CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 25 May 2020
Accepted 23 July 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; indium phosphate; alluaudite structure type; disorder.

CCDC reference: 2018562

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{array}{r}\text { ACCESS }\end{array}$

Synthesis, crystal structure and charge-distribution validation of a new alluaudite-type phosphate, $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$

Abdessalem Badri, ${ }^{\text {a* }}$ Inmaculada Alvarez-Serrano, ${ }^{\text {b }}$ María Luisa López ${ }^{\text {b }}$ and Mongi Ben Amara ${ }^{\text {a }}$

${ }^{\text {a Laboratory of Interfacial and Advanced Materials, Faculty of Sciences (FSM), University of Monastir, Monastir 5000, }}$ Tunisia, and ${ }^{\mathbf{b}}$ Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. *Correspondence e-mail: badri_abdessalem@yahoo.fr
$\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4) 3}\right.$, sodium manganese indium tris(phosphate) (2.22/0.87/ 1.68), was obtained in the form of single crystals by a flux method and was structurally characterized by single-crystal X-ray diffraction. The compound belongs to the alluaudite structure type (space group $C 2 / c$) with general formula $X(2) X(1) M(1) M(2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$. The $X(2)$ and $X(1)$ sites are partially occupied by sodium [occupancy 0.7676 (17) and 1/2] while the $M(1)$ and $M(2)$ sites are fully occupied within a mixed distribution of sodium/manganese(II) and manganese (II)/indium, respectively. The three-dimensional anionic framework is built up on the basis of $M(2)_{2} \mathrm{O}_{10}$ dimers that share opposite edges with $M(1) \mathrm{O}_{6}$ octahedra, thus forming infinite chains extending parallel to [101]. The linkage between these chains is ensured by PO_{4} tetrahedra through common vertices. The three-dimensional network thus constructed delimits two types of hexagonal channels, resulting from the catenation of $M(2)_{2} \mathrm{O}_{10}$ dimers, $M(1) \mathrm{O}_{6}$ octahedra and PO_{4} tetrahedra through edge- and corner-sharing. The channels are occupied by Na^{+}cations with coordination numbers of seven and eight.

1. Chemical context

The general structural formula of alluaudite-type phosphates is $[A(2) A(2)]\left[A(1) A(1)^{\prime} A(1){ }^{\prime}{ }_{2}\right] M(1) M(2)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Hatert et al., 2000); in the majority of natural alluaudites, the large crystallographic A sites are occupied by $\mathrm{Na}^{+}, \mathrm{Ca}^{2+}$ or Mn^{2+}, and the distorted-octahedrally surrounded M sites are occupied by $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Al}^{3+}$ or Mg^{2+} (Moore \& Ito, 1979). Alluaudite-type phosphates are frequently used for practical applications such as corrosion inhibition, passivation of metal surfaces, or catalysis (Korzenski et al., 1998; Kacimi et al., 2005). Furthermore, as a result of the presence of channels, alluaudite-type compounds exhibit electronic and/or ionic conductivity properties (Warner et al., 1994; Durio et al., 2002). The possibility of inserting variable amounts of lithium into the channels of the alluaudite structure also makes the $\left(\mathrm{Na}_{1-x} \mathrm{Li}_{x}\right) \mathrm{MnFe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{3}$ and $\left(\mathrm{Na}_{1-x} \mathrm{Li}_{x}\right)_{1.5} \mathrm{Mn}_{1.5} \mathrm{Fe}^{3+}{ }_{1.5}\left(\mathrm{PO}_{4}\right)_{3}$ compounds of value as potential battery materials (Hatert et al., 2004; Trad et al., 2018). A number of indium-bearing alluaudite-like compounds have also been synthesized, i.e. $\mathrm{NaCdIn} 2\left(\mathrm{PO}_{4}\right)_{3}$ (Antenucci et al., 1993), $\mathrm{Na}_{3} \mathrm{In}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Lii \& Ye, 1997), and $\mathrm{NaMn}\left(\mathrm{Fe}_{1-x} \mathrm{In}_{x}\right)_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Hatert et al., 2003). In this paper, we report the structural study of a new alluauditetype phosphate, $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$, which was obtained

Figure 1
The principal building units of the alluaudite-type phosphate $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$ with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $x, y, z-1$; (ii) $x+1, y, z+1$; (iii) $x+1, y, z+\frac{3}{2}$; (iv) $x, y, z-\frac{3}{2}$; (v) $x, y, z-\frac{1}{2}$; (vi) $x, y, z+\frac{3}{2}$; (vii) $x, y, z+2$; (viii) $x+\frac{1}{2}, y-\frac{1}{2}, z+\frac{3}{2}$; (ix) $x-\frac{1}{2}, y-\frac{1}{2}, z ;(x) x+\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2}$; (xi) $x+\frac{1}{2}$, $y+\frac{1}{2}, z+1$; (xii) $x-\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2}$; (xiii) $x+\frac{1}{2}, y+\frac{1}{2}, z+2$; (xiv) $x+1, y, z$.]
during our investigation of the $\mathrm{Na}_{3} \mathrm{PO}_{4}-\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}-\mathrm{InPO}_{4}$ quasi system.

2. Structural commentary

The principal building units (Fig. 1) of the three-dimensional framework structure of $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$ are mixedoccupancy (Mn, Na) $[=M(1)$; site symmetry 2$]$ and (Mn1, In) $[=M(2)]$ sites with distorted octahedral environments and two phosphate tetrahedra (P1 and P2); the two sites associated with Na^{+}cations (Na ; Na 2 with site symmetry 2) are partially occupied and are situated in the resulting voids. By edgesharing, the $(\mathrm{Mn}, \mathrm{In}) \mathrm{O}_{6}$ octahedra form $(\mathrm{Mn}, \mathrm{In})_{2} \mathrm{O}_{10}$ dimers, which are linked by highly distorted $(\mathrm{Mn}, \mathrm{Na}) \mathrm{O}_{6}$ octahedra into infinite zigzag chains along [101] (Fig. 2). The connection of these chains through vertices belonging to $\mathrm{P}_{1} \mathrm{O}_{4}$ and $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedra gives layers perpendicular to [010] (Fig. 3), which, in turn, are linked into the three-dimensional framework by sharing corners with phosphate tetrahedra. This framework accommodates two types of channels extending parallel to [001] in which the Na^{+}cations are located (Fig. 4).

Figure 2
Infinite zigzag chain extending parallel to [101] , built of edge-sharing $M(2)_{2} \mathrm{O}_{10}$ and $M(1) \mathrm{O}_{6}$ units.

Figure 3
The connection of individual chains via PO_{4} tetrahedra to give sheets perpendicular to [010].

The mean $<M 1-\mathrm{O}>$ distance of $2.329 \AA$ is between those of 2.23 and $2.42 \AA$ predicted by the sums of the ionic radii (Shannon, 1976) for Mn^{2+} and Na^{+}cations in an octahedral environment. The mean $\langle M 2-\mathrm{O}\rangle$ distance of $2.150 \AA$ is between the mean distance of $2.142 \AA$ observed for In^{3+} in an octahedral environment in $\mathrm{NaCuIn}\left(\mathrm{PO}_{4}\right)_{2}$ (Benhsina et al., 2020) and $2.238 \AA$ for Mn^{2+} in the same coordination in $\mathrm{K}_{0.53} \mathrm{Mn}_{2.37} \mathrm{Fe}_{1.24}\left(\mathrm{PO}_{4}\right)_{3}$ (Hidouri \& Ben Amara, 2011). The PO_{4} tetrahedra show a slight distortion, as indicated by the range of $\mathrm{P}-\mathrm{O}$ bond lengths $\left[1.538\right.$ (2)-1.550 (2) \AA for $\mathrm{P}_{1} \mathrm{O}_{4}$ and 1.520 (3) -1.566 (2) \AA for $\mathrm{P}_{2} \mathrm{O}_{4}$], with mean bond lengths of $\langle\mathrm{P} 1-\mathrm{O}\rangle=1.544$ (2) \AA and $\langle\mathrm{P} 2-\mathrm{O}\rangle=1.546$ (2) \AA, consistent with $1.537 \AA$ as calculated by Baur (1974) for the orthophosphate group. The coordination spheres of the two crystallographically distinct Na sites (Fig. 1) in the channels were defined under the assumption of a maximum $\mathrm{Na}-\mathrm{O}$ distance $L_{\max }=3.13 \AA$, suggested by Donnay \& Allmann (1970). The environment around Na 1 consists of seven O atoms with distances varying from 2.35 (3) to 2.99 (3) \AA, and Na 2 is bound to eight O atoms with distances in the range 2.510 (3)-2.928 (6) A.

Figure 4
Projection of the $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$ structure along the [001] direction showing channels occupied by the Na^{+}cations.

Table 1
CHARDI and BVS analysis of cations in $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$.
$M 1=\mathrm{Mn} / \mathrm{Na}, M 2=\mathrm{Mn} / \mathrm{In}, q=$ formal oxidation number, $\operatorname{sof}(i)=$ siteoccupation factor, $Q(i)=$ calculated charges, $\mathrm{CN}=$ coordination number, $\mathrm{ECoN}=$ number of effective coordination, $d_{\mathrm{ar}}=$ arithmetic average distance to oxygen atoms and $d_{\text {med }}=$ weighted average distance to oxygen atoms.

Cation	$q \cdot$ sof(i)	$Q(i)$	$V(i) \cdot \operatorname{sof}(i)$	$\mathrm{CN}(i)$	$\mathrm{ECoN}(i)$	$d_{\text {average }}$	$d_{\text {med }}$
Na1	0.50	0.50	0.542	7	5.56	2.550	2.428
Na 2	0.77	0.75	0.716	8	6.70	2.738	2.653
M1	1.54	1.56	1.421	6	6.00	2.329	2.330
M2	2.84	2.84	2.696	6	5.87	2.150	2.141
P 1	5.00	4.92	4.873	4	4.00	1.544	1.544
P 2	5.00	5.05	4.844	4	3.98	1.546	1.545

The refined structure model is confirmed by (i) the bondvalence method (Brown \& Altermatt, 1985; Brown, 2002) and (ii) the charge-distribution (Chardi) method (Nespolo, 2015, 2016). The Chardi method is a development of Pauling's concept of bond strength (Pauling, 1929). Instead of the empirical parameters used in the bond-valence approach, it exploits the experimental bond lengths deduced from the structural study to compute a non-integer coordination number (effective coordination number $=\mathrm{ECoN}$) around a PC atom (atom placed at the center of a polyhedron, $q>0$), which is coordinated by V atoms (atoms located at the vertices; $q<0$); q is the formal oxidation number. ECoN takes into account not only the number of V atoms around a given PC atom, but also their weight in terms of relative distances. Calculated charges $Q(i)$ and valences $V(i)$ are in good agreement with the formal oxidation number (q) multiplied by occupancy rates. The dispersion factor MAPD, $M A P D=\frac{100}{N} \sum_{i=1}^{N}\left|\frac{q_{i}-Q_{i}}{q_{i}}\right|$, which measures the mean absolute percentage deviation, is 1% for the calculated cationic charges. The variation of the ECoN value with respect to the traditional coordination number indicates the degree of distortion. The results of the two validation models are compiled in Table 1.

3. Synthesis and crystallization

Commercially available $\mathrm{NaNO}_{3}, \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{In}_{2} \mathrm{O}_{3}$, MoO_{3} and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ were mixed in stoichiometric ratios of 2:1:1:1:2 and dissolved in aqueous nitric acid. The resulting solution was then evaporated by heating at 353 K . The obtained dry residue was ground in an agate mortar, and then heated increasingly in an open platinum crucible up to 873 K . The sample was then reground and mixed with sodium dimolybdate $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ in the molar ratio $\mathrm{P}: \mathrm{Mo}=2: 1$. The mixture was heated for 1 h at 1243 K to give a melt that was subsequently cooled down to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Brown hexagonally shaped crystals were obtained by washing the final product with hot water in order to dissolve the flux.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The bond lengths involving M1-O

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$
575.82
Monoclinic, $C 2 / c$
293
$12.412(2), 12.855(2), 6.599(1)$
$114.727(2)$
$956.4(3)$
4
$\mathrm{Mo} K \alpha$
5.81
$0.29 \times 0.17 \times 0.11$
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Nonius Kappa CCD
Part of the refinement model (ΔF)
(Parkin et al., 1995)
0.178, 0.222

1183, 1183, 1172
0.034
$\begin{array}{ll}R_{\text {int }} \\ (\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right) & 0.680\end{array}$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S \quad 0.021,0.054,1.31$
No. of reflections 1183
No. of parameters 102
No. of restraints
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$

3
$0.73,-0.83$

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL SCALEPACK and DENZO (Otwinovski \& Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL2018/ 3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and DIAMOND (Brandenburg, 1999).
and $M 2-\mathrm{O}$ are those between the mean $\mathrm{Na}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{O}$ and the mean $\mathrm{In}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{O}$ bond lengths, respectively. We used EADP, EXYZ and SUMP constraints within SHELXL2018/3 (Sheldrick, 2015) for the mixed-occupied M1 [refined ratio $\mathrm{Mn}: \mathrm{Na}=0.5438$ (14):0.4562 (14)] and $M 2$ [refined ratio In: $\mathrm{Mn}=0.8443$ (5):0.1557 (5)] sites. Na 2 shows an occupancy of 0.7676 (17), and free refinement of the occupancy of Na 1 resulted in a value very close to 0.5 . For the final refinement, this value was fixed at 0.5 , and all other occupancies were refined to ensure electrical neutrality of the compound. The remaining maximum and minimum electron densities are located $0.74 \AA$ from P2 and $1.07 \AA$ from O24, respectively.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Antenucci, D., Miehe, G., Tarte, P., Schmahl, W. \& Fransolet, A. (1993). Eur. J. Mineral. 5, 207-214.

Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Benhsina, E., Khmiyas, J., Ouaatta, S., Assani, A., Saadi, M. \& El Ammari, L. (2020). Acta Cryst. E76, 366-369.
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Donnay, G. \& Allmann, R. (1970). Am. Mineral. 55, 1003-1015.
Durio, C., Daidouh, A., Chouaibi, N., Pico, C. \& Veiga, M. L. (2002). J. Solid State Chem. 168, 208-216.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Hatert, F. (2004). Mineral. Petrol. 81, 205-217.
Hatert, F., Hermann, R. P., Long, G. J., Fransolet, A. M. \& Grandjean, F. (2003). Am. Mineral. 88, 211-222.

Hatert, F., Keller, F., Lissner, F., Antenucci, D. \& Fransolet, A. M. (2000). Eur. J. Mineral. 12, 847-857.

Hidouri, M. \& Ben Amara, M. (2011). Acta Cryst. E67, i1.
Kacimi, M., Ziyad, M. \& Hatert, F. (2005). Mater. Res. Bull. 40, 682693.

Korzenski, M. B., Schimek, G. L., Kolis, J. W. \& Long, G. J. (1998). J. Solid State Chem. 139, 142-160.
Lii, K. H. \& Ye, J. (1997). J. Solid State Chem. 131, 131-137.
Moore, P. B. \& Ito, J. (1979). Miner. Mag. 43, 227-235.
Nespolo, M. (2015). CHARDI-IT. Laboratoire CRM 2, Université de Nancy I, France.

Nespolo, M. (2016). Acta Cryst. B72, 51-66.
Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
Otwinovski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Parkin, S., Moezzi, B. \& Hope, H. (1995). J. Appl. Cryst. 28, 53-56.
Pauling, L. J. (1929). J. Am. Chem. Soc. 51, 1010-1026.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Trad, K., Castets, A., Wattiaux, A., Delmas, C., Ben Amara, M. \& Carlier, D. (2018). J. Solid State Chem. 265, 12-17.
Warner, T. E., Milius, W. \& Maier, J. (1994). Solid State Ionics, 74, 119-123.

supporting information

Acta Cryst. (2020). E76, 1369-1372 [https://doi.org/10.1107/S2056989020010191]

Synthesis, crystal structure and charge-distribution validation of a new alluaudite-type phosphate, $\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} / \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$

Abdessalem Badri, Inmaculada Alvarez-Serrano, María Luisa López and Mongi Ben Amara

Computing details

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinovski \& Minor, 1997); data reduction: HKL DENZO (Otwinovski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication:
WinGX (Farrugia, 2012).
Sodium manganese indium tris(phosphate) (2.22/0.87/1.68)

Crystal data

$\mathrm{Na}_{2.22} \mathrm{Mn}_{0.87} \mathrm{In}_{1.68}\left(\mathrm{PO}_{4}\right)_{3}$
$M_{r}=575.82$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=12.412$ (2) \AA
$b=12.855$ (2) \AA
$c=6.599(1) \AA$
$\beta=114.727(2)^{\circ}$
$V=956.4(3) \AA^{3}$
$Z=4$

$$
F(000)=1100
$$

$$
D_{\mathrm{x}}=4.115 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=3.2-28.9^{\circ}$
$\mu=5.81 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.29 \times 0.17 \times 0.11 \mathrm{~mm}$

Data collection

Nonius Kappa CCD diffractometer
Graphite monochromator
non-profiled $\omega / 2 \tau$ scans
Absorption correction: part of the refinement model (ΔF)
(Parkin et al., 1995)
$T_{\text {min }}=0.178, T_{\text {max }}=0.222$
1183 measured reflections
1183 independent reflections
1172 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=28.9^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-16 \rightarrow 14$
$k=0 \rightarrow 16$
$l=0 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.054$
$S=1.31$
1183 reflections
102 parameters
3 restraints

$$
\begin{aligned}
& \text { Primary atom site location: structure-invariant } \\
& \quad \text { direct methods } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0135 P)^{2}+7.1094 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.023 \\
& \Delta \rho_{\max }=0.73 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.83 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Na 1	$0.492(3)$	$0.003(3)$	$0.013(5)$	$0.017(2)$	0.5
Na 2	0	$-0.0079(4)$	0.75	$0.0586(13)$	$0.7676(17)$
Mn	0.5	$0.22924(8)$	0.25	$0.0128(2)$	$0.5438(14)$
Na	0.5	$0.22924(8)$	0.25	$0.0128(2)$	$0.4562(14)$
In	$0.22327(2)$	$0.15486(2)$	$0.64458(4)$	$0.00781(9)$	$0.8443(5)$
Mn 1	$0.22327(2)$	$0.15486(2)$	$0.64458(4)$	$0.00781(9)$	$0.1557(5)$
P 1	0.5	$0.21702(9)$	0.75	$0.0075(2)$	
O 11	$0.5471(2)$	$0.2867(2)$	$0.9611(4)$	$0.0138(5)$	
O 12	$0.4072(2)$	$0.14288(19)$	$0.7683(4)$	$0.0140(5)$	
P 2	$0.23767(7)$	$0.10662(6)$	$1.13105(13)$	$0.00841(17)$	
O 21	$0.1736(3)$	$0.0029(2)$	$1.1238(4)$	$0.0172(5)$	
O 22	$0.2293(2)$	$0.17542(19)$	$1.3198(4)$	$0.0112(5)$	
O 23	$0.1663(2)$	$0.16388(19)$	$0.9065(4)$	$0.0139(5)$	
O 24	$0.3668(2)$	$0.0921(2)$	$1.1731(5)$	$0.0206(6)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na 1	$0.023(7)$	$0.013(3)$	$0.012(5)$	$0.004(4)$	$0.005(3)$	$-0.002(3)$
Na 2	$0.027(2)$	$0.073(3)$	$0.055(3)$	0	$-0.0025(19)$	0
Mn	$0.0146(5)$	$0.0121(5)$	$0.0141(5)$	0	$0.0083(4)$	0
Na	$0.0146(5)$	$0.0121(5)$	$0.0141(5)$	0	$0.0083(4)$	0
In	$0.00802(13)$	$0.00782(13)$	$0.00813(14)$	$0.00050(8)$	$0.00390(10)$	$0.00093(8)$
Mn 1	$0.00802(13)$	$0.00782(13)$	$0.00813(14)$	$0.00050(8)$	$0.00390(10)$	$0.00093(8)$
P 1	$0.0062(5)$	$0.0092(5)$	$0.0055(5)$	0	$0.0008(4)$	0
O 11	$0.0097(11)$	$0.0174(12)$	$0.0121(11)$	$0.0005(9)$	$0.0024(9)$	$-0.0062(9)$
O 12	$0.0083(11)$	$0.0139(12)$	$0.0184(13)$	$-0.0007(9)$	$0.0042(10)$	$0.0045(9)$
P 2	$0.0131(4)$	$0.0069(4)$	$0.0063(4)$	$0.0012(3)$	$0.0051(3)$	$0.0005(3)$
O 21	$0.0287(14)$	$0.0080(11)$	$0.0163(13)$	$0.0006(10)$	$0.0108(11)$	$0.0008(9)$
O22	$0.0154(12)$	$0.0105(11)$	$0.0081(11)$	$-0.0003(9)$	$0.0053(9)$	$-0.0005(9)$
O23	$0.0232(13)$	$0.0120(12)$	$0.0079(11)$	$0.0027(9)$	$0.0079(10)$	$0.0021(9)$
O24	$0.0201(14)$	$0.0249(14)$	$0.0206(14)$	$0.0084(11)$	$0.0124(11)$	$0.0071(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Na} 1-\mathrm{O} 12^{\mathrm{i}}$	$2.35(3)$	$\mathrm{Mn}-\mathrm{O} 23^{\mathrm{xi}}$	$2.330(3)$
$\mathrm{Na} 1-\mathrm{O} 12^{\mathrm{ii}}$	$2.38(3)$	$\mathrm{Mn}-\mathrm{O} 11^{\mathrm{iii}}$	$2.335(3)$
$\mathrm{Na} 1-\mathrm{O} 24^{\mathrm{iii}}$	$2.38(3)$	$\mathrm{Mn}-\mathrm{O} 11^{\mathrm{i}}$	$2.335(3)$
$\mathrm{Na} 1-\mathrm{O} 24^{\mathrm{iv}}$	$2.45(3)$	$\mathrm{In}-\mathrm{O} 12$	$2.084(2)$

$\mathrm{Na} 1-\mathrm{O} 24{ }^{\text {i }}$	2.489 (18)
Na1-O24 ${ }^{\text {ii }}$	2.811 (17)
Na1-O12 ${ }^{\text {v }}$	2.99 (3)
Na2-O21	2.510 (3)
$\mathrm{Na} 2-\mathrm{O} 21{ }^{\text {vi }}$	2.510 (3)
$\mathrm{Na}-\mathrm{O} 21^{\text {v }}$	2.616 (3)
$\mathrm{Na} 2-\mathrm{O} 21{ }^{\text {vii }}$	2.616 (3)
$\mathrm{Na} 2-\mathrm{O} 23{ }^{\text {vi }}$	2.901 (5)
$\mathrm{Na} 2-\mathrm{O} 23$	2.901 (5)
$\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	2.928 (6)
Na2-O11 ${ }^{\text {ix }}$	2.928 (6)
$\mathrm{Mn}-\mathrm{O} 24^{\text {i }}$	2.323 (3)
$\mathrm{Mn}-\mathrm{O} 24{ }^{\text {iii }}$	2.323 (3)
$\mathrm{Mn}-\mathrm{O} 23{ }^{\text {x }}$	2.330 (3)
$\mathrm{O} 12{ }^{\text {i }}-\mathrm{Na}-\mathrm{O} 12^{\text {ii }}$	172.0 (8)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{O} 24{ }^{\text {iii }}$	100.6 (13)
$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {iii }}$	80.8 (10)
$\mathrm{Na} 1^{\text {xiv }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {iv }}$	73 (10)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{O} 24^{\text {iv }}$	79.9 (10)
$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 24{ }^{\text {iv }}$	97.6 (12)
$\mathrm{O} 244^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {iv }}$	172.4 (9)
$\mathrm{O} 12{ }^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 24^{\mathrm{i}}$	76.2 (8)
$\mathrm{O} 12^{\mathrm{ii}}-\mathrm{Na} 1-\mathrm{O} 24^{\text {i }}$	111.7 (10)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {i }}$	76.9 (7)
$\mathrm{O} 24^{\mathrm{iv}}-\mathrm{Na} 1-\mathrm{O} 24^{\text {i }}$	110.6 (11)
$\mathrm{O} 12{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{O} 24^{\text {ii }}$	102.3 (8)
$\mathrm{O} 12{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {ii }}$	69.7 (6)
$\mathrm{O} 24{ }^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 24^{\text {ii }}$	102.7 (9)
$\mathrm{O} 24^{\mathrm{iv}}-\mathrm{Na} 1-\mathrm{O} 24^{\text {ii }}$	69.8 (6)
$\mathrm{O} 24{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{O} 24^{\text {ii }}$	178.4 (15)
$\mathrm{O} 12^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 12^{\text {v }}$	135.0 (10)
$\mathrm{O} 12^{\mathrm{ii}}-\mathrm{Na} 1-\mathrm{O} 12^{\text {v }}$	51.9 (6)
$\mathrm{O} 24^{\text {iii }}-\mathrm{Na}-\mathrm{O} 12^{\mathrm{v}}$	96.7 (9)
$\mathrm{O} 24^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 12^{\text {v }}$	88.1 (10)
$\mathrm{O} 24{ }^{\text {i }}$ - $\mathrm{Na}-\mathrm{O}^{\text {2 }}$	67.8 (5)
$\mathrm{O} 24{ }^{\text {ii }}-\mathrm{Na}-\mathrm{O} 12^{\mathrm{v}}$	113.8 (11)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 21^{\text {vi }}$	173.7 (3)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 21^{\text {v }}$	80.14 (8)
$\mathrm{O} 21^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 21^{\mathrm{v}}$	99.71 (8)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 21{ }^{\text {vii }}$	99.71 (8)
$\mathrm{O} 21{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 21^{\text {vii }}$	80.14 (8)
$\mathrm{O} 21^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 21^{\text {vii }}$	177.2 (3)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 23{ }^{\text {vi }}$	119.88 (19)
$\mathrm{O} 21{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 23{ }^{\text {vi }}$	54.39 (10)
$\mathrm{O} 21^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 23^{\text {vi }}$	115.22 (16)
$\mathrm{O} 21{ }^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 23{ }^{\text {vi }}$	62.40 (10)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 23$	54.39 (10)

$\mathrm{O} 21{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 23$	119.88 (19)	$\mathrm{O} 22^{\text {i }}-\mathrm{In}-\mathrm{O} 22^{\text {xiii }}$	82.57 (9)
$\mathrm{O} 21^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 23$	62.40 (10)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 12{ }^{\text {iii }}$	103.4 (2)
$\mathrm{O} 21{ }^{\text {vii }} \mathrm{-Na} 2-\mathrm{O} 23$	115.22 (16)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 11^{\text {iii }}$	114.56 (13)
$\mathrm{O} 23{ }^{\text {vi}}-\mathrm{Na} 2-\mathrm{O} 23$	80.89 (17)	$\mathrm{O} 12{ }^{\text {iii- }} \mathrm{P} 1-\mathrm{O} 11^{\text {iii }}$	107.48 (14)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	115.83 (18)	$\mathrm{O} 12-\mathrm{P} 1-\mathrm{O} 11$	107.48 (14)
$\mathrm{O} 21{ }^{\text {vi}}-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	70.36 (11)	$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{P} 1-\mathrm{O} 11$	114.56 (13)
$\mathrm{O} 21^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	84.12 (12)	$\mathrm{O} 11^{\text {iii- }} \mathrm{P} 1-\mathrm{O} 11$	109.4 (2)
$\mathrm{O} 21{ }^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	98.43 (14)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 21$	112.98 (16)
$\mathrm{O} 23{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	123.11 (7)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 23$	111.62 (15)
$\mathrm{O} 23-\mathrm{Na} 2-\mathrm{O} 11^{\text {viii }}$	145.71 (9)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 23$	107.34 (15)
$\mathrm{O} 21-\mathrm{Na} 2-\mathrm{O} 11^{\text {ix }}$	70.36 (11)	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 22$	109.88 (15)
$\mathrm{O} 21^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 11^{\text {ix }}$	115.83 (18)	$\mathrm{O} 21-\mathrm{P} 2-\mathrm{O} 22$	107.94 (14)
$\mathrm{O} 21{ }^{\mathrm{v}}-\mathrm{Na} 2-\mathrm{O} 11^{\text {ix }}$	98.43 (14)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 22$	106.81 (14)

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1, y,-z+3 / 2$; (iv) $x,-y, z-3 / 2$; (v) $x,-y, z-1 / 2$; (vi) $-x, y,-z+3 / 2$; (vii) $-x$, $-y,-z+2$; (viii) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (ix) $x-1 / 2, y-1 / 2, z$; (x) $x+1 / 2,-y+1 / 2, z-1 / 2$; (xi) $-x+1 / 2,-y+1 / 2,-z+1$; (xii) $x-1 / 2,-y+1 / 2, z-1 / 2$; (xiii) $-x+1 / 2,-y+1 / 2,-z+2$; (xiv) $-x+1,-y,-z$.

