C15 and H3B. Another aim of the Hirshfeld atom refinement was the accurate localization of hydrogen atoms. From a comparison of the C–H bond lengths of the methine groups using IAM and HAR approaches, it can be clearly observed that the C–H bonds of the HAR model are significantly longer than those of the AIM model (Table 5). Woińska *et al.* (2016) have already reported that the positions of hydrogen atoms and their corresponding bond lengths show a significantly improved agreement with neutron diffraction by refinement with HAR.

When using HAR, an improved R_1 value of 0.023 was observed for compound **1**, compared to the refinement using IAM with an R_1 value of 0.035 (compound **2**: R_1 for HAR = 0.024 *versus* IAM = 0.037).

4. Hirshfeld analyses and supramolecular features

In the crystal of compound **1**, the molecules are linked by a number of C-H···O hydrogen bonds, forming a network along the [012] direction (Fig. 3, Table 3). Considering the $C \cdot \cdot \cdot O$ distances, the strength of the hydrogen bonds can be classified as weak according to Desiraju & Steiner (1999). Hydrogen bonds $C6-H6\cdots O1^{i}$ and $C11-H11A\cdots O2^{i}$ lead to the formation of chains described by the graph-set motifs $C_1^1(6)$ and $C_1^1(7)$, respectively. The third hydrogen bond, C8-H8A···O3ⁱⁱ, leads to rings with graph-set motif $R_2^2(14)$ (Etter et al., 1990). For the C11-H11A···O2ⁱ hydrogen bond, a significant interaction can be visualized using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) generated by CrystalExplorer (Turner et al., 2017), here indicated by the red spots (Fig. 4). The Hirshfeld surface mapped over d_{norm} is in the range from -0.1450 to 1.0518 a.u. The contributions of different types of intermolecular interactions for 1 are shown in the two-dimensional fingerprint plots (McKinnon et al., 2007) in Fig. 5. On the Hirshfeld surface, the weak van der Waals $H \cdots H$ contacts appear in the largest region (73.5%) contribution). The fingerprint plot for the $O \cdots H/H \cdots O$ (18.9%) interactions shows sharp spikes, which highlight the hydrogen bond between two molecules. The $C \cdots H/H \cdots C$ (7.5%) interactions also appear as two spikes. In summary,

Hirshfeld surface analysis of **1** showing close contacts in the crystal. The weak hydrogen bond between oxygen atom O2 and the H11*A* hydrogen atom is labelled. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$].

 $H \cdots H$, $C \cdots H/H \cdots C$ and especially $O \cdots H/H \cdots O$ are significant contributors, suggesting the relevance of these contacts in the packing arrangement of the crystal structure.

The crystal packing of compound **2** is illustrated in Fig. 6 and shows a ribbon-like supramolecular network structure propagating along the *b*-axis direction. The molecules are linked by a $C-H\cdots O$ hydrogen bond between the $O2^i$ atom of a DHF group and the $C16-H16_{para}$ group of the phenyl ring (Table 4), leading to the formation of chains with graphset motif $C_1^1(8)$. Compared to compound **1** where the methyl

Figure 5

(a) Two-dimensional fingerprint plots for compound 1, showing all contributions (a), and delineated (b)-(d) showing the contributions of atoms within specific interacting pairs (blue areas).

The crystal packing of compound **2** in a partial view along the *b* axis. C– H···O hydrogen bonds are shown as dotted lines. [Symmetry code: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$].

group shows no hydrogen-bonding interactions, the phenyl group is important for the crystal packing, as emphasized in

The crystal packing of compound **2** in a partial view along the *a* axis, showing intermolecular and intramolecular hydrogen bonds C16—H16···O2ⁱ and C2-H2···O3. [Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$].

Figure 8

Hirshfeld surface analysis of **2** showing close contacts in the crystal. The weak hydrogen bond between oxygen atom O2 and the H16 hydrogen atom is labelled. [Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$].

Fig. 7. Again, the strengths of the hydrogen bonds can be classified as weak (Desiraju & Steiner, 1999). A Hirshfeld surface analysis of **2** was carried out with d_{norm} in the range from -0.1662 to 1.2663 a.u.. The characteristic red spots in Fig. 8 indicate the C16-H16 \cdots O2ⁱ interactions. The two-dimensional fingerprint plots are displayed in Fig. 9. Compared to compound **1**, the C \cdots H/H \cdots C contacts appear to be more important for **2** than the O \cdots H/H \cdots O contacts. Nevertheless, H \cdots H, C \cdots H/H \cdots C and O \cdots H/H \cdots O are likewise significant contributors to the packing arrangement within the crystal structure.

5. Synthesis and crystallization

5-Lithio-2,3-dihydrofuran was prepared as described in the literature (Gevorgyan *et al.*, 1990). The subsequent implementation of the lithiated species with the chlorosilane was

Figure 9

(a) Two-dimensional fingerprint plots of compound **2**, showing all contributions, and delineated (b)-(e) showing the contributions of atoms within specific interacting pairs (blue areas).

also carried out as previously described (Erchak et al., 1981; Gevorgyan et al., 1997).

Tris(4,5-dihydrofuran-2-yl)methylsilane (1) is a colourless crystalline solid at room temperature:

¹H NMR (400 MHz, C₆H₆): $\delta = 0.65$ (*s*, 3H; SiCH₃), 2.25 [*dt*, ${}_{3}J_{\text{HH}} = 2.57$ Hz, ${}_{3}J_{\text{HH}} = 9.66$ Hz, 6H; Si(CCHCH₂)₃], 4.06 [*t*, ${}_{3}J_{\text{HH}} = 9.66$ Hz, 6H; Si(COCH₂)₃], 5.59 [*t*, ${}_{3}J_{\text{HH}} = 2.57$ Hz, 3H; Si(CCH)₃] ppm.

{¹H}¹³C NMR (100 MHz, C₆H₆): $\delta = -5.7$ (1C; Si*C*H₃), 31.4 [3C; Si(CCH*C*H₂)₃], 70.9 [3C; Si(CO*L*₂)₃], 115.6 [3C; Si(C*C*H)₃], 157.5 [3C; Si(*C*O)₃] ppm.

 ${}^{1}H{}^{29}Si$ NMR (79 MHz, C₆H₆): -36.65 [1Si; *Si*(DHF)₃] ppm.

GC/EI–MS $t_{\rm R} = 5.40 \text{ min} [353 \text{ K} (1 \text{ min}) - 40 \text{ K} \text{ min}^{-1} - 543 \text{ K} (5.5 \text{ min})]; m/z (\%): 250 (100) [M⁺], 207 (4) [(M - C_2H_3O)⁺], 121 (56) [(DHFSiCCH]⁺], 97 (13) [(SiDHF)⁺].$

Tris(4,5-dihydrofuran-2-yl)phenylsilane (2) is a colourless crystalline solid at room temperature:

¹H NMR (400 MHz, C₆H₆): $\delta = 2.25 [dt, _{3}J_{HH} = 2.57 Hz, _{3}J_{HH} = 9.66 Hz, 6H; Si(CCHCH₂)₃], 4.07 [t, _{3}J_{HH} = 9.66 Hz, 6H; Si(COCH₂)₃], 5.72 [t, _{3}J_{HH} = 2.57 Hz, 3H; Si(CCH)₃], 7.18–7.27 (m, 3H; Ph–H_{ortho,para}), 8.11–8.14 (m, 2H; Ph–H_{meta}) ppm.$

 ${^{1}H}^{13}C$ NMR (100 MHz, C₆H₆): δ = 31.4 [3C; Si(CCHCH₂)₃], 71.1 [3C; Si(COCH₂)₃]; 117.8 [3C; Si(CCH)₃]; 128.4 (2C; Ph-C_{ortho}); 130.8 (1C, Ph-C_{para}); 134.3 (1C; Ph-C_{ipso}); 136.3 (2C; Ph-C_{meta}); 156.4 [3C; Si(CO)₃] ppm.

 ${}^{1}H{}^{29}Si$ NMR (79 MHz, C₆H₆): -41.74 [1Si; *Si*(DHF)₃] ppm.

GC/EI–MS $t_{\rm R} = 6.88 \text{ min} [353 \text{ K} (1 \text{ min}) - 40 \text{ K} \text{ min}^{-1} - 543 \text{ K}(5.5 \text{ min})]; m/z (\%): 312 (100) [M⁺], 255 (21) [(M - C_3H_5O)⁺], 105 (53) [(SiPh]⁺], 77 (12) [Ph⁺], 69 (6) [DHF⁺].$

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. For the IAM approach using *SHELXL* (Sheldrick, 2015*b*), the H atoms were positioned geometrically (C-H = 0.95–1.00 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂ and CH hydrogen atoms and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ hydrogen atoms. Hydrogen atoms H6, H8*A*,*B* and H11*A*,*B* for compound **1** and H2 and H16 for compound **2** were refined independently.

HARs were performed with the HARt implementation in *OLEX2* (Dolomanov *et al.*, 2009), using the restricted Khom-Sham method with the basis set x2c-TZVP. The results of previous IAM refinements using - served as an input (Fugel *et al.*, 2018). For the HAR approach, all H atoms were refined anistropically and independently.

Funding information

ERB would like to thank the 'Fonds der Chemischen Industrie' for a doctoral fellowship. RS would like to thank the 'Studienstiftung des Deutschen Volkes' for a doctoral fellowship.

research communications

Table 6Experimental details.

	1 (IAM)	1 (HAR)	2 (IAM)	2 (HAR)
Crystal data				
Chemical formula	C12H18O2Si	C12H18O2Si	$C_{13}H_{20}O_3Si$	$C_{18}H_{20}O_{2}Si$
<i>M</i> ₋	250.36	250.37	312.43	312.44
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/n$	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	100	100	100	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.9801 (4), 12.2381 (5), 13.3712 (7)	7.9801 (4), 12.2381 (5), 13.3712 (7)	9.4936 (6), 8.6802 (7), 19.747 (2)	9.4936 (6), 8.6802 (7), 19.747 (2)
β (°)	90.134 (2)	90.134 (2)	99.743 (4)	99.743 (4)
$V(Å^3)$	1305.84 (11)	1305.84 (11)	1603.8 (2)	1603.8 (2)
Z	4	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.17	0.17	0.16	0.16
Crystal size (mm)	$0.39 \times 0.14 \times 0.07$	$0.39 \times 0.14 \times 0.07$	$1 \times 0.58 \times 0.36$	$1 \times 0.58 \times 0.36$
Data collection				
Diffractometer	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture	Bruker D8 Venture
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.536, 0.567	0.536, 0.567	0.484, 0.566	0.484, 0.566
No. of measured, independent and observed reflections	51391, 5737, 4936 $[I > 2\sigma(I)]$	51391, 4984, 4984 [$F > 0$ & $F/\sigma(F) > 3.0$ & $ F_{calc} > 10^{-3}$]	25027, 5830, 5318 $[I > 2\sigma(I)]$	25027, 5359, 5359 $[F > 0 \& F/\sigma(F) > 3.0$ $\& F_{rada} > 10^{-3}]$
Rint	0.034	0.034	0.030	0.030
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.807	0.807	0.758	0.758
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.101, 1.06	0.023, 0.017, 1.94	0.037, 0.105, 1.06	0.024, 0.021, 2.07
No. of reflections	5737	5737	5830	5830
No. of parameters	175	316	207	379
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	All H-atom parameters refined	H atoms treated by a mixture of independent and constrained refinement	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.55, -0.21	0.21, -0.22	0.47, -0.23	0.26, -0.18

Computer programs: APEX2 (Bruker, 2018), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), TONTO (Jayatilaka & Grimwood, 2003), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and publcIF (Westrip, 2010).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Barth, E. R., Krupp, A., Langenohl, F., Brieger, L. & Strohmann, C. (2019). Chem. Commun. 48, 11285–11291.
- Bruker (2016). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2018). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Capelli, S. C., Bürgi, H.-B., Dittrich, B., Grabowsky, S. & Jayatilaka, D. (2014). *IUCrJ*, **1**, 361–379.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.
- Erchak, N. P., Popelis, Y. Y., Pichler, I. & Lukevics, E. (1981). Zh. Obschch. Khim. 52, 1181–1187.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Fugel, M., Jayatilaka, D., Hupf, E., Overgaard, J., Hathwar, V. R., Macchi, P., Turner, M. J., Howard, J. A. K., Dolomanov, O. V., Puschmann, H., Iversen, B. B., Bürgi, H.-B. & Grabowsky, S. (2018). *IUCrJ*, 5, 32–44.
- Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21.
- Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. **393**, 57–67.
- Gevorgyan, V., Borisova, L., Vyater, A., Ryabova, V. & Lukevics, E. (1997). J. Organomet. Chem. 548, 149–155.

- Glidewell, C. & Sheldrick, G. M. (1971). J. Chem. Soc. A, pp. 3127–3129.
- Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383-393.
- Jayatilaka, D. & Grimwood, D. J. (2003). Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In: Computational Science – ICCS 2003, Vol. 2660. Berlin, Heidelberg: Springer.
- Koller, S. G., Bauer, J. O. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 7991–7994.
- Kückmann, T., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, o3030–o3031.
- Lukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735–743.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Otte, F., Koller, S. G., Cuellar, E., Golz, C. & Strohmann, C. (2017). Inorg. Chim. Acta, 456, 44–48.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, 1–8.

Acta Cryst. (2020). E76, 1514-1519 [https://doi.org/10.1107/S2056989020011470]

Crystal structures, Hirshfeld atom refinements and Hirshfeld surface analyses of tris(4,5-dihydrofuran-2-yl)methylsilane and tris(4,5-dihydrofuran-2-yl)phenyl-silane

Anna Krupp, Eva Rebecca Barth, Rana Seymen and Carsten Strohmann

Computing details

Data collection: *APEX2* (Bruker, 2018) for (1), (2). Cell refinement: *SAINT* (Bruker, 2016) for (1), (2). Data reduction: *SAINT* (Bruker, 2016) for (1), (2). For all structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a). Program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b) for (1), (2); TONTO (Jayatilaka & Grimwood, 2003) for 1HAR, 2HAR. Molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2020) for (1), (2). Software used to prepare material for publication: *publCIF* (Westrip, 2010) for (1), (2).

Tris(4,5-dihydrofuran-2-yl)methylsilane (1)

Crystal data

C₁₃H₁₈O₃Si $M_r = 250.36$ Monoclinic, $P2_1/n$ a = 7.9801 (4) Å b = 12.2381 (5) Å c = 13.3712 (7) Å $\beta = 90.134$ (2)° V = 1305.84 (11) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s HELIOS mirror optics monochromator Detector resolution: 10.4167 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.101$ S = 1.065737 reflections F(000) = 536 $D_x = 1.273 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9906 reflections $\theta = 2.3-36.3^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.39 \times 0.14 \times 0.07 \text{ mm}$

 $T_{\min} = 0.536, T_{\max} = 0.567$ 51391 measured reflections
5737 independent reflections
4936 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 35.0^{\circ}, \theta_{\text{min}} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -19 \rightarrow 19$ $l = -21 \rightarrow 21$

175 parameters0 restraintsPrimary atom site location: iterativeSecondary atom site location: difference Fourier mapHydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.3601P]$	$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Sil	0.18345 (3)	0.59411 (2)	0.25638 (2)	0.01471 (6)
01	0.35857 (8)	0.66915 (6)	0.09264 (5)	0.02745 (14)
O2	0.27937 (10)	0.62127 (6)	0.45636 (5)	0.02791 (14)
O3	-0.09090 (9)	0.45569 (7)	0.22765 (6)	0.02990 (15)
C5	0.23012 (9)	0.54481 (6)	0.38536 (6)	0.01714 (13)
С9	0.06571 (10)	0.48340 (6)	0.19167 (6)	0.01715 (13)
C1	0.37989 (10)	0.61563 (7)	0.18350 (6)	0.01739 (13)
C6	0.21595 (12)	0.44438 (7)	0.42270 (7)	0.02353 (16)
C2	0.53927 (11)	0.59006 (9)	0.20150 (6)	0.02569 (18)
H2	0.578431	0.552875	0.259375	0.031*
C4	0.51776 (11)	0.66560 (9)	0.04067 (7)	0.02635 (17)
H4A	0.546606	0.738778	0.014252	0.032*
H4B	0.512329	0.613546	-0.015913	0.032*
C13	0.06191 (11)	0.72335 (7)	0.25968 (7)	0.02361 (16)
H13A	-0.045763	0.710554	0.292773	0.035*
H13B	0.042121	0.748958	0.191220	0.035*
H13C	0.125193	0.778791	0.296792	0.035*
C10	0.11013 (13)	0.42563 (8)	0.11202 (8)	0.02825 (18)
H10	0.213876	0.432901	0.077964	0.034*
C7	0.26064 (14)	0.44446 (9)	0.53240 (7)	0.02880 (19)
H7A	0.365266	0.403255	0.545241	0.035*
H7B	0.169216	0.413336	0.573425	0.035*
C11	-0.02632 (16)	0.34719 (9)	0.08321 (10)	0.0370 (2)
C3	0.64834 (11)	0.62855 (10)	0.11701 (7)	0.0310 (2)
H3A	0.718425	0.568501	0.090423	0.037*
H3B	0.721462	0.689775	0.138009	0.037*
C8	0.28359 (15)	0.56597 (9)	0.55268 (7)	0.03038 (19)
C12	-0.14684 (16)	0.36115 (9)	0.16999 (10)	0.0395 (3)
H12A	-0.262120	0.373096	0.144753	0.047*
H12B	-0.146562	0.294897	0.212480	0.047*
H6	0.1832 (19)	0.3836 (12)	0.3884 (11)	0.035 (4)*
H8A	0.1907 (19)	0.5968 (12)	0.5948 (11)	0.035 (4)*
H11A	0.015 (2)	0.2753 (16)	0.0766 (12)	0.053 (5)*
H8B	0.392 (2)	0.5853 (13)	0.5845 (12)	0.042 (4)*
H11B	-0.076 (2)	0.3644 (14)	0.0192 (13)	0.047 (4)*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sil	0.01370 (9)	0.01620 (10)	0.01424 (9)	0.00092 (6)	0.00108 (7)	-0.00036 (6)
O1	0.0200 (3)	0.0374 (4)	0.0249 (3)	0.0039 (2)	0.0039 (2)	0.0152 (3)
O2	0.0421 (4)	0.0257 (3)	0.0159 (3)	-0.0068 (3)	-0.0033 (3)	-0.0018 (2)
O3	0.0213 (3)	0.0398 (4)	0.0286 (3)	-0.0118 (3)	0.0024 (2)	-0.0029 (3)
C5	0.0158 (3)	0.0207 (3)	0.0149 (3)	0.0010 (2)	0.0013 (2)	-0.0010 (2)
C9	0.0165 (3)	0.0180 (3)	0.0169 (3)	-0.0002(2)	-0.0007(2)	0.0012 (2)
C1	0.0163 (3)	0.0204 (3)	0.0154 (3)	-0.0006 (2)	0.0012 (2)	0.0017 (2)
C6	0.0299 (4)	0.0217 (4)	0.0190 (3)	0.0017 (3)	0.0001 (3)	0.0010 (3)
C2	0.0161 (3)	0.0447 (5)	0.0162 (3)	0.0010 (3)	0.0006 (3)	0.0068 (3)
C4	0.0208 (4)	0.0371 (5)	0.0211 (4)	-0.0031 (3)	0.0030(3)	0.0080 (3)
C13	0.0232 (4)	0.0205 (3)	0.0271 (4)	0.0054 (3)	0.0017 (3)	-0.0009 (3)
C10	0.0278 (4)	0.0302 (4)	0.0267 (4)	0.0011 (3)	-0.0006 (3)	-0.0112 (3)
C7	0.0354 (5)	0.0320 (4)	0.0190 (4)	0.0062 (4)	0.0005 (3)	0.0060 (3)
C11	0.0436 (6)	0.0244 (4)	0.0428 (6)	0.0007 (4)	-0.0175 (5)	-0.0110 (4)
C3	0.0160 (3)	0.0553 (6)	0.0218 (4)	-0.0025 (4)	0.0017 (3)	0.0088 (4)
C8	0.0380 (5)	0.0382 (5)	0.0149 (3)	-0.0043 (4)	-0.0022 (3)	0.0001 (3)
C12	0.0399 (6)	0.0301 (5)	0.0486 (7)	-0.0174(4)	-0.0110(5)	0.0057 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Si1—C5	1.8640 (8)	C4—C3	1.5259 (13)	
Sil—C9	1.8610 (8)	C13—H13A	0.9800	
Sil—C1	1.8664 (8)	C13—H13B	0.9800	
Sil—C13	1.8559 (9)	C13—H13C	0.9800	
01—C1	1.3904 (10)	C10—H10	0.9500	
O1—C4	1.4500 (11)	C10—C11	1.5011 (15)	
O2—C5	1.3892 (10)	С7—Н7А	0.9900	
O2—C8	1.4552 (12)	С7—Н7В	0.9900	
O3—C9	1.3825 (10)	C7—C8	1.5226 (16)	
O3—C12	1.4596 (13)	C11—C12	1.519 (2)	
С5—С6	1.3315 (12)	C11—H11A	0.944 (19)	
C9—C10	1.3273 (12)	C11—H11B	0.966 (18)	
C1—C2	1.3312 (11)	С3—Н3А	0.9900	
С6—С7	1.5088 (13)	С3—Н3В	0.9900	
С6—Н6	0.912 (15)	C8—H8A	1.005 (16)	
С2—Н2	0.9500	C8—H8B	0.995 (17)	
С2—С3	1.5034 (13)	C12—H12A	0.9900	
C4—H4A	0.9900	C12—H12B	0.9900	
C4—H4B	0.9900			
C5—Si1—C1	111.25 (4)	H13B—C13—H13C	109.5	
C9—Si1—C5	107.10 (4)	C9—C10—H10	124.7	
C9—Si1—C1	106.48 (4)	C9—C10—C11	110.59 (9)	
C13—Si1—C5	110.92 (4)	C11—C10—H10	124.7	
C13—Si1—C9	111.61 (4)	С6—С7—Н7А	111.4	

C13—Si1—C1	109.38 (4)	С6—С7—Н7В	111.4
C1C4	107.40 (6)	C6—C7—C8	101.64 (7)
C5—O2—C8	107.31 (7)	H7A—C7—H7B	109.3
C9—O3—C12	106.64 (8)	С8—С7—Н7А	111.4
O2—C5—Si1	118.03 (6)	С8—С7—Н7В	111.4
C6—C5—Si1	128.96 (6)	C10—C11—C12	101.09 (8)
C6—C5—O2	112.93 (7)	C10-C11-H11A	111.5 (11)
O3—C9—Si1	118.21 (6)	C10—C11—H11B	112.6 (10)
C10—C9—Si1	128.71 (7)	C12—C11—H11A	113.5 (10)
С10—С9—О3	113.07 (8)	C12—C11—H11B	113.2 (10)
01—C1—Si1	114.93 (6)	H11A—C11—H11B	105.3 (14)
C2-C1-Si1	132.51 (6)	C2—C3—C4	101.55 (7)
C2-C1-O1	112.56 (7)	C2—C3—H3A	111.5
C5—C6—C7	110.11 (8)	C2—C3—H3B	111.5
C5—C6—H6	1260(10)	C4-C3-H3A	111.5
C7—C6—H6	123.9(10)	C4—C3—H3B	111.5
$C_1 - C_2 - H_2$	123.9 (10)	H_{3A} C_{3} H_{3B}	109.3
C1 - C2 - C3	110.19(8)	02-08-07	107.3
$C_{1} = C_{2} = C_{3}$	174.9	02 - C8 - C7 02 - C8 - H8A	107.10(7)
C_{1} C_{4} H_{4}	110.4	$\Omega^2 = C^8 = H^{8B}$	107.0(9)
01 - C4 - H4B	110.4	C7 - C8 - H8A	1122(8)
01 - C4 - C3	106.62 (7)	C7 - C8 - H8B	112.2(0) 1144(9)
$H_{4} - C_{4} - H_{4}B$	108.6	H8A - C8 - H8B	108.4(13)
$C_3 - C_4 - H_{4A}$	110.4	03-C12-C11	107.41(8)
$C_3 - C_4 - H_4 B$	110.4	03-C12-H12A	110.2
Si1_C13_H13A	109.5	03-C12-H12R	110.2
Sil_Cl3_Hl3B	109.5	C_{11} C_{12} H_{12}	110.2
Si1H13C	109.5	$C_{11} = C_{12} = H_{12}R$	110.2
H13A_C13_H13B	109.5	H12A - C12 - H12B	108.5
H13A_C13_H13C	109.5		100.5
IIISA ets IIIse	107.5		
Si1-C5-C6-C7	-17742(7)	C1—Si1—C5—C6	-103 58 (9)
Sil-C9-C10-C11	-178.07(7)	C1 = Si1 = C9 = O3	-17631(6)
Sil-Cl-C2-C3	-179 13 (8)	C1 = Si1 = C9 = C10	2 60 (9)
01-C1-C2-C3	0.50 (12)	C1-O1-C4-C3	-12.68(11)
01 - C4 - C3 - C2	12.29 (11)	C1-C2-C3-C4	-8.04(12)
02-C5-C6-C7	-0.69(11)	C6-C7-C8-O2	-9.06(11)
03-C9-C10-C11	0.88 (12)	C4-O1-C1-Si1	-172.41(6)
$C_5 = S_{11} = C_9 = O_3$	64 58 (7)	C4-01-C1-C2	7 89 (11)
C5-Si1-C9-C10	-11651(9)	C13 = Si1 = C5 = O2	-42 17 (7)
C5 = Si1 = C1 = O1	-169.89(6)	C13 = Si1 = C5 = C6	134 42 (8)
C5—Si1—C1—C2	9.73 (11)	C13 = Si1 = C9 = O3	-57.01(7)
$C_{5} - C_{2} - C_{8} - C_{7}$	9.17 (11)	C_{13} S_{11} C_{29} C_{10}	121.90 (9)
C5—C6—C7—C8	6.12 (11)	C_{13} — S_{11} — C_{1} — O_{1}	-47.00(7)
C9 = Si1 = C5 = O2	-164.18 (6)	C13— $Si1$ — $C1$ — $C2$	132.62 (10)
C9—Si1—C5—C6	12.41 (9)	C10-C11-C12-O3	10.49 (12)
C9—Si1—C1—O1	73.74 (7)	C8—O2—C5—Si1	171.65 (7)
C9—Si1—C1—C2	-106.64 (10)	C8—O2—C5—C6	-5.47 (11)

C9—O3—C12—C11	-10.57 (11)	C12—O3—C9—Si1	-174.71 (7)
C9—C10—C11—C12	-7.14 (12)	C12—O3—C9—C10	6.21 (11)
C1—Si1—C5—O2	79.83 (7)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
C6—H6…O1 ⁱ	0.912 (15)	2.658 (15)	3.4264 (12)	142.5 (12)
C8—H8A····O3 ⁱⁱ	1.005 (16)	2.587 (15)	3.3291 (13)	130.5 (11)
C11—H11A····O2 ⁱ	0.944 (19)	2.538 (19)	3.4369 (14)	159.2 (15)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x, -y+1, -z+1.

(1HAR)

Crystal data

C₁₃H₁₈O₃Si $M_r = 250.37$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.9801 (4) Å b = 12.2381 (5) Å c = 13.3712 (7) Å $\beta = 90.134$ (2)° V = 1305.84 (11) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.536, T_{\max} = 0.567$ 51391 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.017$ S = 1.945737 reflections 316 parameters 0 restraints F(000) = 536 $D_x = 1.273 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.710730 \text{ Å}$ Cell parameters from 9906 reflections $\theta = 2.3-36.3^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.39 \times 0.14 \times 0.07 \text{ mm}$

4984 independent reflections 4984 reflections with $F > 0 \& F/\sigma(F) > 3.0 \& |$ $F_{calc}| > 10^{-3}$ $R_{int} = 0.034$ $\theta_{max} = 35.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -19 \rightarrow 19$ $l = -21 \rightarrow 21$

0 constraints All H-atom parameters refined Weighting scheme based on measured s.u.'s $w = 1/\sigma(F)$ $(\Delta/\sigma)_{\text{max}} = 0.003$ $\Delta\rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either SCF or DFT - for a fragment of the crystal embedded in an electrostatic crystal field.

If constraints were applied they are defined by zero eigenvalues of the least-squares hessian, see the value of refine ls_SVD threshold.

Specify symmetry and Friedel pair averaging.

Only reflections which satisfy the threshold expression are listed below, and only they are considered observed, thus the *_gt, *_all and *_total data are always the same.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.183455 (16)	0.594139 (9)	0.256364 (10)	0.01424 (6)
01	0.35916 (4)	0.66896 (3)	0.09282 (3)	0.02767 (19)
O2	0.27908 (5)	0.62086 (3)	0.45636 (3)	0.02813 (19)
O3	-0.09045 (4)	0.45535 (3)	0.22732 (3)	0.0301 (2)
C5	0.23019 (6)	0.54500 (3)	0.38543 (3)	0.0170 (2)
C9	0.06532 (6)	0.48336 (3)	0.19172 (3)	0.0170 (2)
C1	0.37970 (6)	0.61577 (3)	0.18334 (3)	0.0173 (2)
C6	0.21614 (7)	0.44418 (4)	0.42274 (4)	0.0235 (3)
C2	0.53945 (6)	0.58979 (4)	0.20154 (4)	0.0259 (3)
H2	0.5844 (8)	0.5495 (6)	0.2686 (5)	0.061 (5)
C4	0.51774 (7)	0.66579 (5)	0.04077 (4)	0.0268 (3)
H4a	0.5037 (9)	0.6060 (6)	-0.0230 (5)	0.068 (6)
H4b	0.5396 (8)	0.7450 (5)	0.0115 (6)	0.059 (5)
C13	0.06171 (7)	0.72340 (4)	0.25969 (5)	0.0237 (3)
H13a	-0.0569 (9)	0.7113 (6)	0.2949 (6)	0.059 (5)
H13b	0.1302 (9)	0.7857 (5)	0.2996 (6)	0.057 (5)
H13c	0.0403 (9)	0.7530 (5)	0.1851 (5)	0.053 (5)
C10	0.11010 (7)	0.42565 (4)	0.11191 (4)	0.0284 (3)
H10	0.2281 (9)	0.4377 (6)	0.0729 (6)	0.061 (5)
C7	0.26051 (8)	0.44426 (5)	0.53234 (4)	0.0287 (3)
H7a	0.1622 (10)	0.4119 (5)	0.5786 (6)	0.062 (6)
H7b	0.3746 (10)	0.3987 (6)	0.5462 (6)	0.069 (6)
C11	-0.02599 (8)	0.34719 (5)	0.08313 (5)	0.0365 (3)
H11a	-0.0846 (11)	0.3677 (6)	0.0135 (6)	0.076 (6)
C3	0.64824 (7)	0.62856 (6)	0.11700 (5)	0.0316 (3)
H3a	0.7276 (10)	0.6974 (7)	0.1396 (6)	0.070 (6)
H3b	0.7330 (9)	0.5667 (7)	0.0885 (6)	0.077 (6)
C8	0.28357 (9)	0.56612 (5)	0.55253 (4)	0.0303 (3)
H8a	0.4015 (11)	0.5861 (6)	0.5874 (6)	0.071 (6)
C12	-0.14713 (9)	0.36145 (5)	0.17009 (6)	0.0397 (4)
H12a	-0.1438 (12)	0.2899 (6)	0.2200 (7)	0.104 (8)
H12b	-0.2711 (10)	0.3785 (6)	0.1467 (7)	0.077 (6)
H6	0.1795 (9)	0.3737 (5)	0.3807 (5)	0.053 (5)
H8b	0.1825 (11)	0.5983 (5)	0.5968 (5)	0.069 (6)
H11b	0.0170 (10)	0.2642 (6)	0.0788 (7)	0.086 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Si1	0.01329 (6)	0.01572 (6)	0.01373 (6)	0.00096 (4)	0.00107 (4)	-0.00037 (5)
01	0.02067 (18)	0.03649 (19)	0.0259 (2)	0.00403 (15)	0.00302 (15)	0.01491 (15)
O2	0.0418 (2)	0.02546 (17)	0.01715 (18)	-0.00624 (15)	-0.00304 (16)	-0.00187 (14)
O3	0.02182 (19)	0.0400 (2)	0.0283 (2)	-0.01124 (15)	0.00259 (16)	-0.00231 (16)
C5	0.0172 (2)	0.0196 (2)	0.0144 (2)	0.00110 (16)	0.00094 (17)	-0.00006 (17)
C9	0.0174 (2)	0.0178 (2)	0.0158 (2)	-0.00049 (16)	-0.00031 (17)	-0.00022 (16)
C1	0.0144 (2)	0.0215 (2)	0.0159 (2)	-0.00071 (16)	0.00120 (17)	0.00195 (16)
C6	0.0310 (3)	0.0206 (2)	0.0190 (3)	0.0011 (2)	0.0000 (2)	0.00156 (19)
C2	0.0153 (2)	0.0457 (3)	0.0166 (2)	0.0016 (2)	0.00047 (19)	0.0074 (2)
H2	0.028 (4)	0.121 (6)	0.032 (5)	0.013 (4)	-0.003 (4)	0.033 (5)
C4	0.0214 (3)	0.0372 (3)	0.0218 (3)	-0.0036 (2)	0.0024 (2)	0.0093 (2)
H4a	0.058 (5)	0.119 (7)	0.026 (5)	0.001 (5)	-0.007 (4)	-0.039 (5)
H4b	0.051 (5)	0.049 (4)	0.077 (6)	-0.015 (4)	0.010 (4)	0.019 (4)
C13	0.0232 (3)	0.0205 (2)	0.0275 (3)	0.0061 (2)	0.0015 (2)	-0.0010 (2)
H13a	0.040 (5)	0.065 (5)	0.073 (7)	0.010 (4)	0.024 (4)	0.006 (4)
H13b	0.064 (5)	0.033 (4)	0.074 (6)	0.006 (4)	-0.019 (5)	-0.026 (4)
H13c	0.069 (6)	0.044 (4)	0.045 (5)	0.017 (4)	-0.006 (4)	0.020 (4)
C10	0.0281 (3)	0.0307 (3)	0.0266 (3)	0.0009 (2)	0.0001 (2)	-0.0123 (2)
H10	0.046 (5)	0.079 (5)	0.058 (6)	-0.017 (4)	0.027 (4)	-0.036 (4)
C7	0.0354 (3)	0.0320 (3)	0.0188 (3)	0.0064 (2)	0.0007 (2)	0.0065 (2)
H7a	0.084 (6)	0.056 (5)	0.046 (6)	-0.018 (4)	0.015 (5)	0.013 (4)
H7b	0.067 (6)	0.077 (6)	0.062 (6)	0.035 (5)	-0.014 (5)	0.017 (4)
C11	0.0432 (4)	0.0245 (3)	0.0418 (4)	0.0001 (2)	-0.0167 (3)	-0.0106 (3)
H11a	0.086 (6)	0.101 (6)	0.041 (6)	-0.017 (5)	-0.026 (5)	-0.005 (5)
C3	0.0155 (3)	0.0572 (4)	0.0220 (3)	-0.0028 (3)	0.0020 (2)	0.0090 (3)
H3a	0.069 (6)	0.099 (6)	0.042 (5)	-0.037 (5)	-0.006 (4)	0.005 (5)
H3b	0.034 (5)	0.123 (7)	0.073 (7)	0.042 (5)	0.021 (4)	0.044 (5)
C8	0.0374 (3)	0.0381 (3)	0.0153 (3)	-0.0043 (3)	-0.0021 (2)	-0.0008 (2)
H8a	0.081 (6)	0.087 (6)	0.047 (6)	-0.041 (5)	-0.031 (5)	0.003 (4)
C12	0.0379 (4)	0.0320 (3)	0.0492 (4)	-0.0167 (3)	-0.0099 (3)	0.0057 (3)
H12a	0.149 (9)	0.035 (5)	0.128 (9)	-0.037 (5)	0.009 (7)	0.040 (5)
H12b	0.053 (6)	0.083 (6)	0.096 (8)	0.002 (5)	-0.027 (5)	-0.032 (5)
H6	0.091 (6)	0.034 (4)	0.033 (5)	-0.010 (4)	-0.010 (4)	-0.004 (3)
H8b	0.110 (7)	0.063 (5)	0.033 (5)	0.011 (5)	0.039 (5)	-0.005 (4)
H11b	0.088 (7)	0.047 (5)	0.124 (9)	0.001 (5)	-0.023 (6)	-0.037 (5)

Geometric parameters (Å, °)

Si1—C5	1.8643 (5)	С6—Н6	1.070 (6)
Si1—C9	1.8628 (5)	C2—H2	1.084 (6)
Si1—C1	1.8663 (5)	C4—H4a	1.129 (6)
Si1—C13	1.8570 (5)	C4—H4b	1.060 (6)
O1—C1	1.3837 (6)	C13—H13a	1.068 (7)
O1—C4	1.4461 (6)	C13—H13b	1.078 (6)
O2—C5	1.3827 (5)	C13—H13c	1.074 (7)

O2—C8	1.4502 (7)	C10—H10	1.088 (7)
O3—C9	1.3756 (6)	С7—Н7а	1.075 (7)
O3—C12	1.4522 (7)	С7—Н7b	1.083 (7)
C5—C6	1.3357 (6)	C11—H11a	1.071 (8)
C9—C10	1.3294 (7)	C11—H11b	1.073 (7)
C1—C2	1.3356 (6)	С3—Н3а	1.096 (7)
С6—С7	1.5069 (7)	С3—Н3Ь	1.085 (8)
C2—C3	1.5038 (8)	C8—H8a	1.078 (7)
C4—C3	1.5251 (8)	C8—H8b	1.077 (7)
C10—C11	1.4991 (8)	C12—H12a	1.101 (7)
C7—C8	1.5266 (8)	C12—H12b	1.058 (8)
C11—C12	1.5239 (10)		
Si1—C5—O2	118.29 (3)	C10-C11-C12	101.03 (5)
Si1—C9—O3	118.53 (3)	С5—С6—Н6	124.9 (4)
Si1-C1-O1	115.25 (3)	С9—С10—Н10	123.2 (3)
Si1—C5—C6	128.82 (4)	C1—C2—H2	125.0 (4)
Si1-C9-C10	128.50 (4)	С6—С7—Н7а	112.9 (4)
Sil—Cl—C2	132.27 (4)	С6—С7—Н7b	111.2 (4)
Si1—C13—H13a	110.9 (4)	С2—С3—Н3а	111.7 (4)
Si1—C13—H13b	110.4 (4)	С2—С3—Н3ь	113.9 (4)
Si1—C13—H13c	110.3 (4)	С4—С3—Н3а	110.3 (4)
O1—C1—C2	112.48 (4)	C4—C3—H3b	113.5 (4)
O1—C4—C3	106.46 (4)	C10-C11-H11a	112.8 (4)
O2—C5—C6	112.81 (4)	C10—C11—H11b	112.8 (4)
O2—C8—C7	106.96 (4)	С7—С6—Н6	125.1 (4)
O3—C9—C10	112.97 (4)	С7—С8—Н8а	113.8 (4)
O3—C12—C11	107.18 (5)	C7—C8—H8b	111.4 (4)
O1—C4—H4a	107.2 (4)	C11—C10—H10	126.2 (4)
O1—C4—H4b	107.3 (4)	C11—C12—H12a	110.9 (5)
O2—C8—H8a	107.4 (4)	C11—C12—H12b	113.0 (5)
O2—C8—H8b	107.5 (4)	C3—C2—H2	125.1 (4)
O3—C12—H12a	107.6 (5)	C3—C4—H4a	112.1 (4)
O3—C12—H12b	106.9 (4)	C3—C4—H4b	114.1 (4)
C5—Si1—C9	107.14 (2)	С8—С7—Н7а	110.2 (4)
C5—Si1—C1	111.33 (2)	С8—С7—Н7ь	111.8 (4)
C5—Si1—C13	110.86 (2)	C12-C11-H11a	111.1 (5)
C9—Si1—C1	106.55 (2)	C12—C11—H11b	110.7 (5)
C9—Si1—C13	111.52 (2)	H4a—C4—H4b	109.3 (6)
C1—Si1—C13	109.36 (2)	H13a—C13—H13b	109.2 (5)
C5—O2—C8	107.72 (4)	H13a—C13—H13c	108.4 (5)
C9—O3—C12	107.19 (4)	H13b—C13—H13c	107.5 (5)
C1—O1—C4	107.84 (4)	H7a—C7—H7b	109.0 (6)
C5—C6—C7	110.06 (5)	H11a—C11—H11b	108.3 (6)
C9—C10—C11	110.51 (5)	Н3а—С3—Н3b	105.9 (6)
C1—C2—C3	109.90 (5)	H8a—C8—H8b	109.5 (6)
C6—C7—C8	101.57 (4)	H12a—C12—H12b	110.9 (7)
C2—C3—C4	101.66 (4)		

Tris(4,5-dihydrofuran-2-yl)phenylsilane (2)

Crystal data

 $\begin{array}{l} C_{18}H_{20}O_{3}Si\\ M_{r}=312.43\\ \text{Monoclinic, }P2_{1}/c\\ a=9.4936\ (6)\ \text{\AA}\\ b=8.6802\ (7)\ \text{\AA}\\ c=19.747\ (2)\ \text{\AA}\\ \beta=99.743\ (4)^{\circ}\\ V=1603.8\ (2)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Bruker D8 Venture	$T_{\min} = 0.484, \ T_{\max} = 0.566$
diffractometer	25027 measured reflections
Radiation source: microfocus sealed X-ray tube,	5830 independent reflections
Incoatec I μ s	5318 reflections with $I > 2\sigma(I)$
HELIOS mirror optics monochromator	$R_{\rm int} = 0.030$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\text{max}} = 32.6^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
φ and ω scans	$h = -14 \rightarrow 14$
Absorption correction: multi-scan	$k = -13 \rightarrow 10$
(SADABS; Bruker, 2016)	<i>l</i> = −29→29
Refinement	

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site location: mixed $wR(F^2) = 0.105$ H atoms treated by a mixture of independent S = 1.06and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.053P)^2 + 0.5057P]$ 5830 reflections where $P = (F_o^2 + 2F_c^2)/3$ 207 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.47 \text{ e } \text{\AA}^{-3}$ Primary atom site location: iterative $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 664

 $\theta = 2.6 - 30.5^{\circ}$

 $\mu = 0.16 \text{ mm}^{-1}$

Block. colourless

 $1 \times 0.58 \times 0.36 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.294 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 9914 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Si1	0.74752 (2)	0.58226 (3)	0.61267 (2)	0.01607 (7)	
01	0.84911 (9)	0.80595 (8)	0.53080 (4)	0.02920 (16)	
O2	0.88956 (8)	0.53532 (11)	0.74733 (4)	0.03192 (18)	
H16	0.2962 (19)	0.928 (2)	0.6921 (9)	0.047 (5)*	
03	0.76383 (8)	0.26869 (8)	0.57693 (4)	0.02727 (15)	
C1	0.80711 (9)	0.65298 (10)	0.53302 (4)	0.01795 (15)	
C2	0.81525 (11)	0.57638 (11)	0.47539 (5)	0.02286 (17)	
C3	0.86553 (11)	0.68235 (12)	0.42379 (5)	0.02608 (18)	

H3A	0.789037	0.701732	0.383993	0.031*	
H3B	0.950565	0.640314	0.407290	0.031*	
C4	0.90202 (13)	0.82803 (12)	0.46668 (6)	0.0301 (2)	
H4A	1.006696	0.844635	0.475727	0.036*	
H4B	0.856062	0.918995	0.441956	0.036*	
C5	0.90600 (9)	0.58711 (10)	0.68271 (4)	0.01867 (15)	
C6	1.03720 (10)	0.63899 (12)	0.68063 (5)	0.02363 (17)	
H6	1.068129	0.679122	0.640851	0.028*	
C7	1.12966 (10)	0.62499 (14)	0.75036 (5)	0.02814 (19)	
H7A	1.165349	0.726797	0.768255	0.034*	
H7B	1.211792	0.555409	0.749084	0.034*	
C8	1.02544 (11)	0.55684 (15)	0.79288 (5)	0.0315 (2)	
H8A	1.061678	0.456899	0.812821	0.038*	
H8B	1.013588	0.627441	0.830884	0.038*	
С9	0.67580 (9)	0.38311 (10)	0.59588 (4)	0.01827 (15)	
C10	0.54408 (10)	0.33313 (11)	0.59899 (5)	0.02234 (16)	
H10	0.469616	0.395021	0.611087	0.027*	
C11	0.53018 (12)	0.16494 (12)	0.58064 (6)	0.0311 (2)	
H11A	0.461907	0.148488	0.537473	0.037*	
H11B	0.499404	0.103890	0.617896	0.037*	
C12	0.68264 (12)	0.12463 (11)	0.57197 (6)	0.0299 (2)	
H12A	0.725657	0.052135	0.608368	0.036*	
H12B	0.682858	0.075547	0.526732	0.036*	
C13	0.60089 (9)	0.70098 (10)	0.63790 (4)	0.01831 (15)	
C14	0.46938 (10)	0.71555 (11)	0.59371 (5)	0.02264 (16)	
H14	0.457310	0.669609	0.549436	0.027*	
C15	0.35611 (11)	0.79615 (12)	0.61354 (6)	0.0288 (2)	
H15	0.267229	0.802831	0.583237	0.035*	
C16	0.37284 (12)	0.86642 (13)	0.67724 (7)	0.0321 (2)	
C17	0.50218 (14)	0.85581 (14)	0.72086 (6)	0.0345 (2)	
H17	0.514213	0.905500	0.764322	0.041*	
C18	0.61587 (12)	0.77307 (12)	0.70212 (5)	0.02617 (18)	
H18	0.703783	0.765721	0.733122	0.031*	
H2	0.7893 (18)	0.466 (2)	0.4669 (8)	0.039 (4)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.01588 (11)	0.01536 (11)	0.01726 (11)	-0.00151 (7)	0.00365 (8)	-0.00197 (7)
01	0.0477 (4)	0.0159 (3)	0.0283 (3)	-0.0049 (3)	0.0187 (3)	-0.0032 (2)
02	0.0213 (3)	0.0488 (5)	0.0239 (3)	-0.0110 (3)	-0.0011 (2)	0.0123 (3)
03	0.0240 (3)	0.0166 (3)	0.0415 (4)	0.0008 (2)	0.0065 (3)	-0.0049 (3)
C1	0.0172 (3)	0.0165 (3)	0.0208 (3)	-0.0008(3)	0.0051 (3)	-0.0013 (3)
C2	0.0258 (4)	0.0220 (4)	0.0221 (4)	-0.0058 (3)	0.0079 (3)	-0.0042 (3)
C3	0.0281 (4)	0.0297 (5)	0.0223 (4)	-0.0047(4)	0.0097 (3)	-0.0026 (3)
C4	0.0422 (6)	0.0218 (4)	0.0309 (5)	-0.0046 (4)	0.0196 (4)	-0.0009(4)
C5	0.0185 (3)	0.0178 (3)	0.0195 (3)	-0.0018 (3)	0.0026 (3)	-0.0009(3)
C6	0.0194 (4)	0.0282 (4)	0.0232 (4)	-0.0045 (3)	0.0035 (3)	0.0000 (3)

C7	0.0194 (4)	0.0338 (5)	0.0294 (4)	-0.0052 (4)	-0.0012 (3)	0.0032 (4)
C8	0.0250 (4)	0.0425 (6)	0.0247 (4)	-0.0097 (4)	-0.0024 (3)	0.0045 (4)
C9	0.0196 (3)	0.0161 (3)	0.0187 (3)	-0.0009 (3)	0.0021 (3)	-0.0013 (3)
C10	0.0212 (4)	0.0219 (4)	0.0239 (4)	-0.0048 (3)	0.0035 (3)	-0.0002 (3)
C11	0.0311 (5)	0.0215 (4)	0.0392 (5)	-0.0094 (4)	0.0014 (4)	0.0020 (4)
C12	0.0324 (5)	0.0154 (4)	0.0377 (5)	-0.0002 (3)	-0.0060(4)	-0.0030 (4)
C13	0.0200 (3)	0.0166 (3)	0.0197 (3)	-0.0012 (3)	0.0072 (3)	-0.0011 (3)
C14	0.0208 (4)	0.0206 (4)	0.0269 (4)	0.0013 (3)	0.0052 (3)	-0.0026 (3)
C15	0.0210 (4)	0.0213 (4)	0.0458 (6)	0.0003 (3)	0.0109 (4)	0.0002 (4)
C16	0.0344 (5)	0.0243 (4)	0.0439 (6)	0.0036 (4)	0.0247 (5)	0.0019 (4)
C17	0.0489 (6)	0.0325 (5)	0.0265 (5)	0.0084 (5)	0.0188 (4)	-0.0030 (4)
C18	0.0323 (5)	0.0264 (4)	0.0204 (4)	0.0032 (4)	0.0061 (3)	-0.0042 (3)

Geometric parameters (Å, °)

Si1—C1	1.8633 (9)	C7—C8	1.5215 (15)
Sil—C5	1.8638 (9)	C8—H8A	0.9900
Sil—C9	1.8670 (9)	C8—H8B	0.9900
Sil—C13	1.8662 (9)	C9—C10	1.3348 (12)
01—C1	1.3892 (11)	C10—H10	0.9500
O1—C4	1.4518 (12)	C10-C11	1.5046 (14)
O2—C5	1.3865 (11)	C11—H11A	0.9900
O2—C8	1.4544 (12)	C11—H11B	0.9900
О3—С9	1.3894 (11)	C11—C12	1.5267 (17)
O3—C12	1.4635 (12)	C12—H12A	0.9900
C1—C2	1.3314 (12)	C12—H12B	0.9900
С2—С3	1.5090 (13)	C13—C14	1.4027 (13)
С2—Н2	0.995 (17)	C13—C18	1.3995 (12)
С3—НЗА	0.9900	C14—H14	0.9500
С3—Н3В	0.9900	C14—C15	1.3934 (13)
C3—C4	1.5288 (15)	C15—H15	0.9500
C4—H4A	0.9900	C15—C16	1.3827 (17)
C4—H4B	0.9900	C16—H16	0.987 (18)
C5—C6	1.3317 (12)	C16—C17	1.3785 (19)
С6—Н6	0.9500	C17—H17	0.9500
С6—С7	1.5074 (14)	C17—C18	1.3975 (15)
С7—Н7А	0.9900	C18—H18	0.9500
С7—Н7В	0.9900		
C1—Si1—C5	107.26 (4)	O2—C8—H8B	110.2
C1—Si1—C9	107.99 (4)	C7—C8—H8A	110.2
C1—Si1—C13	112.97 (4)	C7—C8—H8B	110.2
C5—Si1—C9	112.15 (4)	H8A—C8—H8B	108.5
C5—Si1—C13	109.53 (4)	O3—C9—Si1	119.46 (6)
C13—Si1—C9	107.01 (4)	C10—C9—Si1	127.52 (7)
C1—O1—C4	107.29 (7)	C10—C9—O3	113.01 (8)
С5—О2—С8	107.54 (7)	C9—C10—H10	124.8
C9—O3—C12	107.15 (8)	C9—C10—C11	110.42 (9)

01—C1—Si1	118.11 (6)	С11—С10—Н10	124.8
C2-C1-Si1	128.81 (7)	C10-C11-H11A	111.4
C2-C1-O1	113.08 (8)	C10-C11-H11B	111.4
C1—C2—C3	110.09 (8)	C10-C11-C12	101.72 (8)
C1—C2—H2	125.1 (10)	H11A—C11—H11B	109.3
C3—C2—H2	124 8 (9)	C12—C11—H11A	111.4
C^2 C^3 H^3A	111 5	C12—C11—H11B	111.4
$C_2 = C_3 = H_3 B$	111.5	03-C12-C11	107 17 (8)
$C_2 = C_3 = C_4$	101 42 (8)	O_3 C_{12} H_{12}	110.3
$H_{3A} = C_3 = H_{3B}$	100.3	$O_3 C_{12} H_{12R}$	110.3
CA = C3 = H3A	111.5	C_{11} C_{12} H_{12A}	110.3
$C_4 = C_3 = H_3 R$	111.5	C11 C12 H12R	110.3
$C_4 = C_5 = \Pi_5 B$	111.3		10.5
01 - C4 - C3	107.13 (8)	H12A - C12 - H12B	108.5
O1 - C4 - H4A	110.3	C14 - C13 - S11	120.01 (7)
OI - C4 - H4B	110.3	C18 - C13 - S11	121.52 (7)
C3—C4—H4A	110.3	C18—C13—C14	117.82 (8)
C3—C4—H4B	110.3	C13—C14—H14	119.4
H4A—C4—H4B	108.5	C15—C14—C13	121.22 (9)
02—C5—Si1	118.24 (6)	C15—C14—H14	119.4
C6—C5—Si1	128.79 (7)	C14—C15—H15	119.9
C6—C5—O2	112.93 (8)	C16—C15—C14	120.12 (10)
С5—С6—Н6	124.8	C16—C15—H15	119.9
C5—C6—C7	110.34 (8)	C15—C16—H16	122.2 (11)
С7—С6—Н6	124.8	C17—C16—H16	118.3 (10)
С6—С7—Н7А	111.4	C17—C16—C15	119.48 (9)
С6—С7—Н7В	111.4	C16—C17—H17	119.5
C6—C7—C8	101.71 (8)	C16—C17—C18	121.00 (10)
H7A—C7—H7B	109.3	C18—C17—H17	119.5
C8—C7—H7A	111.4	C13—C18—H18	119.8
С8—С7—Н7В	111.4	C17—C18—C13	120.34 (10)
02	107.47 (8)	C17—C18—H18	119.8
02—C8—H8A	110.2		
	110.2		
Si1C1C2C3	178 37 (7)	C6-C7-C8-O2	0.87(12)
Sil-C5-C6-C7	178.02(7)	$C_{8} = O_{2} = C_{5} = S_{11}$	-177.67.(7)
Sil C9 C10 C11	170.02(7) 170.13(7)	$C_{8}^{8} O_{2}^{2} C_{5}^{5} C_{6}^{6}$	0.44(12)
$S_{11} = C_{12} = C_{10} = C_{11}$	179.13(7) 176.12(8)	$C_{0} = C_{0} = C_{0}$	172.60(7)
$S_{11} = C_{13} = C_{14} = C_{13}$ $S_{11} = C_{12} = C_{14} = C_{17}$	-177.22(8)	$C_{2} = S_{1} = C_{1} = C_{1}$	-7.02(10)
$SII = CI_{3} = CI_{4} = CI_{7}$	-177.25(8)	$C_{9} = S_{11} = C_{1} = C_{2}$	-7.02(10)
01 - 01 - 02 - 03	-1.27(12)	$C_{9} = S_{11} = C_{5} = C_{2}$	-39.87(8)
02-03-00-07	0.15(12)	C9 = S11 = C5 = C6	122.36 (9)
U3-U9-U10-U11	-0.06 (11)	C9 = S11 = C13 = C14	-58.05 (8)
C1—S11—C5—O2	-1/8.26 (/)	C9—S11—C13—C18	119.39 (8)
C1—S11—C5—C6	3.96 (10)	C9—O3—C12—C11	7.11 (11)
C1—Si1—C9—O3	59.03 (8)	C9—C10—C11—C12	4.34 (11)
C1—Si1—C9—C10	-120.11 (9)	C10—C11—C12—O3	-6.80 (11)
C1—Si1—C13—C14	60.67 (8)	C12—O3—C9—Si1	176.20 (6)
C1—Si1—C13—C18	-121.89 (8)	C12—O3—C9—C10	-4.54 (11)
C1—O1—C4—C3	9.46 (12)	C13—Si1—C1—O1	54.45 (8)

C1—C2—C3—C4	6.79 (11)	C13—Si1—C1—C2	-125.17 (9)
C2—C3—C4—O1	-9.64 (11)	C13—Si1—C5—O2	58.79 (8)
C4—O1—C1—Si1	175.01 (7)	C13—Si1—C5—C6	-118.98 (9)
C4—O1—C1—C2	-5.31 (12)	C13—Si1—C9—O3	-179.07 (7)
C5—Si1—C1—O1	-66.35 (8)	C13—Si1—C9—C10	1.79 (10)
C5—Si1—C1—C2	114.04 (9)	C13—C14—C15—C16	1.35 (15)
C5—Si1—C9—O3	-58.93 (8)	C14—C13—C18—C17	0.28 (15)
C5—Si1—C9—C10	121.92 (9)	C14—C15—C16—C17	-0.10 (16)
C5—Si1—C13—C14	-179.84 (7)	C15—C16—C17—C18	-1.03 (17)
C5—Si1—C13—C18	-2.40 (9)	C16—C17—C18—C13	0.94 (17)
C5—O2—C8—C7	-0.84 (13)	C18—C13—C14—C15	-1.42 (14)
C5—C6—C7—C8	-0.64 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C16—H16…O2 ⁱ	0.987 (18)	2.474 (18)	3.4394 (13)	165.9 (15)
С2—Н2…О3	0.995 (17)	2.809 (17)	3.4238 (13)	120.6 (12)

Symmetry code: (i) -x+1, y+1/2, -z+3/2.

(2HAR)

Crystal data

C₁₈H₂₀O₃Si $M_r = 312.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.4936 (6) Å b = 8.6802 (7) Å c = 19.747 (2) Å $\beta = 99.743$ (4)° V = 1603.8 (2) Å³ Z = 4

Data collection

Bruker D8 Venture diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.484, T_{\max} = 0.566$ 25027 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.021$ S = 2.075830 reflections F(000) = 664 $D_x = 1.294 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.710730 \text{ Å}$ Cell parameters from 9914 reflections $\theta = 2.6-30.5^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 100 KBlock, colourless $1 \times 0.58 \times 0.36 \text{ mm}$

5359 independent reflections 5359 reflections with $F > 0 \& F/\sigma(F) > 3.0 \& |$ $F_{calc}| > 10^{-3}$ $R_{int} = 0.030$ $\theta_{max} = 32.6^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -13 \rightarrow 10$ $l = -29 \rightarrow 29$

379 parameters 0 restraints 0 constraints All H-atom parameters refined Weighting scheme based on measured s.u.'s $w = 1/\sigma(F)$ $(\Delta/\sigma)_{\rm max} = 0.002$ $\Delta\rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$$

Special details

Refinement. HAR makes use of tailor-made aspherical atomic form factors calculated on-the-fly from a Hirshfeld-partitioned electron density (ED) - not from spherical-atom form factors.

The ED is calculated from a gaussian basis set single determinant SCF wavefunction - either SCF or DFT - for a fragment of the crystal embedded in an electrostatic crystal field.

If constraints were applied they are defined by zero eigenvalues of the least-squares hessian, see the value of refine ls_SVD_threshold.

Specify symmetry and Friedel pair averaging.

Only reflections which satisfy the threshold expression are listed below, and only they are considered observed, thus the * gt, * all and * total data are always the same.

Tractional alonic coordinates and isotropic or equivalent isotropic displacement parameters (11)
--

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si1	0.747546 (14)	0.582292 (15)	0.612664 (7)	0.01528 (6)
O1	0.84901 (5)	0.80558 (4)	0.53062 (2)	0.0292 (2)
O2	0.89013 (4)	0.53540 (5)	0.74723 (2)	0.0314 (2)
H16	0.2846 (9)	0.9319 (11)	0.6920 (5)	0.074 (7)
O3	0.76344 (4)	0.26862 (4)	0.57700 (2)	0.0272 (2)
C1	0.80726 (5)	0.65332 (6)	0.53303 (2)	0.0174 (2)
C2	0.81512 (6)	0.57618 (7)	0.47531 (3)	0.0227 (2)
C3	0.86534 (7)	0.68228 (7)	0.42380 (3)	0.0264 (3)
H3a	0.9585 (9)	0.6409 (10)	0.4044 (5)	0.063 (6)
H3b	0.7823 (9)	0.7044 (12)	0.3813 (4)	0.066 (6)
C4	0.90164 (8)	0.82785 (7)	0.46665 (3)	0.0301 (3)
H4a	0.8576 (12)	0.9288 (11)	0.4439 (5)	0.086 (8)
H4b	1.0174 (10)	0.8428 (12)	0.4793 (5)	0.078 (7)
C5	0.90593 (5)	0.58701 (6)	0.68281 (2)	0.0183 (2)
C6	1.03741 (6)	0.63895 (7)	0.68061 (3)	0.0233 (2)
H6	1.0707 (8)	0.6836 (11)	0.6349 (4)	0.054 (6)
C7	1.12977 (6)	0.62511 (8)	0.75034 (3)	0.0281 (3)
H7a	1.2215 (9)	0.5525 (13)	0.7488 (5)	0.076 (7)
H7b	1.1704 (10)	0.7364 (10)	0.7693 (5)	0.071 (7)
C8	1.02519 (7)	0.55702 (9)	0.79273 (3)	0.0318 (3)
H8a	1.0062 (10)	0.6346 (16)	0.8331 (6)	0.101 (9)
H8b	1.0587 (10)	0.4467 (14)	0.8157 (7)	0.101 (9)
C9	0.67596 (5)	0.38297 (6)	0.59582 (2)	0.0176 (2)
C10	0.54408 (6)	0.33323 (6)	0.59894 (3)	0.0221 (2)
H10	0.4616 (8)	0.4016 (9)	0.6120 (5)	0.051 (6)
C11	0.53018 (7)	0.16494 (7)	0.58067 (4)	0.0312 (3)
H11a	0.4968 (10)	0.1008 (11)	0.6216 (5)	0.069 (7)
H11b	0.4532 (8)	0.1460 (10)	0.5330 (5)	0.058 (6)
C12	0.68277 (7)	0.12475 (7)	0.57208 (3)	0.0298 (3)
H12a	0.6906 (10)	0.0754 (10)	0.5224 (5)	0.064 (6)
H12b	0.7323 (10)	0.0499 (10)	0.6124 (5)	0.076 (7)
C13	0.60087 (5)	0.70104 (6)	0.63796 (2)	0.0178 (2)

C14	0.46947 (6)	0.71578 (6)	0.59372 (3)	0.0222 (2)	
H14	0.4539 (8)	0.6612 (10)	0.5433 (4)	0.050 (5)	
C15	0.35609 (6)	0.79613 (7)	0.61351 (3)	0.0287 (3)	
H15	0.2540 (8)	0.8044 (11)	0.5787 (5)	0.062 (6)	
C16	0.37264 (7)	0.86670 (7)	0.67727 (3)	0.0322 (3)	
C17	0.50259 (7)	0.85587 (7)	0.72103 (3)	0.0340 (3)	
H17	0.5195 (10)	0.9123 (11)	0.7706 (5)	0.072 (7)	
C18	0.61593 (7)	0.77294 (7)	0.70210 (3)	0.0260 (3)	
H2	0.7895 (10)	0.4556 (9)	0.4679 (4)	0.056 (6)	
H18	0.7151 (9)	0.7604 (10)	0.7373 (4)	0.055 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
Si1	0.01511 (6)	0.01445 (6)	0.01659 (6)	-0.00151 (5)	0.00356 (5)	-0.00195 (5)
01	0.0473 (2)	0.01601 (18)	0.0284 (2)	-0.00392 (16)	0.01778 (19)	-0.00359 (16)
O2	0.02147 (18)	0.0467 (3)	0.02463 (18)	-0.01067 (18)	0.00006 (15)	0.01162 (18)
H16	0.062 (5)	0.073 (7)	0.103 (9)	0.024 (5)	0.060 (6)	-0.008 (6)
03	0.02383 (18)	0.01780 (18)	0.0400 (2)	0.00088 (14)	0.00591 (17)	-0.00434 (16)
C1	0.0182 (2)	0.0164 (2)	0.0186 (2)	-0.00123 (17)	0.00588 (18)	-0.00205 (18)
C2	0.0270 (2)	0.0215 (3)	0.0212 (2)	-0.0059 (2)	0.0085 (2)	-0.0053 (2)
C3	0.0286 (3)	0.0308 (3)	0.0217 (3)	-0.0047 (2)	0.0098 (2)	-0.0025 (2)
H3a	0.078 (6)	0.053 (6)	0.073 (8)	-0.009(5)	0.058 (6)	-0.016 (5)
H3b	0.053 (5)	0.113 (9)	0.030 (5)	-0.002(5)	0.002 (5)	0.014 (5)
C4	0.0428 (3)	0.0204 (3)	0.0317 (3)	-0.0047(2)	0.0195 (3)	-0.0010 (2)
H4a	0.156 (10)	0.044 (6)	0.070 (8)	0.036 (6)	0.054 (8)	0.024 (6)
H4b	0.061 (6)	0.102 (9)	0.082 (9)	-0.049 (6)	0.048 (6)	-0.050 (7)
C5	0.0165 (2)	0.0183 (2)	0.0196 (2)	-0.00281 (18)	0.00220 (18)	-0.00111 (18)
C6	0.0181 (2)	0.0284 (3)	0.0235 (2)	-0.0054 (2)	0.0035 (2)	0.0002 (2)
H6	0.050 (5)	0.084 (7)	0.035 (5)	-0.011 (5)	0.024 (4)	0.011 (5)
C7	0.0190 (3)	0.0341 (3)	0.0293 (3)	-0.0051 (2)	-0.0015 (2)	0.0035 (2)
H7a	0.020 (4)	0.133 (10)	0.075 (7)	0.018 (5)	0.006 (5)	0.033 (7)
H7b	0.101 (8)	0.041 (6)	0.058 (6)	-0.050 (6)	-0.022 (6)	0.004 (5)
C8	0.0260 (3)	0.0430 (4)	0.0244 (3)	-0.0099 (3)	-0.0016 (2)	0.0054 (3)
H8a	0.052 (6)	0.175 (13)	0.079 (8)	-0.028 (7)	0.022 (6)	-0.088 (9)
H8b	0.055 (7)	0.102 (9)	0.130 (10)	-0.021 (6)	-0.031 (7)	0.076 (8)
C9	0.0179 (2)	0.0152 (2)	0.0194 (2)	-0.00212 (18)	0.00223 (18)	-0.00130 (17)
C10	0.0198 (2)	0.0212 (3)	0.0255 (2)	-0.0049 (2)	0.0040 (2)	-0.0005 (2)
H10	0.037 (5)	0.040 (5)	0.079 (7)	-0.005 (4)	0.021 (5)	-0.008 (5)
C11	0.0314 (3)	0.0213 (3)	0.0393 (3)	-0.0103 (2)	0.0014 (3)	0.0026 (2)
H11a	0.074 (6)	0.056 (6)	0.083 (8)	-0.008 (5)	0.036 (6)	0.005 (6)
H11b	0.043 (5)	0.045 (6)	0.075 (7)	-0.008 (4)	-0.020 (5)	-0.019 (5)
C12	0.0326 (3)	0.0156 (2)	0.0369 (3)	0.0006 (2)	-0.0068 (3)	-0.0028 (2)
H12a	0.084 (7)	0.052 (6)	0.054 (6)	-0.001 (5)	0.010 (6)	-0.026 (5)
H12b	0.076 (7)	0.036 (6)	0.095 (7)	-0.002 (5)	-0.044 (6)	0.014 (5)
C13	0.0190 (2)	0.0170 (2)	0.0186 (2)	-0.00053 (17)	0.00679 (18)	-0.00205 (18)
C14	0.0191 (2)	0.0211 (2)	0.0266 (3)	0.00204 (19)	0.0048 (2)	-0.0030 (2)
H14	0.042 (5)	0.069 (6)	0.037 (5)	0.016 (4)	-0.004 (4)	-0.012 (4)

C15	0.0206 (2)	0.0217 (3)	0.0461 (4)	0.0013 (2)	0.0121 (2)	-0.0016 (2)
H15	0.013 (4)	0.073 (7)	0.094 (8)	0.006 (4)	-0.004 (5)	-0.009 (6)
C16	0.0336 (3)	0.0255 (3)	0.0433 (4)	0.0037 (2)	0.0236 (3)	0.0013 (3)
C17	0.0467 (3)	0.0336 (3)	0.0258 (3)	0.0093 (3)	0.0181 (3)	-0.0035 (3)
H17	0.107 (8)	0.073 (7)	0.042 (6)	0.033 (6)	0.027 (6)	-0.017 (5)
C18	0.0320 (3)	0.0272 (3)	0.0194 (2)	0.0045 (2)	0.0062 (2)	-0.0053 (2)
H2	0.092 (7)	0.036 (5)	0.045 (6)	-0.037 (5)	0.027 (5)	-0.019 (4)
H18	0.061 (6)	0.057 (6)	0.038 (5)	0.018 (5)	-0.013 (5)	-0.020 (4)

Geometric parameters (Å, °)

a		~ ~		
Sil—Cl	1.8643 (5)	C16—C17	1.3844 (10)	
Si1—C5	1.8646 (5)	C17—C18	1.3971 (8)	
Sil—C9	1.8680 (5)	C2—H2	1.079 (7)	
Sil—C13	1.8672 (5)	С3—Н3а	1.082 (8)	
01—C1	1.3830 (6)	C3—H3b	1.067 (9)	
O1—C4	1.4479 (6)	C4—H4a	1.039 (9)	
O2—C5	1.3804 (6)	C4—H4b	1.093 (9)	
O2—C8	1.4481 (7)	С6—Н6	1.077 (7)	
О3—С9	1.3847 (6)	C7—H7a	1.080 (9)	
O3—C12	1.4596 (7)	C7—H7b	1.083 (8)	
C1—C2	1.3350 (7)	C8—H8a	1.081 (9)	
С2—С3	1.5081 (7)	C8—H8b	1.085 (10)	
C3—C4	1.5272 (8)	C10—H10	1.049 (8)	
С5—С6	1.3348 (7)	C11—H11a	1.072 (9)	
С6—С7	1.5069 (8)	C11—H11b	1.102 (8)	
С7—С8	1.5222 (8)	C12—H12a	1.085 (8)	
C9—C10	1.3356 (7)	C12—H12b	1.072 (9)	
C10-C11	1.5052 (8)	C14—H14	1.089 (8)	
C11—C12	1.5271 (9)	C15—H15	1.092 (8)	
C13—C14	1.4025 (7)	C16—H16	1.089 (7)	
C13—C18	1.3975 (7)	C17—H17	1.083 (9)	
C14—C15	1.3929 (7)	C18—H18	1.076 (8)	
C15—C16	1.3851 (9)			
Si1-C1-01	118.36 (3)	C1—C2—H2	124.0 (4)	
Si1-C5-O2	118.53 (3)	C2—C3—H3a	114.0 (5)	
Si1-C9-O3	119.68 (3)	C2—C3—H3b	111.4 (5)	
Sil—Cl—C2	128.55 (4)	C3—C2—H2	126.2 (4)	
Si1-C5-C6	128.62 (4)	C3—C4—H4a	114.9 (6)	
Si1-C9-C10	127.36 (4)	C3—C4—H4b	110.4 (5)	
Si1-C13-C14	120.58 (4)	C4—C3—H3a	110.4 (5)	
Si1-C13-C18	121.50 (4)	C4—C3—H3b	110.8 (6)	
01—C1—C2	113.09 (4)	С5—С6—Н6	123.9 (4)	
O1—C4—C3	107.11 (4)	С6—С7—Н7а	111.6 (6)	
O2—C5—C6	112.81 (5)	С6—С7—Н7ь	111.3 (5)	
O2—C8—C7	107.48 (5)	С7—С6—Н6	125.9 (4)	
O3—C9—C10	112.96 (5)	С7—С8—Н8а	111.7 (6)	

107.10 (5)	С7—С8—Н8b	113.6 (6)
108.4 (5)	С8—С7—Н7а	113.1 (5)
107.4 (5)	C8—C7—H7b	112.6 (5)
107.3 (5)	C9—C10—H10	125.0 (4)
108.1 (6)	C10-C11-H11a	110.4 (5)
106.4 (5)	C10-C11-H11b	111.6 (5)
108.1 (5)	C11-C10-H10	124.7 (4)
107.29 (2)	C11—C12—H12a	113.7 (5)
108.03 (2)	C11—C12—H12b	111.2 (6)
112.96 (2)	C12-C11-H11a	111.9 (5)
112.08 (2)	C12—C11—H11b	112.0 (5)
109.47 (2)	C13—C14—H14	119.9 (4)
107.08 (2)	C13—C18—H18	118.9 (4)
107.51 (4)	C14—C15—H15	120.1 (5)
107.87 (4)	C15—C14—H14	118.8 (4)
107.43 (4)	C15—C16—H16	119.9 (6)
109.84 (5)	C16—C15—H15	119.7 (5)
101.48 (4)	C16—C17—H17	120.9 (5)
110.24 (5)	C17—C16—H16	120.8 (6)
101.58 (5)	C17—C18—H18	120.6 (4)
110.34 (5)	C18—C17—H17	118.2 (5)
101.65 (5)	Н3а—С3—Н3ь	108.7 (7)
121.27 (5)	H4a—C4—H4b	108.3 (8)
120.48 (6)	Н7а—С7—Н7ь	106.8 (7)
117.88 (5)	H8a—C8—H8b	108.4 (10)
120.16 (6)	H11a—C11—H11b	109.2 (7)
119.30 (5)	H12a—C12—H12b	110.1 (7)
120.89 (5)		
	107.10 (5) $108.4 (5)$ $107.4 (5)$ $107.3 (5)$ $108.1 (6)$ $106.4 (5)$ $108.1 (5)$ $107.29 (2)$ $108.03 (2)$ $112.96 (2)$ $112.08 (2)$ $109.47 (2)$ $107.87 (4)$ $107.87 (4)$ $107.87 (4)$ $107.43 (4)$ $109.84 (5)$ $101.48 (4)$ $110.24 (5)$ $101.65 (5)$ $121.27 (5)$ $120.48 (6)$ $117.88 (5)$ $120.16 (6)$ $119.30 (5)$ $120.89 (5)$	107.10(5) $C7-C8-H8b$ $108.4(5)$ $C8-C7-H7a$ $107.4(5)$ $C8-C7-H7b$ $107.3(5)$ $C9-C10-H10$ $108.1(6)$ $C10-C11-H11a$ $106.4(5)$ $C10-C11-H11b$ $108.1(5)$ $C11-C10-H10$ $107.29(2)$ $C11-C12-H12a$ $108.03(2)$ $C11-C12-H12b$ $112.96(2)$ $C12-C11-H11a$ $109.47(2)$ $C13-C14-H14$ $107.51(4)$ $C14-C15-H15$ $107.87(4)$ $C15-C14-H14$ $107.43(4)$ $C15-C16-H16$ $109.84(5)$ $C16-C15-H15$ $101.48(4)$ $C16-C17-H17$ $110.24(5)$ $C17-C16-H16$ $101.58(5)$ $C18-C17-H17$ $101.65(5)$ $H3a-C3-H3b$ $121.27(5)$ $H4a-C4-H4b$ $120.48(6)$ $H7a-C7-H7b$ $117.88(5)$ $H8a-C8-H8b$ $120.16(6)$ $H11a-C11-H11b$ $120.89(5)$ $S12-C12-H12b$

Å