

Received 22 June 2020 Accepted 13 July 2020

Edited by M. Weil, Vienna University of Technology, Austria

**Keywords:** crystal structure; tris(oxalato)chromate(III); barium complexes; nickel complexes; corrugated layers.

CCDC reference: 1953456

**Supporting information**: this article has supporting information at journals.iucr.org/e



## Hexaaquanickel(II) bis[triaqua-µ<sub>3</sub>-oxalato-di-µoxalato-bariumchromate(III)] tetrahydrate

Yves Alain Mbiangué, \*\* Manelsa Lande Ndinga, \* Jean Pierre Nduga, \* Emmanuel Wenger  $^{\rm b}$  and Claude Lecomte  $^{\rm b}$ 

<sup>a</sup>Chemistry Department, Higher Teachers' Training College, University of Maroua, PO Box 55, Maroua, Cameroon, and <sup>b</sup>Université de Lorraine, CNRS, CRM<sup>2</sup>, F54000, Nancy, France. \*Correspondence e-mail: mbiangueya@yahoo.com

The title compound,  $[Ni(H_2O)_6][BaCr(C_2O_4)_3(H_2O)_3]_2 \cdot 4H_2O$ , was obtained in the form of single crystals from the slow evaporation of an aqueous mixture of  $\{Ba_6(H_2O)_{17}[Cr(C_2O_4)_3]_4\}$ ·7H<sub>2</sub>O and NiSO<sub>4</sub>·6H<sub>2</sub>O in the molar ratio 1:4. Its structure is made up of corrugated anionic (101) layers of formula  $[BaCr(C_2O_4)_3(H_2O)_3]_n^{n-}$  that leave voids accommodating the charge-compensating cations,  $[Ni(H_2O)_6]^{2+}$  (point group symmetry  $\overline{1}$ ), as well as the water molecules of crystallization. The anionic layers are built from the connection of barium and chromium atoms through bridging oxalate ligands. The Cr<sup>III</sup> atom is hexacoordinated by O atoms of three oxalate ligands while the Ba<sup>II</sup> atom is tenfold coordinated by three O atoms of water molecules and seven O atoms of four oxalate ligands. Each Ni<sup>II</sup> atom sits on an inversion center and is coordinated by six water molecules. One of the uncoordinated water molecules is disordered over two sites, with a refined occupancy ratio of 0.51 (5):0.49 (5). In the crystal, extensive  $O-H \cdots O$  hydrogen-bonding interactions link the anionic layers, the charge-balancing cations as well as the water molecules of crystallization into a three-dimensional supramolecular network.

#### 1. Chemical context

OPEN O ACCESS

Over the past three decades, tris(oxalato)metalate(III) complex anions,  $[M(C_2O_4)_3]^{3-}$ , have been extensively used for the design of many compounds with fascinating physical properties (Zhong et al., 1990; Bénard et al., 2001; Coronado et al., 2008; Pardo et al., 2011; Martin et al., 2017; Tsobnang et al., 2019; Okawa et al., 2020). One of the main reasons for that is the ability of these anions to act like ligands towards a variety of metallic cations and to build a diversity of extended structures in which neighboring metallic ions are linked through bridging oxalate ligands. From the synthetic point of view, the tris(oxalato)chromate(III) anion,  $[Cr(C_2O_4)_3]^{3-}$  or  $[Cr(ox)_3]^{3-}$ , is most attractive because of its stability and inertness toward ligand substitution. As a source of this anion, the polymeric complex salt  $\{Ba_6(H_2O)_{17}[Cr(C_2O_4)_3]_4\}$ .7H<sub>2</sub>O (Bélombé et al., 2003) offers the possibility of easily replacing, in the reaction medium and under daylight, the Ba<sup>2+</sup> ions by other cations, provided the latter are brought into that medium as their sulfates. Since Ba<sup>2+</sup> has a flexible coordination sphere with coordination numbers ranging from three to twelve (Hancock et al., 2004), this inspired us to start a research program aimed at exploring the various structures that might arise from different combinations of  $[Cr(ox)_3]^{3-}$ , Ba<sup>2+</sup> and other cations, and possibly studying the physical

properties of the corresponding compounds. From an aqueous suspension of  $\{Ba_6(H_2O)_{17}[Cr(C_2O_4)_3]_4\}\cdot 7H_2O$ , a partial replacement of  $Ba^{2+}$  by  $Ni^{2+}$  led to  $[Ni(H_2O)_6]-[BaCr(C_2O_4)_3(H_2O)_3]_2\cdot 4H_2O$  (**I**), the structure of which is described herein.



#### 2. Structural commentary

The asymmetric unit of (**I**) is depicted in Fig. 1. It contains one half of an  $[Ni(H_2O)_6]^{2+}$  cation situated on an inversion center, one  $[BaCr(C_2O_4)_3(H_2O)_3]^-$  anion and two water molecules of crystallization, one of which being equally disordered over two positions (O20A and O20B). The Ba<sup>2+</sup> ion is linked to ten O atoms from three water molecules and four oxalate ligands (three chelating, one monodentately binding), with Ba-O bond lengths in the range 2.784 (3)–2.933 (3) Å (Table 1). These values are typical for ten-coordinate barium complexes with oxalate and water ligands (Alabada *et al.*, 2015). One of the oxalate ligands (two



Figure 1

The components of the asymmetric unit of (I), showing the atomnumbering scheme and displacement ellipsoids at the 50% probability level.

| Table 1  |      |         |      |
|----------|------|---------|------|
| Selected | bond | lengths | (Å). |

| <b>D</b> 1 00         | 0.504 (0) |                        | 2 072 (2) |
|-----------------------|-----------|------------------------|-----------|
| Ba1-O2                | 2.784 (3) | Ba1-O18                | 2.873 (2) |
| Ba1-O17 <sup>1</sup>  | 2.802 (2) | $Ba1 - O13^{iii}$      | 2.874 (2) |
| Ba1-O15 <sup>ii</sup> | 2.855 (2) | Ba1-O3                 | 2.880 (3) |
| Ba1-O18               | 2.856 (2) | Ba1-O14 <sup>iii</sup> | 2.912 (2) |
| Ba1-O16 <sup>ii</sup> | 2.859 (2) | Ba1-O1                 | 2.933 (2) |
|                       |           |                        |           |

Symmetry codes: (i) -x, -y + 2, -z + 2; (ii) -x, -y + 1, -z + 2; (iii)  $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$ .

Ba and one Cr) while the two others are bis-chelating (one Ba and one Cr). In the crystal, neighboring  $[Cr(C_2O_4)_3]^{3-}$  units are linked through barium ions into a ladder-like chain running parallel to [010] (Fig. 2). Adjacent ladders are then connected, through Ba–O18 coordination bonds, into a corrugated layer extending parallel to (101) (Fig. 3). The packing of the layers delineates voids that accommodate the cationic complex,  $[Ni(H_2O)_6]^{2+}$ , as well as the water molecules of crystallization (Fig. 4).



Figure 2

Connection of  $[Cr(C_2O_4)_3]^{3-}$  units with  $Ba^{2+}$  cations into a ladder-like chain. Barium-coordinating water molecules have been omitted for clarity.



#### Figure 3

Three adjacent ladder-like chains connected through  $Ba_2O_2$  units into a corrugated layer, viewed in the (101) plane (*a*) and along [010] (*b*). Barium-coordinating water molecules have been omitted for clarity.

## research communications

| Table 2                |     |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D-\mathrm{H}\cdots A$                      | $D-\mathrm{H}$ | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------|----------------|--------------|--------------|--------------------------------------|
| $O1-H1A\cdots O16^{iv}$                     | 0.88(1)        | 2.20 (2)     | 3.038 (4)    | 160 (3)                              |
| $O1 - H1B \cdot \cdot \cdot O20A$           | 0.88(1)        | 1.80 (2)     | 2.660 (18)   | 165 (4)                              |
| $O1 - H1B \cdot \cdot \cdot O20B$           | 0.88(1)        | 2.25 (3)     | 3.08 (2)     | 156 (3)                              |
| $O2-H2A\cdots O10^{iv}$                     | 0.88(1)        | 1.98 (1)     | 2.851 (3)    | 175 (4)                              |
| $O2-H2B\cdots O19^{v}$                      | 0.88(1)        | 1.96 (1)     | 2.835 (4)    | 175 (4)                              |
| O3−H3A···O7                                 | 0.89(1)        | 2.32 (3)     | 2.993 (3)    | 132 (3)                              |
| $O3-H3B\cdots O20A$                         | 0.89(1)        | 2.00(2)      | 2.893 (16)   | 176 (3)                              |
| O3−H3B···O20B                               | 0.89(1)        | 1.86 (2)     | 2.722 (11)   | 163 (3)                              |
| $O4-H4A\cdots O3$                           | 0.88(1)        | 1.96 (1)     | 2.819 (4)    | 166 (4)                              |
| $O4-H4B\cdots O17^{iv}$                     | 0.87(1)        | 1.92 (1)     | 2.791 (3)    | 179 (4)                              |
| $O5-H5A\cdots O11^{iv}$                     | 0.87(1)        | 1.96 (1)     | 2.811 (3)    | 165 (4)                              |
| $O5-H5B\cdots O9^{vi}$                      | 0.88(1)        | 1.84 (1)     | 2.703 (3)    | 167 (4)                              |
| $O6-H6A\cdots O13^{vi}$                     | 0.87(1)        | 1.91 (1)     | 2.761 (3)    | 165 (4)                              |
| O6−H6B···O19                                | 0.87(1)        | 1.83 (1)     | 2.693 (3)    | 172 (3)                              |
| $O19-H19A\cdots O1^{vii}$                   | 0.87(1)        | 1.94 (2)     | 2.759 (4)    | 157 (4)                              |
| O19−H19B···O15                              | 0.87(1)        | 1.93 (1)     | 2.789 (3)    | 172 (4)                              |
| $O20A - H20A \cdots O8^{iv}$                | 0.88(1)        | 2.01 (3)     | 2.855 (10)   | 161 (8)                              |
| $O20A - H20B \cdot \cdot \cdot O20A^{viii}$ | 0.88(1)        | 1.74 (3)     | 2.60 (2)     | 168 (9)                              |
| $O20B - H20C \cdot \cdot \cdot O8^{iv}$     | 0.88(1)        | 2.11 (4)     | 2.893 (11)   | 149 (7)                              |
| $O20B - H20D \cdots O6^{vi}$                | 0.88 (1)       | 2.07 (4)     | 2.90 (3)     | 159 (8)                              |

Symmetry codes: (iv)  $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$  (v) (vi) -x + 1, -y + 1, -z + 2; (vii) x, y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, -y - 1, z; (viii) -x + 1, -y + 2, -y - 1, -y - 1

#### 3. Supramolecular features

In the crystal, extensive O-H···O hydrogen-bonding interactions of medium-to-weak strength are observed (Table 2), with all the water molecules acting as hydrogen-bond donors. The water molecules of crystallization also act as hydrogen-



#### Figure 4

Packing of the crystal structure of (I) in a view along [010], showing corrugated layers interleaved by [Ni(H2O)6]2+ complex cations and water molecules of crystallization. Barium-coordinating water molecules have been omitted for clarity.

bond acceptors, as well as all of the oxalate O atoms except O12. O14 and O18. Two barium-coordinating water molecules (O1 and O3) behave as hydrogen-bond donors toward both components of the disordered lattice water molecule (O20A and O20B) via three-center bonds, O1 $-H1B\cdots$ (O20A,O20B) and  $O3-H3B\cdots(O20A,O20B)$ . The cationic complex,  $[Ni(H_2O)_6]^{2+}$ , functions as a hydrogen-bond donor group towards one barium-coordinating water molecule (O3), one water molecule of crystallization (O19) and four oxalate O atoms, viz. O9vi, O13vi, O11iv and O17iv [symmetry codes refer to Table 2]. Together, these interactions lead to a threedimensional supramolecular network structure.

#### 4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, May 2020; Groom *et al.*, 2016) for  $[M(C_2O_4)_3]^{n-1}$ complexes with each oxalate ligand bis-chelating M and another metal M' gave 316 hits. Of these hits, 86 contain M =Cr and only one, the parent complex of (I), contains M = Crand M' = Ba.

#### 5. Synthesis and crystallization

The parent complex of (I),  $\{Ba_6(H_2O)_{17}[Cr(C_2O_4)_3]_4\}$ ·7H<sub>2</sub>O, was prepared as previously described (Bélombé et al.,

| Table 3                                                                  |                                                                                                                                                               |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental details.                                                    |                                                                                                                                                               |
| Crystal data                                                             |                                                                                                                                                               |
| Chemical formula                                                         | [Ni(H <sub>2</sub> O) <sub>6</sub> ][BaCr(C <sub>2</sub> O <sub>4</sub> ) <sub>3</sub> -<br>(H <sub>2</sub> O) <sub>3</sub> ] <sub>2</sub> ·4H <sub>2</sub> O |
| $M_r$                                                                    | 1253.76                                                                                                                                                       |
| Crystal system, space group                                              | Monoclinic, $P2_1/n$                                                                                                                                          |
| Temperature (K)                                                          | 100                                                                                                                                                           |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                       | 11.5556 (11), 11.0774 (13),<br>14.6105 (17)                                                                                                                   |
| $\beta$ (°)                                                              | 93.794 (4)                                                                                                                                                    |
| $V(Å^3)$                                                                 | 1866.1 (4)                                                                                                                                                    |
| Ζ                                                                        | 2                                                                                                                                                             |
| Radiation type                                                           | Μο Κα                                                                                                                                                         |
| $\mu (\text{mm}^{-1})$                                                   | 3.27                                                                                                                                                          |
| Crystal size (mm)                                                        | $0.14 \times 0.09 \times 0.06$                                                                                                                                |
| Data collection                                                          |                                                                                                                                                               |
| Diffractometer                                                           | Bruker D8 Venture                                                                                                                                             |
| Absorption correction                                                    | Multi-scan (SADABS; Krause et al., 2015)                                                                                                                      |
| $T_{\min}, T_{\max}$                                                     | 0.564, 0.746                                                                                                                                                  |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 53111, 4278, 3539                                                                                                                                             |
| R <sub>int</sub>                                                         | 0.102                                                                                                                                                         |
| $(\sin \theta / \lambda)_{\max} ( \text{\AA}^{-1} )$                     | 0.650                                                                                                                                                         |
| Refinement                                                               |                                                                                                                                                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.026, 0.058, 1.03                                                                                                                                            |
| No. of reflections                                                       | 4278                                                                                                                                                          |
| No. of parameters                                                        | 324                                                                                                                                                           |
| No. of restraints                                                        | 28                                                                                                                                                            |
| H-atom treatment                                                         | Only H-atom coordinates refined                                                                                                                               |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$    | 0.91, -0.85                                                                                                                                                   |

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012), DIAMOND (Brandenburg & Putz, 2018) and publCIF (Westrip, 2010).

2003). The title compound was synthesized as follows: NiSO<sub>4</sub>·6H<sub>2</sub>O (0.21 g, 0.8 mmol) was dissolved in water (20 ml) and the resulting green solution added dropwise, under stirring and at 313 K, to a violet suspension of  $\{Ba_6(H_2O)_{17}[Cr(C_2O_4)_3]_4\}$ ·7H<sub>2</sub>O (0.50 g, 0.2 mmol) in water (25 ml). After one h, the colorless precipitate of BaSO<sub>4</sub> was filtered off, and the filtrate was left to evaporate at room temperature. Two days later, crystals suitable for X-ray analysis were harvested.

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were located in difference-Fourier maps and refined with O—H and H···H distance restraints of 0.88 (1) and 1.37 (2) Å, respectively, and with  $U_{iso}(H) = 1.5U_{eq}(O)$ . One lattice water molecule was refined as being disordered over two positions (O20A and O20B), with the occupancy ratio refined to 0.51 (5):0.49 (5). The distances Ba1—H3A and Ba1—H3B were restrained to be equal using a SADI instruction.

#### Acknowledgements

YAM thanks the  $PMD^2X$  X-ray diffraction facility (http:// crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Institut Jean Barriol, Université de Lorraine, for the X-ray diffraction measurements, data processing and analysis, and providing reports for publication. YAM thanks also the CCDC for providing access to the Cambridge Structural Database through the FAIRE programme.

#### References

- Alabada, R., Kovalchukova, O., Polyakova, I., Strashnova, S. & Sergienko, V. (2015). *Acta Cryst.* E71, 459–462.
- Bélombé, M. M., Nenwa, J., Mbiangué, Y. A., Nnanga, G. E., Mbomekallé, I.-M., Hey-Hawkins, E., Lönnecke, P. & Majoumo, F. (2003). *Dalton Trans.* pp. 2117–2118.
- Bénard, S., Rivière, E., Yu, P., Nakatani, K. & Delouis, J. F. (2001). *Chem. Mater.* **13**, 159–162.
- Brandenburg, K. & Putz, H. (2018). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Waerenborgh, J. C. & Gaczyński, P. (2008). *Inorg. Chem.* 47, 6829–6839.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hancock, R. D., Siddons, C. J., Oscarson, K. A. & Reibenspies, J. M. (2004). *Inorg. Chim. Acta*, 357, 723–727.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Martin, L., Lopez, J. R., Akutsu, H., Nakazawa, Y. & Imajo, S. (2017). *Inorg. Chem.* 56, 14045–14052.
- Ökawa, H., Yoshida, Y., Otsubo, K. & Kitagawa, H. (2020). *Inorg. Chem.* **59**, 623–628.
- Pardo, E., Train, C., Gontard, G., Boubekeur, K., Fabelo, O., Liu, H., Dkhil, B., Lloret, F., Nakagawa, K., Tokoro, H., Ohkoshi, S. & Verdaguer, M. (2011). J. Am. Chem. Soc. 133, 15328–15331.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Tsobnang, P. K., Hastürk, E., Fröhlich, D., Wenger, E., Durand, P., Ngolui, L. J., Lecomte, C. & Janiak, C. (2019). *Cryst. Growth Des.* 19, 2869–2880.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2020). E76, 1316-1319 [https://doi.org/10.1107/S2056989020009536]

Hexaaquanickel(II) bis[triaqua- $\mu_3$ -oxalato-di- $\mu$ -oxalato-bariumchromate(III)] tetrahydrate

## Yves Alain Mbiangué, Manelsa Lande Ndinga, Jean Pierre Nduga, Emmanuel Wenger and Claude Lecomte

### **Computing details**

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Putz, 2018); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *publCIF* (Westrip, 2010).

Hexaaquanickel(II) bis[triaqua- $\mu_3$ -oxalato-di- $\mu$ -oxalato-bariumchromate(III)] tetrahydrate

#### Crystal data

 $[Ni(H_2O)_6][BaCr(C_2O_4)_3(H_2O)_3]_2 \cdot 4H_2O$   $M_r = 1253.76$ Monoclinic,  $P2_1/n$  a = 11.5556 (11) Å b = 11.0774 (13) Å c = 14.6105 (17) Å  $\beta = 93.794$  (4)° V = 1866.1 (4) Å<sup>3</sup> Z = 2

Data collection

Bruker D8 Venture diffractometer  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015)  $T_{\min} = 0.564$ ,  $T_{\max} = 0.746$ 53111 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.026$  $wR(F^2) = 0.058$ S = 1.034278 reflections 324 parameters 28 restraints F(000) = 1224  $D_x = 2.231 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 53111 reflections  $\theta = 2.2-27.5^{\circ}$   $\mu = 3.27 \text{ mm}^{-1}$  T = 100 KBlock, metallic dark red  $0.14 \times 0.09 \times 0.06 \text{ mm}$ 

4278 independent reflections 3539 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.102$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.2^{\circ}$   $h = -15 \rightarrow 14$   $k = -14 \rightarrow 14$  $l = -18 \rightarrow 18$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map Only H-atom coordinates refined  $w = 1/[\sigma^2(F_o^2) + (0.0172P)^2 + 3.0153P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$   $\Delta \rho_{\text{max}} = 0.91 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.85 \text{ e } \text{\AA}^{-3}$ 

Extinction correction: SHELXL-2018/3 (Sheldrick 2015b),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00113 (15)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|--------------|--------------|-----------------------------|-----------|
| Bal  | 0.08524 (2)   | 0.86116 (2)  | 1.12114 (2)  | 0.00717 (7)                 |           |
| Ni1  | 0.500000      | 0.500000     | 1.000000     | 0.00719 (12)                |           |
| Cr1  | 0.11343 (4)   | 0.64371 (4)  | 0.80510(3)   | 0.00671 (11)                |           |
| 01   | 0.2825 (2)    | 1.0283 (2)   | 1.13529 (18) | 0.0194 (5)                  |           |
| H1A  | 0.295 (3)     | 1.065 (4)    | 1.1884 (15)  | 0.029*                      |           |
| H1B  | 0.3528 (16)   | 1.008 (4)    | 1.120 (3)    | 0.029*                      |           |
| O2   | 0.2458 (2)    | 0.8272 (2)   | 1.2695 (2)   | 0.0254 (6)                  |           |
| H2A  | 0.311 (2)     | 0.867 (4)    | 1.273 (3)    | 0.038*                      |           |
| H2B  | 0.242 (3)     | 0.798 (4)    | 1.3252 (14)  | 0.038*                      |           |
| O3   | 0.2799 (2)    | 0.7817 (2)   | 1.02345 (18) | 0.0239 (6)                  |           |
| H3A  | 0.268 (3)     | 0.809 (4)    | 0.9661 (11)  | 0.036*                      |           |
| H3B  | 0.340 (2)     | 0.829 (3)    | 1.041 (2)    | 0.036*                      |           |
| O4   | 0.36196 (19)  | 0.5495 (2)   | 1.07281 (16) | 0.0128 (5)                  |           |
| H4A  | 0.327 (3)     | 0.6188 (19)  | 1.064 (2)    | 0.019*                      |           |
| H4B  | 0.384 (3)     | 0.551 (3)    | 1.1313 (9)   | 0.019*                      |           |
| O5   | 0.61283 (18)  | 0.5438 (2)   | 1.10821 (15) | 0.0111 (5)                  |           |
| H5A  | 0.597 (3)     | 0.606 (2)    | 1.141 (2)    | 0.017*                      |           |
| H5B  | 0.6886 (9)    | 0.541 (3)    | 1.109 (3)    | 0.017*                      |           |
| O6   | 0.4836 (2)    | 0.3258 (2)   | 1.04722 (16) | 0.0117 (5)                  |           |
| H6A  | 0.508 (3)     | 0.304 (3)    | 1.1027 (12)  | 0.018*                      |           |
| H6B  | 0.4116 (13)   | 0.301 (3)    | 1.041 (2)    | 0.018*                      |           |
| 07   | 0.27008 (18)  | 0.71183 (19) | 0.82518 (14) | 0.0088 (4)                  |           |
| 08   | 0.17713 (18)  | 0.57697 (19) | 0.69450 (15) | 0.0098 (4)                  |           |
| 09   | 0.15646 (18)  | 0.49939 (19) | 0.87894 (15) | 0.0095 (4)                  |           |
| O10  | -0.03403 (18) | 0.55595 (19) | 0.78547 (15) | 0.0105 (5)                  |           |
| O11  | 0.04723 (18)  | 0.78461 (19) | 0.73672 (14) | 0.0090 (4)                  |           |
| O12  | 0.06071 (18)  | 0.73167 (19) | 0.91145 (15) | 0.0099 (4)                  |           |
| 013  | 0.44555 (18)  | 0.7013 (2)   | 0.76971 (15) | 0.0109 (5)                  |           |
| O14  | 0.34645 (19)  | 0.5579 (2)   | 0.62938 (16) | 0.0125 (5)                  |           |
| 015  | 0.08516 (19)  | 0.32087 (19) | 0.92016 (15) | 0.0117 (5)                  |           |
| O16  | -0.12046 (19) | 0.3838 (2)   | 0.82179 (17) | 0.0158 (5)                  |           |
| O17  | -0.06735 (19) | 0.94310 (19) | 0.75914 (15) | 0.0103 (4)                  |           |
| O18  | -0.03303 (18) | 0.89973 (19) | 0.94573 (15) | 0.0088 (4)                  |           |
| O19  | 0.2628 (2)    | 0.2480 (2)   | 1.04657 (19) | 0.0244 (6)                  |           |
| H19A | 0.256 (4)     | 0.1727 (15)  | 1.062 (3)    | 0.037*                      |           |

| H19B | 0.206 (3)   | 0.263 (3)  | 1.007 (2)   | 0.037*     |          |
|------|-------------|------------|-------------|------------|----------|
| O20A | 0.4749 (9)  | 0.938 (2)  | 1.0718 (8)  | 0.015 (3)  | 0.51 (5) |
| H20A | 0.543 (3)   | 0.923 (8)  | 1.099 (5)   | 0.023*     | 0.51 (5) |
| H20B | 0.493 (6)   | 0.970 (8)  | 1.020 (3)   | 0.023*     | 0.51 (5) |
| O20B | 0.4877 (12) | 0.895 (2)  | 1.0565 (11) | 0.018 (2)  | 0.49 (5) |
| H20C | 0.536 (6)   | 0.875 (7)  | 1.103 (4)   | 0.027*     | 0.49 (5) |
| H20D | 0.477 (7)   | 0.825 (4)  | 1.028 (5)   | 0.027*     | 0.49 (5) |
| C1   | 0.3415 (3)  | 0.6770 (3) | 0.7665 (2)  | 0.0085 (6) |          |
| C2   | 0.2869 (3)  | 0.5965 (3) | 0.6882 (2)  | 0.0087 (6) |          |
| C3   | 0.0763 (3)  | 0.4184 (3) | 0.8807 (2)  | 0.0081 (6) |          |
| C4   | -0.0373 (3) | 0.4528 (3) | 0.8258 (2)  | 0.0092 (6) |          |
| C5   | -0.0088 (3) | 0.8571 (3) | 0.7871 (2)  | 0.0073 (6) |          |
| C6   | 0.0054 (3)  | 0.8296 (3) | 0.8905 (2)  | 0.0078 (6) |          |
|      |             |            |             |            |          |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$     | $U^{22}$    | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|--------------|-------------|--------------|--------------|--------------|--------------|
| Ba1  | 0.00780 (10) | 0.00561 (9) | 0.00811 (10) | 0.00062 (7)  | 0.00049 (6)  | 0.00064 (7)  |
| Ni1  | 0.0055 (3)   | 0.0091 (3)  | 0.0068 (3)   | 0.0002 (2)   | -0.0008 (2)  | -0.0013 (2)  |
| Cr1  | 0.0055 (2)   | 0.0055 (2)  | 0.0092 (2)   | 0.00058 (18) | 0.00116 (18) | 0.00096 (19) |
| 01   | 0.0149 (12)  | 0.0216 (13) | 0.0213 (14)  | -0.0025 (10) | -0.0011 (10) | 0.0013 (11)  |
| O2   | 0.0171 (13)  | 0.0242 (14) | 0.0329 (16)  | -0.0095 (11) | -0.0126 (12) | 0.0088 (12)  |
| 03   | 0.0239 (14)  | 0.0266 (15) | 0.0211 (14)  | 0.0006 (11)  | 0.0012 (11)  | -0.0033 (11) |
| O4   | 0.0101 (11)  | 0.0168 (12) | 0.0113 (11)  | 0.0026 (9)   | 0.0003 (9)   | -0.0013 (9)  |
| 05   | 0.0063 (10)  | 0.0142 (11) | 0.0127 (12)  | 0.0021 (9)   | -0.0008 (9)  | -0.0051 (9)  |
| 06   | 0.0103 (11)  | 0.0144 (11) | 0.0100 (11)  | 0.0000 (9)   | -0.0020 (9)  | 0.0033 (9)   |
| O7   | 0.0073 (10)  | 0.0086 (10) | 0.0105 (11)  | -0.0005 (8)  | 0.0015 (8)   | -0.0015 (9)  |
| 08   | 0.0063 (10)  | 0.0120 (11) | 0.0111 (11)  | 0.0000 (8)   | 0.0010 (8)   | -0.0022 (9)  |
| 09   | 0.0063 (10)  | 0.0064 (10) | 0.0155 (12)  | 0.0000 (8)   | -0.0014 (9)  | 0.0020 (9)   |
| O10  | 0.0066 (10)  | 0.0087 (10) | 0.0162 (12)  | 0.0000 (8)   | -0.0004 (9)  | 0.0035 (9)   |
| 011  | 0.0101 (10)  | 0.0086 (10) | 0.0084 (11)  | 0.0011 (8)   | 0.0024 (8)   | 0.0010 (9)   |
| O12  | 0.0114 (11)  | 0.0095 (11) | 0.0088 (11)  | 0.0028 (9)   | 0.0017 (8)   | 0.0033 (9)   |
| 013  | 0.0061 (10)  | 0.0157 (12) | 0.0108 (11)  | -0.0021 (8)  | 0.0002 (8)   | 0.0009 (9)   |
| 014  | 0.0097 (11)  | 0.0139 (11) | 0.0142 (12)  | -0.0003 (9)  | 0.0042 (9)   | -0.0018 (9)  |
| 015  | 0.0144 (11)  | 0.0076 (10) | 0.0126 (12)  | -0.0002 (9)  | -0.0019 (9)  | 0.0036 (9)   |
| 016  | 0.0075 (11)  | 0.0110 (12) | 0.0282 (14)  | -0.0014 (9)  | -0.0034 (10) | 0.0037 (10)  |
| O17  | 0.0138 (11)  | 0.0086 (11) | 0.0081 (11)  | 0.0038 (9)   | -0.0018 (9)  | 0.0014 (9)   |
| O18  | 0.0117 (11)  | 0.0070 (10) | 0.0078 (11)  | -0.0003 (8)  | 0.0017 (9)   | 0.0000 (8)   |
| 019  | 0.0201 (13)  | 0.0203 (14) | 0.0307 (15)  | -0.0076 (11) | -0.0138 (11) | 0.0119 (12)  |
| O20A | 0.015 (3)    | 0.021 (7)   | 0.009 (4)    | -0.003 (4)   | 0.000 (2)    | -0.004 (4)   |
| O20B | 0.021 (4)    | 0.020 (6)   | 0.012 (4)    | -0.003 (4)   | -0.002 (3)   | -0.001 (4)   |
| C1   | 0.0100 (15)  | 0.0081 (13) | 0.0075 (15)  | 0.0006 (11)  | 0.0005 (12)  | 0.0030 (11)  |
| C2   | 0.0106 (15)  | 0.0068 (13) | 0.0089 (15)  | -0.0004 (11) | 0.0010 (12)  | 0.0019 (12)  |
| C3   | 0.0093 (14)  | 0.0079 (15) | 0.0074 (15)  | 0.0000 (12)  | 0.0021 (12)  | -0.0029 (12) |
| C4   | 0.0066 (14)  | 0.0085 (14) | 0.0124 (16)  | 0.0011 (11)  | 0.0010 (12)  | -0.0007 (12) |
| C5   | 0.0071 (14)  | 0.0067 (13) | 0.0081 (14)  | -0.0027 (12) | 0.0014 (11)  | -0.0009 (12) |
| C6   | 0.0048 (14)  | 0.0070 (14) | 0.0115 (15)  | -0.0035 (11) | -0.0005 (12) | 0.0026 (12)  |

Geometric parameters (Å, °)

| Ba1—O2                                   | 2.784 (3)  | O4—H4A      | 0.875 (10) |
|------------------------------------------|------------|-------------|------------|
| Ba1—O17 <sup>i</sup>                     | 2.802 (2)  | O4—H4B      | 0.874 (10) |
| Ba1—O15 <sup>ii</sup>                    | 2.855 (2)  | O5—H5A      | 0.870 (10) |
| Ba1—O18                                  | 2.856 (2)  | O5—H5B      | 0.875 (10) |
| Ba1—O16 <sup>ii</sup>                    | 2.859 (2)  | O6—H6A      | 0.873 (10) |
| Ba1—O18 <sup>i</sup>                     | 2.873 (2)  | O6—H6B      | 0.874 (10) |
| Ba1—O13 <sup>iii</sup>                   | 2.874 (2)  | O7—C1       | 1.288 (4)  |
| Ba1—O3                                   | 2.880 (3)  | O8—C2       | 1.297 (4)  |
| Ba1—O14 <sup>iii</sup>                   | 2.912 (2)  | O9—C3       | 1.291 (4)  |
| Ba1—O1                                   | 2.933 (2)  | O10—C4      | 1.287 (4)  |
| Ni1—O5 <sup>iv</sup>                     | 2.040 (2)  | O11—C5      | 1.292 (4)  |
| Ni1—O5                                   | 2.040 (2)  | O12—C6      | 1.285 (4)  |
| Ni1—O4 <sup>iv</sup>                     | 2.050 (2)  | O13—C1      | 1.230 (4)  |
| Ni1—O4                                   | 2.050 (2)  | O14—C2      | 1.213 (4)  |
| Ni1—O6 <sup>iv</sup>                     | 2.062 (2)  | O15—C3      | 1.225 (4)  |
| Ni1—06                                   | 2.062 (2)  | O16—C4      | 1.226 (4)  |
| Cr1O8                                    | 1.964 (2)  | O17—C5      | 1.223 (4)  |
| Cr1—012                                  | 1.965 (2)  | O18—C6      | 1.225 (4)  |
| Cr1—O7                                   | 1.965 (2)  | O19—H19A    | 0.870 (10) |
| Cr1—O10                                  | 1.966 (2)  | O19—H19B    | 0.870 (10) |
| Cr1—O9                                   | 1.974 (2)  | O20A—H20A   | 0.878 (10) |
| Cr1—O11                                  | 1.979 (2)  | O20A—H20B   | 0.878 (10) |
| O1—H1A                                   | 0.879 (10) | O20B—H20C   | 0.878 (10) |
| O1—H1B                                   | 0.884 (10) | O20B—H20D   | 0.879 (10) |
| O2—H2A                                   | 0.875 (10) | C1—C2       | 1.550 (4)  |
| O2—H2B                                   | 0.878 (10) | C3—C4       | 1.542 (4)  |
| O3—H3A                                   | 0.893 (10) | C5—C6       | 1.540 (4)  |
| O3—H3B                                   | 0.891 (10) |             |            |
| O2—Ba1—O17 <sup>i</sup>                  | 72.03 (7)  | O12-Cr1-O10 | 92.84 (9)  |
| O2—Ba1—O15 <sup>ii</sup>                 | 118.93 (7) | O7—Cr1—O10  | 172.94 (9) |
| O17 <sup>i</sup> —Ba1—O15 <sup>ii</sup>  | 126.88 (6) | O8—Cr1—O9   | 92.88 (9)  |
| O2—Ba1—O18                               | 166.84 (7) | O12—Cr1—O9  | 92.84 (9)  |
| O17 <sup>i</sup> —Ba1—O18                | 113.19 (6) | O7—Cr1—O9   | 91.90 (9)  |
| O15 <sup>ii</sup> —Ba1—O18               | 68.50 (6)  | O10-Cr1-O9  | 82.17 (9)  |
| O2—Ba1—O16 <sup>ii</sup>                 | 64.53 (7)  | O8—Cr1—O11  | 92.00 (9)  |
| O17 <sup>i</sup> —Ba1—O16 <sup>ii</sup>  | 124.55 (7) | O12—Cr1—O11 | 83.02 (9)  |
| O15 <sup>ii</sup> —Ba1—O16 <sup>ii</sup> | 58.29 (6)  | O7—Cr1—O11  | 95.39 (9)  |
| O18—Ba1—O16 <sup>ii</sup>                | 117.00(7)  | O10-Cr1-O11 | 90.80 (9)  |
| O2—Ba1—O18 <sup>i</sup>                  | 120.24 (7) | O9—Cr1—O11  | 171.68 (9) |
| O17 <sup>i</sup> —Ba1—O18 <sup>i</sup>   | 58.43 (6)  | Ba1—O1—H1A  | 116 (3)    |
| O15 <sup>ii</sup> —Ba1—O18 <sup>i</sup>  | 116.93 (6) | Ba1—O1—H1B  | 123 (3)    |
| O18-Ba1-O18 <sup>i</sup>                 | 58.65 (7)  | H1A—O1—H1B  | 104 (2)    |
| O16 <sup>ii</sup> —Ba1—O18 <sup>i</sup>  | 175.13 (6) | Ba1—O2—H2A  | 121 (3)    |
| O2—Ba1—O13 <sup>iii</sup>                | 76.00 (7)  | Ba1—O2—H2B  | 134 (3)    |
| O17 <sup>i</sup> —Ba1—O13 <sup>iii</sup> | 69.29 (6)  | H2A—O2—H2B  | 103 (2)    |

| O15 <sup>ii</sup> —Ba1—O13 <sup>iii</sup>  | 64.89 (6)  | Ba1—O3—H3A               | 106 (2)     |
|--------------------------------------------|------------|--------------------------|-------------|
| O18—Ba1—O13 <sup>iii</sup>                 | 117.03 (6) | Ba1—O3—H3B               | 107 (2)     |
| O16 <sup>ii</sup> —Ba1—O13 <sup>iii</sup>  | 68.14 (7)  | H3A—O3—H3B               | 99 (2)      |
| O18 <sup>i</sup> —Ba1—O13 <sup>iii</sup>   | 111.27 (6) | Ni1—O4—H4A               | 122 (3)     |
| O2—Ba1—O3                                  | 80.94 (8)  | Ni1—O4—H4B               | 109 (2)     |
| O17 <sup>i</sup> —Ba1—O3                   | 129.65 (7) | H4A—O4—H4B               | 103 (2)     |
| O15 <sup>ii</sup> —Ba1—O3                  | 103.29 (7) | Ni1—O5—H5A               | 118 (2)     |
| O18—Ba1—O3                                 | 86.79 (7)  | Ni1—O5—H5B               | 126 (2)     |
| O16 <sup>ii</sup> —Ba1—O3                  | 75.75 (7)  | H5A—O5—H5B               | 105 (2)     |
| O18 <sup>i</sup> —Ba1—O3                   | 105.45 (7) | Ni1—O6—H6A               | 123 (2)     |
| O13 <sup>iii</sup> —Ba1—O3                 | 142.83 (7) | Ni1—O6—H6B               | 111 (2)     |
| O2—Ba1—O14 <sup>iii</sup>                  | 126.45 (8) | H6A—O6—H6B               | 104 (2)     |
| O17 <sup>i</sup> —Ba1—O14 <sup>iii</sup>   | 68.07 (6)  | C1                       | 114.17 (19) |
| O15 <sup>ii</sup> —Ba1—O14 <sup>iii</sup>  | 65.42 (6)  | C2—O8—Cr1                | 114.68 (19) |
| O18—Ba1—O14 <sup>iii</sup>                 | 65.95 (6)  | C3—O9—Cr1                | 114.79 (19) |
| O16 <sup>ii</sup> —Ba1—O14 <sup>iii</sup>  | 113.40 (6) | C4—O10—Cr1               | 115.08 (19) |
| O18 <sup>i</sup> —Ba1—O14 <sup>iii</sup>   | 63.38 (6)  | C5—O11—Cr1               | 113.24 (19) |
| O13 <sup>iii</sup> —Ba1—O14 <sup>iii</sup> | 57.43 (6)  | C6—O12—Cr1               | 113.91 (19) |
| O3—Ba1—O14 <sup>iii</sup>                  | 152.62 (7) | C1—O13—Ba1 <sup>v</sup>  | 120.99 (19) |
| O2—Ba1—O1                                  | 63.63 (7)  | C2                       | 120.2 (2)   |
| O17 <sup>i</sup> —Ba1—O1                   | 63.68 (7)  | C3—O15—Ba1 <sup>ii</sup> | 119.24 (19) |
| O15 <sup>ii</sup> —Ba1—O1                  | 169.31 (7) | C4Ba1 <sup>ii</sup>      | 118.81 (19) |
| O18—Ba1—O1                                 | 107.00 (7) | C5-O17-Bali              | 117.15 (19) |
| O16 <sup>ii</sup> —Ba1—O1                  | 118.91 (7) | C6                       | 108.89 (19) |
| O18 <sup>i</sup> —Ba1—O1                   | 65.59 (7)  | C6O18Ba1 <sup>i</sup>    | 115.98 (19) |
| O13 <sup>iii</sup> —Ba1—O1                 | 124.84 (7) | Ba1—O18—Ba1 <sup>i</sup> | 121.35 (7)  |
| O3—Ba1—O1                                  | 66.37 (8)  | H19A—O19—H19B            | 106 (2)     |
| O14 <sup>iii</sup> —Ba1—O1                 | 122.46 (7) | H20A—O20A—H20B           | 102 (2)     |
| O5 <sup>iv</sup> —Ni1—O5                   | 180.00 (8) | H20C—O20B—H20D           | 103 (2)     |
| $O5^{iv}$ —Ni1—O4 <sup>iv</sup>            | 90.78 (9)  | O13—C1—O7                | 125.2 (3)   |
| O5—Ni1—O4 <sup>iv</sup>                    | 89.22 (9)  | O13—C1—C2                | 120.2 (3)   |
| O5 <sup>iv</sup> —Ni1—O4                   | 89.22 (9)  | O7—C1—C2                 | 114.6 (3)   |
| O5—Ni1—O4                                  | 90.78 (9)  | O14—C2—O8                | 126.5 (3)   |
| O4 <sup>iv</sup> —Ni1—O4                   | 180.0      | O14—C2—C1                | 120.2 (3)   |
| O5 <sup>iv</sup> —Ni1—O6 <sup>iv</sup>     | 91.79 (9)  | O8—C2—C1                 | 113.3 (3)   |
| $O5$ —Ni1— $O6^{iv}$                       | 88.21 (9)  | O15—C3—O9                | 125.8 (3)   |
| O4 <sup>iv</sup> —Ni1—O6 <sup>iv</sup>     | 89.13 (9)  | O15—C3—C4                | 120.3 (3)   |
| O4—Ni1—O6 <sup>iv</sup>                    | 90.87 (9)  | O9—C3—C4                 | 113.9 (3)   |
| O5 <sup>iv</sup> —Ni1—O6                   | 88.21 (9)  | O16—C4—O10               | 125.4 (3)   |
| O5—Ni1—O6                                  | 91.79 (9)  | O16—C4—C3                | 120.6 (3)   |
| O4 <sup>iv</sup> —Ni1—O6                   | 90.87 (9)  | O10—C4—C3                | 114.1 (3)   |
| O4—Ni1—O6                                  | 89.13 (9)  | O17—C5—O11               | 125.6 (3)   |
| O6 <sup>iv</sup> —Ni1—O6                   | 180.00 (4) | O17—C5—C6                | 120.2 (3)   |
| O8—Cr1—O12                                 | 171.94 (9) | O11—C5—C6                | 114.3 (3)   |
| O8—Cr1—O7                                  | 82.86 (9)  | O18—C6—O12               | 125.1 (3)   |
| O12—Cr1—O7                                 | 91.28 (9)  | O18—C6—C5                | 120.1 (3)   |
| O8—Cr1—O10                                 | 93.57 (9)  | O12—C6—C5                | 114.8 (3)   |

| Ba1 <sup>v</sup> O13C1O7      | -172.7 (2) | Cr1—O10—C4—C3               | -0.6 (3)   |
|-------------------------------|------------|-----------------------------|------------|
| Ba1 <sup>v</sup>              | 8.4 (4)    | O15—C3—C4—O16               | 0.9 (4)    |
| Cr1-07-C1-013                 | -174.5 (2) | O9—C3—C4—O16                | 180.0 (3)  |
| Cr1-07-C1-C2                  | 4.4 (3)    | O15—C3—C4—O10               | -178.0 (3) |
| Ba1 <sup>v</sup> O14C2O8      | 173.1 (2)  | O9—C3—C4—O10                | 1.1 (4)    |
| Ba1 <sup>v</sup>              | -7.5 (4)   | Ba1 <sup>i</sup> O17C5O11   | -150.8 (2) |
| Cr1                           | 175.1 (3)  | Ba1 <sup>i</sup> O17C5C6    | 27.7 (3)   |
| Cr1-08-C2-C1                  | -4.3 (3)   | Cr1—O11—C5—O17              | -171.9 (2) |
| O13—C1—C2—O14                 | -0.5 (5)   | Cr1-011-C5-C6               | 9.5 (3)    |
| O7—C1—C2—O14                  | -179.5 (3) | Ba1-018-C6-012              | 20.2 (4)   |
| O13—C1—C2—O8                  | 178.9 (3)  | Ba1 <sup>i</sup> O18C6O12   | 161.3 (2)  |
| O7—C1—C2—O8                   | -0.1 (4)   | Ba1—O18—C6—C5               | -158.5 (2) |
| Ba1 <sup>ii</sup> —O15—C3—O9  | -166.0 (2) | Ba1 <sup>i</sup> —O18—C6—C5 | -17.4 (3)  |
| Ba1 <sup>ii</sup> —O15—C3—C4  | 13.0 (3)   | Cr1-012-C6-018              | -178.3 (2) |
| Cr1                           | 178.1 (2)  | Cr1—O12—C6—C5               | 0.4 (3)    |
| Cr1—O9—C3—C4                  | -1.0 (3)   | O17—C5—C6—O18               | -6.7 (4)   |
| Ba1 <sup>ii</sup> —O16—C4—O10 | 164.6 (2)  | O11—C5—C6—O18               | 172.0 (3)  |
| Ba1 <sup>ii</sup> —O16—C4—C3  | -14.2 (4)  | O17—C5—C6—O12               | 174.6 (3)  |
| Cr1-010-C4-016                | -179.4 (3) | O11—C5—C6—O12               | -6.8 (4)   |
|                               |            |                             |            |

Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+1, -z+2; (iii) x-1/2, -y+3/2, z+1/2; (iv) -x+1, -y+1, -z+2; (v) x+1/2, -y+3/2, z-1/2.

| Hydrogen-bond | geometry | (Å, | <i>°</i> ) |
|---------------|----------|-----|------------|
|               | 0        | (,  |            |

| D—H···A                                                  | <i>D</i> —Н | H···A    | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------------------------------------------------------|-------------|----------|--------------|-------------------------|
| O1—H1A···O16 <sup>vi</sup>                               | 0.88 (1)    | 2.20 (2) | 3.038 (4)    | 160 (3)                 |
| O1—H1 <i>B</i> ···O20 <i>A</i>                           | 0.88 (1)    | 1.80(2)  | 2.660 (18)   | 165 (4)                 |
| O1—H1 <i>B</i> ···O20 <i>B</i>                           | 0.88 (1)    | 2.25 (3) | 3.08 (2)     | 156 (3)                 |
| O2— $H2A$ ···O10 <sup>vi</sup>                           | 0.88(1)     | 1.98 (1) | 2.851 (3)    | 175 (4)                 |
| O2—H2 <i>B</i> ···O19 <sup>vii</sup>                     | 0.88 (1)    | 1.96 (1) | 2.835 (4)    | 175 (4)                 |
| O3—H3 <i>A</i> ···O7                                     | 0.89(1)     | 2.32 (3) | 2.993 (3)    | 132 (3)                 |
| O3—H3 <i>B</i> ···O20 <i>A</i>                           | 0.89(1)     | 2.00 (2) | 2.893 (16)   | 176 (3)                 |
| O3—H3 <i>B</i> ···O20 <i>B</i>                           | 0.89(1)     | 1.86 (2) | 2.722 (11)   | 163 (3)                 |
| O4—H4 <i>A</i> ···O3                                     | 0.88(1)     | 1.96 (1) | 2.819 (4)    | 166 (4)                 |
| $O4$ — $H4B$ ···· $O17^{vi}$                             | 0.87(1)     | 1.92 (1) | 2.791 (3)    | 179 (4)                 |
| O5—H5 <i>A</i> ···O11 <sup>vi</sup>                      | 0.87(1)     | 1.96 (1) | 2.811 (3)    | 165 (4)                 |
| O5—H5 <i>B</i> ···O9 <sup>iv</sup>                       | 0.88 (1)    | 1.84 (1) | 2.703 (3)    | 167 (4)                 |
| O6—H6A···O13 <sup>iv</sup>                               | 0.87(1)     | 1.91 (1) | 2.761 (3)    | 165 (4)                 |
| O6—H6 <i>B</i> ···O19                                    | 0.87(1)     | 1.83 (1) | 2.693 (3)    | 172 (3)                 |
| O19—H19A····O1 <sup>viii</sup>                           | 0.87(1)     | 1.94 (2) | 2.759 (4)    | 157 (4)                 |
| O19—H19B…O15                                             | 0.87(1)     | 1.93 (1) | 2.789 (3)    | 172 (4)                 |
| O20A—H20A····O8 <sup>vi</sup>                            | 0.88 (1)    | 2.01 (3) | 2.855 (10)   | 161 (8)                 |
| O20 <i>A</i> —H20 <i>B</i> ···O20 <i>A</i> <sup>ix</sup> | 0.88(1)     | 1.74 (3) | 2.60 (2)     | 168 (9)                 |
| O20 <i>B</i> —H20 <i>C</i> ···O8 <sup>vi</sup>           | 0.88 (1)    | 2.11 (4) | 2.893 (11)   | 149 (7)                 |
| O20 <i>B</i> —H20 <i>D</i> ···O6 <sup>iv</sup>           | 0.88 (1)    | 2.07 (4) | 2.90 (3)     | 159 (8)                 |
|                                                          |             |          |              |                         |

Symmetry codes: (iv) -x+1, -y+1, -z+2; (vi) x+1/2, -y+3/2, z+1/2; (vii) -x+1/2, y+1/2, -z+5/2; (viii) x, y-1, z; (ix) -x+1, -y+2, -z+2.