

Received 10 June 2020 Accepted 30 June 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; C— $H\cdots \pi$ (ring) interaction; imidazopyridine; DFT calculation; Hirshfeld surface analysis.

CCDC reference: 2013416

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)phenyl]-3*H*-imidazo[4,5-*b*]pyridine

Zainab Jabri,^a* Nada Kheira Sebbar,^{b,c} Tuncer Hökelek,^d Joel T. Mague,^e Safia Sabir,^a Youssef Kandri Rodi^a and Khalid Misbahi^a

^aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco, ^bLaboratoire de Chimie Bioorganique Appliquée et Environnement Equipe de Chimie, Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ^dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and ^eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: zainabjabri2018@gmail.com

In the title molecule, $C_{20}H_{24}Br_2N_4$, the imidazopyridine moiety is not planar as indicated by the dihedral angle of 2.0 (2)° between the constituent rings; the 4-dimethylaminophenyl ring is inclined to the mean plane of the imidazole ring by 27.4 (1)°. In the crystal, two sets of $C-H\cdots\pi(ring)$ interactions form stacks of molecules extending parallel to the *a*-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $H\cdots H$ (42.2%), $H\cdots C/C\cdots H$ (23.1%) and $H\cdots Br/Br\cdots H$ (22.3%) interactions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6-311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 2.3591 eV.

1. Chemical context

The family of nitrogenous drugs, particularly those containing the imidazopyridine moiety, is important in medicinal chemistry because of their wide range of pharmacological activities such as anticancer, anti-inflammatory, antibacterial, antituberculosis, anti-glycation anti-analgesic and antifungal properties, and their antioxidant potential. In particular, imadazo[4,5-b]pyridine derivatives inhibit the P-glycoprotein, which could reverse the multidrug resistance of cancer cells (Bourichi et al., 2018). They are also inhibitors of type 2 diabetes because of their ability to inhibit the Baker's yeast α glucosidase enzyme, and are inhibitors of one or more proteins in the treatment of disorders characterized by the activation of Wnt pathway signalling (for example: cancer, abnormal cellular proliferation, angiogenesis, fibrotic disorders, bone or cartilage diseases and osteoarthritis), and of genetic and neurological diseases such as PAK4 kinase 4 inhibitor activated by p21 and aurora kinase inhibitors. Imadazo[4,5b pyridine derivatives are also therapeutic agents for dysferlinopathies through phenotypic screening on patient-induced pluripotent stem cells (Takada et al., 2019).

Given the wide range of theraputic applications for such compounds, we have already reported a route for the preparation of imidazo[4,5-b]pyridine derivatives using *N*-alkylation reactions carried out with di-halogenated carbon

chains (Jabri *et al.*, 2020); a similar approach yielded the title compound, $C_{20}H_{24}Br_2N_4$,(I). Besides the synthesis, we also report the molecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level.

2. Structural commentary

The molecular structure of (I) is depicted in Fig. 1. The imidazopyridine moiety is not planar, as indicated by the dihedral angle of 2.0 (3)° between the constituent rings. The ring of the 4-dimethylaminophenyl moiety is inclined to the mean plane of the imidazole ring by 27.4 (1)°. The 5-bromopentyl chain is oriented in an arc-like form around the periphery of the 4-dimethylaminophenyl moiety so that the terminal Br2 atom of the chain is only 4.36 (6) Å from one of the methyl C atoms (C20; Fig. 1).

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg3 is the centroid of the C7-C12 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C14 $-$ H14 B \cdots Cg 3^{vi}	0.99	2.60	3.502 (4)	151
C15 $-$ H15 A \cdots Cg 3^{ii}	0.99	2.94	3.904 (4)	165

Symmetry codes: (ii) -x + 2, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 1.

3. Supramolecular features

In the crystal, stacks of molecules extending along the *a*-axis direction are formed by inversion-related C14-H14 $B \cdots Cg3^{i}$ and C15-H15 $A \cdots Cg3^{ii}$ interactions [symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z] where Cg3 is the centroid of the C7-C12 phenyl ring (Fig. 2, Table 1).

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). A view of the threedimensional Hirshfeld surface of (I), plotted over d_{norm} and electrostatic potential are shown in Fig. 3a and 3b. The shapeindex of the HS reveals that there are no significant π - π interactions in (I), as shown in Fig. 4. The overall twodimensional fingerprint plot (McKinnon et al., 2007) is shown in Fig. 5a, while those delineated into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots Br/Br \cdots H, H \cdots N/N \cdots H, C \cdots Br/Br \cdots C, N \cdots Br/Br \cdots N$ and $N \cdots C/C \cdots N$ contacts are illustrated in Fig. 5b-h, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H...H, contributing 42.2% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A portion of one stack of molecules viewed along the *c*-axis direction with the $C-H\cdots\pi(ring)$ interactions depicted by green dashed lines.

research communications

(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over $d_{\rm norm}$ in the range of -0.0709 to 1.1781 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.

at $d_e = d_i = 1.18$ Å. In the presence of $C-H\cdots\pi$ interactions, the pair of characteristic wings in the fingerprint plot delineated into $H\cdots C/C\cdots H$ contacts (23.1% contribution to the HS), Fig. 5c, has the tips at $d_e + d_i = 2.76$ Å. The pair of scattered points of spikes in the fingerprint plot delineated into $H\cdots Br/Br\cdots H$, Fig. 5d (22.3%), have the tips at $d_e + d_i =$ 2.95 Å. The $H\cdots N/N\cdots H$ contacts, Fig. 5e (10.1%), have the tips at $d_e + d_i = 2.56$ Å. The $C\cdots Br/Br\cdots C$ contacts, Fig. 5f, contribute 1.2% to the HS and appear as a pair of scattered points of spikes with the tips at $d_e + d_i = 3.50$ Å. The $N\cdots Br/$ $Br\cdots N$ contacts, Fig. 5g, contribute 1.1% to the HS appearing as pair of scattered points of spikes with the tips at $d_e + d_i =$ 3.59 Å. Finally, the $N\cdots C/C\cdots N$ contacts, Fig. 5h, make only 0.1% contribution to the HS and have a low-density distribution of points.

5. DFT calculations

The optimized structure of (I) in the gas phase was calculated by density functional theory (DFT) using a standard B3LYP

Figure 4 Hirshfeld surface of the title compound plotted over shape-index.

functional and the 6–311 G(d,p) basis-set (Becke, 1993) as implemented in *GAUSSIAN 09* (Frisch *et al.*, 2009). The theoretical and experimental results related to bond lengths and angles are in good agreement (Table 2). Calculated numerical values for (I) including electronegativity (χ),

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots Br/Br \cdots H$, (e) $H \cdots N/N \cdots H$, (f) $C \cdots Br/Br \cdots C$, (g) $N \cdots Br/Br \cdots N$ and (h) $N \cdots C/C \cdots N$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2 Comparison of selected (X-ray and DFT) bond length and angles (\mathring{A}, \circ) .

	X-ray	B3LYP/6-311G(d,p)
Br1-C3	1.905 (3)	1.95402
Br2-C18	1.993 (4)	2.02785
N1-C5	1.346 (4)	1.33429
N1-C4	1.347 (4)	1.37682
N2-C5	1.373 (4)	1.39261
N2-C6	1.387 (4)	1.39443
N2-C13	1.497 (4)	1.47275
N3-C6	1.321 (4)	1.33277
N3-C1	1.381 (4)	1.38362
N4-C10	1.373 (4)	1.39418
N4-C20	1.449 (5)	1.46048
N4-C19	1.464 (5)	1.46022
C5-N1-C4	112.1 (3)	114.50142
C5-N2-C6	105.4 (2)	108.33854
C5-N2-C13	124.1 (2)	118.46297
C6-N2-C13	129.9 (3)	128.08505
C6-N3-C1	105.2 (2)	107.12596
C10-N4-C20	119.7 (3)	120.14593
C10-N4-C19	120.1 (3)	120.10245
C20-N4-C19	117.7 (3)	119.74504
N3-C1-C2	131.6 (3)	134.19166
N3-C1-C5	109.6 (3)	106.29375

hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are collated in Table 3. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6. The HOMO and LUMO are localized in the plane extending ove

The energy band gap of (I).

Table 3	\$		
Calculat	ed	ene	rgies.

Molecular Energy	Compound (I)
Total Energy TE (eV)	-167186.456
$E_{\rm HOMO}~(\rm eV)$	-3.1033
$E_{\rm LUMO}~(\rm eV)$	-0.7442
Gap, ΔE (eV)	2.3591
Dipole moment, μ (Debye)	6.1953
Ionization potential, I (eV)	3.1033
Electron affinity, A	0.7442
Electronegativity, χ	1.9237
Hardness, η	1.1796
Electrophilicity, index ω	1.5687
Softness, σ	0.8478
Fraction of electron transferred, ΔN	2.1518

the whole 6-bromo-3-(5-bromopentyl)-2-[4-(dimethylamino)phenyl]-3-*H*-imidazo[4,5-*b*]pyridine system. The energy band gap [$\Delta E = E_{LUMO} - E_{HOMO}$] of the molecule is 2.3591 eV, and the frontier molecular orbital energies, E_{HOMO} and E_{LUMO} , are -3.1033 and -0.7442 eV, respectively.

6. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, updated to March 2020; Groom et al., 2016) with fragment (II) (Fig. 7) and excluding metal complexes gave seven matches. Of these, two had a $-CH_2CH_2X - (X = O, NH)$ chain connecting a saturated nitrogen atom [corresponding to N2 in (I)] to an ortho position of the phenyl ring and so were considered less comparable to (I) than the remainder, which can be represented by the general structure (III) (Fig. 7). For R = Ph and R'' = Br, examples are UCOXES (R' =CH₂COOC₂H₅; Hjouji *et al.*, 2016), UNUWIK [R' = (1-benzyl-1H-1,2,3-triazol- 5-yl)methyl; Ouzidan et al., 2011a] and URAQOU [R' = (2 - 0.000 azolidin - 3 - yl) ethyl; Ouzidan *et al.*, 2011b]. For R = 4-ClC₆H₄ and R'' = Br there are two reports of the compound with R' = 1-octyl-1H-1,2,3-triazol-4-yl)methyl [XITLUK (Bourichi et al., 2019a) and XITLUK01 (Bourichi et al., 2019b)]. The dihedral angle between the plane of the 4dimethylaminophenyl group and the mean plane of the imidazopyridine unit is ca 19° in XITLUK and ca 49° in UCOXES. Of all of these related structures, (I) is the only one with the substituent on nitrogen approximately coplanar with the imidazopyridine unit. In UCOXES, this substituent is directed outward and away from the phenyl group while in all the others, it is bent back over the phenyl group. In fact, in UNUWIK there is an $H \cdots H$ contact of 2.4 Å between the phenyl ring of the benzyl group and that attached to the imidazole ring.

Structural fragments (II) and (III) used in the database search.

7. Synthesis and crystallization

To a solution of 4-(6-bromo-3*H*-imidazo[4,5-b]pyridin-2-yl)-*N*,*N*-dimethylaniline (0.4 g, 1.25 mmol), 2.2 equivalents of potassium carbonate (0.38 g, 2.75 mmol) and 0.2 equivalents of tetra-*n*-butyl ammonium bromide (BTBA) (0.061 g, 0.187 mmol) in 40 ml of DMF were added in small portions to 1.5 equivalent of the 1,6-dibromododecanedihalogenated reagent, and the mixture was stirred magnetically at room temperature for 48 h. After removal of the salts and evaporation of DMF under reduced pressure, the product was subjected to separation by chromatography on a column of silica gel using a mixture of hexane/dichloromethane = 1/4 (v/v) as the mobile phase. Brown single crystals suitable for X-ray diffraction were obtained by evaporation of a dichloromethane/hexane solution (1:4 v/v).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms were included as riding contributions in idealized positions (C-H = 0.95– 0.99 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C-methyl)$.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.
- Bourichi, S., Kandri Rodi, Y., Hökelek, T., Chakroune, S., Ouzidan, Y. & Capet, F. (2019*a*). *IUCrData*, **4**, x190053.
- Bourichi, S., Kandri Rodi, Y., Hokelek, T., Ouzidan, Y., Chahdi, F., Akhazzane, M. & Essassi, E. M. (2019b). J. Maroc. Chem. Heterocycli. 18, 43–53.
- Bourichi, S., Misbahi, H., Rodi, Y. K., Chahdi, F. O., Essassi, E. M., Szabó, S., Szalontai, B., Gajdács, M., Molnár, J. & Spengler, G. (2018). Anticancer Res. 38, 3999–4003.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J.,

Table	4	
Experi	mental	details

Crystal data	
Chemical formula	$C_{20}H_{24}Br_2N_4$
M _r	480.25
Crystal system, space group	Triclinic, P1
Temperature (K)	150
a, b, c (Å)	8.1488 (11), 11.2243 (15), 12.6378 (17)
α, β, γ (°)	64.049 (2), 74.184 (2), 86.067 (2)
$V(Å^3)$	998.3 (2)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	4.07
Crystal size (mm)	$0.35 \times 0.21 \times 0.20$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.41, 0.50
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19397, 5325, 4168
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.687
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.140, 1.12
No. of reflections	5325
No. of parameters	237
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	2.18, -0.81

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2018/1* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *publCIF* (Westrip, 2010).

Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). *GAUSSIAN09*. Gaussian Inc., Wallingford, CT, US.

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Hjouji, M. Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y. & Essassi, E. M. (2016). *IUCRData* 1, x161999.
- Jabri, Z., Jarmoni, K., Hökelek, T., Mague, J. T., Sabir, S., Kandri Rodi, Y. & Misbahi, K. (2020). *Acta Cryst.* E**76**, 677–682.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Ouzidan, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A., Essassi, E. M. & El Ammari, L. (2011b). Acta Cryst. E67, o1095.
- Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, 0890– 0891.
- Sheldrick, G. M. (2015a). Acta Cryst. A, 71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Takada, H., Kaieda, A., Tawada, M., Nagino, T., Sasa, K., Oikawa, T., Oki, A., Sameshima, T., Miyamoto, K., Miyamoto, M., Kokubu, Y., Tozawa, R., Sakurai, H. & Saito, B. (2019). *J. Med. Chem.* 62, 9175– 9187.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2020). E76, 1234-1238 [https://doi.org/10.1107/S2056989020008889]

Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)phenyl]-3*H*-imidazo[4,5-*b*]pyridine

Zainab Jabri, Nada Kheira Sebbar, Tuncer Hökelek, Joel T. Mague, Safia Sabir, Youssef Kandri Rodi and Khalid Misbahi

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/1* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

6-Bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)phenyl]-3H-imidazo[4,5-b]pyridine

Crystal data $C_{20}H_{24}Br_2N_4$ $M_r = 480.25$ Triclinic, $P\overline{1}$ a = 8.1488 (11) Å b = 11.2243 (15) Å c = 12.6378 (17) Å $a = 64.049 (2)^{\circ}$ $\beta = 74.184 (2)^{\circ}$ $\gamma = 86.067 (2)^{\circ}$ $V = 998.3 (2) Å^{3}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.41, T_{\max} = 0.50$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.140$ S = 1.125325 reflections Z = 2 F(000) = 484 $D_x = 1.598 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9203 reflections $\theta = 2.6-29.1^{\circ}$ $\mu = 4.07 \text{ mm}^{-1}$ T = 150 K Block, brown $0.35 \times 0.21 \times 0.20 \text{ mm}$

19397 measured reflections 5325 independent reflections 4168 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 29.2^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -11 \rightarrow 11$ $k = -15 \rightarrow 15$ $l = -17 \rightarrow 17$

237 parameters0 restraintsPrimary atom site location: dualSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0785P)^2 + 0.5344P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 2.18 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.80 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.38201 (6)	-0.28330 (4)	0.92693 (3)	0.05798 (15)
Br2	0.95197 (4)	0.93260 (3)	0.34919 (3)	0.04034 (12)
N1	0.6232 (4)	0.0771 (3)	0.8277 (2)	0.0434 (7)
N2	0.6823 (4)	0.2652 (3)	0.6288 (2)	0.0367 (6)
N3	0.5754 (3)	0.1802 (3)	0.5275 (2)	0.0348 (6)
N4	0.8327 (4)	0.7359 (3)	0.0600 (3)	0.0487 (7)
C1	0.5486 (4)	0.0877 (3)	0.6478 (3)	0.0305 (6)
C2	0.4742 (4)	-0.0402 (3)	0.7100 (3)	0.0375 (7)
H2	0.426342	-0.080259	0.671849	0.045*
C3	0.4747 (4)	-0.1051 (3)	0.8308 (3)	0.0382 (7)
C4	0.5490 (5)	-0.0466 (3)	0.8856 (3)	0.0457 (8)
H4	0.547009	-0.097433	0.969032	0.055*
C5	0.6152 (4)	0.1393 (3)	0.7109 (3)	0.0348 (6)
C6	0.6541 (4)	0.2842 (3)	0.5191 (3)	0.0287 (6)
C7	0.7070 (4)	0.4037 (3)	0.4039 (3)	0.0298 (6)
C8	0.7208 (4)	0.5323 (3)	0.3942 (3)	0.0356 (6)
H8	0.698994	0.544398	0.466483	0.043*
C9	0.7655 (4)	0.6417 (3)	0.2817 (3)	0.0391 (7)
Н9	0.775946	0.727231	0.278106	0.047*
C10	0.7958 (4)	0.6281 (3)	0.1725 (3)	0.0355 (6)
C11	0.7797 (4)	0.4999 (3)	0.1826 (3)	0.0371 (7)
H11	0.799081	0.487401	0.110577	0.044*
C12	0.7362 (4)	0.3916 (3)	0.2950 (3)	0.0357 (7)
H12	0.725654	0.306081	0.298581	0.043*
C13	0.7850 (4)	0.3494 (3)	0.6551 (3)	0.0370 (7)
H13A	0.855360	0.417953	0.577241	0.044*

H13B	0.863039	0.293447	0.702436	0.044*
C14	0.6702 (5)	0.4158 (3)	0.7268 (3)	0.0401 (7)
H14A	0.621256	0.348586	0.811797	0.048*
H14B	0.574420	0.452669	0.690150	0.048*
C15	0.7645 (5)	0.5269 (3)	0.7290 (3)	0.0410 (7)
H15A	0.879431	0.499333	0.739215	0.049*
H15B	0.701343	0.543649	0.799681	0.049*
C16	0.7824 (4)	0.6547 (3)	0.6111 (3)	0.0374 (7)
H16A	0.865311	0.642510	0.543472	0.045*
H16B	0.670741	0.670141	0.591780	0.045*
C17	0.8412 (5)	0.7779 (3)	0.6165 (3)	0.0386 (7)
H17A	0.779730	0.776918	0.696102	0.046*
H17B	0.964794	0.775162	0.610989	0.046*
C18	0.8093 (5)	0.9053 (3)	0.5144 (3)	0.0406 (7)
H18A	0.832848	0.981153	0.529282	0.049*
H18B	0.687247	0.904205	0.516041	0.049*
C19	0.8714 (6)	0.7165 (4)	-0.0514 (3)	0.0552 (10)
H19A	0.972594	0.664450	-0.055484	0.083*
H19B	0.893616	0.802985	-0.123010	0.083*
H19C	0.773928	0.668979	-0.050252	0.083*
C20	0.8846 (7)	0.8629 (4)	0.0483 (4)	0.0683 (13)
H20A	0.793094	0.891955	0.098904	0.103*
H20B	0.907455	0.928588	-0.037358	0.103*
H20C	0.988418	0.854195	0.075477	0.103*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0870 (3)	0.0396 (2)	0.0379 (2)	-0.02465 (19)	-0.01769 (19)	-0.00405 (15)
Br2	0.0480 (2)	0.03483 (19)	0.03595 (19)	-0.00702 (14)	-0.00713 (14)	-0.01459 (14)
N1	0.070 (2)	0.0335 (14)	0.0294 (13)	-0.0024 (13)	-0.0171 (13)	-0.0132 (11)
N2	0.0564 (17)	0.0280 (13)	0.0286 (12)	-0.0006 (11)	-0.0137 (11)	-0.0133 (10)
N3	0.0453 (15)	0.0297 (13)	0.0298 (12)	-0.0058 (11)	-0.0160 (11)	-0.0087 (10)
N4	0.068 (2)	0.0363 (15)	0.0358 (15)	-0.0161 (14)	-0.0163 (14)	-0.0067 (12)
C1	0.0333 (14)	0.0294 (14)	0.0289 (14)	0.0005 (11)	-0.0102 (11)	-0.0118 (11)
C2	0.0408 (17)	0.0364 (16)	0.0351 (16)	-0.0080 (13)	-0.0134 (13)	-0.0122 (13)
C3	0.0507 (19)	0.0274 (14)	0.0321 (15)	-0.0053 (13)	-0.0081 (13)	-0.0096 (12)
C4	0.074 (2)	0.0338 (17)	0.0284 (15)	-0.0023 (16)	-0.0110 (15)	-0.0141 (13)
C5	0.0517 (18)	0.0257 (14)	0.0290 (14)	0.0020 (13)	-0.0107 (13)	-0.0137 (11)
C6	0.0329 (14)	0.0303 (14)	0.0266 (13)	0.0023 (11)	-0.0100 (11)	-0.0144 (11)
C7	0.0328 (14)	0.0272 (14)	0.0293 (14)	0.0023 (11)	-0.0127 (11)	-0.0099 (11)
C8	0.0484 (18)	0.0303 (15)	0.0341 (15)	-0.0027 (13)	-0.0182 (13)	-0.0147 (12)
C9	0.056 (2)	0.0262 (14)	0.0380 (16)	-0.0069 (13)	-0.0218 (15)	-0.0100 (12)
C10	0.0364 (16)	0.0331 (15)	0.0337 (15)	-0.0062 (12)	-0.0127 (12)	-0.0087 (12)
C11	0.0449 (18)	0.0364 (16)	0.0317 (15)	0.0008 (13)	-0.0106 (13)	-0.0161 (13)
C12	0.0485 (18)	0.0290 (15)	0.0337 (16)	0.0006 (13)	-0.0121 (13)	-0.0166 (13)
C13	0.0416 (17)	0.0328 (15)	0.0387 (16)	0.0016 (13)	-0.0165 (13)	-0.0140 (13)
C14	0.0522 (19)	0.0370 (17)	0.0324 (16)	-0.0025 (14)	-0.0114 (14)	-0.0157 (13)

supporting information

C15	0.060 (2)	0.0330 (16)	0.0379 (17)	-0.0038 (14)	-0.0218 (15)	-0.0167 (13)
C16	0.0467 (18)	0.0334 (16)	0.0367 (16)	-0.0051 (13)	-0.0157 (13)	-0.0157 (13)
C17	0.0475 (18)	0.0349 (16)	0.0422 (18)	0.0015 (14)	-0.0184 (14)	-0.0210 (14)
C18	0.0502 (19)	0.0333 (16)	0.0441 (18)	0.0022 (14)	-0.0165 (15)	-0.0199 (14)
C19	0.071 (3)	0.049 (2)	0.0316 (17)	-0.0067 (19)	-0.0104 (17)	-0.0059 (15)
C20	0.112 (4)	0.0352 (19)	0.051 (2)	-0.026 (2)	-0.031 (2)	-0.0034 (17)

Geometric parameters (Å, °)

	1.005 (2)	611 612	1.27((4))
BrI - C3	1.905 (3)		1.376 (4)
Br2—C18	1.993 (4)		0.9500
NI-C5	1.346 (4)	CI2—HI2	0.9500
NI-C4	1.347 (4)		1.512 (5)
N2	1.373 (4)	C13—H13A	0.9900
N2—C6	1.387 (4)	C13—H13B	0.9900
N2—C13	1.497 (4)	C14—C15	1.523 (4)
N3—C6	1.321 (4)	C14—H14A	0.9900
N3—C1	1.381 (4)	C14—H14B	0.9900
N4—C10	1.373 (4)	C15—C16	1.530 (5)
N4—C20	1.449 (5)	C15—H15A	0.9900
N4—C19	1.464 (5)	C15—H15B	0.9900
C1—C2	1.385 (4)	C16—C17	1.528 (4)
C1—C5	1.396 (4)	C16—H16A	0.9900
C2—C3	1.376 (4)	C16—H16B	0.9900
C2—H2	0.9500	C17—C18	1.514 (5)
C3—C4	1.399 (5)	C17—H17A	0.9900
C4—H4	0.9500	C17—H17B	0.9900
C6—C7	1.461 (4)	C18—H18A	0.9900
C7—C12	1.396 (4)	C18—H18B	0.9900
C7—C8	1.404 (4)	C19—H19A	0.9800
C8—C9	1.383 (4)	C19—H19B	0.9800
C8—H8	0.9500	C19—H19C	0.9800
C9—C10	1.408 (4)	C20—H20A	0.9800
С9—Н9	0.9500	C20—H20B	0.9800
C10—C11	1.401 (4)	С20—Н20С	0.9800
Br1…C11 ⁱ	3 734 (4)	C9H20A	2 72
Br2N1 ⁱⁱ	3.754 (4)	C_{120}	2.72
$\mathbf{Br}^2 \cdots \mathbf{N}^2^{\mathbf{i}\mathbf{i}}$	3.597 (3)	C9H20C	2.91
\mathbf{Pr}^{2} $\mathbf{C5}^{ii}$	3.571(3)	C11H10C	2.0)
	3.313(4)		2.75
	3./11 (4) 2.05		2.01
	3.03	C12H14B	2.99
	3.07		2.00
	3.08		2.90
$BI2 \cdots HI3B$	3.09		2.83
	3.00		2.87
Br2···H19B	3.11	C19H11	2.4/
N1····C4 ^m	3.380 (5)	С20…Н9	2.54

N1…H13B	2.80	C20…H20B ^v	2.92
N1…H4 ⁱⁱⁱ	2.67	C20…H20C ^v	2.97
N2…H8	2.89	H2···H18B ^{vii}	2.53
N3…H12	2.57	H8…H13A	2.14
N3…H16B ^{vi}	2.84	H8…H14B	2.47
N3…H18B ^{vi}	2.68	H8…H16A	2.42
C1…C18 ^{vii}	3.467 (5)	H8…H16B	2.50
C2···C18 ^{vii}	3.370 (5)	H9…H20A	2.18
C4···C19viii	3.597 (6)	H9…H20C	2.51
C4···C4 ⁱⁱⁱ	3.372 (5)	H11C19	2.47
C8…C13	3.198 (5)	H11…H19C	2.21
C20···C20 ^v	3.279 (7)	H13A…H16A	2.37
C1···H18A ^{vii}	2.89	H13B…H15A	2.57
C2···H18B ^{vii}	2.88	H14B…H16B	2.28
C4···H4 ⁱⁱⁱ	2.87	H15B…H17A	2.40
C7···H14B ^{vi}	2.93	H16B…H18B	2.37
C7…H13A	2.84	H19B…H20B	2.14
C8…H13A	2.61	H20B···H20C ^v	2.43
C8···H14B ^{vi}	2.85		2.13
	2.00		
C5—N1—C4	112.1 (3)	C14—C13—H13A	109.4
C5-N2-C6	1054(2)	N2—C13—H13B	109.4
$C_{5}-N_{2}-C_{13}$	124.1 (2)	C14—C13—H13B	109.4
C6-N2-C13	1299(3)	H13A—C13—H13B	108.0
C6-N3-C1	105.2(2)	C13-C14-C15	112.5 (3)
C10 - N4 - C20	103.2(2) 119.7(3)	C13—C14—H14A	109.1
C10 - N4 - C19	1201(3)	C15—C14—H14A	109.1
C_{20} N4 C_{19}	1177(3)	C13—C14—H14B	109.1
$N_3 - C_1 - C_2$	1316(3)	C15 $C14$ $H14B$	109.1
$N_3 - C_1 - C_5$	109.6(3)	H14A— $C14$ — $H14B$	107.8
$C_{2} - C_{1} - C_{5}$	109.0(3) 118 7 (3)	C14-C15-C16	111 1 (3)
$C_{2} = C_{1} = C_{2}$	115.7(3)	C14-C15-H15A	109.4
$C_{3} = C_{2} = H_{2}$	122 4	C16-C15-H15A	109.1
C1 - C2 - H2	122.1	C14—C15—H15B	109.4
$C_{2} - C_{3} - C_{4}$	122.1 122.1(3)	C16—C15—H15B	109.1
$C_2 = C_3 = Br_1$	122.1(3) 120.0(2)	H15A - C15 - H15B	108.0
C4 - C3 - Br1	1179(2)	C17 - C16 - C15	114 3 (3)
N1 - C4 - C3	117.9(2) 124 2 (3)	C17 - C16 - H16A	108 7
N1-C4-H4	117.9	C15-C16-H16A	108.7
C3 - C4 - H4	117.9	C17 - C16 - H16B	108.7
N1 C5 N2	117.9 125.4(3)	C15 $C16$ $H16B$	108.7
N1 - C5 - N2	123.4(3) 127.6(3)	H16A C16 H16B	103.7
N1 - C5 - C1	127.0(3) 106.8(3)	C18 C17 C16	107.0 112.2(3)
$N_2 = C_3 = C_1$ $N_3 = C_6 = N_2$	100.8(3)	C18 C17 H17A	112.2 (3)
N3 C6 C7	113.0(3) 121.8(2)	$C_{10} - C_{1} / - 111 / A$	109.2
$N_{2} = C_{0} = C_{7}$	121.0(2) 125.2(2)	$C10 - C1 / - \Pi1 / A$ $C18 - C17 - H17P$	109.2
112 - 00 - 07	123.3(3)	C_{10} $-C_{1}$ $-D_{11}$ D_{11} D_{11} C_{16} C_{17} $-D_{17}$ D_{17}	109.2
$C_{12} - C_{7} - C_{6}$	11/.0(3) 119.2(2)	$U_{10} - U_{1} - U_{17} - U_$	109.2
$U_{12} - U_{1} - U_{0}$	110.3 (3)	$\Pi I / A - U / - \Pi I / B$	107.9

C8—C7—C6	124.6 (3)	C17—C18—Br2	113.4 (2)
C9—C8—C7	121.5 (3)	C17—C18—H18A	108.9
С9—С8—Н8	119.3	Br2—C18—H18A	108.9
С7—С8—Н8	119.3	C17—C18—H18B	108.9
C8—C9—C10	121.0 (3)	Br2-C18-H18B	108.9
С8—С9—Н9	119.5	H18A—C18—H18B	107.7
С10—С9—Н9	119.5	N4—C19—H19A	109.5
N4—C10—C11	120.6 (3)	N4—C19—H19B	109.5
N4—C10—C9	122.0 (3)	H19A—C19—H19B	109.5
C11—C10—C9	117.3 (3)	N4—C19—H19C	109.5
C12—C11—C10	121.2 (3)	H19A—C19—H19C	109.5
C12—C11—H11	119.4	H19B—C19—H19C	109.5
C10—C11—H11	119.4	N4—C20—H20A	109.5
C11—C12—C7	122.0 (3)	N4—C20—H20B	109.5
C11—C12—H12	119.0	H20A—C20—H20B	109.5
C7—C12—H12	119.0	N4—C20—H20C	109.5
N2—C13—C14	111.0 (3)	H20A—C20—H20C	109.5
N2—C13—H13A	109.4	H20B-C20-H20C	109.5
C6—N3—C1—C2	-179.0 (3)	N3—C6—C7—C12	-24.9 (4)
C6—N3—C1—C5	-0.6 (3)	N2-C6-C7-C12	153.7 (3)
N3—C1—C2—C3	178.0 (3)	N3—C6—C7—C8	151.0 (3)
C5—C1—C2—C3	-0.3 (4)	N2—C6—C7—C8	-30.4 (5)
C1—C2—C3—C4	-1.5 (5)	C12—C7—C8—C9	-1.6 (5)
C1-C2-C3-Br1	-178.4 (2)	C6—C7—C8—C9	-177.5 (3)
C5—N1—C4—C3	1.0 (5)	C7—C8—C9—C10	1.2 (5)
C2—C3—C4—N1	1.2 (6)	C20-N4-C10-C11	-166.9 (4)
Br1—C3—C4—N1	178.2 (3)	C19—N4—C10—C11	-5.7 (5)
C4—N1—C5—N2	-178.8 (3)	C20—N4—C10—C9	15.9 (6)
C4—N1—C5—C1	-3.1 (5)	C19—N4—C10—C9	177.1 (3)
C6—N2—C5—N1	176.1 (3)	C8—C9—C10—N4	177.0 (3)
C13—N2—C5—N1	4.1 (5)	C8—C9—C10—C11	-0.3 (5)
C6—N2—C5—C1	-0.3 (3)	N4-C10-C11-C12	-177.4 (3)
C13—N2—C5—C1	-172.3 (3)	C9-C10-C11-C12	-0.1 (5)
N3—C1—C5—N1	-175.8 (3)	C10-C11-C12-C7	-0.3 (5)
C2-C1-C5-N1	2.9 (5)	C8—C7—C12—C11	1.2 (5)
N3—C1—C5—N2	0.5 (4)	C6—C7—C12—C11	177.4 (3)
C2-C1-C5-N2	179.2 (3)	C5—N2—C13—C14	-80.8 (4)
C1—N3—C6—N2	0.4 (3)	C6—N2—C13—C14	109.3 (4)
C1—N3—C6—C7	179.1 (3)	N2-C13-C14-C15	-166.1 (3)
C5—N2—C6—N3	0.0 (3)	C13—C14—C15—C16	80.7 (4)
C13—N2—C6—N3	171.4 (3)	C14—C15—C16—C17	167.7 (3)
C5—N2—C6—C7	-178.8 (3)	C15—C16—C17—C18	-163.7 (3)
C13—N2—C6—C7	-7.4 (5)	C16—C17—C18—Br2	-67.2 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+2; (iv) -*x*+2, -*y*+2, -*z*+1; (v) -*x*+2, -*y*+2, -*z*; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*, *y*-1, *z*; (viii) *x*, *y*-1, *z*+1.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$\overline{\text{C14}-\text{H14}B\cdots Cg3^{\text{vi}}}$	0.99	2.60	3.502 (4)	151
C15—H15 A ···Cg3 ⁱⁱ	0.99	2.94	3.904 (4)	165

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*+1.