

Received 14 July 2020 Accepted 3 August 2020

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: benzothiazinones; nitrobenzamides; anti-tuberculosis drugs; reaction mechanism; crystal structure.

CCDC reference: 2021003

Supporting information: this article has supporting information at journals.iucr.org/e

[2-Chloro-3-nitro-5-(trifluoromethyl)phenyl](piperidin-1-yl)methanone: structural characterization of a side product in benzothiazinone synthesis

Tamira Eckhardt,^a Richard Goddard,^b Ines Rudolph,^a Adrian Richter,^a Christoph Lehmann,^a Peter Imming^a and Rüdiger W. Seidel^a*

^aInstitut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and ^bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany. *Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

1,3-Benzothiazin-4-ones (BTZs) are a promising new class of anti-tuberculosis drug candidates, some of which have reached clinical trials. The title compound, the benzamide derivative [2-chloro-3-nitro-5-(trifluoromethyl)phenyl](piperid-in-1-yl)methanone, $C_{13}H_{12}ClF_{3}N_2O_3$, occurs as a side product as a result of competitive reaction pathways in the nucleophilic attack during the synthesis of the BTZ 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-1,3-benzothiazin-4-one, following the original synthetic route, whereby the corresponding benzoyl isothiocyanate is reacted with piperidine as secondary amine. In the title compound, the nitro group and the nearly planar amide group are significantly twisted out of the plane of the benzene ring. The piperidine ring adopts a chair conformation. The trifluoromethyl group exhibits slight rotational disorder with a refined ratio of occupancies of 0.972 (2):0.028 (2). There is structural evidence for intermolecular weak $C-H\cdots$ O hydrogen bonds.

1. Chemical context

1.3-Benzothiazin-4-ones (BTZs) are promising anti-tuberculosis drug candidates, some of which have already reached clinical trials (Mikušová et al., 2014; Makarov & Mikušová, 2020). Various methods for the synthesis of BTZs have been reported (Makarov et al., 2007; Moellmann et al., 2009; Makarov, 2011; Rudolph, 2014; Rudolph et al., 2016; Zhang & Aldrich, 2019). In the original synthesis, 2-chlorobenzovl chloride derivatives are reacted with ammonium or alkali metal thiocyanates to form the corresponding 2-chlorobenzoyl isothiocyanates (Makarov et al., 2007; Moellmann et al., 2009). These are reactive species and are treated in situ with secondary amines to afford the corresponding thiourea derivatives, which undergo ring closure to give 1,3-thiazin-4ones via an intramolecular nucleophilic substitution reaction. The latter step is favoured when electron-withdrawing substituents are present on the benzene ring.

Figure 1

Synthetic pathway from 2-chloro-3-nitro-5-(trifluoromethyl)benzoic acid (1) to BTZ 3 and side product 4, illustrating the two different points of nucleophilic attack of piperidine at the intermediate 2-chloro-3-nitro-5-(trifluoromethyl)benzoyl isothiocyanate (2), resulting in 3 and 4 (Rudolph, 2014).

Fig. 1 depicts the synthesis following the original procedure for a BTZ previously reported by us (Rudolph, 2014; Rudolph et al., 2016; Richter, Rudolph et al., 2018). After treatment of 2-chloro-3-nitro-5-(trifluoromethyl)benzoic acid (1) with thionyl chloride and subsequently ammonium thiocyanate, the 2-chloro-3-nitro-5-(trifluoromethyl)benzovl corresponding isothiocyanate (2) was reacted with piperidine. As illustrated, nucleophilic attack of the piperidine nitrogen atom at the isothiocyanate carbon atom leads to the anticipated 8-nitro-2-(piperidin-1-yl)-6-(trifluoromethyl)-1,3-benzothiazin-4-one (3). The alternative nucleophilic attack at the carbonyl carbon atom affords the side product (2-chloro-3-nitro-5-(trifluoromethyl)phenyl)(piperidin-1-yl)methanone (4), which was structurally characterized by X-ray crystallography in the present work. The ratio of 3 to 4 was found to vary depending on the reaction conditions. Temperatures at or below 283 K favour the formation of the anticipated 3, whereas substantial amounts of 4 form at elevated temperatures (Rudolph, 2014). Since BTZs are in clinical development [see, for example, Makarov & Mikušová (2020) or Mariandyshev et al. (2020)], this observation is not only important for the improvement of synthetic yields but also for the compilation of known synthetic side products for drug quality control.

It is interesting to note that dinitrobenzamide derivatives related to **4** have been found to have some anti-mycobacterial activity (Christophe *et al.*, 2009; Trefzer *et al.*, 2010; Tiwari *et al.*, 2013), and the non-chlorinated analogue of **4** was reported to have anticoccidial activity (Welch *et al.*, 1969).

2. Structural commentary

Fig. 2 shows the molecular structure of **4** in the solid state. Selected geometric parameters are listed in Table 1. The dihedral angle between the plane of the nitro group and the mean plane of the benzene ring is $38.1 (2)^{\circ}$, which can be attributed to the steric demand of the neighbouring chloro substituent at the benzene ring. The trifluoromethyl group

exhibits rotational disorder over two sites with 97.2 (2)% occupancy for the major site. The plane of the amide group, as defined by C8, O3 and N2, is tilted out of the mean plane of the benzene ring by 79.6 $(1)^{\circ}$. The Winkler–Dunitz parameters for the amide linkage τ (twist angle) = 1.2° and χ_N (pyramidalization at nitrogen) = 4.0° indicate an almost planar amide group (Winkler & Dunitz, 1971). In the IR spectrum (see supporting information), the band at 1639 cm^{-1} can be assigned to the C=O stretching vibration of the amide group. The molecule is axially chiral, although the centrosymmetric crystal structure contains both enantiomers. The ¹³C NMR spectrum of **4** in methanol- d_4 as well as chloroform-d at room temperature (see supporting information) displays five distinct signals in the aliphatic region, which are assigned to the piperidine carbon atoms, indicating that the rotation about the amide C-N bond is slow in solution under these conditions. The ¹³C NMR chemical shift of the α -carbon atom C13 syn to

Molecular structure of **4**. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by small spheres of arbitrary radii. The minor occupancy component of the disordered trifluoromethyl group is depicted by empty ellipsoids.

research communications

Selected geometric	parameters (Å,	°).	
C1-C8	1.510 (3)	C7-F3	1.328 (3)
C2-Cl1	1.725 (2)	C7-F2	1.336 (3)
C3-N1	1.468 (3)	C8-O3	1.234 (2)
C5-C7	1.497 (3)	C8-N2	1.342 (3)
C7-F1	1.325 (3)		
C4-C3-N1	116.41 (17)	N2-C9-C10	110.59 (18)
C2-C3-N1	122.35 (18)	C9-C10-C11	110.61 (19)
F1-C7-F3	107.69 (19)	C12-C11-C10	109.74 (18)
F1-C7-F2	105.98 (19)	C13-C12-C11	111.01 (18)
F3-C7-F2	105.59 (17)	N2-C13-C12	111.35 (17)
F1-C7-C5	112.43 (17)	O2-N1-O1	124.48 (17)
F3-C7-C5	112.80 (18)	O2-N1-C3	117.04 (17)
F2-C7-C5	111.86 (17)	O1-N1-C3	118.44 (16)
O3-C8-N2	124.72 (18)	C8-N2-C13	120.26 (16)
O3-C8-C1	118.43 (18)	C8-N2-C9	124.74 (16)
N2-C8-C1	116.85 (17)	C13-N2-C9	114.89 (16)
C4-C3-N1-O2	36.6 (2)	O3-C8-N2-C13	3.0 (3)
C2-C3-N1-O2	-143.29(19)	C1-C8-N2-C13	-176.62(17)
C4-C3-N1-O1	-141.34 (18)	O3-C8-N2-C9	179.0 (2)
C2-C3-N1-O1	38.8 (3)	C1-C8-N2-C9	-0.6(3)

the carbonyl oxygen atom of the amide group is shielded compared with that of the *anti* α -carbon atom C9. In chloroform-*d*, the observed shielding magnitude of $\Delta\delta_{\rm C} = 5.0$ ppm is within the range expected for a benzoylpiperidine (Rubiralta *et al.*, 1991). In the corresponding ¹H NMR spectrum, the *syn* protons with respect to the amide carbonyl oxygen atom are deshielded compared with those in the *anti* position ($\Delta\delta_{\rm H} =$ 0.58 ppm). Complete assignments of ¹H and ¹³C NMR data in chloroform-*d* by ¹³C,¹H-HSQC and -HMBC NMR spectra can be found in the supporting information. Notably, the two separated methylene ¹H NMR signals assigned to C10 in chloroform-*d* appear as one signal in methanol-*d*₄.

In the solid state, the piperidine ring in **4** adopts a lowenergy chair conformation with some minor angular deviations from ideal tetrahedral values, resulting from planarity at N2 due to involvement in the amide linkage. The puckering parameters of the piperidine six-membered ring, as calculated with *PLATON* (Spek, 2020), are Q = 0.555 (2) Å, $\theta = 4.1$ (2)° and $\varphi = 161$ (3)°. By way of comparison, the total puckering amplitude Q is 0.63 Å and the magnitude of distortion θ is 0° for an ideal cyclohexane chair (Cremer & Pople, 1975).

3. Supramolecular features

In general, the crystal structure of **4** appears to be dominated by close packing. According to Kitaigorodskii (1973), the space group *Pbca* is among those available for the densest packing of molecules of arbitrary shape. Nevertheless, the solid-state supramolecular structure features $C-H\cdots O$ contacts between an aromatic CH moiety and the amide oxygen atom of an adjacent molecule (Fig. 3*a*). The corresponding geometric parameters (Table 2) support the interpretation as a weak hydrogen bond (Thakuria *et al.*, 2017). These interactions link the molecules into strands extending by 2_1 screw symmetry in the [010] direction. The α -methylene groups of the piperidine ring, on which the amide group

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$C6-H6\cdots O3^{i}$	0.95	2.59	3.526 (3)	169
$C9-H9A\cdotsO1^{ii}$	0.99	2.45	3.361 (3)	154
$C9-H9B\cdots O1^{iii}$	0.99	2.58	3.369 (3)	137
$C13-H13A\cdots Cg(C1-C6)^{iv}$	0.99	2.92	3.447 (2)	114

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (iii) x, y + 1, z; (iv) $x + \frac{3}{2}, -y + \frac{1}{2}, -z$.

should exert an electron-withdrawing effect, also form intermolecular C—H···O and C—H··· π contacts, respectively, to the nitro group and the benzene ring of adjacent molecules (Fig. 3*b*–*d*). The corresponding geometric parameters (Table 2), however, reveal that these contacts may not have the same significance here as the aforementioned C_{aromatic}— H···O_{amide} short contact (Wood *et al.*, 2009). It is also worth noting that π – π stacking of the aromatic rings is not observed.

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.41 with March 2020 updates; Groom *et al.*, 2016) for related substituted *N*-benzoyl-piperidine compounds revealed about 30 structures, of which (2-chloro-3,5-dinitrophenyl)(piperidin-1-yl)methanone (CSD refcode: URALIJ; Luo *et al.*, 2011) is structurally most related to **4**. Similar to **4**, the 3-nitro group with the neighbouring chloro substituent is tilted out of the mean plane of the benzene ring by 36.2° . At 75.8° , the dihedral angle between the amide plane and the mean plane of the benzene ring is comparable with that in **4**. Likewise, the

Figure 3

Short contacts (dashed lines) between adjacent molecules in the crystal structure of **4**. The minor component of the disordered trifluoromethyl group is omitted for clarity. Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (iii) x, y + 1, z; (iv) $x + \frac{3}{2}$, $-y + \frac{1}{2}$, -z.

piperidine ring exhibits a chair conformation with a planar structure at the nitrogen atom. In contrast to **4**, the solid-state supramolecular structure of URALIJ exhibits π - π stacking of the aromatic rings. Interestingly, a CSD search for the 2-chloro-3-nitro-5-(trifluoromethyl)phenyl moiety present in **4** led to only one structure, *viz.* 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene (JIHNUM; del Casino *et al.*, 2018), also known as chloralin, which is active against *Plasmodium*, but which also shows toxicity in mice.

5. Anti-mycobacterial evaluation

The anti-mycobacterial activity of **4** was evaluated against *Mycobacterium smegmatis* mc² 155 and *Mycobacterium abscessus* ATCC19977, using broth microdilution assays [for the assay protocols, see the supporting information and Richter, Strauch *et al.* (2018)]. For both mycobacterial species, no growth inhibition was detectable up to a concentration of 100 μ M. For *M. smegmatis*, the findings are consistent with the activity data for a related nitrobenzamide derivative reported by Tiwari *et al.* (2013). CT319, a 3-nitro-5-(trifluorometh-yl)benzamide derivative, however, showed activity against *M. smegmatis* mc² 155 and other mycobacterial strains (Trefzer *et al.*, 2010).

6. Synthesis and crystallization

Chemicals were purchased and used as received. The synthesis of **1** is described elsewhere (Welch *et al.*, 1969). Solvents were of reagent grade and were distilled before use. The IR spectrum was measured on a Bruker TENSOR II FT–IR spectrometer at a resolution of 4 cm⁻¹. NMR spectra were recorded at room temperature on an Agilent Technologies VNMRS 400 MHz NMR spectrometer (abbreviations: d = doublet, q = quartet, m = multiplet). Chemical shifts are referenced to the residual signals of methanol- d_4 ($\delta_{\rm H} =$ 3.35 ppm, $\delta_{\rm C} =$ 49.3 ppm) or chloroform-d ($\delta_{\rm H} =$ 7.26 ppm, $\delta_{\rm C} =$ 77.2 ppm).

2.7 mL (37.0 mmol) of SOCl₂ were added to a stirred solution of 1 (5.00 g,18.5 mmol) in toluene, and the mixture was heated to reflux for two h. The solvent was subsequently removed under reduced pressure, and the acid chloride thus obtained was used without purification. The residue was taken up in 6.5 mL of acetonitrile and a solution of 1.41 g (18.5 mmol) NH₄SCN in 55 mL of acetonitrile was added dropwise with stirring to obtain 2 in situ. After stirring for 5 min at 313 K, the resulting NH₄Cl precipitate was filtered off, and 3.7 mL (37.0 mmol) of piperidine were added. The mixture was refluxed overnight, and then the solvent was removed under reduced pressure. Water was added to the residue and, after extraction with dichloromethane, the organic phase was washed with 10% aqueous NaHCO₃ and dried over MgSO₄. After removal of the solvent, the crude product was subjected to flash chromatography on silica gel, eluting with ethyl acetate/n-heptane (gradient 10–50% v/v), to isolate 1.09 g (3.0 mmol, 16%) of 3 and a minor amount of the side product **4**. ¹H and ¹³C NMR spectroscopic and mass

Table 3
Experimental details.

Crystal data	
Chemical formula	$C_{13}H_{12}ClF_3N_2O_3$
M _r	336.70
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	18.0904 (7), 7.8971 (3), 19.8043 (8)
$V(Å^3)$	2829.28 (19)
Ζ	8
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	2.88
Crystal size (mm)	$0.59 \times 0.50 \times 0.44$
Data collection	
Diffractometer	Bruker Kappa Mach3 APEXII
Absorption correction	Gaussian (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.297, 0.586
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	49954, 2784, 2699
R _{int}	0.041
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.043, 0.115, 1.15
No. of reflections	2784
No. of parameters	209
No. of restraints	45
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.32, -0.32

Computer programs: *APEX3* (Bruker, 2017), *SAINT* (Bruker, 2004), *SHELXT2014/4* (Sheldrick, 2015a), *SHELXL2018/3* (Sheldrick, 2015b), *DIAMOND* (Brandenburg, 2018), *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2010).

spectrometric data of **3** were in agreement with those in the literature (Rudolph, 2014; Rudolph *et al.*, 2016). Crystals of **4** suitable for X-ray crystallography were obtained from a solution in ethyl acetate/heptane (1:1) by slow evaporation of the solvents at room temperature. NMR spectroscopic data for **4**:

¹H NMR (400 MHz, CD₃OD) δ 8.42 (d, ⁴ J_{meta} = 2.2 Hz, 1H, Ar-*H*), 8.09 (d, ⁴ J_{meta} = 2.2 Hz, 1H, Ar-*H*), 3.88–3.71 (*m*, 2H, N-CH₂), 3.33–3.21 (*m*, 2H, N-CH₂), 1.76 (*m*, 4H, CH₂), 1.64 (*m*, 2H, CH₂) ppm; ¹³C NMR (101 MHz, CD₃OD) δ 165.5, 150.7, 141.8, 132.3 (q, ² $J_{C,F}$ = 35 Hz), 129.2 (q, ³ $J_{C,F}$ = 4 Hz), 128.1, 124.4 (q, ³ $J_{C,F}$ = 4 Hz), 124.1 (q, ¹ $J_{C,F}$ = 273 Hz), 49.5, 44.3, 27.6, 26.7, 25.5 ppm.

¹H NMR (400 MHz, CDCl₃ δ) 8.07 (*d*, ⁴*J*_{meta} = 2.0 Hz, 1H, C4–*H*), 7.73 (*d*, ⁴*J*_{meta} = 2.0 Hz, 1H, C6–*H*), 3.83–3.68 (*m*, 2H, C13–CH₂), 3.22 (*ddd*, ²*J*_{gem} = 13.2 Hz, ³*J*_{vic} = 7.1, 4.0 Hz, 1H, C9–CH₂), 3.15 (*ddd*, ²*J*_{gem} = 13.2 Hz, ³*J*_{vic} = 7.1, 4.0 Hz, 1H, C9–CH₂), 1.70 (*m*, 4H, C11, C12–CH₂), 1.65–1.57 (*m*, 1H, C10–CH₂), 1.56–1.47 (*m*, 1H, C10–CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃ δ) 163.5 (C8, C=O), 148.9 (C3), 141.1 (C1), 131.2 (*q*, ²*J*_{C,F} = 35 Hz, C5), 127.8 (*q*, ³*J*_{C,F} = 4 Hz, C6), 127.6 (C2), 122.7 (*q*, ³*J*_{C,F} = 4 Hz, C4), 122.4 (*q*, ¹*J*_{C,F} = 273 Hz, C7), 48.3 (C9), 43.3 (C13), 26.7 (C10), 25.7 (C12), 24.6 (C11) ppm.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The rotational disorder of the trifluoromethyl group was refined using a split model with similar distance restraints on the 1,2- and 1,3-distances and equal atomic displacement parameters for opposite fluorine atoms belonging to different disorder sites. Refinement of the ratio of occupancies by means of a free variable resulted in 0.972 (2):0.028 (2). Hydrogen-atom positions were calculated geometrically with $C_a-H = 0.95$ Å and $C_m-H = 0.99$ Å (a = aromatic and m = methylene), and refined with the appropriate riding model and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Acknowledgements

We thank Professor Christian W. Lehmann for providing access to the X-ray diffraction facility and Heike Schucht for technical assistance.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Brandenburg, K. (2018). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casino, A. del, Lukinović, V., Bhatt, R., Randle, L. E., Dascombe, M. J., Fennell, B. J., Drew, M. G. B., Bell, A., Fielding, A. J. & Ismail, F. M. D. (2018). *ChemistrySelect* 3, 7572–7580.
- Christophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J.-P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Škovierová, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M.-L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). *PLoS Pathog.* 5, e1000645.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kitaigorodskii, A. I. (1973). *Molecular Crystals and Molecules*. London: Academic Press.

- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. *Appl. Cryst.* **48**, 3–10.
- Luo, X., Huang, Y.-C., Gao, C. & Yu, L.-T. (2011). Acta Cryst. E67, 01066.
- Makarov, V. (2011). PCT Int. Appl. WO 2011132070 A1.
- Makarov, V., Cole, S. T. & Moellmann, U. (2007). *PCT Int. Appl.* WO 2007134625 A1.
- Makarov, V. & Mikušová, K. (2020). Appl. Sci. 10, 2269.
- Mariandyshev, A. O., Khokhlov, A. L., Smerdin, S. V., Shcherbakova, V. S., Igumnova, O. V., Ozerova, I. V., Bolgarina, A. A. & Nikitina, N. A. (2020). *Ter. Arkh.* 92, 61–72.
- Mikušová, K., Makarov, V. & Neres, J. (2014). Curr. Pharm. Des. 20, 4379–4403.
- Moellmann, U., Makarov, V. & Cole, S. T. (2009). PCT Int. Appl. WO 2009010163 A1.
- Richter, A., Rudolph, I., Möllmann, U., Voigt, K., Chung, C., Singh, O. M. P., Rees, M., Mendoza-Losana, A., Bates, R., Ballell, L., Batt, S., Veerapen, N., Fütterer, K., Besra, G., Imming, P. & Argyrou, A. (2018). Sci. Rep. 8, 13473.
- Richter, A., Strauch, A., Chao, J., Ko, M. & Av-Gay, Y. (2018). Antimicrob. Agents Chemother. 62, e00828–18.
- Rubiralta, M., Giralt, E. & Diez, A. (1991). 7 N-Acylpiperidines. A Useful Tool for Stereocontrol in Organic Synthesis. In: Studies in Organic Chemistry, vol. 43, pp. 193–224. Amsterdam: Elsevier.
- Rudolph, A. I. (2014). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
- Rudolph, I., Imming, P. & Richter, A. (2016). Ger. Offen. DE 102014012546 A1 20160331.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Thakuria, R., Sarma, B. & Nangia, A. (2017). Hydrogen Bonding in Molecular Crystals. In: Comprehensive Supramolecular Chemistry II, vol. 7, edited by J. L. Atwood, pp. 25–48. Oxford: Elsevier.
- Tiwari, R., Moraski, G. C., Krchňák, V., Miller, P. A., Colon-Martinez, M., Herrero, E., Oliver, A. G. & Miller, M. J. (2013). J. Am. Chem. Soc. 135, 3539–3549.
- Trefzer, C., Rengifo-Gonzalez, M., Hinner, M. J., Schneider, P., Makarov, V., Cole, S. T. & Johnsson, K. (2010). J. Am. Chem. Soc. 132, 13663–13665.
- Welch, D. E., Baron, R. R. & Burton, B. A. (1969). J. Med. Chem. 12, 299–303.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Winkler, F. K. & Dunitz, J. D. (1971). J. Mol. Biol. 59, 169-182.
- Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.
- Zhang, G. & Aldrich, C. C. (2019). Acta Cryst. C75, 1031-1035.

supporting information

Acta Cryst. (2020). E76, 1442-1446 [https://doi.org/10.1107/S2056989020010658]

[2-Chloro-3-nitro-5-(trifluoromethyl)phenyl](piperidin-1-yl)methanone: structural characterization of a side product in benzothiazinone synthesis

Tamira Eckhardt, Richard Goddard, Ines Rudolph, Adrian Richter, Christoph Lehmann, Peter Imming and Rüdiger W. Seidel

Computing details

Data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXT2014/4* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2018); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004) and *publCIF* (Westrip, 2010).

[2-Chloro-3-nitro-5-(trifluoromethyl)phenyl](piperidin-1-yl)methanone

Crystal data

 $C_{13}H_{12}ClF_{3}N_{2}O_{3}$ $M_{r} = 336.70$ Orthorhombic, *Pbca* a = 18.0904 (7) Å b = 7.8971 (3) Å c = 19.8043 (8) Å $V = 2829.28 (19) Å^{3}$ Z = 8F(000) = 1376

Data collection

Bruker Kappa Mach3 APEXII diffractometer Radiation source: $0.2 \times 2 \text{ mm}^2$ focus rotating anode MONTEL graded multilayer optics monochromator Detector resolution: 66.67 pixels mm⁻¹ φ - and ω -scans Absorption correction: gaussian (SADABS; Krause *et al.*, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.115$ S = 1.152784 reflections 209 parameters $D_x = 1.581 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9968 reflections $\theta = 4.9-71.6^{\circ}$ $\mu = 2.88 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.59 \times 0.50 \times 0.44 \text{ mm}$

 $T_{\min} = 0.297, T_{\max} = 0.586$ 49954 measured reflections 2784 independent reflections $2699 \text{ reflections with } I > 2\sigma(I)$ $R_{\text{int}} = 0.041$ $\theta_{\text{max}} = 72.2^{\circ}, \theta_{\text{min}} = 4.9^{\circ}$ $h = -21 \rightarrow 22$ $k = -9 \rightarrow 9$ $l = -24 \rightarrow 24$

45 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0508P)^{2} + 2.7994P] \qquad \Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.41556 (10)	0.3250 (3)	0.23581 (10)	0.0230 (4)	
C2	0.38370 (10)	0.1651 (3)	0.23833 (10)	0.0224 (4)	
C3	0.35007 (10)	0.1004 (3)	0.18023 (10)	0.0227 (4)	
C4	0.34763 (10)	0.1927 (3)	0.12111 (10)	0.0243 (4)	
H4	0.325215	0.146458	0.081847	0.029*	
C5	0.37831 (10)	0.3541 (3)	0.11961 (10)	0.0242 (4)	
C6	0.41190 (11)	0.4206 (3)	0.17666 (10)	0.0250 (4)	
H6	0.432417	0.531321	0.175487	0.030*	
C7	0.37425 (12)	0.4549 (3)	0.05572 (11)	0.0298 (5)	
C8	0.45848 (10)	0.3906 (2)	0.29575 (10)	0.0232 (4)	
C9	0.34929 (13)	0.5683 (3)	0.32422 (11)	0.0327 (5)	
H9A	0.325497	0.503425	0.287381	0.039*	
H9B	0.351745	0.688568	0.310277	0.039*	
C10	0.30335 (12)	0.5528 (3)	0.38813 (13)	0.0404 (6)	
H10A	0.296350	0.431647	0.399304	0.048*	
H10B	0.254021	0.603627	0.380559	0.048*	
C11	0.34134 (13)	0.6421 (3)	0.44689 (11)	0.0373 (5)	
H11A	0.344826	0.764952	0.437412	0.045*	
H11B	0.311898	0.626777	0.488581	0.045*	
C12	0.41843 (12)	0.5691 (3)	0.45695 (10)	0.0294 (5)	
H12A	0.443955	0.632047	0.493365	0.035*	
H12B	0.414464	0.449164	0.470978	0.035*	
C13	0.46343 (11)	0.5807 (3)	0.39245 (10)	0.0277 (4)	
H13A	0.473754	0.701122	0.382205	0.033*	
H13B	0.511333	0.522352	0.398982	0.033*	
N1	0.31581 (9)	-0.0681 (2)	0.17845 (9)	0.0253 (4)	
N2	0.42423 (9)	0.5038 (2)	0.33544 (8)	0.0249 (4)	
01	0.28104 (8)	-0.1161 (2)	0.22819 (8)	0.0324 (4)	
O2	0.32229 (8)	-0.1493 (2)	0.12611 (8)	0.0341 (4)	
03	0.52198 (7)	0.33806 (19)	0.30471 (7)	0.0288 (3)	
F1	0.38438 (14)	0.3603 (2)	0.00122 (7)	0.0711 (7)	0.972 (2)
F2	0.30831 (8)	0.52847 (19)	0.04797 (8)	0.0418 (4)	0.972 (2)
F3	0.42321 (8)	0.5801 (2)	0.05379 (8)	0.0470 (4)	0.972 (2)
F1′	0.352 (3)	0.612 (3)	0.0688 (18)	0.0711 (7)	0.028 (2)
F2′	0.4387 (11)	0.472 (6)	0.0269 (18)	0.0418 (4)	0.028 (2)
F3′	0.325 (2)	0.397 (5)	0.0129 (15)	0.0470 (4)	0.028 (2)

supporting information

Cl1	0.38924 (3) 0.054	-17 (6)	0.31320 (2)	0.02635 (16)	
Atomic	displacement par	ameters ($Å^2$)				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0194 (9)	0.0250 (9)	0.0246 (9)	0.0021 (7)	0.0012 (7)	-0.0019 (8)
C2	0.0186 (8)	0.0246 (9)	0.0239 (9)	0.0021 (7)	0.0011 (7)	0.0002 (8)
C3	0.0166 (8)	0.0219 (9)	0.0296 (10)	0.0011 (7)	0.0009 (7)	-0.0021 (8)
C4	0.0202 (9)	0.0288 (10)	0.0239 (9)	0.0050 (8)	-0.0004(7)	-0.0031 (8)
C5	0.0219 (9)	0.0261 (10)	0.0247 (10)	0.0056 (8)	0.0021 (7)	0.0011 (8)
C6	0.0248 (10)	0.0226 (9)	0.0277 (10)	0.0006 (8)	0.0004 (8)	0.0002 (8)
C7	0.0350 (11)	0.0292 (11)	0.0251 (10)	0.0056 (9)	0.0005 (8)	-0.0002 (8)
C8	0.0225 (9)	0.0226 (9)	0.0245 (9)	-0.0035 (8)	-0.0003 (7)	0.0033 (8)
C9	0.0335 (11)	0.0298 (11)	0.0347 (11)	0.0094 (9)	-0.0117 (9)	-0.0088 (9)
C10	0.0200 (10)	0.0517 (15)	0.0495 (14)	0.0058 (9)	-0.0038 (9)	-0.0188 (11)
C11	0.0324 (11)	0.0474 (14)	0.0322 (11)	0.0039 (10)	-0.0011 (9)	-0.0114 (10)
C12	0.0308 (11)	0.0327 (11)	0.0247 (10)	-0.0010 (9)	-0.0013 (8)	0.0002 (8)
C13	0.0267 (10)	0.0306 (10)	0.0257 (10)	-0.0070(8)	-0.0028 (8)	-0.0018 (8)
N1	0.0190 (8)	0.0260 (9)	0.0310 (9)	-0.0009 (6)	-0.0037 (7)	-0.0016 (7)
N2	0.0213 (8)	0.0277 (9)	0.0257 (8)	-0.0010 (7)	-0.0042 (7)	-0.0030 (7)
01	0.0267 (7)	0.0334 (8)	0.0371 (8)	-0.0062 (6)	0.0010 (6)	0.0028 (7)
O2	0.0348 (8)	0.0320 (8)	0.0356 (8)	-0.0010 (6)	-0.0045 (6)	-0.0098 (7)
O3	0.0204 (7)	0.0324 (8)	0.0337 (8)	0.0005 (6)	-0.0017 (6)	-0.0003 (6)
F1	0.151 (2)	0.0382 (9)	0.0239 (7)	0.0278 (10)	0.0154 (9)	-0.0002 (6)
F2	0.0336 (7)	0.0457 (8)	0.0460 (8)	0.0053 (6)	-0.0056 (6)	0.0175 (7)
F3	0.0389 (8)	0.0567 (10)	0.0453 (8)	-0.0142 (7)	-0.0052 (6)	0.0251 (7)
F1′	0.151 (2)	0.0382 (9)	0.0239 (7)	0.0278 (10)	0.0154 (9)	-0.0002 (6)
F2′	0.0336 (7)	0.0457 (8)	0.0460 (8)	0.0053 (6)	-0.0056 (6)	0.0175 (7)
F3′	0.0389 (8)	0.0567 (10)	0.0453 (8)	-0.0142 (7)	-0.0052 (6)	0.0251 (7)
C11	0.0267 (3)	0.0273 (3)	0.0250 (3)	-0.00271 (18)	0.00002 (17)	0.00364 (17)

Geometric parameters (Å, °)

C1—C2	1.389 (3)	C8—N2	1.342 (3)	
C1—C6	1.395 (3)	C9—N2	1.465 (3)	
C1—C8	1.510 (3)	C9—C10	1.519 (3)	
С2—С3	1.398 (3)	С9—Н9А	0.9900	
C2-Cl1	1.725 (2)	C9—H9B	0.9900	
C3—C4	1.380 (3)	C10—C11	1.525 (3)	
C3—N1	1.468 (3)	C10—H10A	0.9900	
C4—C5	1.390 (3)	C10—H10B	0.9900	
C4—H4	0.9500	C11—C12	1.522 (3)	
C5—C6	1.386 (3)	C11—H11A	0.9900	
С5—С7	1.497 (3)	C11—H11B	0.9900	
С6—Н6	0.9500	C12—C13	1.518 (3)	
C7—F2′	1.304 (14)	C12—H12A	0.9900	
C7—F3′	1.314 (14)	C12—H12B	0.9900	
C7—F1	1.325 (3)	C13—N2	1.465 (2)	

	1 222 (2)		
C7—F3	1.328 (3)	C13—H13A	0.9900
C7—F1′	1.332 (14)	C13—H13B	0.9900
C7—F2	1,336 (3)	N1—02	1.225 (2)
C_{8} O_{3}	1 234 (2)	NI OI	1,220(2)
03	1.234 (2)	NI-01	1.229 (2)
$C_{2} - C_{1} - C_{6}$	120 16 (18)	С10—С9—Н9А	109 5
$C_2 C_1 C_2$	120.10(10) 110.92(17)		109.5
	119.62 (17)	N2-C9-H9B	109.5
C6-C1-C8	119.90 (17)	С10—С9—Н9В	109.5
C1—C2—C3	118.92 (18)	H9A—C9—H9B	108.1
C1—C2—Cl1	117.93 (15)	C9—C10—C11	110.61 (19)
C3—C2—Cl1	123.13 (16)	C9-C10-H10A	109.5
C4—C3—C2	121.24 (18)	C11—C10—H10A	109.5
C4—C3—N1	116.41 (17)	C9-C10-H10B	109.5
C2—C3—N1	122.35 (18)	C11—C10—H10B	109.5
$C_{3}-C_{4}-C_{5}$	119 32 (18)	H10A—C10—H10B	108.1
C3—C4—H4	120.3	C12-C11-C10	109 74 (18)
C5-C4-H4	120.3	C12 $-C11$ $-H11A$	109.7 (10)
C_{6}	120.3 (18)	C10-C11-H11A	109.7
C6-C5-C7	120.55 (10)	C12_C11_H11B	109.7
C_{4} C_{5} C_{7}	120.30(17) 110.00(18)		109.7
$C_{4} = C_{5} = C_{7}$	119.09 (10)		109.7
C_{5}	119.90 (19)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2
$C_{1} C_{6} H_{6}$	120.0	$C_{12} = C_{12} = C_{11}$	100.4
	120.0	CI3—CI2—HI2A	109.4
F2' - C' - F3'	111.1 (19)	C11—C12—H12A	109.4
F1—C7—F3	107.69 (19)	C13—C12—H12B	109.4
F2'—C7—F1'	105.2 (19)	C11—C12—H12B	109.4
F3'—C7—F1'	104.0 (19)	H12A—C12—H12B	108.0
F1—C7—F2	105.98 (19)	N2-C13-C12	111.35 (17)
F3—C7—F2	105.59 (17)	N2—C13—H13A	109.4
F2′—C7—C5	112.3 (15)	C12—C13—H13A	109.4
F3′—C7—C5	113.2 (15)	N2—C13—H13B	109.4
F1—C7—C5	112.43 (17)	С12—С13—Н13В	109.4
F3—C7—C5	112.80 (18)	H13A—C13—H13B	108.0
F1′—C7—C5	110.3 (15)	02—N1—01	124.48 (17)
F2-C7-C5	111.86 (17)	02-N1-C3	117.04(17)
03-C8-N2	124 72 (18)	01-N1-C3	118 44 (16)
03 - C8 - C1	118 43 (18)	C8 N2 C13	120.26 (16)
$N_2 - C_8 - C_1$	116.45 (17)	C8 N2 C9	120.20 (10)
$N_2 = C_0 = C_1$	110.00(17) 110.50(18)	$C_1 = N_2 = C_2$	124.74 (10)
$N_2 = C_3 = C_{10}$	100.5	015-112-09	114.09 (10)
М2—С9—Н9А	109.3		
C6-C1-C2-C3	1.9 (3)	C6—C5—C7—F1′	-47(3)
C_{8} C_{1} C_{2} C_{3}	-174 16 (17)	C4-C5-C7-F1'	133 (3)
C_{1}^{-} C_{2}^{-} C_{3}^{-}	-170.32(15)	$C_{1} C_{2} C_{7} C_{7} F_{2}$	-004(2)
$C_{0} = C_{1} = C_{2} = C_{11}$	1/7.52(15)	$C_{4} = C_{5} = C_{7} = C_{2}$	27.4 (<i>L</i>)
$C_1 = C_2 = C_4$	4.0(2)	$C_{+} - C_{-} - C_{-$	00.5 (2)
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-0.5 (5)	$C_2 - C_1 - C_3 - C_3$	//.8(2)
C11—C2—C3—C4	-1/9.22 (14)	C6—C1—C8—O3	-98.3 (2)
C1-C2-C3-N1	179.37 (16)	C2-C1-C8-N2	-102.6(2)

Cl1—C2—C3—N1	0.6 (3)	C6-C1-C8-N2	81.4 (2)
C2—C3—C4—C5	-0.9 (3)	N2-C9-C10-C11	55.5 (3)
N1—C3—C4—C5	179.25 (16)	C9—C10—C11—C12	-56.9 (3)
C3—C4—C5—C6	0.9 (3)	C10-C11-C12-C13	55.8 (3)
C3—C4—C5—C7	-178.87 (18)	C11—C12—C13—N2	-53.4 (2)
C4—C5—C6—C1	0.5 (3)	C4—C3—N1—O2	36.6 (2)
C7—C5—C6—C1	-179.75 (18)	C2-C3-N1-O2	-143.29 (19)
C2-C1-C6-C5	-1.9 (3)	C4—C3—N1—O1	-141.34 (18)
C8—C1—C6—C5	174.13 (18)	C2-C3-N1-O1	38.8 (3)
C6—C5—C7—F2'	70 (2)	O3—C8—N2—C13	3.0 (3)
C4—C5—C7—F2'	-110 (2)	C1—C8—N2—C13	-176.62 (17)
C6—C5—C7—F3'	-163 (2)	O3—C8—N2—C9	179.0 (2)
C4—C5—C7—F3′	17 (2)	C1—C8—N2—C9	-0.6 (3)
C6—C5—C7—F1	141.5 (2)	C12—C13—N2—C8	-130.0 (2)
C4—C5—C7—F1	-38.8 (3)	C12—C13—N2—C9	53.6 (2)
C6—C5—C7—F3	19.5 (3)	C10—C9—N2—C8	129.2 (2)
C4—C5—C7—F3	-160.82 (18)	C10—C9—N2—C13	-54.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C6—H6…O3 ⁱ	0.95	2.59	3.526 (3)	169
С9—Н9А…О1 ^{іі}	0.99	2.45	3.361 (3)	154
C9—H9 <i>B</i> ···O1 ⁱⁱⁱ	0.99	2.58	3.369 (3)	137
C13—H13 A ··· Cg (C1–C6) ^{iv}	0.99	2.92	3.447 (2)	114

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+3/2, -y+1/2, -z.