



Received 3 August 2020 Accepted 14 August 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; BINAP; BINOL; asymmetric catalysis.

CCDC reference: 2023248

Supporting information: this article has supporting information at journals.iucr.org/e

## Crystal structure of bis{1,2-bis[(*R*,*R*)-1,2-(binaphthylphosphonito)ethane]dichloridoiron(II) dichloromethane disolvate

#### Benjamin E. Rennie, Alan J. Lough\* and Robert H. Morris

Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada. \*Correspondence e-mail: alan.lough@utoronto.ca

In the title compound (systematic name: bis{1,2-bis[12,14-dioxa-13-phosphapentacyclo[13.8.0.0<sup>2,11</sup>.0<sup>3,8</sup>.0<sup>18,23</sup>]tricosa-1(15),2(11),3(8),4,6,9,16,18(23),19,21-decaen-13-yl]ethane}dichloridoiron(II) dichloromethane disolvate), [FeCl<sub>2</sub>(C<sub>42</sub>H<sub>28</sub>-O<sub>4</sub>P<sub>2</sub>)<sub>2</sub>]·2CH<sub>2</sub>Cl<sub>2</sub>, the Fe<sup>II</sup> ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two (*R*,*R*)-1,2-bis(binaphthylphosphonito)ethane (BPE) ligands and two Cl ligands in a distorted *cis*-FeCl<sub>2</sub>P<sub>4</sub> octahedral coordination geometry. In the crystal, weak C-H···O and C-H··· $\pi$  interactions link the molecules into layers lying parallel to (001). A weak intramolecular C-H···O hydrogen bond is also observed. The asymmetric unit contains one CH<sub>2</sub>Cl<sub>2</sub> solvent molecule, which is disordered over two sets of site with refined occupancies in the ratio 0.700 (6):0.300 (6).

#### 1. Chemical context

The ligand (R,R)- or (S,S)-1,2-bis(binaphthylphosphonito)ethane ( $C_{42}H_{28}O_4P_2$ ; BPE) prepared from either (R)- or (S)-1,1'-bi(2-naphthol) (C<sub>20</sub>H<sub>14</sub>O<sub>2</sub>; BINOL) has been used extensively in asymmetric catalysis, as has the related ligand (R) or (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl  $(C_{44}H_{32}P_2; BINAP)$ . For example, the BINAP ligand has been coordinated to ruthenium and used for the asymmetric hydrogenation of ketones (Doucet et al., 1998), among many other examples. The BINAP ligand has also been coordinated to iron (Vogler, 2016) to make the complex [FeCl<sub>2</sub>(BINAP)<sub>2</sub>]. The BPE ligand and similar bidentate and monodentate phosphonite ligands have been coordinated to rhodium and iridium and used for asymmetric alkene and quinoline hydrogenation reactions, respectively (Claver et al., 2000; Norman et al., 2008; Reetz & Li, 2006), and to ruthenium for asymmetric transfer hydrogenation (Guo et al., 2005a,b).





### research communications

| Table 1                               |             |                           |             |  |  |  |  |
|---------------------------------------|-------------|---------------------------|-------------|--|--|--|--|
| Selected geometric parameters (Å, °). |             |                           |             |  |  |  |  |
| Fe1-P2                                | 2.1594 (11) | Fe1-P1                    | 2.1952 (10) |  |  |  |  |
| Fe1-P2 <sup>i</sup>                   | 2.1595 (11) | Fe1-Cl1 <sup>i</sup>      | 2.3422 (11) |  |  |  |  |
| Fe1–P1 <sup>i</sup>                   | 2.1952 (10) | Fe1-Cl1                   | 2.3423 (11) |  |  |  |  |
| P2-Fe1-P2 <sup>i</sup>                | 108.49 (7)  | P1-Fe1-Cl1 <sup>i</sup>   | 88.52 (4)   |  |  |  |  |
| P2-Fe1-P1 <sup>i</sup>                | 93.40 (4)   | P2-Fe1-Cl1                | 170.02 (5)  |  |  |  |  |
| P2-Fe1-P1                             | 85.30 (4)   | P1-Fe1-Cl1                | 93.07 (4)   |  |  |  |  |
| P1 <sup>i</sup> -Fe1-P1               | 177.78 (7)  | Cl1 <sup>i</sup> -Fe1-Cl1 | 88.69 (6)   |  |  |  |  |
| P2-Fe1-Cl1 <sup>i</sup>               | 81.43 (4)   |                           |             |  |  |  |  |

Symmetry code: (i) y, x, -z + 1.

As an extension of these studies, we now describe the synthesis and crystal structure of the iron(II) complex  $FeCl_2(BPE)_2$ , which crystallized as a dichloromethane solvate.

#### 2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1. The Fe<sup>II</sup> ion lies on a crystallographic twofold rotation axis and is coordinated by four P atoms from two BPE ligands and two Cl ligands in a distorted cis-FeCl<sub>2</sub>P<sub>4</sub> octahedral coordination geometry. The largest distortion from ideal coordination geometry is the P2 $-Fe-P2^{i}$  angle of 108.49 (7)° (see Table 1 for symmetry codes). The distortion is based on steric grounds involving the bulky binaphthylphosphonito ligands. The Fe-P distances are the same within experimental error. The P atoms are bonded to two O atoms, one C atom and coordinated to the Fe<sup>II</sup> ion in distorted tetrahedral geometries. The dihedral angles between the naphthalene rings in the BPE ligands (C1-C10/C11-20 and C21-C30/C31-C40) are the same, with values of 54.5 (2)°. A weak intramolecular  $C-H \cdots O$  hydrogen bond is observed (Table 2). The asymmetric unit contains one CH<sub>2</sub>Cl<sub>2</sub> solvent molecule, which is disordered over two sets of sites with refined occupancies in the ratio 0.700 (6):0.300 (6).



#### Figure 1

The molecular structure of the title compound with 30% probability ellipsoids. Unlabeled atoms are related by the symmetry operator (y, x, -z + 1) and for the sake of clarity the disordered solvent molecule is not shown.

| Table 2                                  |  |
|------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ). |  |

Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.

| $D - H \cdots A$              | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C32-H32A\cdots O4^{i}$       | 0.95 | 2.42                    | 3.280 (5)    | 150                                  |
| $C35-H35A\cdotsO1^{ii}$       | 0.95 | 2.38                    | 3.293 (5)    | 162                                  |
| $C7-H7A\cdots Cg2^{iii}$      | 0.95 | 2.57                    | 3.516 (6)    | 178                                  |
| $C17 - H17A \cdots Cg3^{iii}$ | 0.95 | 2.59                    | 3.396 (6)    | 143                                  |

Symmetry codes: (i) y, x, -z + 1; (ii) x - 1, y, z; (iii) y + 1, x, -z + 1.

#### 3. Supramolecular features

In the crystal, weak C-H···O hydrogen bonds link molecules into sheets parallel to (001) (Table 2 and Fig. 2). Within these layers weak C-H··· $\pi$  interactions also occur, and the centroid-centroid distance  $Cg2\cdots Cg2(y, -1 + x, 1 - z)$  of 4.171 (5) Å (where Cg2 is the centroid of the C4-C9 benzene ring) may be a very weak  $\pi$ -stacking interaction.

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom *et al.*, 2016) showed surprisingly that the title complex is the first iron(II) dichloride crystal structure with bidentate phosphorus donors with P–O-bonded substituents. There are 36 structures of related iron diphosphine complexes  $\text{FeCl}_2(\text{P}_2)_2$  (P<sub>2</sub> = a diphosphine) with P–C bonds reported. The majority, 33 complexes, crystallize with the chloride ions *trans* to each other, while there are three examples where the chloride ions are *cis*, as in the title complex. The complex *trans*-FeCl<sub>2</sub>(1,2bis(diphenylphosphino)ethylene)<sub>2</sub>, for example, crystallizes with the chloride ions *trans* (Cecconi *et al.*, 1981). An example with *cis* chloride ions is the complex *cis*-FeCl<sub>2</sub>(1,2-di-





Part of the crystal structure of the title compound showing the formation of [100] chains linked by weak  $C-H \cdots O$  hydrogen bonds shown as blue lines. The disordered dichloromethane solvent molecules are not shown.

 Table 3

 Experimental details.

| Crystal data                                                                 |                                                                                                                                     |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Chemical formula                                                             | [FeCl <sub>2</sub> (C <sub>42</sub> H <sub>28</sub> O <sub>4</sub> P <sub>2</sub> ) <sub>2</sub> ]·2CH <sub>2</sub> Cl <sub>2</sub> |
| $M_{ m r}$                                                                   | 1613.77                                                                                                                             |
| Crystal system, space group                                                  | Tetragonal, $P4_32_12$                                                                                                              |
| Temperature (K)                                                              | 150                                                                                                                                 |
| a, c(Å)                                                                      | 11.9850 (3), 52.4508 (14)                                                                                                           |
| $V(\text{\AA}^3)$                                                            | 7534.0 (4)                                                                                                                          |
| Ζ                                                                            | 4                                                                                                                                   |
| Radiation type                                                               | Cu Ka                                                                                                                               |
| $\mu \text{ (mm}^{-1})$                                                      | 4.84                                                                                                                                |
| Crystal size (mm)                                                            | $0.09 \times 0.04 \times 0.02$                                                                                                      |
| Data collection                                                              |                                                                                                                                     |
| Diffractometer                                                               | Bruker Kappa APEX DUO CCD                                                                                                           |
| Absorption correction                                                        | Multi-scan (SADABS; Krause et al., 2015)                                                                                            |
| $T_{\min}, T_{\max}$                                                         | 0.649, 0.740                                                                                                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 97444, 6829, 6096                                                                                                                   |
| R <sub>int</sub>                                                             | 0.109                                                                                                                               |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                         | 0.600                                                                                                                               |
| Refinement                                                                   |                                                                                                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.043, 0.110, 1.04                                                                                                                  |
| No. of reflections                                                           | 6829                                                                                                                                |
| No. of parameters                                                            | 502                                                                                                                                 |
| No. of restraints                                                            | 51                                                                                                                                  |
| H-atom treatment                                                             | H-atom parameters constrained                                                                                                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.39, -0.65                                                                                                                         |
| Absolute structure                                                           | Flack x determined using 2237                                                                                                       |
|                                                                              | quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$                                                                                             |
|                                                                              | (Parsons et al., 2013)                                                                                                              |
| Absolute structure parameter                                                 | 0.004 (4)                                                                                                                           |

Computer programs: *APEX3* and *SAINT* (Bruker, 2018), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick, 2015*b*), *PLATON* (Spek, 2020) and *SHELXTL* (Sheldrick, 2008).

phospholanoethane)<sub>2</sub> (Field *et al.*, 1998). In the *trans* complexes, the Fe–Cl distances range from 2.21 to 2.38 Å with 22 structures having a distance of 2.34–2.37 Å. This compares with the distances of 2.3422 (11) and 2.3423 (11) Å in the title complex.

#### 5. Synthesis and crystallization

The ligand was synthesized according to a literature procedure using (*R*)-BINOL (Steinmetz *et al.*, 1999). The iron complex was synthesized as follows: in a nitrogen-filled glovebox, FeCl<sub>2</sub>·1.5THF (6.0 mg, 0.030 mmol, 1 equivalent) was combined with (*R*,*R*)-BPE (50 mg, 0.08 mmol, 3 equivalents) in 10 ml THF and stirred in a 20 ml dram vial for 24 h. The THF was vacuumed off to yield a brown powder: <sup>31</sup>P{<sup>1</sup>H} NMR (202 MHz, C<sub>6</sub>D<sub>6</sub>): 257.72 ppm, singlet.

To purify, the powder was dissolved in a minimum of DCM, precipitated out with addition of diethyl ether, and filtered over a glass frit. The precipitate collected on the frit was redissolved in DCM, and re-purified by the same procedure twice more. To obtain crystals, a concentrated DCM solution of the purified complex was left in a closed 20 ml dram vial in a nitrogen-filled glovebox for approximately one week at least, depending on the exact concentration. The crystals were orange coloured. Attempts to convert this complex into a hydride complex were unsuccessful.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were included in calculated positions with C–H = 0.95 and 0.99 Å for aromatic and methylene C atoms, respectively, and were included in a riding-model approximation with  $U_{iso}(H) = 1.2U_{eo}(C)$ .

The major component of the disordered  $CH_2Cl_2$  solvent molecule was refined without restraints while the minor component was restrained to have similar geometry and anisotropic displacement parameters to the major component using the SAME and SADI instructions in *SHELXL* (Sheldrick, 2015*b*).

#### **Funding information**

RHM thanks NSERC Canada for a Discovery Grant.

#### References

- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, USA.
- Cecconi, F., Di Vaira, M., Midollini, S., Orlandini, A. & Sacconi, L. (1981). *Inorg. Chem.* 20, 3423–3430.
- Claver, C., Fernandez, E., Gillon, A., Heslop, K., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). *Chem. Commun.* pp. 961–962.
- Doucet, H., Ohkuma, T., Murata, K., Yokozawa, T., Kozawa, M., Katayama, E., England, A. F., Ikariya, T. & Noyori, R. (1998). *Angew. Chem. Int. Ed.* 37, 1703–1707.
- Field, L. D., Thomas, I. P., Hambley, T. W. & Turner, P. (1998). *Inorg. Chem.* 37, 612–618.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guo, R., Chen, X., Elpelt, C., Song, D. & Morris, R. H. (2005a). Org. Lett. 7, 1757–1759.
- Guo, R., Elpelt, C., Chen, X., Song, D. & Morris, R. H. (2005b). Chem. Commun. pp. 3050–3052.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Norman, D. W., Carraz, C. A., Hyett, D. J., Pringle, P. G., Sweeney, J. B., Orpen, A. G., Phetmung, H. & Wingad, R. L. (2008). J. Am. Chem. Soc. 130, 6840–6847.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Reetz, M. T. & Li, X. (2006). Chem. Commun. pp. 2159-2160.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Steinmetz, B., Hagel, M. & Schenk, W. A. (1999). Z. Naturforsch. Teil B, 54, 1265–1271.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Vogler, A. (2016). Inorg. Chem. Commun. 67, 32-34.

# supporting information

Acta Cryst. (2020). E76, 1525-1527 [https://doi.org/10.1107/S2056989020011160]

Crystal structure of bis[(*R*,*R*)-1,2-(binaphthylphosphonito)ethane]dichloridoiron(II) dichloromethane disolvate

### Benjamin E. Rennie, Alan J. Lough and Robert H. Morris

**Computing details** 

Data collection: *APEX3* (Bruker, 2018); cell refinement: *APEX3* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Bis{1,2-bis[12,14-dioxa-13-

 $phosphapentacyclo [13.8.0.0^{2,11}.0^{3,8}.0^{18,23}] tricosa-1 (15), 2 (11), 3 (8), 4, 6, 9, 16, 18 (23), 19, 21-decaen-13-yl] ethane disolvate$ 

| Crystat aata                                     |
|--------------------------------------------------|
| $[FeCl_2(C_{42}H_{28}O_4P_2)_2] \cdot 2CH_2Cl_2$ |
| $M_r = 1613.77$                                  |
| Tetragonal, $P4_32_12$                           |
| a = 11.9850 (3)  Å                               |
| c = 52.4508 (14)  Å                              |
| $V = 7534.0 (4) Å^3$                             |
| Z = 4                                            |
| F(000) = 3312                                    |
|                                                  |

Data collection

Convertal data

Bruker Kappa APEX DUO CCD diffractometer Radiation source: Bruker ImuS with multi-layer optics  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)  $T_{\min} = 0.649, T_{\max} = 0.740$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.043$  $wR(F^2) = 0.110$ S = 1.046829 reflections 502 parameters 51 restraints  $D_{\rm x} = 1.423 \text{ Mg m}^{-3}$ Cu  $K\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6128 reflections  $\theta = 3.4-67.3^{\circ}$  $\mu = 4.84 \text{ mm}^{-1}$ T = 150 KShard, orange  $0.09 \times 0.04 \times 0.02 \text{ mm}$ 

97444 measured reflections 6829 independent reflections 6096 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.109$  $\theta_{max} = 67.8^{\circ}, \theta_{min} = 3.4^{\circ}$  $h = -14 \rightarrow 14$  $k = -14 \rightarrow 14$  $l = -62 \rightarrow 60$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 2.6304P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.002$ 

| $\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$  |
|------------------------------------------------------------|
| $\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$ |

Absolute structure: Flack *x* determined using 2237 quotients  $[(I^+)-(I^-)]/[(I^+)+(I^-)]$  (Parsons *et al.*, 2013) Absolute structure parameter: 0.004 (4)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У           | Z            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|-------------|--------------|-----------------------------|-----------|
| Fe1  | 0.48561 (5) | 0.48561 (5) | 0.500000     | 0.0307 (2)                  |           |
| Cl1  | 0.56836 (9) | 0.60053 (9) | 0.53078 (2)  | 0.0399 (2)                  |           |
| P1   | 0.61181 (9) | 0.35440 (9) | 0.50461 (2)  | 0.0337 (2)                  |           |
| P2   | 0.43146 (9) | 0.39087 (9) | 0.46724 (2)  | 0.0323 (2)                  |           |
| 01   | 0.7416 (2)  | 0.3808 (3)  | 0.49888 (5)  | 0.0372 (6)                  |           |
| O2   | 0.6217 (2)  | 0.2921 (2)  | 0.53178 (5)  | 0.0353 (6)                  |           |
| O3   | 0.4019 (2)  | 0.4596 (2)  | 0.44174 (5)  | 0.0339 (6)                  |           |
| 04   | 0.3269 (2)  | 0.3037 (2)  | 0.46814 (5)  | 0.0344 (6)                  |           |
| C1   | 0.7004 (4)  | 0.2060 (4)  | 0.53373 (7)  | 0.0361 (9)                  |           |
| C2   | 0.6581 (4)  | 0.0978 (4)  | 0.53413 (8)  | 0.0418 (10)                 |           |
| H2A  | 0.579905    | 0.085380    | 0.533196     | 0.050*                      |           |
| C3   | 0.7300 (4)  | 0.0097 (4)  | 0.53589 (10) | 0.0496 (11)                 |           |
| H3A  | 0.701999    | -0.064416   | 0.536442     | 0.060*                      |           |
| C4   | 0.8463 (4)  | 0.0293 (4)  | 0.53688 (11) | 0.0537 (12)                 |           |
| C5   | 0.9218 (6)  | -0.0627 (6) | 0.53717 (18) | 0.089 (2)                   |           |
| H5A  | 0.893658    | -0.136769   | 0.536834     | 0.107*                      |           |
| C6   | 1.0334 (6)  | -0.0449 (6) | 0.5379(2)    | 0.113 (3)                   |           |
| H6A  | 1.083186    | -0.106547   | 0.538366     | 0.136*                      |           |
| C7   | 1.0754 (5)  | 0.0636 (6)  | 0.53811 (19) | 0.092 (3)                   |           |
| H7A  | 1.153776    | 0.074929    | 0.539014     | 0.111*                      |           |
| C8   | 1.0064 (4)  | 0.1537 (5)  | 0.53701 (12) | 0.0591 (14)                 |           |
| H8A  | 1.037188    | 0.226617    | 0.536235     | 0.071*                      |           |
| C9   | 0.8892 (4)  | 0.1397 (4)  | 0.53701 (9)  | 0.0456 (11)                 |           |
| C10  | 0.8124 (4)  | 0.2319 (4)  | 0.53615 (8)  | 0.0373 (9)                  |           |
| C11  | 0.8094 (3)  | 0.4228 (4)  | 0.51800 (8)  | 0.0379 (9)                  |           |
| C12  | 0.8427 (4)  | 0.5346 (4)  | 0.51600 (9)  | 0.0465 (11)                 |           |
| H12A | 0.813430    | 0.580538    | 0.502853     | 0.056*                      |           |
| C13  | 0.9167 (4)  | 0.5764 (4)  | 0.53291 (10) | 0.0492 (11)                 |           |
| H13A | 0.942837    | 0.650745    | 0.530978     | 0.059*                      |           |
| C14  | 0.9554 (4)  | 0.5108 (4)  | 0.55342 (9)  | 0.0474 (11)                 |           |
| C15  | 1.0300 (4)  | 0.5549 (5)  | 0.57174 (10) | 0.0575 (14)                 |           |
| H15A | 1.055261    | 0.629720    | 0.570101     | 0.069*                      |           |
| C16  | 1.0661 (4)  | 0.4915 (6)  | 0.59175 (10) | 0.0643 (16)                 |           |
| H16A | 1.117585    | 0.521650    | 0.603679     | 0.077*                      |           |
| C17  | 1.0269 (4)  | 0.3816 (6)  | 0.59468 (9)  | 0.0601 (15)                 |           |

| H17A | 1.050230     | 0.338638    | 0.608946     | 0.072*      |           |
|------|--------------|-------------|--------------|-------------|-----------|
| C18  | 0.9563 (4)   | 0.3363 (5)  | 0.57739 (9)  | 0.0508 (12) |           |
| H18A | 0.930467     | 0.262106    | 0.579789     | 0.061*      |           |
| C19  | 0.9200 (4)   | 0.3976 (4)  | 0.55571 (8)  | 0.0426 (10) |           |
| C20  | 0.8477 (4)   | 0.3513 (4)  | 0.53680 (8)  | 0.0371 (9)  |           |
| C21  | 0.3784 (3)   | 0.3994 (3)  | 0.41950 (7)  | 0.0335 (8)  |           |
| C22  | 0.4624 (4)   | 0.3994 (4)  | 0.40081 (7)  | 0.0362 (9)  |           |
| H22A | 0.531106     | 0.436819    | 0.403744     | 0.043*      |           |
| C23  | 0.4439 (4)   | 0.3446 (4)  | 0.37837 (7)  | 0.0389 (10) |           |
| H23A | 0.499050     | 0.346153    | 0.365362     | 0.047*      |           |
| C24  | 0.3424 (4)   | 0.2853 (4)  | 0.37431 (7)  | 0.0363 (9)  |           |
| C25  | 0.3247 (4)   | 0.2241 (4)  | 0.35164 (8)  | 0.0417 (10) |           |
| H25A | 0.380036     | 0.224733    | 0.338670     | 0.050*      |           |
| C26  | 0.2295 (5)   | 0.1645 (4)  | 0.34819 (8)  | 0.0500 (12) |           |
| H26A | 0.217885     | 0.125179    | 0.332686     | 0.060*      |           |
| C27  | 0.1484 (4)   | 0.1608 (4)  | 0.36740 (9)  | 0.0481 (11) |           |
| H27A | 0.083146     | 0.116987    | 0.365020     | 0.058*      |           |
| C28  | 0.1619 (4)   | 0.2196 (4)  | 0.38956 (8)  | 0.0427 (10) |           |
| H28A | 0.106033     | 0.216276    | 0.402372     | 0.051*      |           |
| C29  | 0.2589 (4)   | 0.2855 (4)  | 0.39357 (7)  | 0.0355 (9)  |           |
| C30  | 0.2764 (4)   | 0.3487 (4)  | 0.41655 (7)  | 0.0333 (9)  |           |
| C31  | 0.2185 (4)   | 0.3375 (4)  | 0.46197 (7)  | 0.0339 (9)  |           |
| C32  | 0.1400 (4)   | 0.3397 (4)  | 0.48183 (7)  | 0.0373 (9)  |           |
| H32A | 0.162733     | 0.324610    | 0.498837     | 0.045*      |           |
| C33  | 0.0315 (4)   | 0.3634 (4)  | 0.47672 (8)  | 0.0393 (9)  |           |
| H33A | -0.022239    | 0.360296    | 0.490023     | 0.047*      |           |
| C34  | -0.0025 (4)  | 0.3928 (4)  | 0.45168 (8)  | 0.0388 (9)  |           |
| C35  | -0.1140 (4)  | 0.4256 (4)  | 0.44645 (9)  | 0.0450 (11) |           |
| H35A | -0.167964    | 0.422774    | 0.459712     | 0.054*      |           |
| C36  | -0.1453 (4)  | 0.4611 (5)  | 0.42290 (9)  | 0.0551 (13) |           |
| H36A | -0.220192    | 0.482903    | 0.419637     | 0.066*      |           |
| C37  | -0.0645 (4)  | 0.4647 (5)  | 0.40342 (9)  | 0.0516 (12) |           |
| H37A | -0.085610    | 0.489889    | 0.386940     | 0.062*      |           |
| C38  | 0.0438 (4)   | 0.4330 (4)  | 0.40761 (8)  | 0.0427 (10) |           |
| H38A | 0.096525     | 0.437562    | 0.394122     | 0.051*      |           |
| C39  | 0.0780 (4)   | 0.3936 (4)  | 0.43172 (8)  | 0.0361 (9)  |           |
| C40  | 0.1903 (3)   | 0.3591 (3)  | 0.43689 (7)  | 0.0323 (8)  |           |
| C41  | 0.5918 (4)   | 0.2427 (4)  | 0.48152 (8)  | 0.0401 (10) |           |
| H41A | 0.664247     | 0.207405    | 0.477382     | 0.048*      |           |
| H41B | 0.541652     | 0.184854    | 0.488634     | 0.048*      |           |
| C42  | 0.5401 (4)   | 0.2936 (4)  | 0.45746 (7)  | 0.0373 (9)  |           |
| H42A | 0.507843     | 0.234114    | 0.446639     | 0.045*      |           |
| H42B | 0.597990     | 0.333187    | 0.447484     | 0.045*      |           |
| C12  | -0.2595 (4)  | 0.2896 (5)  | 0.33679 (12) | 0.169 (2)   | 0.700 (6) |
| C13  | -0.1596 (4)  | 0.1350 (3)  | 0.36972 (10) | 0.1311 (17) | 0.700 (6) |
| C1S  | -0.1387 (12) | 0.2258 (12) | 0.3414 (3)   | 0.097 (4)   | 0.700 (6) |
| H1SA | -0.078690    | 0.280818    | 0.344595     | 0.116*      | 0.700 (6) |
| H1SB | -0.118299    | 0.180567    | 0.326295     | 0.116*      | 0.700 (6) |

# supporting information

| Cl4<br>Cl5 | -0.1512 (15)<br>-0.1366 (19) | 0.0882 (16)<br>0.188 (2) | 0.4023 (3)<br>0.3518 (3) | 0.218 (7)<br>0.222 (7) | 0.300 (6)<br>0.300 (6) |
|------------|------------------------------|--------------------------|--------------------------|------------------------|------------------------|
| C2S        | -0.182 (3)                   | 0.200 (2)                | 0.3855 (4)               | 0.125 (7)              | 0.300 (6)              |
| H2SB       | -0.144838                    | 0.265583                 | 0.393264                 | 0.150*                 | 0.300 (6)              |
| H2SA       | -0.263197                    | 0.212535                 | 0.386018                 | 0.150*                 | 0.300 (6)              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Fe1 | 0.0364 (3)  | 0.0364 (3)  | 0.0193 (4)  | 0.0046 (3)   | -0.0013 (2)  | 0.0013 (2)   |
| Cl1 | 0.0458 (5)  | 0.0441 (5)  | 0.0298 (5)  | 0.0011 (4)   | -0.0063 (4)  | -0.0011 (4)  |
| P1  | 0.0381 (5)  | 0.0413 (5)  | 0.0218 (5)  | 0.0066 (4)   | -0.0013 (4)  | 0.0015 (4)   |
| P2  | 0.0380 (5)  | 0.0394 (5)  | 0.0197 (4)  | 0.0048 (4)   | -0.0016 (4)  | 0.0007 (4)   |
| 01  | 0.0394 (15) | 0.0482 (16) | 0.0240 (12) | 0.0076 (12)  | 0.0029 (12)  | 0.0035 (13)  |
| O2  | 0.0358 (15) | 0.0446 (16) | 0.0255 (13) | 0.0077 (13)  | 0.0001 (11)  | 0.0056 (12)  |
| 03  | 0.0424 (15) | 0.0400 (15) | 0.0192 (12) | 0.0026 (12)  | -0.0036 (11) | 0.0007 (10)  |
| O4  | 0.0382 (15) | 0.0406 (15) | 0.0244 (12) | 0.0027 (12)  | -0.0025 (11) | 0.0038 (11)  |
| C1  | 0.037 (2)   | 0.046 (2)   | 0.0252 (18) | 0.0081 (19)  | 0.0008 (16)  | 0.0047 (17)  |
| C2  | 0.042 (2)   | 0.049 (3)   | 0.034 (2)   | 0.000 (2)    | -0.0020 (19) | 0.0056 (19)  |
| C3  | 0.052 (3)   | 0.042 (3)   | 0.054 (3)   | 0.003 (2)    | 0.002 (2)    | 0.013 (2)    |
| C4  | 0.048 (3)   | 0.047 (3)   | 0.066 (3)   | 0.014 (2)    | 0.010 (2)    | 0.015 (2)    |
| C5  | 0.064 (4)   | 0.050 (3)   | 0.153 (7)   | 0.020 (3)    | 0.022 (4)    | 0.029 (4)    |
| C6  | 0.053 (4)   | 0.065 (4)   | 0.221 (10)  | 0.025 (3)    | 0.039 (5)    | 0.048 (5)    |
| C7  | 0.042 (3)   | 0.066 (4)   | 0.169 (8)   | 0.016 (3)    | 0.021 (4)    | 0.039 (4)    |
| C8  | 0.039 (3)   | 0.057 (3)   | 0.081 (4)   | 0.005 (2)    | 0.010 (2)    | 0.020 (3)    |
| C9  | 0.038 (2)   | 0.052 (3)   | 0.047 (2)   | 0.006 (2)    | 0.0070 (19)  | 0.015 (2)    |
| C10 | 0.038 (2)   | 0.045 (2)   | 0.0290 (19) | 0.0054 (18)  | 0.0019 (16)  | 0.0065 (17)  |
| C11 | 0.033 (2)   | 0.049 (3)   | 0.031 (2)   | 0.0058 (19)  | 0.0021 (17)  | 0.0019 (18)  |
| C12 | 0.046 (2)   | 0.046 (3)   | 0.047 (3)   | 0.007 (2)    | 0.004 (2)    | 0.008 (2)    |
| C13 | 0.045 (3)   | 0.045 (3)   | 0.058 (3)   | 0.003 (2)    | 0.001 (2)    | -0.006 (2)   |
| C14 | 0.040 (2)   | 0.055 (3)   | 0.047 (3)   | 0.005 (2)    | 0.004 (2)    | -0.006 (2)   |
| C15 | 0.043 (3)   | 0.073 (4)   | 0.057 (3)   | 0.000 (3)    | -0.001 (2)   | -0.022 (3)   |
| C16 | 0.040 (2)   | 0.109 (5)   | 0.044 (3)   | 0.003 (3)    | -0.005 (2)   | -0.018 (3)   |
| C17 | 0.039 (3)   | 0.104 (5)   | 0.037 (2)   | 0.012 (3)    | -0.002 (2)   | 0.001 (3)    |
| C18 | 0.040 (2)   | 0.078 (4)   | 0.034 (2)   | 0.005 (2)    | -0.0028 (19) | 0.005 (2)    |
| C19 | 0.033 (2)   | 0.060 (3)   | 0.036 (2)   | 0.003 (2)    | 0.0031 (17)  | -0.001 (2)   |
| C20 | 0.033 (2)   | 0.048 (2)   | 0.030 (2)   | 0.0043 (19)  | 0.0025 (16)  | 0.0026 (18)  |
| C21 | 0.042 (2)   | 0.038 (2)   | 0.0201 (17) | 0.0032 (17)  | -0.0021 (15) | -0.0026 (15) |
| C22 | 0.039 (2)   | 0.044 (2)   | 0.0254 (18) | -0.0003 (18) | -0.0006 (16) | 0.0036 (16)  |
| C23 | 0.046 (2)   | 0.050 (2)   | 0.0207 (18) | 0.006 (2)    | 0.0026 (16)  | 0.0035 (17)  |
| C24 | 0.046 (2)   | 0.041 (2)   | 0.0213 (18) | 0.0038 (19)  | 0.0014 (16)  | 0.0027 (16)  |
| C25 | 0.057 (3)   | 0.045 (2)   | 0.0236 (19) | 0.002 (2)    | 0.0025 (18)  | -0.0011 (17) |
| C26 | 0.073 (3)   | 0.051 (3)   | 0.026 (2)   | -0.001 (2)   | -0.007(2)    | -0.0067 (19) |
| C27 | 0.056 (3)   | 0.051 (3)   | 0.037 (2)   | -0.010 (2)   | -0.009 (2)   | -0.003 (2)   |
| C28 | 0.046 (2)   | 0.053 (3)   | 0.029 (2)   | -0.003 (2)   | 0.0014 (18)  | -0.0013 (18) |
| C29 | 0.043 (2)   | 0.040 (2)   | 0.0235 (18) | 0.0018 (18)  | -0.0021 (16) | 0.0001 (16)  |
| C30 | 0.041 (2)   | 0.037 (2)   | 0.0221 (17) | 0.0039 (18)  | -0.0010 (16) | 0.0013 (16)  |
| C31 | 0.038 (2)   | 0.037 (2)   | 0.0266 (19) | 0.0005 (17)  | -0.0017 (16) | 0.0000 (16)  |

# supporting information

| C32 | 0.042 (2)  | 0.046 (2)  | 0.0237 (18) | 0.0016 (19)  | -0.0004 (16) | 0.0028 (17)  |
|-----|------------|------------|-------------|--------------|--------------|--------------|
| C33 | 0.043 (2)  | 0.046 (2)  | 0.029 (2)   | 0.002 (2)    | 0.0062 (17)  | 0.0038 (17)  |
| C34 | 0.041 (2)  | 0.043 (2)  | 0.033 (2)   | 0.0012 (19)  | 0.0018 (18)  | 0.0005 (17)  |
| C35 | 0.037 (2)  | 0.058 (3)  | 0.040 (2)   | 0.004 (2)    | 0.0042 (19)  | 0.004 (2)    |
| C36 | 0.041 (2)  | 0.080 (4)  | 0.044 (3)   | 0.012 (3)    | 0.000 (2)    | 0.013 (3)    |
| C37 | 0.045 (2)  | 0.076 (4)  | 0.033 (2)   | 0.008 (3)    | -0.0032 (19) | 0.014 (2)    |
| C38 | 0.043 (2)  | 0.058 (3)  | 0.028 (2)   | 0.003 (2)    | -0.0006 (17) | 0.0039 (19)  |
| C39 | 0.041 (2)  | 0.041 (2)  | 0.0261 (19) | -0.0013 (19) | 0.0011 (16)  | -0.0008 (17) |
| C40 | 0.036 (2)  | 0.035 (2)  | 0.0253 (18) | 0.0004 (17)  | -0.0027 (16) | -0.0011 (15) |
| C41 | 0.049 (3)  | 0.042 (2)  | 0.029 (2)   | 0.009 (2)    | 0.0003 (18)  | 0.0005 (17)  |
| C42 | 0.043 (2)  | 0.045 (2)  | 0.0238 (18) | 0.0063 (19)  | -0.0004 (16) | -0.0047 (17) |
| Cl2 | 0.100 (3)  | 0.182 (5)  | 0.225 (5)   | 0.005 (3)    | -0.006 (3)   | 0.093 (4)    |
| C13 | 0.100 (2)  | 0.102 (3)  | 0.191 (5)   | -0.0034 (19) | -0.034 (3)   | 0.026 (3)    |
| C1S | 0.098 (7)  | 0.088 (7)  | 0.105 (8)   | -0.010 (6)   | -0.023 (6)   | 0.051 (6)    |
| Cl4 | 0.190 (11) | 0.248 (14) | 0.216 (13)  | -0.008 (12)  | 0.029 (11)   | 0.023 (11)   |
| C15 | 0.201 (12) | 0.225 (14) | 0.241 (15)  | 0.000 (12)   | -0.008 (13)  | -0.052 (12)  |
| C2S | 0.135 (14) | 0.110 (14) | 0.130 (14)  | -0.003 (13)  | 0.025 (13)   | -0.071 (12)  |
|     |            |            |             |              |              |              |

Geometric parameters (Å, °)

| Fe1—P2               | 2.1594 (11) | C19—C20  | 1.429 (6) |
|----------------------|-------------|----------|-----------|
| Fe1—P2 <sup>i</sup>  | 2.1595 (11) | C21—C30  | 1.375 (6) |
| Fe1—P1 <sup>i</sup>  | 2.1952 (10) | C21—C22  | 1.405 (6) |
| Fe1—P1               | 2.1952 (10) | C22—C23  | 1.366 (6) |
| Fe1—Cl1 <sup>i</sup> | 2.3422 (11) | C22—H22A | 0.9500    |
| Fe1—Cl1              | 2.3423 (11) | C23—C24  | 1.426 (7) |
| P1—O2                | 1.613 (3)   | С23—Н23А | 0.9500    |
| P1—O1                | 1.616 (3)   | C24—C25  | 1.413 (6) |
| P1—C41               | 1.821 (4)   | C24—C29  | 1.422 (6) |
| Р2—О3                | 1.611 (3)   | C25—C26  | 1.359 (7) |
| P2—O4                | 1.632 (3)   | C25—H25A | 0.9500    |
| P2—C42               | 1.821 (4)   | C26—C27  | 1.401 (8) |
| O1—C11               | 1.386 (5)   | C26—H26A | 0.9500    |
| O2—C1                | 1.401 (5)   | C27—C28  | 1.369 (6) |
| O3—C21               | 1.400 (5)   | С27—Н27А | 0.9500    |
| O4—C31               | 1.398 (5)   | C28—C29  | 1.420 (6) |
| C1—C10               | 1.384 (6)   | C28—H28A | 0.9500    |
| C1—C2                | 1.393 (7)   | C29—C30  | 1.439 (6) |
| C2—C3                | 1.366 (7)   | C30—C40  | 1.489 (6) |
| C2—H2A               | 0.9500      | C31—C40  | 1.383 (6) |
| C3—C4                | 1.415 (7)   | C31—C32  | 1.404 (6) |
| С3—НЗА               | 0.9500      | C32—C33  | 1.358 (7) |
| C4—C9                | 1.419 (8)   | С32—Н32А | 0.9500    |
| C4—C5                | 1.426 (8)   | C33—C34  | 1.419 (6) |
| C5—C6                | 1.355 (10)  | С33—Н33А | 0.9500    |
| С5—Н5А               | 0.9500      | C34—C35  | 1.420 (7) |
| C6—C7                | 1.395 (11)  | C34—C39  | 1.423 (6) |
| С6—Н6А               | 0.9500      | C35—C36  | 1.359 (7) |

| C7—C8                          | 1.361 (8)   | С35—Н35А     | 0.9500     |
|--------------------------------|-------------|--------------|------------|
| С7—Н7А                         | 0.9500      | C36—C37      | 1.409 (7)  |
| C8—C9                          | 1.415 (7)   | С36—Н36А     | 0.9500     |
| C8—H8A                         | 0.9500      | C37—C38      | 1.370 (7)  |
| C9—C10                         | 1.439 (6)   | С37—Н37А     | 0.9500     |
| C10—C20                        | 1.493 (7)   | C38—C39      | 1.411 (6)  |
| C11—C20                        | 1.385 (6)   | C38—H38A     | 0.9500     |
| C11—C12                        | 1.401 (7)   | C39—C40      | 1.434 (6)  |
| C12—C13                        | 1.350 (7)   | C41—C42      | 1.532 (6)  |
| C12—H12A                       | 0.9500      | C41—H41A     | 0.9900     |
| C13—C14                        | 1.411 (7)   | C41—H41B     | 0.9900     |
| С13—Н13А                       | 0.9500      | C42—H42A     | 0.9900     |
| C14—C15                        | 1.415 (7)   | C42—H42B     | 0.9900     |
| C14—C19                        | 1.426 (8)   | Cl2—C1S      | 1.656 (15) |
| C15—C16                        | 1.366 (9)   | Cl3—C1S      | 1.859 (11) |
| C15—H15A                       | 0.9500      | C1S—H1SA     | 0.9900     |
| C16—C17                        | 1.408 (10)  | C1S—H1SB     | 0.9900     |
| C16—H16A                       | 0.9500      | C14—C2S      | 1.644 (18) |
| C17—C18                        | 1.354 (8)   | C15—C2S      | 1.852 (15) |
| С17—Н17А                       | 0.9500      | C2S—H2SB     | 0.9900     |
| C18—C19                        | 1.422 (7)   | C2S—H2SA     | 0.9900     |
| C18—H18A                       | 0.9500      |              |            |
|                                |             |              |            |
| P2—Fe1—P2 <sup>i</sup>         | 108.49 (7)  | C11—C20—C19  | 117.0 (4)  |
| P2—Fe1—P1 <sup>i</sup>         | 93.40 (4)   | C11—C20—C10  | 118.9 (4)  |
| $P2^{i}$ —Fe1—P1 <sup>i</sup>  | 85.30 (4)   | C19—C20—C10  | 124.0 (4)  |
| P2—Fe1—P1                      | 85.30 (4)   | C30—C21—O3   | 120.0 (3)  |
| $P2^{i}$ —Fe1—P1               | 93.40 (4)   | C30—C21—C22  | 124.0 (4)  |
| P1 <sup>i</sup> —Fe1—P1        | 177.78 (7)  | O3—C21—C22   | 115.9 (4)  |
| P2—Fe1—Cl1 <sup>i</sup>        | 81.43 (4)   | C23—C22—C21  | 119.0 (4)  |
| $P2^{i}$ —Fe1—Cl1 <sup>i</sup> | 170.01 (5)  | C23—C22—H22A | 120.5      |
| $P1^{i}$ —Fe1—Cl1 <sup>i</sup> | 93.07 (4)   | C21—C22—H22A | 120.5      |
| P1—Fe1—Cl1 <sup>i</sup>        | 88.52 (4)   | C22—C23—C24  | 120.5 (4)  |
| P2—Fe1—C11                     | 170.02 (5)  | С22—С23—Н23А | 119.8      |
| P2 <sup>i</sup> —Fe1—Cl1       | 81.43 (4)   | С24—С23—Н23А | 119.8      |
| P1 <sup>i</sup> —Fe1—Cl1       | 88.51 (4)   | C25—C24—C29  | 119.6 (4)  |
| P1—Fe1—C11                     | 93.07 (4)   | C25—C24—C23  | 120.8 (4)  |
| Cl1 <sup>i</sup> —Fe1—Cl1      | 88.69 (6)   | C29—C24—C23  | 119.6 (4)  |
| O2—P1—O1                       | 100.60 (15) | C26—C25—C24  | 120.7 (4)  |
| O2—P1—C41                      | 104.87 (18) | C26—C25—H25A | 119.6      |
| 01—P1—C41                      | 98.46 (19)  | C24—C25—H25A | 119.6      |
| O2-P1-Fe1                      | 118.67 (11) | C25—C26—C27  | 120.2 (4)  |
| 01—P1—Fe1                      | 120.18 (12) | C25—C26—H26A | 119.9      |
| C41—P1—Fe1                     | 111.26 (15) | C27—C26—H26A | 119.9      |
| O3—P2—O4                       | 100.52 (14) | C28—C27—C26  | 120.8 (4)  |
| O3—P2—C42                      | 104.53 (17) | C28—C27—H27A | 119.6      |
| O4—P2—C42                      | 98.48 (18)  | С26—С27—Н27А | 119.6      |
| O3—P2—Fe1                      | 117.25 (11) | C27—C28—C29  | 120.6 (4)  |

| O4—P2—Fe1                | 122.98 (11)         | C27—C28—H28A                        | 119.7                |
|--------------------------|---------------------|-------------------------------------|----------------------|
| C42—P2—Fe1               | 110.23 (14)         | C29—C28—H28A                        | 119.7                |
| C11—O1—P1                | 120.1 (2)           | C28—C29—C24                         | 118.0 (4)            |
| C1—O2—P1                 | 117.1 (2)           | C28—C29—C30                         | 122.4 (4)            |
| C21—O3—P2                | 118.2 (2)           | C24—C29—C30                         | 119.6 (4)            |
| C31—O4—P2                | 121.4 (3)           | C21—C30—C29                         | 117.2 (4)            |
| C10—C1—C2                | 124.1 (4)           | C21—C30—C40                         | 119.9 (4)            |
| C10-C1-O2                | 1196(4)             | $C_{29} - C_{30} - C_{40}$          | 122.9(4)             |
| $C^2 - C^1 - O^2$        | 116.2 (4)           | C40-C31-O4                          | 1201(4)              |
| $C_{3}$ $C_{2}$ $C_{1}$  | 119.4 (4)           | C40-C31-C32                         | 120.1(1)<br>122.6(4) |
| $C_3 C_2 H_2 \Lambda$    | 120.3               | 04  C31  C32                        | 122.0(4)<br>117.2(3) |
| $C_{1}$ $C_{2}$ $H_{2A}$ | 120.3               | $C_{1}^{2} = C_{1}^{2} = C_{2}^{2}$ | 117.2(3)             |
| $C_1 = C_2 = C_1$        | 120.3               | $C_{22} = C_{22} = C_{21}$          | 120.0 (4)            |
| $C_2 = C_3 = U_2 A$      | 119.7 (5)           | $C_{33} = C_{32} = H_{32A}$         | 120.0                |
| $C_2 = C_3 = H_3 A$      | 120.1               | C31 - C32 - H32A                    | 120.0                |
| C4 - C3 - H3A            | 120.1               | $C_{32} = C_{33} = C_{34}$          | 120.6 (4)            |
| C3—C4—C9                 | 120.8 (4)           | С32—С33—Н33А                        | 119.7                |
| C3—C4—C5                 | 119.8 (5)           | C34—C33—H33A                        | 119.7                |
| C9—C4—C5                 | 119.4 (5)           | C33—C34—C35                         | 121.1 (4)            |
| C6—C5—C4                 | 120.3 (7)           | C33—C34—C39                         | 119.2 (4)            |
| С6—С5—Н5А                | 119.8               | C35—C34—C39                         | 119.6 (4)            |
| C4—C5—H5A                | 119.8               | C36—C35—C34                         | 121.5 (4)            |
| C5—C6—C7                 | 120.2 (6)           | С36—С35—Н35А                        | 119.3                |
| С5—С6—Н6А                | 119.9               | С34—С35—Н35А                        | 119.3                |
| С7—С6—Н6А                | 119.9               | C35—C36—C37                         | 118.6 (5)            |
| C8—C7—C6                 | 121.3 (6)           | С35—С36—Н36А                        | 120.7                |
| С8—С7—Н7А                | 119.3               | С37—С36—Н36А                        | 120.7                |
| С6—С7—Н7А                | 119.3               | C38—C37—C36                         | 121.8 (4)            |
| C7—C8—C9                 | 120.6 (5)           | C38—C37—H37A                        | 119.1                |
| C7-C8-H8A                | 119.7               | C36—C37—H37A                        | 119.1                |
| C9-C8-H8A                | 119.7               | $C_{37}$ $C_{38}$ $C_{39}$          | 120.8 (4)            |
| C8-C9-C4                 | 119.7<br>118.0(4)   | $C_{37}$ $C_{38}$ $H_{38A}$         | 119.6                |
| $C_{0}$ $C_{0}$ $C_{10}$ | 122.0 (5)           | $C_{30} = C_{30} = H_{30} $         | 119.6                |
| $C_{3} = C_{3} = C_{10}$ | 122.9(3)<br>1100(4) | $C_{39} = C_{30} = C_{34}$          | 117.0                |
| $C_{4} - C_{9} - C_{10}$ | 119.0 (4)           | $C_{30} = C_{39} = C_{34}$          | 117.7(4)             |
| C1 = C10 = C20           | 110.8 (4)           | $C_{38} = C_{39} = C_{40}$          | 122.0(4)             |
| C1 = C10 = C20           | 119.4 (4)           | $C_{34} - C_{39} - C_{40}$          | 119.7 (4)            |
| C9—C10—C20               | 123.7 (4)           | $C_{31} - C_{40} - C_{39}$          | 117.6 (4)            |
| C20—C11—O1               | 119.0 (4)           | C31—C40—C30                         | 119.8 (4)            |
| C20—C11—C12              | 123.4 (4)           | C39—C40—C30                         | 122.6 (3)            |
| O1—C11—C12               | 117.4 (4)           | C42—C41—P1                          | 107.9 (3)            |
| C13—C12—C11              | 119.5 (5)           | C42—C41—H41A                        | 110.1                |
| C13—C12—H12A             | 120.2               | P1—C41—H41A                         | 110.1                |
| C11—C12—H12A             | 120.2               | C42—C41—H41B                        | 110.1                |
| C12—C13—C14              | 120.6 (5)           | P1—C41—H41B                         | 110.1                |
| C12—C13—H13A             | 119.7               | H41A—C41—H41B                       | 108.4                |
| C14—C13—H13A             | 119.7               | C41—C42—P2                          | 108.2 (3)            |
| C13—C14—C15              | 121.1 (5)           | C41—C42—H42A                        | 110.1                |
| C13—C14—C19              | 119.7 (4)           | P2—C42—H42A                         | 110.1                |
| C15—C14—C19              | 119.1 (5)           | C41—C42—H42B                        | 110.1                |

| C16—C15—C14         | 120.9 (6)  | P2—C42—H42B                         | 110.1      |
|---------------------|------------|-------------------------------------|------------|
| C16—C15—H15A        | 119.5      | H42A—C42—H42B                       | 108.4      |
| C14—C15—H15A        | 119.5      | Cl2—C1S—Cl3                         | 105.6 (8)  |
| C15—C16—C17         | 119.9 (5)  | Cl2—C1S—H1SA                        | 110.6      |
| C15—C16—H16A        | 120.0      | Cl3—C1S—H1SA                        | 110.6      |
| C17—C16—H16A        | 120.0      | Cl2—C1S—H1SB                        | 110.6      |
| C18—C17—C16         | 120.7 (5)  | Cl3—C1S—H1SB                        | 110.6      |
| С18—С17—Н17А        | 119.7      | H1SA—C1S—H1SB                       | 108.7      |
| С16—С17—Н17А        | 119.7      | C14—C2S—C15                         | 112.5 (14) |
| C17—C18—C19         | 121.3 (6)  | C14—C2S—H2SB                        | 109.1      |
| C17—C18—H18A        | 119.3      | C15—C2S—H2SB                        | 109.1      |
| C19—C18—H18A        | 119.3      | C14 - C2S - H2SA                    | 109.1      |
| C18—C19—C14         | 117.9 (5)  | C15—C2S—H2SA                        | 109.1      |
| C18 - C19 - C20     | 122.7 (5)  | H2SB-C2S-H2SA                       | 107.8      |
| C14-C19-C20         | 1194(4)    |                                     | 107.0      |
|                     | 11).1(1)   |                                     |            |
| 02 - P1 - 01 - C11  | -44.5(3)   | C1-C10-C20-C19                      | 130.0 (4)  |
| C41 - P1 - O1 - C11 | -151.5 (3) | C9—C10—C20—C19                      | -52.3(6)   |
| Fe1—P1—O1—C11       | 87.8 (3)   | P2-O3-C21-C30                       | 76.9 (4)   |
| 01 - P1 - O2 - C1   | -49.0(3)   | P2-03-C21-C22                       | -105.7(4)  |
| C41 - P1 - O2 - C1  | 52.8 (3)   | $C_{30}$ $C_{21}$ $C_{22}$ $C_{23}$ | -1.0(7)    |
| Fe1-P1-O2-C1        | 177.7 (3)  | 03-C21-C22-C23                      | -178.3(4)  |
| Q4—P2—Q3—C21        | -50.9(3)   | C21—C22—C23—C24                     | -2.1(6)    |
| C42 - P2 - O3 - C21 | 50.8 (3)   | C22—C23—C24—C25                     | -177.0(4)  |
| Fe1—P2—O3—C21       | 173.2 (2)  | C22—C23—C24—C29                     | 1.5 (6)    |
| O3—P2—O4—C31        | -40.3(3)   | C29—C24—C25—C26                     | -0.8(7)    |
| C42 - P2 - O4 - C31 | -146.9(3)  | C23—C24—C25—C26                     | 177.7 (4)  |
| Fe1—P2—O4—C31       | 92.2 (3)   | C24—C25—C26—C27                     | -1.5(8)    |
| P1-02-C1-C10        | 76.8 (4)   | C25—C26—C27—C28                     | 2.0 (8)    |
| P1                  | -105.8(4)  | C26—C27—C28—C29                     | -0.1(8)    |
| C10—C1—C2—C3        | -3.0(7)    | C27—C28—C29—C24                     | -2.1(7)    |
| O2—C1—C2—C3         | 179.7 (4)  | C27—C28—C29—C30                     | 179.9 (4)  |
| C1—C2—C3—C4         | -1.0(7)    | C25—C24—C29—C28                     | 2.6 (6)    |
| C2—C3—C4—C9         | 2.3 (8)    | C23—C24—C29—C28                     | -176.0(4)  |
| C2—C3—C4—C5         | -176.3 (6) | C25—C24—C29—C30                     | -179.3 (4) |
| C3—C4—C5—C6         | 179.5 (8)  | C23—C24—C29—C30                     | 2.1 (6)    |
| C9—C4—C5—C6         | 0.9 (12)   | O3—C21—C30—C29                      | -178.2(4)  |
| C4—C5—C6—C7         | -0.8 (16)  | C22—C21—C30—C29                     | 4.6 (6)    |
| C5—C6—C7—C8         | -1.3 (16)  | O3—C21—C30—C40                      | 0.7 (6)    |
| C6—C7—C8—C9         | 3.4 (13)   | C22—C21—C30—C40                     | -176.4 (4) |
| C7—C8—C9—C4         | -3.2(9)    | C28—C29—C30—C21                     | 173.0 (4)  |
| C7—C8—C9—C10        | 179.3 (6)  | C24—C29—C30—C21                     | -5.0 (6)   |
| C3—C4—C9—C8         | -177.6 (5) | C28—C29—C30—C40                     | -5.9(7)    |
| C5—C4—C9—C8         | 1.0 (8)    | C24—C29—C30—C40                     | 176.1 (4)  |
| C3—C4—C9—C10        | 0.0 (7)    | P2                                  | 72.6 (5)   |
| C5—C4—C9—C10        | 178.7 (6)  | P2-04-C31-C32                       | -112.1 (4) |
| C2—C1—C10—C9        | 5.3 (6)    | C40—C31—C32—C33                     | 0.2 (7)    |
| O2—C1—C10—C9        | -177.5 (4) | O4—C31—C32—C33                      | -174.9 (4) |

| C2-C1-C10-C20   | -176.8 (4) | C31—C32—C33—C34 | -3.9 (7)   |
|-----------------|------------|-----------------|------------|
| O2-C1-C10-C20   | 0.4 (6)    | C32—C33—C34—C35 | -175.4 (5) |
| C8—C9—C10—C1    | 173.8 (5)  | C32—C33—C34—C39 | 2.1 (7)    |
| C4—C9—C10—C1    | -3.6 (6)   | C33—C34—C35—C36 | 175.5 (5)  |
| C8—C9—C10—C20   | -4.0 (7)   | C39—C34—C35—C36 | -1.9(8)    |
| C4—C9—C10—C20   | 178.5 (4)  | C34—C35—C36—C37 | 0.1 (9)    |
| P1-01-C11-C20   | 76.4 (4)   | C35—C36—C37—C38 | 0.4 (9)    |
| P1-01-C11-C12   | -108.5 (4) | C36—C37—C38—C39 | 1.0 (9)    |
| C20-C11-C12-C13 | 0.7 (7)    | C37—C38—C39—C34 | -2.8(7)    |
| O1—C11—C12—C13  | -174.1 (4) | C37—C38—C39—C40 | 179.8 (5)  |
| C11—C12—C13—C14 | -3.9 (7)   | C33—C34—C39—C38 | -174.3 (4) |
| C12—C13—C14—C15 | -177.8 (5) | C35—C34—C39—C38 | 3.2 (7)    |
| C12—C13—C14—C19 | 2.7 (7)    | C33—C34—C39—C40 | 3.3 (7)    |
| C13—C14—C15—C16 | 179.1 (5)  | C35—C34—C39—C40 | -179.2 (4) |
| C19—C14—C15—C16 | -1.4 (7)   | O4—C31—C40—C39  | -179.9 (4) |
| C14—C15—C16—C17 | -1.6 (8)   | C32—C31—C40—C39 | 5.1 (6)    |
| C15—C16—C17—C18 | 2.1 (8)    | O4—C31—C40—C30  | -1.4 (6)   |
| C16—C17—C18—C19 | 0.4 (8)    | C32—C31—C40—C30 | -176.4 (4) |
| C17—C18—C19—C14 | -3.3 (7)   | C38—C39—C40—C31 | 170.8 (4)  |
| C17—C18—C19—C20 | 178.4 (5)  | C34—C39—C40—C31 | -6.7 (6)   |
| C13—C14—C19—C18 | -176.7 (4) | C38—C39—C40—C30 | -7.8 (7)   |
| C15—C14—C19—C18 | 3.8 (6)    | C34—C39—C40—C30 | 174.8 (4)  |
| C13—C14—C19—C20 | 1.6 (7)    | C21—C30—C40—C31 | -49.4 (6)  |
| C15—C14—C19—C20 | -177.9 (4) | C29—C30—C40—C31 | 129.5 (4)  |
| O1-C11-C20-C19  | 178.3 (4)  | C21—C30—C40—C39 | 129.1 (4)  |
| C12—C11—C20—C19 | 3.5 (6)    | C29—C30—C40—C39 | -51.9 (6)  |
| O1-C11-C20-C10  | -1.3 (6)   | O2—P1—C41—C42   | 159.7 (3)  |
| C12-C11-C20-C10 | -176.1 (4) | O1—P1—C41—C42   | -96.9 (3)  |
| C18—C19—C20—C11 | 173.7 (4)  | Fe1—P1—C41—C42  | 30.2 (3)   |
| C14—C19—C20—C11 | -4.5 (6)   | P1—C41—C42—P2   | -43.1 (4)  |
| C18—C19—C20—C10 | -6.7 (7)   | O3—P2—C42—C41   | 167.6 (3)  |
| C14—C19—C20—C10 | 175.1 (4)  | O4—P2—C42—C41   | -89.1 (3)  |
| C1-C10-C20-C11  | -50.5 (6)  | Fe1—P2—C42—C41  | 40.8 (3)   |
| C9-C10-C20-C11  | 127.3 (4)  |                 |            |

Symmetry code: (i) y, x, -z+1.

### Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C24–C29 and C31–C40 rings, respectively.

| D—H  | H···A                                               | D···A                                                                                                                           | D—H···A                                                                                                                                                                                                             |                                                        |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 0.95 | 2.42                                                | 3.280 (5)                                                                                                                       | 150                                                                                                                                                                                                                 |                                                        |
| 0.95 | 2.38                                                | 3.293 (5)                                                                                                                       | 162                                                                                                                                                                                                                 |                                                        |
| 0.95 | 2.57                                                | 3.516 (6)                                                                                                                       | 178                                                                                                                                                                                                                 |                                                        |
| 0.95 | 2.59                                                | 3.396 (6)                                                                                                                       | 143                                                                                                                                                                                                                 |                                                        |
|      | <i>D</i> —H<br>0.95<br>0.95<br>0.95<br>0.95<br>0.95 | D—H         H…A           0.95         2.42           0.95         2.38           0.95         2.57           0.95         2.59 | D—H         H…A         D…A           0.95         2.42         3.280 (5)           0.95         2.38         3.293 (5)           0.95         2.57         3.516 (6)           0.95         2.59         3.396 (6) | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Symmetry codes: (i) *y*, *x*, *-z*+1; (ii) *x*-1, *y*, *z*; (iii) *y*+1, *x*, *-z*+1.