



Received 10 June 2020 Accepted 30 June 2020

Edited by S. Parkin, University of Kentucky, USA

**Keywords:** heterotrimetallic; metallacrown; selfassembled coordination complex; crystal structure.

CCDC references: 2013185; 2013184

**Supporting information**: this article has supporting information at journals.iucr.org/e





#### Elizabeth C. Manickas,<sup>a</sup> Matthias Zeller<sup>b</sup> and Curtis M. Zaleski<sup>a</sup>\*

<sup>a</sup>Department of Chemistry and Biochemistry, Shippensburg University, Shippensburg, PA 17257, USA, and <sup>b</sup>Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA. \*Correspondence e-mail: cmzaleski@ship.edu

The syntheses and crystal structures for the compounds tetra- $\mu$ -aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis( $\mu_2$ -3-hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) N,N-dimethylacetamide decasolvate,  $[DyMn_4Na(C_7H_5O_3)_4(C_7H_4NO_2)_4(H_2O)_4] \cdot 10C_4H_9NO \text{ or } [Dy^{III}Na(4-OHben)_4-$ {12-MC<sub>Mn(III)N(sbi)</sub>-4}(H<sub>2</sub>O)<sub>4</sub>]·10DMA, 1, and tetra-µ-aqua-tetrakis{2-[azanidy]ene(oxido)methyl]phenolato}tetrakis( $\mu_2$ -3-hydroxybenzoato)dysprosium(III)-*N*,*N*-dimethylformamide tetramanganese(III)sodium(I) tetrasolvate.  $[DyMn_4Na(C_7H_5O_3)_4(C_7H_4NO_2)_4(H_2O)_4] \cdot 4C_3H_7NO \text{ or } [Dy^{III}Na(3-OHben)_4-$ {12-MC<sub>Mn(III)N(shi)</sub>-4}(H<sub>2</sub>O)<sub>4</sub>]·4DMF, 2, and where MC is metallacrown, shi<sup>3-</sup> is salicylhydroximate, 3-OHben is 3-hydroxybenzoate, DMA is N,N-dimethylacetamide, 4-OHben is 4-hydroxybenzoate, and DMF is N,N-dimethylformamide, are reported. For both 1 and 2, the macrocyclic metallacrown consists of an [Mn<sup>III</sup>-N-O] ring repeat unit, and the domed metallacrown captures two ions in the central cavity: a Dy<sup>III</sup> ion on the convex side of the metallacrown and an Na<sup>+</sup> ion the concave side. The Mn<sup>III</sup> ions are six-coordinate with an elongated tetragonally distorted octahedral geometry. Both the Dy<sup>III</sup> and Na<sup>+</sup> ions are eight-coordinate. The Dy<sup>III</sup> ions possess a square-antiprismatic geometry, while the Na<sup>+</sup> ions have a distorted biaugmented trigonal-prismatic geometry. Four 3-hydroxybenzoate or 4-hydroxybenzoate ligands bridge each Mn<sup>III</sup> ion to the central Dy<sup>III</sup> ion. For **1**, whole-molecule disorder is observed for the main molecule, excluding only the Dy<sup>III</sup> and Na<sup>+</sup> ions, and the occupancy ratio refined to 0.8018 (14):0.1982 (14). Three DMA molecules were refined as disordered with two in general positions by an approximate 180° rotation and the third disordered twice by general disorder as well as by an exact 180° rotation about a twofold axis that bisects it. The occupancy ratios refined to 0.496 (8):0.504 (8), 0.608 (9):0.392 (9), and 2×0.275 (7):2×0.225 (7), respectively. For 2, segments of the metallacrown are disordered including the Dy<sup>III</sup> ion, one of the Mn ions, two of the Mn-bound 4-hydroxybenzoate ligands, the Mn-bridging salicylhydroximate ligand, and portions of the remaining three shi<sup>3-</sup> ligands. The occupancy ratio for the metallacrown disorder refined to 0.849 (9):0.151 (9). Two DMF solvent molecules are also disordered, each over two orientations. The disorder ratios refined to 0.64(3):0.36(3) and to 0.51 (2):0.49 (2), respectively. For 2, the crystal under investigation was refined as a non-merohedric twin by a 90° rotation around the real a axis [twin ratio 0.9182 (8):0.0818 (8)].

1. Chemical context

Metallacrowns (MC) were first discovered in 1989 by Pecoraro, and the compounds have grown into a class of coordination complexes with a wide range of applications including single-molecule magnets, magnetorefrigerants,

### research communications

luminescent agents, cell imaging agents, and magnetic resonance imaging agents (Mezei et al., 2007; Nguyen & Pecoraro, 2017; Lutter et al., 2018; Anthanasopoulou et al., 2018). MCs, the inorganic equivalent of crown ethers, are macrocyclic molecules that follow a metal-nitrogen-oxygen [M-N-O]repeat in the ring of the molecule, similar to the carboncarbon-oxygen [C-C-O] repeat of a crown ether. The selfassembly synthetic strategy of MCs lends itself to the ability to place metal ions in specific positions in the molecules and the controllable formation of specific molecules. While heterobimetallic MCs have been known since the 1990s, heterotrimetallic MCs have only been recently reported (Azar et al., 2014; Travis et al., 2015, 2016; Cao et al., 2016; Boron et al., 2016; Lutter et al., 2020). These structures are based on a 12-MC-4 framework with manganese(III) or gallium(III) as the ring metal, a central lanthanide ion, and typically an alkali metal ion bound opposite to the lanthanide ion – though in one case a tungsten(V) ion is bound opposite the lanthanide ion. In general, the controllable formation of heterotrimetallic systems remains difficult from a synthetic perspective; however, MCs provide a pathway that demonstrates that such systems are achievable in a straightforward and predictable fashion.

In 2014 we reported a series of Ln<sup>III</sup>Na(OAc)<sub>4</sub>[12- $MC_{Mn(III)N(shi)}$ -4](H<sub>2</sub>O)<sub>4</sub> complexes, where  $Ln^{III}$  is  $Pr^{III}$  to Yb<sup>III</sup> (except Pm<sup>III</sup>) and Y<sup>III</sup>, <sup>-</sup>OAc is acetate, and shi<sup>3-</sup> is salicylhydroximate, that were the first heterotrimetallic MCs and the first 12-MC-4 complexes to bind a lanthanide ion in the central cavity (Azar et al., 2014). The lanthanide ion is tethered to the MC via four acetate bridges that link the central  $Ln^{III}$  to the ring  $Mn^{III}$  ions. Since then we have reported other  $Ln^{III}$ Na $(X)_4$ [12-MC<sub>Mn(III)N(shi)</sub>-4] complexes, where  $Ln^{III}$  is Y<sup>III</sup>, Er<sup>III</sup>, and Dy<sup>III</sup>, and X<sup>-</sup> is 2-hydroxybenzoate, benzoate, and trimethylacetate, which demonstrate that the bridging carboxylate anion can be easily substituted in these structures (Travis et al., 2015, 2016; Boron et al., 2016). In addition, the identity of the bridging ligand affects the singlemolecule magnet (SMM) properties of a series of [12-MC<sub>Mn(III)N(shi)</sub>-4] complexes with Dy<sup>III</sup> as the central lanthanide ion (Boron *et al.*, 2016). Specifically, the  $pK_a$  value of the parent acid of the bridging ligand, which indicates the Lewis basicity of the anion, directly impacts the SMM behavior of the MCs. Only the 2-hydroxybenzoate (i.e. salicylate) version of the MCs behaves as an SMM, while the benzoate, acetate, and trimethylacetate analogues do not possess any SMM behavior. 2-Hydroxybenzoic acid has the smallest  $pK_a$  value (2.98) of the species investigated, and the subsequent  $pK_a$  values increase from benzoic acid (4.20) to acetic acid (4.76) to trimethylacetic acid (5.03). Thus, 2-hydroxybenzoate is the most electron-withdrawing of the set of anions, and this could affect the magnetic coupling between the ring Mn<sup>III</sup> ions and central Dy<sup>III</sup> ion.

Herein we report the syntheses and crystal structures of  $Dy^{III}Na(3\text{-}OHben)_4[12\text{-}MC_{Mn(III)N(shi)}\text{-}4](H_2O)_4\text{-}10DMA, 1,$ and  $Dy^{III}Na(4\text{-}OHben)_4[12\text{-}MC_{Mn(III)N(shi)}\text{-}4](H_2O)_4\text{-}4DMF, 2,$ where 3-OHben is 3-hydroxybenzoate, DMA is *N*,*N*-dimethylacetamide, 4-OHben is 4-hydroxybenzoate, and DMF is *N*,*N*-dimethylformamide. The  $pK_a$  values of 3-hydroxybenzoic acid and 4-hydroxybenzoic acid are 4.08 and 4.57, respectively, which are greater than the  $pK_a$  of 2-hydroxybenzoic acid. Future studies will investigate the magnetic properties of **1** and **2** and the impact of the identity of the bridging ligand on the single-molecule magnetism of the MCs.



#### 2. Structural commentary

The metallacrown complexes  $Dy^{III}Na(3\text{-}OHben)_4[12\text{-}MC_{Mn(III)N(shi)}\text{-}4](H_2O)_4\text{·}10DMA$ , **1**, and  $Dy^{III}Na(4\text{-}OHben)_4\text{-}[12\text{-}MC_{Mn(III)N(shi)}\text{-}4](H_2O)_4\text{·}4DMF$ , **2**, both possess the typical 12-MC-4 framework with a repeat unit of  $Mn^{III}\text{-}N\text{-}O$  that

| Table 1                                                               |
|-----------------------------------------------------------------------|
| Average bond length (Å) and bond-valence-sum (BVS) values (v.u.) used |
| to support assigned oxidation states of the dysprosium and manganese  |
| ions of 1 and 2.                                                      |

|     | Avg. bond length | BVS value | Assigned oxidation state |
|-----|------------------|-----------|--------------------------|
| 1   |                  |           |                          |
| Dy1 | 2.339            | 3.32      | 3+                       |
| Mn1 | 2.053            | 3.02      | 3+                       |
| 2   |                  |           |                          |
| Dy1 | 2.357            | 3.17      | 3+                       |
| Mn1 | 2.038            | 3.13      | 3+                       |
| Mn2 | 2.03             | 3.11      | 3+                       |
| Mn3 | 2.031            | 3.22      | 3+                       |
| Mn4 | 2.055            | 3.05      | 3+                       |
|     |                  |           |                          |





The single-crystal X-ray structure of Dy<sup>III</sup>Na(3-OHben)<sub>4</sub>[12-MC<sub>Mn(III)N(shi)</sub>-4](H<sub>2</sub>O)<sub>4</sub>·10DMA, **1**, (*a*) top view with only the metal atoms and shi<sup>3-</sup> ligands labeled for clarity and (*b*) side view with only the metal atoms and axial ligands labeled for clarity. The displacement ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms, solvent molecules, and disorder have been omitted. Color scheme: purple – Dy<sup>III</sup>, green – Mn<sup>III</sup>, yellow – Na<sup>+</sup>, red – oxygen, blue – nitrogen, and gray – carbon. All figures were generated with the program *Mercury* (Macrae *et al.*, 2020). [Symmetry codes: (i) +*x*, −*y* +  $\frac{3}{2}$ , +*z*; (ii) −*x* +  $\frac{3}{2}$ , +*y*, +*z*.]

recurs four times to generate an approximately square-shaped molecule (Figs. 1 and 2). Each MC contains one  $Dy^{III}$  ion, one Na<sup>+</sup> ion, and four Mn<sup>III</sup> ions, which provides a total 16+ charge. This positive charge is counterbalanced by the four shi<sup>3-</sup> ligands and four carboxylate anions of the MCs (total 16- charge). Beyond overall molecular charge considerations, the metal oxidation states are confirmed by average bond lengths and bond-valence sum (BVS) values (Table 1; Liu & Thorp, 1993 and Trzesowska *et al.*, 2004). The four Mn<sup>III</sup> ions and four shi<sup>3-</sup> ligands provide an MC framework that is able to bind the two central ions. The oxime oxygen atoms of the shi<sup>3-</sup> ligands form the central MC cavity that binds  $Dy^{III}$  and Na<sup>+</sup> ions on opposite faces of the MC. The metallacrown is slightly domed with the  $Dy^{III}$  ion bound to the convex side of the MC cavity and the Na<sup>+</sup> ion attached to the concave side.



Figure 2

The single-crystal X-ray structure of  $Dy^{III}Na(4-OHben)_4[12-MC_{Mn(III)N(shi)}-4](H_2O)_4\cdot4DMF$ , **2**, (*a*) top view with only the metal atoms and shi<sup>3-</sup> ligands labeled for clarity and (*b*) side view with only the metal atoms and axial ligands labeled for clarity. The displacement ellipsoids are drawn at the 50% probability level. For clarity, hydrogen atoms, solvent molecules, and disorder have been omitted. See Fig. 1 for additional display details.

| Shape | Hexagon $(D_{6h})$ | Pentagonal pyramid $(C_{5v})$ | Octahedron $(O_h)$ | Trigonal prism $(D_{3h})$ | Johnson pentagonal pyramid (J2; $C_{5v}$ ) |
|-------|--------------------|-------------------------------|--------------------|---------------------------|--------------------------------------------|
| 1     |                    |                               |                    |                           |                                            |
| Mn1   | 30.226             | 27.832                        | 1.147              | 17.090                    | 30.691                                     |
| 2     |                    |                               |                    |                           |                                            |
| Mn1   | 30.178             | 27.324                        | 1.126              | 16.539                    | 30.302                                     |
| Mn2   | 29.625             | 27.265                        | 1.115              | 16.232                    | 29.492                                     |
| Mn3   | 30.366             | 28.015                        | 1.145              | 16.300                    | 30.249                                     |
| Mn4   | 29.517             | 26.990                        | 1.434              | 15.615                    | 29.813                                     |

 Table 2

 Continuous Shapes Measures (CShM) values for the geometry about the six-coordinate ring Mn<sup>III</sup> ions in 1 and 2.

As previously reported, the doming effect is likely due to the displacement of the ring metal atoms from the equatorial plane of the first coordination sphere ligand atoms (Azar et al., 2014). For both 1 and 2, the average distance of the Mn<sup>III</sup> ions from the equatorial plane is 0.14 Å. The Dy<sup>III</sup> ion is further attached to the MC via either four 3-hydroxybenzoate or 4-hydroxybenzoate anions that bridge between the Dy<sup>III</sup> ion and each ring Mn<sup>III</sup> ion. For 1 the molecule possesses a fourfold rotation axis along the Dy<sup>III</sup> and Na<sup>+</sup> ions, and wholemolecule disorder is observed for the main molecule, excluding only the Dy<sup>III</sup> and Na<sup>+</sup> ions, with the occupancy ratio refined to 0.8018 (14):0.1982 (14). For 2, large sections of the metallacrown are disordered, including the Dy<sup>III</sup> ion, Mn1, two of the 4-hydroxybenzoate ligands bound to Mn1 and Mn2, the shi<sup>3-</sup> ligand that connects Mn1 and Mn4, and portions of the remaining three  $shi^{3-}$  ligands. The occupancy ratio for the metallacrown disorder refined to 0.849 (9):0.151 (9). Complete details describing the treatment of the disorder are given in the Refinement section. The following structural descriptions focus only on the major disorder components.

For both 1 and 2, each Mn<sup>III</sup> ion is six-coordinate, with a tetragonally distorted octahedral geometry. The elongated Jahn–Teller axis along the z direction is expected for a high-spin  $d^4$  electron configuration. The geometry assignment is supported by a continuous shape measures (CShM) analysis (*SHAPE 2.1*; Llunell *et al.*, 2013; Pinsky & Avnir, 1998). The CShM values of the Mn<sup>III</sup> ions range from 1.115 to 1.434 (Table 2). Typically CShM values less than 1.0 indicate only minor distortions of the assigned geometry from the ideal shape (Cirera *et al.*, 2005), while CShM values up to 3.0

indicate significant distortions from the ideal geometry; however, a value up to 3.0 still represents an acceptable description of the geometry. The CShM values for the Mn<sup>III</sup> ions are likely greater than 1.0 due to the presence of the Jahn–Teller axis. The elongated Jahn–Teller distortion is composed of a carboxylate oxygen atom from a 3-hydroxy-benzoate or 4-hydroxybenzoate anion and a bridging water molecule that is also bound to the central Na<sup>+</sup> ion. The equatorial donor atoms form two *trans* chelate rings about each Mn<sup>III</sup> ion. A five-membered chelate ring is comprised of an oxime oxygen atom and a carbonyl oxygen atom from a shi<sup>3–</sup> ligand, and a six-membered chelate ring is formed by an oxime nitrogen atom and a phenolate oxygen atom from a different shi<sup>3–</sup> ligand.

The central Dy<sup>III</sup> ion on the convex side of the MC is eightcoordinate, with a distorted square antiprismatic geometry (CShM values: 0.550 for 1 and 0.818 for 2; Table 3; Casanova et al., 2005). Two different planes of oxygen atoms complete the coordination sphere. One plane is composed of four oxime oxygen atoms from the MC cavity, while the second plane is formed from four carboxylate oxygen atoms from either the 3-hydroxybenzoate or 4-hydroxybenzoate anions. The Dy<sup>III</sup> lies closer to the mean plane of carboxylate oxygen atoms [1.055 (3) Å for **1** and 1.076 (7) Å for **2**] than to the mean plane of oxime oxygen atoms [1.546 (3) Å for 1 and 1.593 (7) Å for 2], indicating that the geometry is distorted from an ideal square antiprism geometry. The mean plane distances were calculated with SHELXL2018/3 (Sheldrick, 2015) and determined as previously described (Azar et al., 2014).

Table 3

| Continuous Shapes Measures (CShM) values for t | the geometry about the eight-coordinate central Dy | $^{III}$ and Na <sup>+</sup> ions in <b>1</b> and <b>2</b> . |
|------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
|------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|

| Shape                                                     | 1                 |                 | 2                 |        |
|-----------------------------------------------------------|-------------------|-----------------|-------------------|--------|
|                                                           | Dy <sup>III</sup> | Na <sup>+</sup> | Dy <sup>III</sup> | $Na^+$ |
| Octagon $(D_{8h})$                                        | 31.416            | 30.418          | 32.709            | 29.627 |
| Heptagonal pyramid $(C_{7\nu})$                           | 23.704            | 25.842          | 23.084            | 25.952 |
| Hexagonal bipyramid $(D_{6h})$                            | 17.239            | 13.946          | 16.431            | 14.078 |
| Cube $(O_h)$                                              | 9.655             | 6.064           | 9.477             | 6.784  |
| Square antiprism $(D_{4d})$                               | 0.550             | 3.063           | 0.818             | 3.657  |
| Triangular dodecahedron $(D_{2d})$                        | 2.708             | 3.797           | 2.517             | 4.233  |
| Johnson – gyrobifastigium (J26; $D_{2d}$ )                | 17.567            | 16.821          | 16.670            | 16.504 |
| Johnson – elongated triangular bipyramid (J14; $D_{3h}$ ) | 30.145            | 29.438          | 29.907            | 29.093 |
| Johnson – biaugmented trigonal prism (J50; $C_{2\nu}$ )   | 2.927             | 4.700           | 3.128             | 5.084  |
| Biaugmented trigonal prism $(C_{2\nu})$                   | 1.995             | 3.002           | 2.160             | 3.196  |
| Johnson – snub disphenoid (J84; $D_{2d}$ )                | 5.823             | 7.668           | 5.580             | 7.860  |
| Triakis tetrahedron $(T_d)$                               | 10.516            | 6.959           | 10.266            | 7.625  |
| Elongated trigonal bipyramid $(D_{3h})$                   | 25.542            | 25.071          | 25.294            | 24.594 |

The Na<sup>+</sup> ion captured on the concave side of the MC is also eight-coordinate; however, the geometry assignment is not clearly defined based on CShM values (Table 3). The CShM slightly favors a biaugmented analysis trigonalprismatic assignment (CShM values: 3.002 for 1 and 3.196 for 2); however, a square-antiprismatic geometry assignment is comparable (CShM values: 3.063 for 1 and 3.657 for 2). Both values are above 3.0; thus, there are substantial distortions from each ideal geometry. The biaugmented trigonal-prismatic geometry is a trigonal prism capped on two of the three rectangular faces. As for the Dy<sup>III</sup> ion, the Na<sup>+</sup> ion is surrounded by two groups of oxygen atoms. One group of oxygen atoms is formed from the oxime oxygen atoms of the MC cavity, and the second group is comprised of four oxygen atoms from water molecules. The Na<sup>+</sup> ion is positioned closer to the mean plane of water oxygen atoms  $[0.677 (5) \text{ \AA for } \mathbf{1}]$ and 0.561 (9) Å for 2] than to the mean plane of the oxime oxygen atoms [1.922 (4) Å for 1 and 1.991 (9) Å for 2].

Lastly, in both 1 and 2 solvent molecules are located in the structure, which are also hydrogen bonded to their respective MCs (described in the Supramolecular features section). For 1, the DMA molecules associated with N2 and N3 are disordered over two positions with occupancy ratios that refined to 0.496 (8):0.504 (8) and 0.608 (9):0.392 (9), respectively. The DMA molecule associated with N4 is disordered over four positions with occupancy ratios that refined to  $2 \times 0.275$  (7):  $2 \times 0.225$  (7). For 2, two DMF molecules associated with N6 and N7 are not disordered, while the two DMF molecules associated with N5 and N8 are disordered over two different orientations, which refined to 0.64(3):0.36(3)and 0.51 (2):0.49 (2), respectively. Complete details describing the treatment of the solvent disorder are given in the Refinement section.

#### 3. Supramolecular features

For both **1** and **2** the solvent molecules form hydrogen bonds with the MC complexes. For **1**, the MC complex forms





Intermolecular hydrogen bonding between 1 and the carbonyl oxygen atom of a DMA molecule. For clarity only the hydrogen atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labeled. See Fig. 1 for additional display details. [Symmetry code: (i) x, y, z - 1.]

Table 4 Hydrogen-bond geometry (Å,  $^\circ)$  for 1.

| $\cdot \cdot \cdot A$ |
|-----------------------|
|                       |
|                       |
|                       |
|                       |
| -                     |

Symmetry codes: (i) x, y, z - 1; (ii) y,  $-x + \frac{3}{2}$ , z; (iii)  $y - \frac{1}{2}$ , -x + 2, -z + 1.

hydrogen bonds to the DMA molecules, and the MCs are interconnected via the DMA molecules (Table 4). The hydroxyl group (O6) of each 3-hydroxybenzoate forms a hydrogen bond to the carbonyl oxygen atom (O9<sup>i</sup>) of a DMA molecule [Fig. 3; symmetry code: (i) x, y, z - 1]. In addition, the water molecule (O7) coordinated to the central Na<sup>+</sup> ion hydrogen bonds to the carbonyl oxygen atoms (O8 and O8<sup>ii</sup>) of two DMA molecules [Fig. 4; symmetry code: (ii)  $-x + \frac{3}{2}$ , y, z]. Then, the methyl group (associated with C17) of the same DMA molecules forms a C-H···O interaction with the hydroxyl group (O6<sup>iii</sup>) of a 3-hydroxybenzoate of a neighboring MC [symmetry code: (iii) -x + 2,  $y - \frac{1}{2}$ , -z + 1]. These interactions are repeated about the fourfold axis of the MC; thus, a network is generated between neighboring MCs mediated by the DMA molecule associated with N2. The connection between the neighboring MCs, the hydrogen bonds between the MCs and the DMA molecules, and pure van der Waals forces contribute to the overall packing of the molecules.

For **2**, several DMF molecules are hydrogen bonded to each metallacrown and a small hydrogen-bonding network exists between neighboring metallacrowns (Table 5). The four water molecules (O25–O28) coordinated to the central Na<sup>+</sup> ion hydrogen bond to the carbonyl oxygen atoms of four DMF molecules (Fig. 5). There is also one intramolecular hydrogen





Intermolecular hydrogen bonding between the water molecule coordinated to the Na<sup>+</sup> ion of **1** and the DMA molecules. The DMA molecules then form  $C-H\cdots O$  interactions with the hydroxyl groups of 3-hydroxybenzoate anions of neighboring MCs to generate a network between the complexes. For clarity only the hydrogen atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labeled. See Fig. 1 for additional display details. [Symmetry codes: (ii) y,  $-x + \frac{3}{2}$ , z; (iii)  $y - \frac{1}{2}$ , -x + 2, -z + 1.]

### research communications

bond between one of the water molecules (O25) coordinated to the Na<sup>+</sup> ion and a phenolate oxygen atom (O12) of the metallacrown (Fig. 5c). In addition, several hydrogen bonds exist between neighboring metallacrowns (Fig. 6). The hydrogen bonding occurs *via* the 4-hydroxybenzoate ligands. The hydroxyl group (O15) of a 4-hydroxybenzoate anion forms a hydrogen bond to O3<sup>i</sup> (a phenolate oxygen atom of a shi<sup>3-</sup> ligand) of a neighboring MC through two hydrogen bonds: O15-H15 $O \cdots O3^i$  and C32-H32 $\cdots O3^i$  [symmetry





Intermolecular hydrogen bonding between the water molecules coordinated to the Na<sup>+</sup> ion of **2** and the DMF molecules and intramolecular hydrogen bonding between a water molecule coordinated to the Na<sup>+</sup> ion and a phenolate oxygen atom of the metallacrown. For clarity the hydrogen bonding has been divided into three sections (*a*), (*b*) and (*c*), only the hydrogen atoms (white) involved in the hydrogen bonding have been included, and only the atoms involved in the hydrogen bonding have been labeled. See Fig. 1 for additional display details.

Table 5Hydrogen-bond geometry (Å, °) for 2.

| $D - H \cdot \cdot \cdot A$             | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| O25−H25C···O29                          | 0.92     | 2.00                    | 2.74 (3)     | 137                                  |
| O25−H25D···O12                          | 0.87     | 2.41                    | 3.06 (2)     | 132                                  |
| O26−H26C···O30                          | 0.85 (4) | 2.04 (9)                | 2.74 (2)     | 138 (10)                             |
| O26−H26D···O29                          | 0.84 (4) | 2.03 (11)               | 2.70 (4)     | 136 (11)                             |
| O27−H27C···O30                          | 0.87 (4) | 2.12 (14)               | 2.730 (19)   | 127 (14)                             |
| O27−H27D···O31                          | 0.87 (4) | 2.09(7)                 | 2.798 (18)   | 138 (6)                              |
| O28−H28C···O31                          | 0.88 (4) | 2.07 (10)               | 2.776 (17)   | 137 (10)                             |
| O28−H28D···O32                          | 0.88 (4) | 1.94 (7)                | 2.68 (3)     | 142 (6)                              |
| $C32-H32\cdots O3^{i}$                  | 0.95     | 2.66                    | 3.35 (2)     | 131                                  |
| $O15-H15O\cdots O3^{i}$                 | 0.84     | 1.93                    | 2.77 (2)     | 175                                  |
| C46−H46···O9 <sup>ii</sup>              | 0.95     | 2.24                    | 3.168 (15)   | 165                                  |
| $O21 - H21O \cdot \cdot \cdot O22^{ii}$ | 0.84     | 2.01                    | 2.794 (16)   | 155                                  |
| $O24 - H24O \cdots O6^{iii}$            | 0.84     | 2.02                    | 2.815 (16)   | 158                                  |

code: (i)  $x - \frac{1}{2}, -y + 1, z + \frac{1}{2}$ ]. The hydroxyl group (O21) of a 4-hydroxybenzoate anion also forms a hydrogen bond to a second MC via two hydrogen bonds: O21-H210···O22<sup>ii</sup> (a 4-hydroxybenzoate carboxylate oxygen atom) and C46-H46···O9<sup>ii</sup> [a phenolate oxygen atom of a shi<sup>3-</sup> ligand; symmetry code: (ii)  $x - \frac{1}{2}, -y + 2, z - \frac{1}{2}$ ]. Lastly, the hydroxyl group (O24) of a 4-hydroxybenzoate anion forms a hydrogen bond to a third MC via the hydrogen bond O24-H240...O6<sup>iii</sup> [a phenolate oxygen atom of a shi<sup>3-</sup> ligand; symmetry code: (iii)  $x - \frac{1}{2}, -y + 2, z + \frac{1}{2}$ ]. Since each MC then forms reciprocal hydrogen bonds, each MC is hydrogen bonded to six neighboring MCs, forming a network of MCs. The hydrogen bonding between the neighboring MCs, between the MCs and the DMF molecules, and pure van der Waals forces contribute to the overall packing of the molecules.





Intermolecular hydrogen bonding between adjacent metallacrowns of **2**, which generate a network between the MCs. For clarity only the hydrogen atoms (white) involved in the interactions have been included, and only the atoms involved in the interactions have been labeled. See Fig. 1 for additional display details. [Symmetry codes: (i)  $x - \frac{1}{2}, -y + 1, z + \frac{1}{2}$ ; (ii)  $x - \frac{1}{2}, -y + 2, z - \frac{1}{2}$ ; (iii)  $x - \frac{1}{2}, -y + 2, z + \frac{1}{2}$ .]

| Compound | Dy <sup>III</sup><br>crystal<br>radius | MC<br>crystal<br>radius | Avg. cross-cavity<br>Mn <sup>III</sup> Mn <sup>III</sup><br>distance | Avg. cross-cavity<br>$O_{ox} \cdots O_{ox}$<br>distance | Dy <sup>III</sup> -O <sub>ox</sub> MP<br>distance | Dy <sup>III</sup> -O <sub>car</sub> MP<br>distance | Avg. distance of<br>Mn to equatorial<br>atom MP |
|----------|----------------------------------------|-------------------------|----------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 1        | 1.04                                   | 0.56                    | 6.53                                                                 | 3.72                                                    | 1.55                                              | 1.06                                               | 0.14                                            |
| 2        | 1.06                                   | 0.54                    | 6.49                                                                 | 3.69                                                    | 1.59                                              | 1.08                                               | 0.14                                            |
| 3        | 1.06                                   | 0.55                    | 6.52                                                                 | 3.71                                                    | 1.59                                              | 1.03                                               | 0.17                                            |
| 4        | 1.05                                   | 0.54                    | 6.51                                                                 | 3.69                                                    | 1.58                                              | 1.05                                               | 0.14                                            |
| 5        | 1.03                                   | 0.54                    | 6.47                                                                 | 3.68                                                    | 1.51                                              | 1.15                                               | 0.06                                            |
| 6        | 1.06                                   | 0.56                    | 6.51                                                                 | 3.73                                                    | 1.58                                              | 1.05                                               | 0.17                                            |

Table 6Structural comparison of 1 and 2 with other  $Dy^{III}Na(X)_4[12-MC_{Mn(III)N(shi)}-4]$  complexes (Å).

#### 4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.41, update March 2020, Groom et al., 2016) reveals that twenty-six  $Ln[12-MC_{Mn(III)N(shi)}-4]$  complexes have been previously reported. Four of the metallacrowns contain both Dy<sup>III</sup> and Na<sup>+</sup> ions in the central cavity of the MC. The complexes have different bridging carboxylate anions acetate (OAc), benzoate (ben), 2-hydroxybenzoate (2-OHben), and trimethylacetate (TMA): Dy(OAc)<sub>4</sub>Na[12-MC<sub>Mn(III)N(shi)</sub>-4](H<sub>2</sub>O)<sub>4</sub>·6DMF, 3 (TIWVIG; Azar et al., 2014),  $Dy(ben)_4Na[12-MC_{Mn(III)N(shi)}-4](H_2O)_4\cdot 5DMF$ , 4 (HADFEA; Boron III et al., 2016), Dy(2-OHben)<sub>4</sub>Na[12-MC<sub>Mn(III)N(shi)</sub>-4](DMF)(H<sub>2</sub>O)<sub>3</sub>·4DMF, 5 (HADFAW; Boron III et al., 2016), and  $Dy(TMA)_4Na[12-MC_{Mn(III)N(shi)}-4]$ -(H<sub>2</sub>O)<sub>2.59</sub>(DMF)<sub>1.41</sub>·4DMF·0.59H<sub>2</sub>O, 6 (HADFOK; Boron III et al., 2016).

In addition, three of the 12-MC-4 complexes contain both  $Dy^{III}$  and  $K^+$  in the central cavity with the bridging ligands acetate, benzoate, and 2-hydroxybenzoate:  $Dy(OAc)_4K[12-MC_{Mn(III)N(shi)}-4](DMF)_4\cdot DMF$  (TIWWUT; Azar *et al.*, 2014),  $Dy(ben)_4K[12-MC_{Mn(III)N(shi)}-4](H_2O)_4\cdot 4DMF\cdot 1.6H_2O$  (HADFIE; Boron *et al.*, 2016), and  $Dy(2-OHben)_{3.5}(OAc)_{0.5}$ - $K[12-MC_{Mn(III)N(shi)}-4](DMF)_{1.5}(H_2O)_{3.5}\cdot 5DMF$  (HADDUO; Boron *et al.*, 2016).

Lastly, one dysprosium-manganese 12-MC-4 complex has an unbound triethylammonium as the counter-cation instead of an alkali metal cation and acetate as the bridging ligand:

 $[NH(C_2H_5)_3]{Dy(OAc)_4[12-MC_{Mn(III)N(shi)}-4]}$  (QIBWUW; Qin *et al.*, 2017).

As complexes 1 and 2 contain a sodium cation, the discussion will be limited to the [12-MC<sub>Mn(III)N(shi)</sub>-4] complexes 3-6 that also capture a dysprosium and a sodium cation in the central cavity. The use of 3-hydroxybenzoate and 4-hydroxybenzoate does not significantly alter the overall MC framework as a structural comparison of complexes 1-6 reveals that the metrical parameters of the structures are similar (Table 6). These features were measured and calculated using the program Mercury (Macrae et al., 2020) and in the same fashion as previously described (Azar et al., 2014). For 1 and 2, all metrical values fall within the range of 3-6. In addition, 1 and 2 are domed in a similar fashion as 3-6 with the average distance of the ring Mn<sup>III</sup> ions above their equatorial plane being 0.14 Å for both 1 and 2, which is consistent with the values for 3-6. Overall the molecular structure of the six complexes are analogous with only differing bridging carboxylate anions.

#### 5. Synthesis and crystallization

#### Materials

Sodium 3-hydroxybenzoate (>99.0%) and sodium 4-hydroxybenzoate (>99.0%) were purchased from TCI America. Salicylhydroxamic acid (H<sub>3</sub>shi, 99%) and dysprosium(III) nitrate pentahydrate (99.9%) were purchased from Alfa Aesar. Manganese(II) acetate tetrahydrate (99+%) was purchased from Acros Organics. *N*,*N*-dimethylformamide (ACS grade) and methanol (ACS grade) were purchased from Pharmco–Aaper. *N*,*N*-dimethylacetamide (>99.5%) was purchased from VWR Chemicals BDH. All reagents were used as received and without further purification.

Dy<sup>III</sup>Na(3-OHben)<sub>4</sub>[12-MC<sub>Mn(III)N(shi)</sub>of **Synthesis** 4](H<sub>2</sub>O)<sub>4</sub>·10DMA, 1. Manganese(II) acetate tetrahydrate (2 mmol, 0.4912 g) was dissolved in 8 mL of DMA, resulting in a clear orange solution. In a separate beaker, dysprosium(III) nitrate pentahydrate (0.250 mmol, 0.1108 g) and salicylhydroxamic acid (2 mmol, 0.3070 g) were dissolved in 8 mL of DMA, resulting in a clear and colorless solution. In another beaker, sodium 3-hydroxybenzoate (4 mmol, 0.6413 g) was mixed in 8 mL of DMA, resulting in an opaque vellow mixture as not all of the reagent dissolved. Then the manganese(II) acetate solution was added to the  $Dy(NO_3)_2/H_3$ shi solution, resulting in a dark-brown solution. Following, the sodium 3-hydroxybenzoate solution was added to the former solution and no color change was observed. The solution was stirred overnight and filtered the next day. A brown precipitate and clear and colorless solid were recovered and discarded. The filtrate was a dark-brown solution. Slow evaporation of the filtrate at room temperature afforded X-ray quality black/ dark-brown block-shaped crystals after six days. The percentage yield was 44% based on dysprosium(III) nitrate pentahvdrate.

Synthesis of  $Dy^{III}Na(4-OHben)_4[12-MC_{Mn(III)N(shi)}-4]-(H_2O)_4 \cdot 4DMF, 2.$  Manganese(II) acetate tetrahydrate (2 mmol, 0.4904 g) was dissolved in a solvent mixture of 5 mL of DMF and 5 mL of methanol, resulting in a clear orange solution. In a separate beaker, dysprosium(III) nitrate pentahydrate (0.250 mmol, 0.1099 g), sodium 4-hydroxy-benzoate (4 mmol, 0.6411 g), and salicylhydroxamic acid (2 mmol, 0.3072 g) were mixed in a solvent mixture of 5 mL of DMF and 5 mL of methanol, and the resulting mixture had an opaque white color as not all of the reagents had dissolved. Then the manganese(II) acetate solution was added to the latter mixture, resulting in an opaque green solution. The

## research communications

 Table 7

 Experimental details.

|                                                                          | 1                                                                | 2                                                                                                    |
|--------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Crystal data                                                             |                                                                  |                                                                                                      |
| Chemical formula                                                         | $[DyMn_4Na(C_7H_5O_3)_4(C_7H_4NO_2)_4-(H_2O)_4]\cdot 10C_4H_9NO$ | $[DyMn_4Na(C_7H_5O_3)_4(C_7H_4NO_2)_4(H_2O)_4]$<br>4C_4H_7NO                                         |
| $M_{\rm r}$                                                              | 2497.41                                                          | 1918.58                                                                                              |
| Crystal system, space group                                              | Tetragonal, $P4/n$                                               | Monoclinic, Pn                                                                                       |
| Temperature (K)                                                          | 150                                                              | 150                                                                                                  |
| a, b, c (Å)                                                              | 19,9869 (9), 19,9869 (9), 13,9570 (11)                           | 14.3622 (11), 16.5258 (11), 16.8246 (12)                                                             |
| $\alpha, \beta, \gamma$ (°)                                              | 90, 90, 90                                                       | 90, 92,347 (3), 90                                                                                   |
| $V(A^3)$                                                                 | 5575.5 (7)                                                       | 3989.9 (5)                                                                                           |
| Z                                                                        | 2                                                                | 2                                                                                                    |
| Radiation type                                                           | -<br>Μο Κα                                                       | -<br>Μο Κα                                                                                           |
| $\mu (\text{mm}^{-1})$                                                   | 1.19                                                             | 1.64                                                                                                 |
| Crystal size (mm)                                                        | $0.25 \times 0.23 \times 0.15$                                   | $0.30 \times 0.20 \times 0.19$                                                                       |
| Data collection                                                          |                                                                  |                                                                                                      |
| Diffractometer                                                           | Bruker AXS D8 Quest CMOS                                         | Bruker AXS D8 Quest CMOS                                                                             |
| Absorption correction                                                    | Multi-scan (SADABS; Krause et al., 2015)                         | Multi-scan (TWINABS; Sheldrick, 2012)                                                                |
| $T_{\min}, \hat{T}_{\max}$                                               | 0.024, 0.055                                                     | 0.053, 0.109                                                                                         |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 58638, 7967, 6605                                                | 40158, 40158, 29137                                                                                  |
| R:                                                                       | 0.042                                                            | 0.084                                                                                                |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.714                                                            | 0.667                                                                                                |
| Refinement                                                               |                                                                  |                                                                                                      |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.051, 0.151, 1.04                                               | 0.073, 0.219, 1.07                                                                                   |
| No. of reflections                                                       | 7967                                                             | 40158                                                                                                |
| No. of parameters                                                        | 761                                                              | 1433                                                                                                 |
| No. of restraints                                                        | 1550                                                             | 1908                                                                                                 |
| H-atom treatment                                                         | H-atom parameters constrained                                    | H atoms treated by a mixture of independent<br>and constrained refinement                            |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$        | 2.49, -0.91                                                      | 1.86, -1.83                                                                                          |
| Absolute structure                                                       | _                                                                | Flack x determined using 5372 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) |
| Absolute structure parameter                                             | -                                                                | -0.025 (7)                                                                                           |

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008a), SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

solution was stirred overnight and filtered the next day. A green precipitate was recovered and discarded. The filtrate was a dark green-brown solution. Slow evaporation of the filtrate at room temperature afforded X-ray quality black/ dark-brown block-shaped crystals after three weeks. The percentage yield was 56% based on dysprosium(III) nitrate pentahydrate.

#### 6. Refinement

For 1, whole molecule disorder is observed for the main molecule, excluding only the Dy and Na ions. Equivalent disordered organic moieties were restrained to have similar geometries (SAME command of *SHELXL*), and  $U^{ij}$  components of ADPs for all disordered atoms closer to each other than 2.0 Å were restrained to be similar (SIMU command of *SHELXL*). Subject to these conditions, the occupancy ratio refined to 0.8018 (14):0.1982 (14). Three DMA molecules were refined as disordered. The two DMA molecules associated with N2 and N3 are in general positions by an approximate 180° rotation. The third DMA molecule associated with N4 is disordered by an exact 180° rotation from a twofold axis that bisects it as well as by additional general disorder. All DMA molecules were restrained to have similar

geometries (SAME command of SHELXL). All N-CH<sub>3</sub> bond lengths were restrained to be similar in length and all 1.3 distances of the C-N-CH<sub>3</sub> angles were also restrained to be similar to each other.  $U^{ij}$  components of ADPs for all DMA atoms closer to each other than 2.0 Å were restrained to be similar, and the atoms of the fourfold-disordered molecule were restrained to be close to isotropic. The lowest occupancy DMA molecule (the minor component disordered by twofold symmetry) was restrained to be close to planar. Subject to these conditions the occupancy ratios of the DMA molecules associated with N2, N3, and N4 refined to 0.496 (8):0.504 (8), 0.608 (9):0.392 (9), and  $2 \times 0.275$  (7): $2 \times 0.225$  (7), respectively. Initially alcohol hydrogen atoms were allowed to rotate about their respective oxygen atoms, and water hydrogen-atom positions were refined while a damping factor was applied, and O-H and  $H \cdot \cdot \cdot H$  distances were restrained to 0.84 (2) and 1.36 (2) Å, respectively. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations. In the final refinement cycles these hydrogen atoms were set to ride on their carrier oxygen atoms and the damping factor was removed. Additional crystal data, data collection, and structure refinement details are summarized in Table 7.

For  $\mathbf{2}$  the crystal under investigation was found to be a nonmerohedric twin. The orientation matrices for the two

The structure was solved by direct methods with only the non-overlapping reflections of component 1. The structure was refined using all reflections of component 1 (including overlaps), resulting in a minor-component fraction of 0.0818 (8). The  $R_{\rm int}$  value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS; Sheldrick 2012). Sections of the metallacrown are disordered including the Dy ion, Mn1, two of the 4-hydroxybenzoate ligands bound to Mn1 and Mn2, the salicylhydroximate ligand that connects Mn1 and Mn4, and portions of the remaining three salicylhydroximate ligands. The major moiety 4-hydroxybenzoate anion geometry was restrained to be similar to that of a non-disordered 4-hydroxybenzoate. The geometry of the entire minor moiety was restrained to be similar to that of the major moiety. Some sections of the minor disordered salicylhydroximate ligands were restrained to be planar. Pairs of close to overlapping equivalent atoms of the major and minor moieties were constrained to have identical ADPs (C1 and C1B, N2 and N2B, O4 and O4B, O7 and O7B, C22 and C22B, Dy1 and Dv1B). Two solvate DMF molecules are disordered over different orientations. The major and minor disordered moieties were each restrained to have similar geometries.  $U^{ij}$ components of ADPs for all disordered atoms closer to each other than 2.0 Å were restrained to be similar. Subject to these conditions the occupancy ratio for the main molecule disorder refined to 0.849 (9):0.151 (9). The disorder of the two DMF moieties refined to 0.64 (3):0.36 (3) for the DMF associated with N5 and to 0.51 (2):0.49 (2) for the DMF molecule associated with N8. Water hydrogen atom positions were refined and O-H and H···H distances were restrained to 0.84(2)and 1.36 (2) Å, respectively. Some water hydrogen-atom positions were further restrained based on hydrogen-bonding considerations and were restrained to be at least 3.10 (2) Å from the sodium ion. Additional crystal data, data collection, and structure refinement details are summarized in Table 7.

#### **Funding information**

Funding for this research was provided by: Faculty Professional Development Council, Pennsylvania State System of Higher Education (award to C. M. Zaleski); National Science Foundation (grant No. CHE 1625543 to M. Zeller).

References

- Anthanasopoulou, A. A., Gamer, C., Völker, L. & Rentschler, E. (2018). Novel Magnetic Nanostructures, edited by N. Domracheva, M. Caporali, & E. Rentschler, pp. 51–96. Amsterdam: Elsevier.
- Azar, M. R., Boron, T. T. III, Lutter, J. C., Daly, C. I., Zegalia, K. A., Nimthong, R., Ferrence, G. M., Zeller, M., Kampf, J. W., Pecoraro, V. L. & Zaleski, C. M. (2014). *Inorg. Chem.* 53, 1729–1742.
- Boron, T. T. III, Lutter, J. C., Daly, C. I., Chow, C. Y., Davis, A. H., Nimthong-Roldán, A., Zeller, M., Kampf, J. W., Zaleski, C. M. & Pecoraro, V. L. (2016). *Inorg. Chem.* 55, 10597–10607.
- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, F., Wei, R.-M., Li, J., Yang, L., Han, Y., Song, Y. & Dou, J.-M. (2016). *Inorg. Chem.* 55, 5914–5923.
- Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). *Chem. Eur. J.* **11**, 1479–1494.
- Cirera, J., Ruiz, E. & Alvarez, S. (2005). Organometallics, 24, 1556– 1562.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.
- Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). *SHAPE* (version 2.1). Barcelona, Spain.
- Lutter, J. C., Eliseeva, S. V., Collet, G., Martinić, I., Kampf, J. W., Schneider, B. L., Carichner, A., Sobilo, J., Lerondel, S., Petoud, S. & Pecoraro, V. L. (2020). *Chem. Eur. J.* 26, 1274–1277.
- Lutter, J. C., Zaleski, C. M. & Pecoraro, V. L. (2018). Advances in Inorganic Chemistry, edited by R. van Eldik & R. Puchta, pp. 177– 246. Amsterdam: Elsevier.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* **53**, 226–235.
- Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). *Chem. Rev.* **107**, 4933–5003.
- Nguyen, T. N. & Pecoraro, V. L. (2017). *Comprehensive Supramolecular Chemistry II*, edited by J. L. Atwood, pp. 195–212. Amsterdam: Elsevier.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Pinsky, M. & Avnir, D. (1998). Inorg. Chem. 37, 5575-5582.
- Qin, Y., Gao, Q., Chen, Y., Liu, W., Lin, F., Zhang, X., Dong, Y. & Li, Y. (2017). J. Clust. Sci 28, 891–903.
- Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2008b). CELL\_NOW. University of Göttingen, Germany.
- Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Travis, J. R., Zeller, M. & Zaleski, C. M. (2015). Acta Cryst. E71, 1300–1306.
- Travis, J. R., Zeller, M. & Zaleski, C. M. (2016). *Polyhedron*, **114**, 29–36.
- Trzesowska, A., Kruszynski, R. & Bartczak, T. J. (2004). Acta Cryst. B60, 174–178.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2020). E76, 1213-1221 [https://doi.org/10.1107/S2056989020008853]

Crystal structures of two heterotrimetallic dysprosium-manganese-sodium 12metallacrown-4 complexes with the bridging ligands 3-hydroxybenzoate and 4hydroxybenzoate

### Elizabeth C. Manickas, Matthias Zeller and Curtis M. Zaleski

### **Computing details**

For both structures, data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015), *shelXle* (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetra- $\mu$ -aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis( $\mu_2$ -3hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) *N*,*N*-dimethylformamide tetrasolvate (2)

#### Crystal data

| $[DyMn_4Na(C_7H_5O_3)_4(C_7H_4NO_2)_4(H_2O)_4]$ $\cdot$ 4C <sub>3</sub> H <sub>7</sub> NO |
|-------------------------------------------------------------------------------------------|
| $M_r = 1918.58$                                                                           |
| Monoclinic, Pn                                                                            |
| a = 14.3622 (11)  Å                                                                       |
| b = 16.5258 (11)  Å                                                                       |
| c = 16.8246 (12)  Å                                                                       |
| $\beta = 92.347 \ (3)^{\circ}$                                                            |
| V = 3989.9 (5) Å <sup>3</sup>                                                             |
| Z = 2                                                                                     |
|                                                                                           |

#### Data collection

Bruker AXS D8 Quest CMOS diffractometer Radiation source: sealed tube X-ray source Triumph curved graphite crystal monochromator  $\omega$  and phi scans Absorption correction: multi-scan (*TWINABS*; Sheldrick, 2012)  $T_{\min} = 0.053, T_{\max} = 0.109$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.073$  $wR(F^2) = 0.219$ S = 1.07 F(000) = 1938  $D_x = 1.597 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9804 reflections  $\theta = 2.8-34.6^{\circ}$   $\mu = 1.64 \text{ mm}^{-1}$  T = 150 KPrism, green  $0.30 \times 0.20 \times 0.19 \text{ mm}$ 

40158 measured reflections 40158 independent reflections 29137 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.084$  $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.9^{\circ}$  $h = -19 \rightarrow 19$  $k = -22 \rightarrow 22$  $l = -22 \rightarrow 22$ 

40158 reflections1433 parameters1908 restraintsPrimary atom site location: structure-invariant direct methods

| Secondary atom site | location: | difference | Fourier |
|---------------------|-----------|------------|---------|
| map                 |           |            |         |

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.1018P)^2 + 15.3803P]$ 

where  $P = (F_o^2 + 2F_c^2)/3$ 

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta\rho_{\rm max} = 1.86 \text{ e} \text{ Å}^{-3}$ 

al., 2013)

 $\Delta \rho_{\rm min} = -1.83 \text{ e} \text{ Å}^{-3}$ 

Absolute structure: Flack x determined using

Absolute structure parameter: -0.025 (7)

5372 quotients  $[(I^+)-(I^-)]/[(I^+)+(I^-)]$  (Parsons *et* 

**Refinement**. The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell\_Now, with the two components being related by a 90 degree rotation around the real a-axis. The two components were integrated using Saint and corrected for absorption using twinabs, resulting in the following statistics:

20647 data (5279 unique) involve domain 1 only, mean I/sigma 37.1 19807 data (5143 unique) involve domain 2 only, mean I/sigma 9.5 63719 data (23583 unique) involve 2 domains, mean I/sigma 23.2 172 data (172 unique) involve 3 domains, mean I/sigma 29.5

The exact twin matrix identified by the integration program was found to be:

0.99975 -0.00605 -0.00410 0.04844 0.02512 0.98410 -0.05702 -1.01529 0.02202

The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.0818 (8).

The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2012)).

Large sections of the main molecule are disordered, including two of the 4-hydroxybenzoate ligands, the Dy atom, manganese atom Mn1, one of the salicylhydroximate ligands, and part of another. The main difference between the major and minor moieties is the coordination mode of one of the 4-hydroxybenzoate anions. In the major moiety, all 4-hydroxybenzoate anions are coordinated to the Dy atom. In the minor moiety, O17B is detached from the Dy atom. Major moiety 4-hydroxybenzoate anion geometries were restrained to be similar to that of a not disordered 4-hydroxybenzoate. The geometry of the whole minor moiety was restrained to be similar to that of the major moiety. Some sections of the minor disordered salicylhydroximate ligands were restrained to be planar. Pairs of close to overlapping equivalent atoms of the major and minor moieties were constrained to have identical ADPs (C1 and C1B, N2 and N2B, O4 and O4B, O7 and O7B, C22 and C22B, Dy1 and Dy1B). Two solvate DMF molecules are disordered over different orientations. The major and minor disordered moieties were each restrained to have similar geometries. Uij components of ADPs for all disordered atoms closer to each other than 1.7 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio for the main molecule disorder refined to 0.849 (9) to 0.151 (9). The disorder of the two DMF moieties refined to 0.64 (3) to 0.36 (3) and 0.51 (2) to 0.49 (2).

Water H atom positions were refined and O-H and H···H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. Some water H atom positions were further restrained based on hydrogen bonding considerations, and were restrained to be at least 3.1 Angstrom from the next sodium ions.

|     | X            | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|---------------|-----------------------------|-----------|
| Mn2 | 0.2835 (2)   | 0.54730 (13) | -0.06110 (14) | 0.0270 (5)                  |           |
| Mn3 | 0.31469 (19) | 0.79391 (13) | -0.18204 (14) | 0.0229 (5)                  |           |
| Mn4 | 0.3714 (2)   | 0.91325 (13) | 0.06191 (14)  | 0.0241 (5)                  |           |
| Na1 | 0.4472 (5)   | 0.7150 (4)   | -0.0061 (4)   | 0.0308 (13)                 |           |
| 03  | 0.2981 (10)  | 0.4372 (7)   | -0.0438 (7)   | 0.045 (3)                   |           |
| O5  | 0.2923 (9)   | 0.5445 (6)   | -0.1758 (6)   | 0.035 (3)                   |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| O6         | 0.3280 (8)               | 0.7720 (7)               | -0.2890 (6)               | 0.033 (2)            |
|------------|--------------------------|--------------------------|---------------------------|----------------------|
| 08         | 0.3581 (8)               | 0.9052 (6)               | -0.1857 (6)               | 0.028 (2)            |
| 09         | 0.4259 (8)               | 1.0102 (6)               | 0.0385 (6)                | 0.032 (2)            |
| O25        | 0.4984 (13)              | 0.6609 (10)              | 0.1204 (8)                | 0.073 (5)            |
| H25C       | 0.521690                 | 0.610050                 | 0.131164                  | 0.110*               |
| H25D       | 0.507005                 | 0.679723                 | 0.168435                  | 0.110*               |
| O26        | 0.4477 (10)              | 0.5722 (8)               | -0.0585(8)                | 0.047(3)             |
| H26C       | 0.458 (16)               | 0.560 (4)                | -0.106(4)                 | 0.070*               |
| H26D       | 0.461 (15)               | 0.531 (3)                | -0.031(4)                 | 0.070*               |
| 027        | 0.4763 (9)               | 0.7604 (8)               | -0.1437(8)                | 0.041 (3)            |
| H27C       | 0.473 (14)               | 0.732 (6)                | -0.187(3)                 | 0.062*               |
| H27D       | 0.514 (12)               | 0.799 (8)                | -0.157(4)                 | 0.062*               |
| 028        | 0 5181 (8)               | 0.8430(7)                | 0.0402(7)                 | 0.032(3)             |
| H28C       | 0.539 (12)               | 0.882 (6)                | 0.010(4)                  | 0.055*               |
| H28D       | 0 555 (11)               | 0.849(5)                 | 0.082 (6)                 | 0.055*               |
| N1         | 0.2942(9)                | 0.5681(7)                | 0.002(0)                  | 0.025(3)             |
| N3         | 0.2912(9)<br>0.3442(8)   | 0.8943(7)                | -0.0522(7)                | 0.023(3)             |
| $C^2$      | 0.3108(13)               | 0.0919(9)<br>0.4324(9)   | 0.0322(7)<br>0.1012(10)   | 0.021(2)<br>0.036(4) |
| C2         | 0.3158(14)               | 0.3808(11)               | 0.1672(10)<br>0.1678(11)  | 0.030(4)<br>0.045(4) |
| Н3         | 0.321500                 | 0.404634                 | 0.219165                  | 0.043 (4)            |
| C4         | 0.321500<br>0.3131(14)   | 0.404034<br>0.3007 (10)  | 0.1630 (13)               | 0.034<br>0.048 (5)   |
| С4<br>Н4   | 0.318650                 | 0.268751                 | 0.1030 (13)               | 0.040(3)             |
| 114<br>C5  | 0.318039                 | 0.208751<br>0.2639(11)   | 0.209894<br>0.0880 (13)   | 0.057                |
| U5         | 0.3019 (13)              | 0.2059(11)               | 0.085180                  | 0.050 (5)            |
| 115<br>C6  | 0.296346                 | 0.200021                 | 0.083189                  | $0.000^{-1}$         |
| U6         | 0.2900 (13)              | 0.285858                 | -0.030755                 | 0.041(4)<br>0.040*   |
| 110<br>C7  | 0.200410                 | 0.203838                 | 0.030733                  | 0.049                |
| C7<br>C8   | 0.3011(13)<br>0.2050(10) | 0.3943(9)                | -0.2053(10)               | 0.030(4)<br>0.025(2) |
|            | 0.2930(10)<br>0.2028(11) | 0.0170(9)                | -0.2033(9)                | 0.023(3)             |
| C10        | 0.3028(11)<br>0.2010(12) | 0.0270(10)<br>0.5583(12) | -0.2927(9)<br>-0.2302(10) | 0.031(3)             |
|            | 0.2919(15)               | 0.5565 (12)              | -0.3392 (10)              | 0.041(4)             |
| П10<br>С11 | 0.283473                 | 0.307303                 | -0.515951                 | $0.050^{\circ}$      |
|            | 0.2931 (10)              | 0.5015 (14)              | -0.4217(11)               | 0.057(5)             |
|            | 0.209090                 | 0.312984                 | -0.432307                 | $0.008^{\circ}$      |
| U12        | 0.2989 (15)              | 0.0355 (14)              | -0.4581 (11)              | 0.055 (5)            |
| H12        | 0.294288                 | 0.038909                 | -0.514457                 | 0.00/*               |
| C13        | 0.3114 (14)              | 0.7048 (12)              | -0.4129 (9)               | 0.043 (4)            |
| H13        | 0.319022                 | 0./55453                 | -0.438531                 | 0.052*               |
| C14        | 0.3130(12)               | 0.7010(11)               | -0.3293(9)                | 0.036(4)             |
|            | 0.36/8 (10)              | 0.9356 (8)               | -0.1154 (9)               | 0.024(3)             |
| C16        | 0.4047 (11)              | 1.0180 (9)               | -0.1058 (10)              | 0.029 (3)            |
| C17        | 0.4135 (12)              | 1.0652 (10)              | -0.1742 (12)              | 0.040 (4)            |
| HI/        | 0.396/35                 | 1.043455                 | -0.225069                 | 0.048*               |
|            | 0.4466 (15)              | 1.1437 (11)              | -0.1674 (12)              | 0.051(5)             |
| H18        | 0.453/49                 | 1.1/525/                 | -0.213923                 | 0.062*               |
| 019        | 0.4683 (17)              | 1.1751 (12)              | -0.0974 (13)              | 0.058 (6)            |
| H19        | 0.489161                 | 1.229604                 | -0.094324                 | 0.070*               |
| C20        | 0.4617 (13)              | 1.1311 (10)              | -0.0281 (11)              | 0.042 (4)            |
| H20        | 0.479156                 | 1.155589                 | 0.021346                  | 0.051*               |

| C21         | 0.4290 (11)              | 1.0496 (9)               | -0.0294(10)             | 0.033 (3)         |                      |
|-------------|--------------------------|--------------------------|-------------------------|-------------------|----------------------|
| Dy1         | 0.20229 (13)             | 0.74838 (9)              | 0.01112 (12)            | 0.0316 (4)        | 0.849 (9)            |
| 01          | 0.3067 (10)              | 0.6491 (7)               | 0.0745 (7)              | 0.026 (3)         | 0.849 (9)            |
| 02          | 0.3466 (11)              | 0.5481 (7)               | 0.1814 (8)              | 0.035 (3)         | 0.849 (9)            |
| 04          | 0.2849 (9)               | 0.6613 (8)               | -0.0795 (7)             | 0.022 (3)         | 0.849 (9)            |
| N2          | 0.2911 (19)              | 0.6821 (12)              | -0.1615(10)             | 0.025(3)          | 0.849 (9)            |
| C1          | 0.3227 (16)              | 0.5211 (11)              | 0.1115 (10)             | 0.035 (3)         | 0.849 (9)            |
| N4          | 0.3568 (11)              | 0.7807 (8)               | 0.1614 (8)              | 0.020 (3)         | 0.849 (9)            |
| 07          | 0.3147 (10)              | 0.8160 (9)               | -0.0710(8)              | 0.024(3)          | 0.849 (9)            |
| 010         | 0 3366 (8)               | 0.8047(7)                | 0.0836(7)               | 0.018(2)          | 0 849 (9)            |
| 011         | 0.3300(0)<br>0.4079(13)  | 0.9099 (9)               | 0.1749(7)               | 0.025(4)          | 0.849 (9)            |
| C22         | 0.3931(13)               | 0.9099(9)                | 0.1719(7)<br>0.2061(10) | 0.025(1)          | 0.849 (9)            |
| C23         | 0.3931(13)<br>0.4176(12) | 0.8262(10)               | 0 2907 (9)              | 0.025(3)          | 0.849(9)             |
| C24         | 0.4365(16)               | 0.0202(10)<br>0.8932(12) | 0.2907(9)<br>0.3390(10) | 0.029(3)          | 0.049(9)             |
| H24         | 0.432946                 | 0.0952 (12)              | 0.317536                | 0.025 (4)         | 0.049(9)             |
| C25         | 0.4608 (18)              | 0.8812 (13)              | 0.4194 (11)             | 0.035<br>0.038(4) | 0.049(9)<br>0.849(9) |
| H25         | 0.472752                 | 0.0012 (15)              | 0.452556                | 0.045*            | 0.049(9)             |
| C26         | 0.472732<br>0.4678 (16)  | 0.920892                 | 0.452550<br>0.4500(12)  | 0.045             | 0.049(9)             |
| U20         | 0.4078 (10)              | 0.8003 (13)              | 0.4509 (12)             | 0.039(4)          | 0.849(9)             |
| C27         | 0.403772<br>0.407(15)    | 0.800038<br>0.7280 (12)  | 0.303409                | 0.047             | 0.849(9)             |
| U27         | 0.4407 (13)              | 0.7389 (12)              | 0.4041(10)<br>0.427100  | 0.034(4)          | 0.849(9)             |
| П27<br>С29  | 0.433396<br>0.4335(14)   | 0.080491                 | 0.42/100<br>0.2225 (0)  | $0.041^{\circ}$   | 0.049(9)             |
| 012         | 0.4223(14)               | 0.7409(10)               | 0.3233(9)<br>0.3812(7)  | 0.031(3)          | 0.849(9)             |
| 012<br>Mr.1 | 0.4088(12)               | 0.0780(8)                | 0.2813(7)<br>0.1822(2)  | 0.037(3)          | 0.849(9)             |
| MINI<br>O12 | 0.3482(3)                | 0.0053(2)                | 0.1823(2)               | 0.0277(9)         | 0.849 (9)            |
| 013         | 0.2110(11)               | 0.6665 (9)               | 0.2286 (9)              | 0.043(3)          | 0.849 (9)            |
| 014         | 0.1442 (12)              | 0.7440 (9)               | 0.1332 (9)              | 0.044 (3)         | 0.849 (9)            |
| C29         | 0.1409 (15)              | 0.6966 (12)              | 0.1932 (12)             | 0.044 (4)         | 0.849 (9)            |
| C30         | 0.0464 (14)              | 0.6781 (13)              | 0.2227 (12)             | 0.051 (4)         | 0.849 (9)            |
| C31         | 0.0398 (15)              | 0.6421 (12)              | 0.2982 (12)             | 0.049 (4)         | 0.849 (9)            |
| H31         | 0.094344                 | 0.628183                 | 0.329067                | 0.058*            | 0.849 (9)            |
| C32         | -0.0473 (14)             | 0.6277 (13)              | 0.3264 (13)             | 0.050 (4)         | 0.849 (9)            |
| H32         | -0.052485                | 0.604136                 | 0.377566                | 0.060*            | 0.849 (9)            |
| C33         | -0.1284 (15)             | 0.647 (2)                | 0.2815 (14)             | 0.052 (5)         | 0.849 (9)            |
| C34         | -0.1207 (16)             | 0.6812 (15)              | 0.2059 (14)             | 0.058 (4)         | 0.849 (9)            |
| H34         | -0.175024                | 0.693090                 | 0.173960                | 0.069*            | 0.849 (9)            |
| C35         | -0.0328 (15)             | 0.6978 (15)              | 0.1778 (14)             | 0.054 (4)         | 0.849 (9)            |
| H35         | -0.027476                | 0.722949                 | 0.127404                | 0.065*            | 0.849 (9)            |
| 015         | -0.2158 (12)             | 0.6408 (10)              | 0.3106 (11)             | 0.063 (5)         | 0.849 (9)            |
| H15O        | -0.213172                | 0.614349                 | 0.353246                | 0.095*            | 0.849 (9)            |
| Dy1B        | 0.1734 (8)               | 0.7497 (7)               | 0.0004 (8)              | 0.0316 (4)        | 0.151 (9)            |
| O1B         | 0.272 (4)                | 0.650 (2)                | 0.075 (2)               | 0.022 (9)         | 0.151 (9)            |
| O2B         | 0.299 (6)                | 0.553 (2)                | 0.187 (3)               | 0.030 (6)         | 0.151 (9)            |
| O4B         | 0.262 (6)                | 0.655 (4)                | -0.079 (4)              | 0.022 (3)         | 0.151 (9)            |
| N2B         | 0.282 (11)               | 0.669 (7)                | -0.160 (5)              | 0.025 (3)         | 0.151 (9)            |
| C1B         | 0.300 (4)                | 0.522 (2)                | 0.116 (3)               | 0.035 (3)         | 0.151 (9)            |
| N4B         | 0.315 (5)                | 0.783 (2)                | 0.161 (3)               | 0.022 (5)         | 0.151 (9)            |
| O7B         | 0.297 (6)                | 0.807 (5)                | -0.076 (4)              | 0.024 (3)         | 0.151 (9)            |
| O10B        | 0.306 (4)                | 0.804 (3)                | 0.080 (3)               | 0.020 (7)         | 0.151 (9)            |

| O11B | 0.388 (10)               | 0.908 (5)                | 0.175 (2)            | 0.026(7)           | 0.151 (9)            |
|------|--------------------------|--------------------------|----------------------|--------------------|----------------------|
| C22B | 0.363 (7)                | 0.838 (3)                | 0.200 (3)            | 0.026 (3)          | 0.151 (9)            |
| C23B | 0.390 (5)                | 0.827 (3)                | 0.286 (3)            | 0.028 (5)          | 0.151 (9)            |
| C24B | 0.422 (8)                | 0.895 (3)                | 0.327 (4)            | 0.032 (6)          | 0.151 (9)            |
| H24B | 0.425825                 | 0.945595                 | 0.299777             | 0.038*             | 0.151 (9)            |
| C25B | 0.449 (9)                | 0.890 (4)                | 0.407 (4)            | 0.035 (6)          | 0.151 (9)            |
| H25B | 0.470631                 | 0.936208                 | 0.434753             | 0.042*             | 0.151 (9)            |
| C26B | 0.444 (8)                | 0.816 (5)                | 0.446 (3)            | 0.036 (6)          | 0.151 (9)            |
| H26B | 0.461723                 | 0.811941                 | 0.500680             | 0.043*             | 0.151 (9)            |
| C27B | 0.412 (6)                | 0.748 (4)                | 0.405 (3)            | 0.034 (6)          | 0.151 (9)            |
| H27B | 0.408009                 | 0.697062                 | 0.431630             | 0.041*             | 0.151 (9)            |
| C28B | 0.385 (4)                | 0.753 (3)                | 0.325 (3)            | 0.031 (5)          | 0.151 (9)            |
| O12B | 0.355 (5)                | 0.684 (3)                | 0.288 (2)            | 0.027 (6)          | 0.151 (9)            |
| Mn1B | 0.3022 (17)              | 0.6696 (11)              | 0.1860 (10)          | 0.022 (3)          | 0.151 (9)            |
| O13B | 0.160 (3)                | 0.676 (4)                | 0.221 (3)            | 0.046 (6)          | 0.151 (9)            |
| 014B | 0.106 (4)                | 0.750 (4)                | 0.117 (3)            | 0.047 (8)          | 0.151 (9)            |
| C29B | 0.093 (3)                | 0.704 (6)                | 0.178 (4)            | 0.047 (5)          | 0.151 (9)            |
| C30B | -0.005(4)                | 0.677 (7)                | 0.185 (5)            | 0.052(6)           | 0.151 (9)            |
| C31B | -0.036(4)                | 0.647(7)                 | 0.257(5)             | 0.052(5)           | 0.151 (9)            |
| H31B | 0.006684                 | 0.630446                 | 0.298238             | 0.063*             | 0.151 (9)            |
| C32B | -0.132(5)                | 0.641 (14)               | 0.265 (6)            | 0.053 (6)          | 0.151(9)             |
| H32B | -0.154361                | 0.629196                 | 0.316536             | 0.064*             | 0.151 (9)            |
| C33B | -0.196(4)                | 0.621(7)                 | 0.202(5)             | 0.051(7)           | 0.151(9)             |
| C34B | -0.164(4)                | 0.692(8)                 | 0.202(5)<br>0.136(5) | 0.055(7)           | 0.151(9)             |
| H34B | -0.207699                | 0.707294                 | 0.094201             | 0.055 (7)          | 0.151(9)             |
| C35B | -0.071(4)                | 0.707294<br>0.710(7)     | 0.094201<br>0.130(6) | 0.000<br>0.054 (7) | 0.151(9)             |
| H35B | -0.051631                | 0.744938                 | 0.088435             | 0.054 (7)          | 0.151(9)             |
| 015B | -0.290(4)                | 0.744950                 | 0.211 (6)            | 0.064 (15)         | 0.151(9)             |
| H15B | -0.318293                | 0.044 (0)                | 0.181176             | 0.103*             | 0.151(9)             |
| 016  | 0.310299<br>0.1346 (10)  | 0.5323 (9)               | -0.0740(8)           | 0.103<br>0.041 (3) | 0.131(9)<br>0.849(9) |
| 017  | 0.1040(10)<br>0.1018(12) | 0.5325(9)<br>0.6375(8)   | 0.0740(0)            | 0.041(3)           | 0.849(9)             |
| C36  | 0.1010(12)<br>0.0793(16) | 0.0373(0)                | -0.0465(14)          | 0.049(3)           | 0.849(9)             |
| C37  | -0.0219(16)              | 0.5815(15)<br>0.5729(15) | -0.0671(16)          | 0.049(4)           | 0.849(9)             |
| C38  | -0.0536(10)              | 0.5729(13)<br>0.5039(17) | -0.108(2)            | 0.003(4)           | 0.849(9)             |
| H38  | -0.012944                | 0.3035(17)               | -0.122684            | 0.009(5)           | 0.849(9)             |
| C39  | -0.1/08(10)              | 0.5016 (18)              | -0.122004            | 0.033              | 0.849(9)             |
| U39  | -0.175599                | 0.3010 (18)              | -0.152122            | 0.078(3)           | 0.849(9)             |
| C40  | -0.2081(10)              | 0.455800                 | -0.104(2)            | 0.094              | 0.849(9)             |
| C40  | -0.172(2)                | 0.5050(18)<br>0.6317(18) | -0.067(2)            | 0.080 (0)          | 0.849(9)             |
| U41  | -0.212367                | 0.676146                 | -0.057268            | 0.089(0)           | 0.849(9)             |
| C42  | -0.0804(10)              | 0.6362(17)               | -0.0426(10)          | 0.100              | 0.849(9)             |
| U42  | -0.056017                | 0.0302 (17)              | -0.011034            | 0.079(3)           | 0.849(9)             |
| 018  | -0.2015(16)              | 0.079874                 | -0.121(2)            | $0.093^{\circ}$    | 0.849(9)             |
| H180 | -0.311444                | 0.501 (2)                | -0.121(2)            | 0.122(0)<br>0.182* | 0.049 (9)            |
| 016P | -0.311444                | 0.504554                 | -0.170052            | $0.102^{\circ}$    | 0.649(9)             |
| 010D | 0.133(3)                 | 0.301(3)                 | -0.074(4)            | 0.043(0)           | 0.151(9)             |
|      | 0.034(0)                 | 0.000(0)                 | 0.033(4)             | 0.003(13)          | 0.131(9)             |
| C30B | 0.000(3)                 | 0.584 (8)                | -0.058(4)            | 0.050 (6)          | 0.151 (9)            |
| C3/B | -0.029(3)                | 0.5/1(6)                 | -0.085 (5)           | 0.065 (6)          | 0.151 (9)            |

| C38B       | -0.051(3)   | 0.492 (6)               | -0.107 (9)             | 0.070 (6)            | 0.151 (9) |
|------------|-------------|-------------------------|------------------------|----------------------|-----------|
| H38B       | -0.004884   | 0.451473                | -0.104425              | 0.084*               | 0.151 (9) |
| C39B       | -0.142 (4)  | 0.473 (5)               | -0.132(10)             | 0.078 (7)            | 0.151 (9) |
| H39B       | -0.157729   | 0.419431                | -0.146620              | 0.093*               | 0.151 (9) |
| C40B       | -0.210 (3)  | 0.533 (5)               | -0.135 (8)             | 0.085(7)             | 0.151 (9) |
| C41B       | -0.187(4)   | 0.612 (4)               | -0.114(8)              | 0.084 (6)            | 0.151 (9) |
| H41B       | -0.233727   | 0.653208                | -0.116084              | 0.101*               | 0.151 (9) |
| C42B       | -0.096(5)   | 0.631 (5)               | -0.089(7)              | 0.077 (6)            | 0.151 (9) |
| H42B       | -0.080882   | 0.685251                | -0.073888              | 0.092*               | 0.151 (9) |
| O18B       | -0.300(3)   | 0.516 (5)               | -0.154 (9)             | 0.095 (15)           | 0.151 (9) |
| H18B       | -0.320078   | 0.545931                | -0.191201              | 0.142*               | 0.151 (9) |
| 019        | 0.1728 (8)  | 0.8272 (7)              | -0.2033(7)             | 0.036 (3)            | (,)       |
| 020        | 0.1083 (8)  | 0.7685(7)               | -0.0984(7)             | 0.042(3)             |           |
| C43        | 0.1037 (11) | 0.8116 (9)              | -0.1622(9)             | 0.033(4)             |           |
| C44        | 0.0110 (7)  | 0.8429 (9)              | -0.1900(7)             | 0.032(4)             |           |
| C45        | 0.0012 (8)  | 0.8741(8)               | -0.2664(7)             | 0.030(3)             |           |
| H45        | 0.052975    | 0.875370                | -0.299664              | 0.036*               |           |
| C46        | -0.0847(8)  | 0.9036 (8)              | -0.2940(7)             | 0.030(3)             |           |
| H46        | -0.091907   | 0.924637                | -0.346416              | 0.036*               |           |
| C47        | -0.1601 (8) | 0.9022 (9)              | -0.2450(7)             | 0.033(3)             |           |
| C48        | -0.1504(8)  | 0.9022(9)<br>0.8704(11) | -0.1686(7)             | 0.035(3)<br>0.040(4) |           |
| H48        | -0.202477   | 0.868284                | -0.135577              | 0.048*               |           |
| C49        | -0.0642(8)  | 0.860201<br>0.8419(10)  | -0.1410(7)             | 0.035(4)             |           |
| H49        | -0.056712   | 0.821583                | -0.088273              | 0.043*               |           |
| 021        | -0.2449(8)  | 0.9304 (8)              | -0.2702(8)             | 0.047(3)             |           |
| H210       | -0.238122   | 0.967694                | -0.303444              | 0.071*               |           |
| 022        | 0 2392 (8)  | 0.9745 (6)              | 0.0926 (7)             | 0.071                |           |
| 023        | 0.1592 (8)  | 0.8793 (6)              | 0.0249(7)              | 0.031(2)<br>0.036(3) |           |
| C50        | 0.1692(0)   | 0.0793(0)<br>0.9423(8)  | 0.0219(7)              | 0.030(3)             |           |
| C51        | 0.0719 (9)  | 0.9786(9)               | 0.0001(9)<br>0.0883(9) | 0.031(3)<br>0.028(3) |           |
| C52        | 0.0658(10)  | 1.0561 (8)              | 0.0005(9)<br>0.1207(8) | 0.026(3)             |           |
| U52<br>Н52 | 0.121092    | 1.096494                | 0.130962               | 0.020 (5)            |           |
| C53        | -0.0200(10) | 1.0896 (9)              | 0.1383(9)              | 0.030(3)             |           |
| Н53        | -0.023111   | 1.0090 (9)              | 0.160452               | 0.035*               |           |
| C54        | -0.1002(10) | 1.0455 (9)              | 0.1232 (8)             | 0.033                |           |
| C55        | -0.0946(11) | 0.9676(10)              | 0.0914(10)             | 0.031(3)<br>0.040(4) |           |
| Н55        | -0.150018   | 0.937181                | 0.081930               | 0.048*               |           |
| C56        | -0.0104(10) | 0.9343(9)               | 0.001990<br>0.0737(10) | 0.032(4)             |           |
| H56        | -0.007791   | 0.881476                | 0.051759               | 0.032(1)             |           |
| 024        | -0.1870(8)  | 1.0765 (8)              | 0.1350(7)              | 0.039                |           |
| H24O       | -0.182646   | 1.126221                | 0.144980               | 0.063*               |           |
| 029        | 0.534(3)    | 0.5064(18)              | 0.072(2)               | 0.003                | 0.64(3)   |
| C57        | 0.551 (3)   | 0.467(2)                | 0.136(2)               | 0.079(7)             | 0.64(3)   |
| H57        | 0.563221    | 0.499596                | 0.182111               | 0.095*               | 0.64(3)   |
| N5         | 0.5544(15)  | 0 3896 (13)             | 0.1484(13)             | 0.079(5)             | 0.64(3)   |
| C58        | 0.548(4)    | 0.341(3)                | 0.079 (3)              | 0.100(10)            | 0.64(3)   |
| H58A       | 0.551354    | 0.283857                | 0.093564               | 0.151*               | 0.64(3)   |
| H58B       | 0.489232    | 0.352043                | 0.049507               | 0.151*               | 0.64(3)   |
|            | ····/       | 0.00-0.0                | 0.0                    | ···· 1               | ···· (·)  |

| H58C | 0.600280    | 0.354158    | 0.044897     | 0.151*     | 0.64 (3) |
|------|-------------|-------------|--------------|------------|----------|
| C59  | 0.560 (3)   | 0.353 (3)   | 0.226 (2)    | 0.078 (9)  | 0.64 (3) |
| H59A | 0.591540    | 0.300613    | 0.223010     | 0.117*     | 0.64 (3) |
| H59B | 0.496707    | 0.344781    | 0.244652     | 0.117*     | 0.64 (3) |
| H59C | 0.594682    | 0.388422    | 0.263137     | 0.117*     | 0.64 (3) |
| O29B | 0.558 (7)   | 0.506 (3)   | 0.075 (5)    | 0.083 (13) | 0.36 (3) |
| C57B | 0.544 (5)   | 0.430 (3)   | 0.082 (2)    | 0.077 (7)  | 0.36 (3) |
| H57B | 0.525002    | 0.400831    | 0.035292     | 0.093*     | 0.36 (3) |
| N5B  | 0.5544 (15) | 0.3896 (13) | 0.1484 (13)  | 0.079 (5)  | 0.36 (3) |
| C58B | 0.550 (5)   | 0.437 (4)   | 0.219 (3)    | 0.085 (12) | 0.36 (3) |
| H58D | 0.558930    | 0.401230    | 0.265523     | 0.127*     | 0.36 (3) |
| H58E | 0.599950    | 0.477426    | 0.219819     | 0.127*     | 0.36 (3) |
| H58F | 0.489716    | 0.463469    | 0.220381     | 0.127*     | 0.36 (3) |
| C59B | 0.564 (6)   | 0.305 (2)   | 0.157 (4)    | 0.091 (12) | 0.36 (3) |
| H59D | 0.564764    | 0.279721    | 0.104187     | 0.136*     | 0.36 (3) |
| H59E | 0.511996    | 0.283417    | 0.186061     | 0.136*     | 0.36 (3) |
| H59F | 0.622915    | 0.292777    | 0.186364     | 0.136*     | 0.36 (3) |
| O30  | 0.5200 (10) | 0.6114 (9)  | -0.2014 (9)  | 0.059 (4)  |          |
| C60  | 0.5257 (15) | 0.5688 (14) | -0.2619 (15) | 0.059 (6)  |          |
| H60  | 0.512842    | 0.512776    | -0.256171    | 0.070*     |          |
| N6   | 0.5476 (11) | 0.5933 (11) | -0.3324 (10) | 0.049 (4)  |          |
| C61  | 0.5632 (18) | 0.6748 (15) | -0.3471 (16) | 0.071 (7)  |          |
| H61A | 0.551564    | 0.706276    | -0.299162    | 0.085*     |          |
| H61B | 0.521015    | 0.693088    | -0.390789    | 0.085*     |          |
| H61C | 0.627874    | 0.682628    | -0.361852    | 0.085*     |          |
| C62  | 0.544 (2)   | 0.535 (2)   | -0.3995 (18) | 0.094 (9)  |          |
| H62A | 0.493602    | 0.549649    | -0.437476    | 0.141*     |          |
| H62B | 0.533704    | 0.480279    | -0.379198    | 0.141*     |          |
| H62C | 0.603721    | 0.536298    | -0.426282    | 0.141*     |          |
| 031  | 0.5907 (9)  | 0.8921 (8)  | -0.1024 (8)  | 0.049 (3)  |          |
| C63  | 0.6086 (12) | 0.9537 (12) | -0.1448 (12) | 0.050 (5)  |          |
| H63  | 0.585549    | 0.952341    | -0.198497    | 0.060*     |          |
| N7   | 0.6549 (12) | 1.0184 (11) | -0.1227 (11) | 0.064 (5)  |          |
| C64  | 0.690 (2)   | 1.025 (2)   | -0.0426 (18) | 0.115 (14) |          |
| H64A | 0.672293    | 0.976160    | -0.013118    | 0.172*     |          |
| H64B | 0.663044    | 1.072559    | -0.017871    | 0.172*     |          |
| H64C | 0.757741    | 1.029481    | -0.041643    | 0.172*     |          |
| C65  | 0.6753 (16) | 1.0815 (13) | -0.1768 (16) | 0.069 (7)  |          |
| H65A | 0.662379    | 1.062823    | -0.231407    | 0.104*     |          |
| H65B | 0.741136    | 1.096459    | -0.169971    | 0.104*     |          |
| H65C | 0.636320    | 1.128648    | -0.166189    | 0.104*     |          |
| O32  | 0.6075 (19) | 0.7910 (17) | 0.1735 (14)  | 0.050 (7)  | 0.51 (2) |
| C66  | 0.633 (3)   | 0.799 (2)   | 0.248 (2)    | 0.058 (6)  | 0.51 (2) |
| H66  | 0.632976    | 0.751106    | 0.279596     | 0.070*     | 0.51 (2) |
| N8   | 0.660 (3)   | 0.867 (2)   | 0.2832 (19)  | 0.059 (6)  | 0.51 (2) |
| C67  | 0.664 (4)   | 0.937 (3)   | 0.239 (3)    | 0.069 (9)  | 0.51 (2) |
| H67A | 0.728462    | 0.957485    | 0.240666     | 0.103*     | 0.51 (2) |
| H67B | 0.622884    | 0.977860    | 0.260172     | 0.103*     | 0.51 (2) |

| H67C | 0.644884  | 0.925393  | 0.183226  | 0.103*     | 0.51 (2) |
|------|-----------|-----------|-----------|------------|----------|
| C68  | 0.692 (4) | 0.859 (3) | 0.365 (2) | 0.075 (11) | 0.51 (2) |
| H68A | 0.758926  | 0.848350  | 0.367287  | 0.112*     | 0.51 (2) |
| H68B | 0.659183  | 0.813519  | 0.389090  | 0.112*     | 0.51 (2) |
| H68C | 0.678673  | 0.908794  | 0.393418  | 0.112*     | 0.51 (2) |
| O32B | 0.637 (3) | 0.847 (2) | 0.173 (2) | 0.076 (8)  | 0.49 (2) |
| C66B | 0.640 (4) | 0.911 (3) | 0.219 (2) | 0.063 (7)  | 0.49 (2) |
| H66B | 0.623516  | 0.962244  | 0.195981  | 0.076*     | 0.49 (2) |
| N8B  | 0.664 (3) | 0.907 (2) | 0.294 (2) | 0.058 (6)  | 0.49 (2) |
| C67B | 0.677 (4) | 0.829 (2) | 0.328 (3) | 0.067 (10) | 0.49 (2) |
| H67D | 0.733264  | 0.804046  | 0.307132  | 0.100*     | 0.49 (2) |
| H67E | 0.623148  | 0.794713  | 0.315217  | 0.100*     | 0.49 (2) |
| H67F | 0.685459  | 0.833973  | 0.386213  | 0.100*     | 0.49 (2) |
| C68B | 0.661 (3) | 0.976 (2) | 0.344 (2) | 0.051 (9)  | 0.49 (2) |
| H68D | 0.658889  | 1.025445  | 0.311370  | 0.076*     | 0.49 (2) |
| H68E | 0.716703  | 0.977496  | 0.379707  | 0.076*     | 0.49 (2) |
| H68F | 0.605251  | 0.974111  | 0.375919  | 0.076*     | 0.49 (2) |
|      |           |           |           |            |          |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|------------|-------------|
| Mn2 | 0.0437 (14) | 0.0177 (10) | 0.0200 (10) | 0.0027 (10) | 0.0047 (9) | 0.0002 (8)  |
| Mn3 | 0.0299 (11) | 0.0232 (11) | 0.0161 (10) | 0.0002 (9)  | 0.0046 (8) | 0.0032 (8)  |
| Mn4 | 0.0341 (12) | 0.0179 (10) | 0.0206 (10) | 0.0012 (9)  | 0.0034 (9) | 0.0003 (8)  |
| Na1 | 0.042 (3)   | 0.023 (3)   | 0.027 (3)   | 0.003 (3)   | -0.008 (3) | -0.004 (2)  |
| 03  | 0.078 (9)   | 0.023 (5)   | 0.034 (6)   | -0.002 (6)  | 0.006 (6)  | -0.002 (5)  |
| 05  | 0.061 (8)   | 0.017 (5)   | 0.027 (5)   | 0.004 (5)   | 0.008 (5)  | -0.006 (4)  |
| 06  | 0.038 (6)   | 0.043 (6)   | 0.020 (5)   | -0.011 (5)  | 0.006 (4)  | 0.006 (5)   |
| 08  | 0.035 (6)   | 0.027 (5)   | 0.021 (5)   | -0.003 (4)  | 0.005 (4)  | 0.005 (4)   |
| 09  | 0.044 (6)   | 0.022 (5)   | 0.031 (6)   | -0.009 (5)  | 0.003 (5)  | 0.000 (4)   |
| O25 | 0.113 (13)  | 0.061 (10)  | 0.045 (8)   | 0.043 (9)   | -0.013 (8) | -0.011 (7)  |
| O26 | 0.059 (8)   | 0.046 (7)   | 0.036 (7)   | 0.022 (6)   | 0.006 (6)  | 0.003 (6)   |
| O27 | 0.034 (6)   | 0.044 (7)   | 0.046 (7)   | 0.000 (5)   | 0.008 (5)  | -0.008 (6)  |
| O28 | 0.041 (7)   | 0.038 (6)   | 0.032 (6)   | 0.004 (5)   | -0.001 (5) | 0.000 (5)   |
| N1  | 0.037 (7)   | 0.014 (5)   | 0.025 (6)   | -0.001 (5)  | 0.005 (5)  | 0.000 (5)   |
| N3  | 0.026 (6)   | 0.012 (5)   | 0.024 (6)   | 0.005 (5)   | -0.001 (5) | 0.000 (4)   |
| C2  | 0.052 (10)  | 0.024 (8)   | 0.030 (8)   | -0.005 (7)  | -0.004 (7) | 0.001 (6)   |
| C3  | 0.068 (12)  | 0.037 (9)   | 0.029 (8)   | 0.002 (9)   | -0.008 (8) | 0.011 (7)   |
| C4  | 0.058 (11)  | 0.028 (8)   | 0.057 (12)  | -0.002 (8)  | -0.004 (9) | 0.019 (8)   |
| C5  | 0.060 (12)  | 0.033 (9)   | 0.057 (12)  | 0.009 (8)   | 0.014 (10) | 0.009 (8)   |
| C6  | 0.058 (11)  | 0.019 (7)   | 0.046 (10)  | -0.001 (7)  | 0.015 (8)  | -0.004 (7)  |
| C7  | 0.050 (10)  | 0.020 (7)   | 0.037 (9)   | -0.002 (7)  | 0.008 (7)  | -0.003 (6)  |
| C8  | 0.024 (7)   | 0.029 (7)   | 0.024 (6)   | 0.002 (6)   | 0.002 (5)  | -0.004 (5)  |
| C9  | 0.028 (8)   | 0.038 (8)   | 0.028 (7)   | 0.002 (7)   | 0.011 (6)  | -0.005 (7)  |
| C10 | 0.048 (10)  | 0.045 (10)  | 0.032 (9)   | -0.006 (8)  | 0.008 (8)  | -0.003 (7)  |
| C11 | 0.067 (14)  | 0.071 (14)  | 0.033 (10)  | -0.014 (11) | 0.016 (9)  | -0.021 (10) |
| C12 | 0.060 (13)  | 0.083 (15)  | 0.024 (8)   | -0.011 (11) | 0.006 (8)  | -0.009 (9)  |
| C13 | 0.057 (11)  | 0.056 (11)  | 0.017 (7)   | -0.012 (9)  | 0.010 (7)  | -0.006 (7)  |

| C14        | 0.035 (9)              | 0.054 (10)             | 0.018 (7)            | -0.011 (8)  | 0.004 (6)   | -0.006(7)            |
|------------|------------------------|------------------------|----------------------|-------------|-------------|----------------------|
| C15        | 0.025 (7)              | 0.018 (6)              | 0.028 (7)            | 0.003 (5)   | -0.004 (6)  | 0.007 (6)            |
| C16        | 0.026 (8)              | 0.029 (8)              | 0.034 (8)            | -0.002(6)   | 0.005 (6)   | 0.002 (6)            |
| C17        | 0.039 (9)              | 0.022 (8)              | 0.060 (12)           | -0.004 (7)  | 0.009 (8)   | 0.006 (7)            |
| C18        | 0.065 (13)             | 0.039 (10)             | 0.050(11)            | -0.018 (9)  | 0.007 (9)   | 0.026 (9)            |
| C19        | 0.085 (15)             | 0.031 (9)              | 0.060 (13)           | -0.013 (10) | 0.032 (12)  | 0.010 (9)            |
| C20        | 0.052 (11)             | 0.027 (8)              | 0.048 (10)           | -0.009 (7)  | 0.014 (8)   | -0.004 (7)           |
| C21        | 0.028 (8)              | 0.028 (8)              | 0.045 (9)            | 0.000 (6)   | 0.017 (7)   | 0.003 (7)            |
| Dv1        | 0.0381 (12)            | 0.0309 (4)             | 0.0258 (6)           | 0.0046 (7)  | 0.0024 (7)  | 0.0003 (4)           |
| 01         | 0.042 (8)              | 0.019 (5)              | 0.016 (5)            | 0.005 (5)   | -0.002(5)   | -0.001(4)            |
| 02         | 0.052 (7)              | 0.028 (6)              | 0.024 (5)            | -0.002(6)   | -0.003(6)   | 0.008 (5)            |
| 04         | 0.037(7)               | 0.021 (5)              | 0.010 (4)            | 0.009 (5)   | 0.006 (4)   | 0.007 (4)            |
| N2         | 0.030 (6)              | 0.026 (6)              | 0.020 (5)            | 0.017 (5)   | -0.006(4)   | -0.007(4)            |
| C1         | 0.054 (9)              | 0.030 (6)              | 0.022 (6)            | 0.001 (7)   | 0.001 (6)   | 0.001 (5)            |
| N4         | 0.031 (6)              | 0.015 (5)              | 0.016(5)             | 0.001 (5)   | 0.004 (5)   | 0.000(4)             |
| 07         | 0.045 (8)              | 0.014 (5)              | 0.014(5)             | -0.005(5)   | 0.000(5)    | 0.003(4)             |
| 010        | 0.021 (6)              | 0.017(5)               | 0.015(5)             | -0.001(5)   | -0.006(4)   | 0.002(1)<br>0.007(4) |
| 011        | 0.021(0)               | 0.017(5)               | 0.012(5)             | -0.001(5)   | 0.002 (5)   | -0.004(4)            |
| C22        | 0.032(10)              | 0.021(5)               | 0.022(5)             | 0.001(5)    | 0.002(5)    | 0.001(1)             |
| C23        | 0.030(7)               | 0.022(6)               | 0.022(5)             | 0.001 (6)   | 0.010(5)    | 0.003(1)             |
| C24        | 0.032(0)               | 0.029(0)<br>0.041(7)   | 0.012(7)             | -0.003(7)   | 0.000 (6)   | -0.001(5)            |
| C25        | 0.030(9)               | 0.011(7)<br>0.054(8)   | 0.012(7)             | -0.004(8)   | 0.000(7)    | -0.007(7)            |
| C26        | 0.042(10)<br>0.047(10) | 0.050 (8)              | 0.010(7)<br>0.021(7) | -0.009(8)   | -0.005(7)   | -0.006(7)            |
| C27        | 0.047(10)              | 0.050(8)<br>0.042(8)   | 0.021(7)             | -0.001(7)   | -0.003(7)   | 0.000(7)             |
| C28        | 0.044(9)               | 0.042(0)<br>0.036(7)   | 0.016 (6)            | 0.001(7)    | 0.004(0)    | 0.000(0)             |
| 012        | 0.040(8)               | 0.030(7)               | 0.010(0)             | 0.001(7)    | -0.010(6)   | 0.004(5)             |
| Mn1        | 0.037(8)               | 0.030(0)               | 0.021(0)             | 0.002(0)    | 0.010(0)    | -0.001(3)            |
| 013        | 0.044(2)               | 0.0210(14)<br>0.035(6) | 0.0174(13)           | -0.0003(10) | 0.0023(10)  | -0.0004(10)          |
| 013        | 0.050(8)               | 0.035(0)<br>0.037(7)   | 0.046(7)             | 0.003(0)    | 0.021(0)    | 0.007 (0)            |
| $C_{20}$   | 0.051(0)               | 0.037(7)               | 0.040(7)             | -0.003(8)   | 0.013(0)    | -0.001(0)            |
| C29        | 0.009(9)               | 0.022(7)               | 0.045(8)             | -0.003(8)   | 0.024(3)    | -0.003(7)            |
| C30        | 0.003(8)               | 0.030(7)               | 0.055(8)             | -0.003(7)   | 0.020(7)    | -0.007(7)            |
| C31<br>C32 | 0.003(10)              | 0.028(8)               | 0.037(10)            | -0.013(8)   | 0.030(8)    | -0.003(8)            |
| C32        | 0.003(9)               | 0.034(8)               | 0.033(9)             | -0.013(8)   | 0.023(8)    | 0.004(8)             |
| C33        | 0.062(9)               | 0.033(9)               | 0.060(9)             | -0.007(8)   | 0.024(8)    | 0.008(9)             |
| C34        | 0.068(9)               | 0.040(8)               | 0.061(9)             | -0.003(8)   | 0.022(8)    | 0.000(8)             |
| 015        | 0.063(9)               | 0.046(8)               | 0.056(9)             | -0.008(8)   | 0.025(8)    | 0.001(8)             |
|            | 0.071(10)              | 0.051(9)               | 0.071(10)            | 0.004(8)    | 0.026 (9)   | 0.014(8)             |
| DYIB       | 0.0381(12)             | 0.0309 (4)             | 0.0258 (6)           | 0.0046(7)   | 0.0024(7)   | 0.0003(4)            |
| OIB        | 0.034 (17)             | 0.019 (14)             | 0.013 (14)           | 0.002 (15)  | 0.005 (15)  | 0.000 (13)           |
| 02B        | 0.048 (11)             | 0.025 (10)             | 0.018 (10)           | -0.003 (10) | 0.001 (10)  | 0.005 (10)           |
| O4B        | 0.037 (7)              | 0.021 (5)              | 0.010 (4)            | 0.009 (5)   | 0.006 (4)   | 0.007 (4)            |
| N2B        | 0.030 (6)              | 0.026 (6)              | 0.020 (5)            | 0.017 (5)   | -0.006 (4)  | -0.007(4)            |
| CIB        | 0.054 (9)              | 0.030 (6)              | 0.022 (6)            | 0.001 (7)   | 0.001 (6)   | 0.001 (5)            |
| N4B        | 0.032 (10)             | 0.016 (9)              | 0.019 (9)            | 0.002 (10)  | 0.001 (10)  | 0.004 (9)            |
| 07/B       | 0.045 (8)              | 0.014 (5)              | 0.014 (5)            | -0.005(5)   | 0.000 (5)   | 0.003 (4)            |
| OTOB       | 0.026 (14)             | 0.017 (12)             | 0.017 (12)           | 0.002 (13)  | -0.001 (13) | 0.001 (12)           |
| OHB        | 0.033 (15)             | 0.022 (12)             | 0.023 (12)           | 0.002 (12)  | 0.014 (12)  | 0.001 (12)           |
| C22B       | 0.036 (7)              | 0.022 (5)              | 0.022 (5)            | 0.005 (5)   | 0.010 (5)   | 0.003 (4)            |

| C23B | 0.038 (10) | 0.032 (9)  | 0.016 (9)  | 0.000 (9)   | 0.004 (9)   | 0.001 (9)   |
|------|------------|------------|------------|-------------|-------------|-------------|
| C24B | 0.038 (12) | 0.042 (11) | 0.016 (11) | 0.000 (11)  | 0.003 (10)  | -0.001 (10) |
| C25B | 0.041 (12) | 0.047 (11) | 0.017 (11) | -0.004 (11) | -0.001 (11) | -0.003(10)  |
| C26B | 0.042 (12) | 0.047 (11) | 0.018 (10) | -0.003 (11) | -0.004 (11) | -0.002(10)  |
| C27B | 0.044 (12) | 0.042 (11) | 0.016 (10) | -0.002(11)  | -0.003 (11) | 0.004 (10)  |
| C28B | 0.043 (10) | 0.035 (9)  | 0.016 (9)  | -0.001 (9)  | -0.001 (9)  | 0.003 (9)   |
| O12B | 0.040 (11) | 0.027 (10) | 0.014 (10) | 0.001 (10)  | 0.001 (10)  | 0.002 (9)   |
| Mn1B | 0.037 (8)  | 0.015 (6)  | 0.015 (6)  | 0.000(7)    | 0.003 (7)   | 0.005 (5)   |
| O13B | 0.060 (11) | 0.032 (11) | 0.047 (11) | 0.000 (11)  | 0.017 (11)  | -0.009(10)  |
| O14B | 0.060 (15) | 0.026 (13) | 0.055 (14) | -0.003 (14) | 0.017 (14)  | 0.002 (13)  |
| C29B | 0.059 (10) | 0.032 (9)  | 0.050 (9)  | -0.003(9)   | 0.018 (9)   | -0.003(9)   |
| C30B | 0.063 (11) | 0.039 (11) | 0.055 (11) | -0.006(10)  | 0.021 (10)  | 0.002 (10)  |
| C31B | 0.063 (9)  | 0.038 (9)  | 0.057 (9)  | -0.008(9)   | 0.024 (9)   | 0.002 (9)   |
| C32B | 0.064 (11) | 0.038 (11) | 0.060 (11) | -0.007(11)  | 0.024 (11)  | 0.006(11)   |
| C33B | 0.066 (12) | 0.040(12)  | 0.061(12)  | -0.004(12)  | 0.023(12)   | 0.009(12)   |
| C34B | 0.064(13)  | 0.043(13)  | 0.058(13)  | -0.008(13)  | 0.022(13)   | 0.005(12)   |
| C35B | 0.063(13)  | 0.043(13)  | 0.056(13)  | -0.008(13)  | 0.021(13)   | 0.007(13)   |
| 015B | 0.09(3)    | 0.04(3)    | 0.07(3)    | 0.00(3)     | 0.03(3)     | 0.02(3)     |
| 016  | 0.060 (8)  | 0.035(7)   | 0.030 (6)  | -0.010(6)   | 0.011 (6)   | 0.006 (6)   |
| 017  | 0.069 (9)  | 0.034(7)   | 0.034(7)   | -0.007(6)   | 0.017 (6)   | 0.004 (6)   |
| C36  | 0.082(9)   | 0.028(7)   | 0.037(8)   | -0.002(8)   | 0.005 (8)   | 0.009(7)    |
| C37  | 0.089(9)   | 0.048 (8)  | 0.053 (9)  | 0.003 (8)   | 0.016 (8)   | 0.009 (8)   |
| C38  | 0.095 (11) | 0.058 (10) | 0.055 (9)  | 0.001 (9)   | 0.014 (9)   | 0.011 (9)   |
| C39  | 0.099 (11) | 0.076 (11) | 0.061 (10) | -0.004(10)  | 0.015 (10)  | 0.014 (10)  |
| C40  | 0.103 (11) | 0.077 (11) | 0.077 (11) | 0.003 (10)  | 0.005 (10)  | 0.013 (10)  |
| C41  | 0.104 (12) | 0.075(12)  | 0.088(12)  | 0.012 (11)  | 0.010 (11)  | 0.004 (11)  |
| C42  | 0.101 (11) | 0.063 (10) | 0.074 (11) | 0.008 (10)  | 0.010 (10)  | 0.008 (10)  |
| 018  | 0.101 (15) | 0.143 (19) | 0.119 (18) | 0.014 (15)  | -0.013 (14) | 0.021 (15)  |
| O16B | 0.069 (12) | 0.030 (12) | 0.032 (12) | -0.004(12)  | 0.010 (11)  | 0.008 (12)  |
| 017B | 0.09 (3)   | 0.05 (2)   | 0.05 (2)   | -0.01(2)    | -0.01(2)    | 0.01 (2)    |
| C36B | 0.078 (11) | 0.035(10)  | 0.038 (10) | -0.004(10)  | 0.011 (10)  | 0.009 (9)   |
| C37B | 0.091 (10) | 0.051 (10) | 0.055 (10) | 0.002 (10)  | 0.011 (10)  | 0.009 (10)  |
| C38B | 0.095 (12) | 0.060 (12) | 0.057 (12) | -0.001(12)  | 0.014 (11)  | 0.012 (12)  |
| C39B | 0.100 (13) | 0.071 (13) | 0.063 (12) | 0.001 (12)  | 0.011 (12)  | 0.013 (12)  |
| C40B | 0.103 (13) | 0.080 (14) | 0.072 (13) | 0.004 (13)  | 0.010 (13)  | 0.014 (13)  |
| C41B | 0.102 (12) | 0.076 (12) | 0.075 (12) | 0.006 (11)  | 0.009 (11)  | 0.010 (11)  |
| C42B | 0.098 (12) | 0.065 (11) | 0.069 (12) | 0.007 (11)  | 0.011 (11)  | 0.009 (11)  |
| O18B | 0.10 (3)   | 0.09 (3)   | 0.09 (3)   | 0.01 (3)    | 0.00 (3)    | 0.00 (3)    |
| 019  | 0.027 (6)  | 0.033 (6)  | 0.049 (7)  | 0.000 (5)   | 0.007 (5)   | 0.003 (5)   |
| O20  | 0.037 (6)  | 0.046 (7)  | 0.044 (7)  | -0.003(5)   | 0.008 (5)   | 0.008 (6)   |
| C43  | 0.043 (10) | 0.025 (8)  | 0.032 (8)  | -0.004 (7)  | 0.003 (7)   | -0.006 (6)  |
| C44  | 0.016 (7)  | 0.034 (8)  | 0.045 (10) | -0.001 (6)  | 0.002 (7)   | -0.005 (7)  |
| C45  | 0.031 (8)  | 0.016 (6)  | 0.043 (9)  | 0.003 (6)   | 0.003 (7)   | -0.003 (6)  |
| C46  | 0.048 (10) | 0.017 (6)  | 0.024 (7)  | -0.003 (6)  | -0.005 (7)  | 0.001 (5)   |
| C47  | 0.031 (8)  | 0.028 (8)  | 0.042 (9)  | -0.002 (6)  | 0.006 (7)   | -0.003 (7)  |
| C48  | 0.028 (8)  | 0.055 (11) | 0.038 (9)  | 0.007 (8)   | 0.006 (7)   | 0.001 (8)   |
| C49  | 0.034 (9)  | 0.050 (10) | 0.022 (7)  | -0.002 (7)  | -0.003 (6)  | 0.005 (7)   |
| O21  | 0.038 (7)  | 0.053 (8)  | 0.051 (8)  | 0.006 (6)   | 0.000 (6)   | 0.021 (6)   |
|      | ~ /        | ~ /        | × /        | ~ /         | \           | \ /         |

| O22  | 0.038 (6)  | 0.023 (5)  | 0.031 (6)  | 0.008 (5)   | 0.004 (5)   | -0.003 (4)  |
|------|------------|------------|------------|-------------|-------------|-------------|
| O23  | 0.039 (6)  | 0.023 (5)  | 0.045 (7)  | 0.009 (5)   | 0.001 (5)   | -0.013 (5)  |
| C50  | 0.050 (10) | 0.020 (7)  | 0.020(7)   | 0.002 (7)   | -0.009 (7)  | 0.005 (6)   |
| C51  | 0.029 (8)  | 0.030 (8)  | 0.025 (7)  | 0.001 (6)   | -0.003 (6)  | 0.002 (6)   |
| C52  | 0.031 (8)  | 0.022 (7)  | 0.022 (7)  | 0.005 (6)   | 0.004 (6)   | -0.001 (5)  |
| C53  | 0.039 (9)  | 0.026 (7)  | 0.023 (7)  | 0.005 (7)   | -0.004 (6)  | 0.000 (6)   |
| C54  | 0.033 (8)  | 0.038 (8)  | 0.021 (7)  | 0.008 (7)   | 0.010 (6)   | -0.001 (6)  |
| C55  | 0.033 (9)  | 0.052 (11) | 0.035 (9)  | -0.006 (8)  | -0.004 (7)  | -0.013 (8)  |
| C56  | 0.040 (9)  | 0.025 (8)  | 0.031 (8)  | 0.004 (7)   | 0.003 (7)   | -0.009 (6)  |
| O24  | 0.037 (6)  | 0.057 (8)  | 0.033 (6)  | 0.007 (6)   | 0.001 (5)   | -0.019 (6)  |
| O29  | 0.067 (19) | 0.091 (15) | 0.083 (15) | 0.041 (12)  | 0.006 (14)  | 0.041 (13)  |
| C57  | 0.071 (11) | 0.082 (11) | 0.085 (11) | 0.016 (10)  | 0.004 (10)  | 0.027 (10)  |
| N5   | 0.070 (8)  | 0.081 (8)  | 0.087 (8)  | 0.014 (7)   | -0.001 (7)  | 0.029 (7)   |
| C58  | 0.086 (18) | 0.105 (19) | 0.109 (19) | 0.010 (17)  | 0.002 (17)  | 0.010 (17)  |
| C59  | 0.072 (16) | 0.076 (17) | 0.086 (17) | -0.001 (15) | 0.003 (15)  | 0.032 (15)  |
| O29B | 0.08 (2)   | 0.09 (2)   | 0.09 (2)   | 0.023 (18)  | 0.001 (18)  | 0.046 (18)  |
| C57B | 0.072 (12) | 0.077 (12) | 0.084 (12) | 0.012 (11)  | 0.000 (11)  | 0.028 (11)  |
| N5B  | 0.070 (8)  | 0.081 (8)  | 0.087 (8)  | 0.014 (7)   | -0.001 (7)  | 0.029 (7)   |
| C58B | 0.069 (19) | 0.09(2)    | 0.09 (2)   | 0.013 (18)  | -0.003 (18) | 0.018 (19)  |
| C59B | 0.08 (2)   | 0.09 (2)   | 0.11 (2)   | 0.018 (19)  | -0.002 (19) | 0.030 (19)  |
| O30  | 0.067 (10) | 0.063 (9)  | 0.047 (8)  | 0.015 (7)   | 0.006 (7)   | -0.010 (7)  |
| C60  | 0.048 (12) | 0.053 (12) | 0.076 (16) | 0.005 (9)   | 0.011 (11)  | 0.008 (12)  |
| N6   | 0.041 (9)  | 0.057 (10) | 0.049 (9)  | 0.016 (7)   | 0.010 (7)   | 0.001 (8)   |
| C61  | 0.071 (15) | 0.062 (14) | 0.081 (17) | 0.001 (11)  | 0.028 (13)  | 0.017 (13)  |
| C62  | 0.11 (2)   | 0.10(2)    | 0.078 (19) | 0.032 (18)  | 0.035 (17)  | -0.004 (17) |
| O31  | 0.039 (7)  | 0.062 (9)  | 0.048 (7)  | 0.003 (6)   | 0.006 (6)   | 0.008 (7)   |
| C63  | 0.032 (9)  | 0.065 (13) | 0.054 (11) | -0.001 (9)  | 0.012 (8)   | -0.008 (10) |
| N7   | 0.045 (10) | 0.077 (13) | 0.070 (12) | -0.021 (9)  | 0.007 (9)   | -0.013 (11) |
| C64  | 0.069 (19) | 0.14 (3)   | 0.13 (3)   | 0.002 (18)  | -0.033 (19) | -0.07 (3)   |
| C65  | 0.050 (12) | 0.053 (13) | 0.11 (2)   | -0.009 (10) | 0.029 (13)  | -0.007 (13) |
| O32  | 0.055 (15) | 0.048 (15) | 0.045 (13) | 0.002 (12)  | -0.021 (11) | 0.011 (12)  |
| C66  | 0.047 (12) | 0.067 (15) | 0.060 (13) | -0.003 (12) | -0.012 (11) | -0.001 (12) |
| N8   | 0.048 (11) | 0.071 (15) | 0.055 (13) | 0.000 (13)  | -0.015 (10) | -0.002 (12) |
| C67  | 0.056 (18) | 0.070 (19) | 0.078 (19) | -0.007 (16) | -0.018 (16) | 0.000 (17)  |
| C68  | 0.07 (2)   | 0.09 (2)   | 0.06 (2)   | -0.01 (2)   | -0.014 (19) | 0.00 (2)    |
| O32B | 0.072 (16) | 0.085 (18) | 0.069 (16) | 0.013 (15)  | -0.019 (14) | -0.001 (15) |
| C66B | 0.053 (13) | 0.070 (16) | 0.064 (14) | 0.003 (14)  | -0.016 (12) | -0.002 (13) |
| N8B  | 0.043 (11) | 0.068 (15) | 0.062 (13) | -0.005 (13) | -0.013 (11) | 0.003 (13)  |
| C67B | 0.067 (19) | 0.06 (2)   | 0.07 (2)   | -0.005 (18) | -0.011 (19) | 0.000 (18)  |
| C68B | 0.026 (16) | 0.048 (18) | 0.08 (2)   | -0.007 (14) | -0.011 (16) | 0.024 (17)  |
|      |            |            |            |             |             |             |

Geometric parameters (Å, °)

| Mn2—O4B | 1.83 (7)   | C22B—C23B | 1.49 (4) |  |
|---------|------------|-----------|----------|--|
| Mn2—O3  | 1.854 (12) | C23B—C24B | 1.3900   |  |
| Mn2—O4  | 1.910 (14) | C23B—C28B | 1.3900   |  |
| Mn2—O5  | 1.939 (11) | C24B—C25B | 1.3900   |  |
| Mn2—N1  | 1.960 (13) | C24B—H24B | 0.9500   |  |
|         |            |           |          |  |

| Mn2—O16  | 2.154 (15) | C25B—C26B | 1.3900     |
|----------|------------|-----------|------------|
| Mn2—O16B | 2.20 (4)   | C25B—H25B | 0.9500     |
| Mn2—O26  | 2.393 (15) | C26B—C27B | 1.3900     |
| Mn2—Na1  | 3.726 (6)  | C26B—H26B | 0.9500     |
| Mn3—O7B  | 1.83 (6)   | C27B—C28B | 1.3900     |
| Mn3—06   | 1.853 (11) | C27B—H27B | 0.9500     |
| Mn3—07   | 1.904 (13) | C28B—O12B | 1.36 (4)   |
| Mn3—N2   | 1.91 (2)   | O12B—Mn1B | 1.86 (3)   |
| Mn3—O8   | 1.944 (10) | Mn1B—O13B | 2.15 (4)   |
| Mn3—O19  | 2.127 (11) | O13B—C29B | 1.26 (3)   |
| Mn3—N2B  | 2.15 (11)  | O14B—C29B | 1.29 (3)   |
| Mn3—O27  | 2.447 (13) | C29B—C30B | 1.49 (3)   |
| Mn3—Na1  | 3.691 (6)  | C30B—C31B | 1.40 (3)   |
| Mn4—09   | 1.833 (10) | C30B—C35B | 1.41 (3)   |
| Mn4—O10  | 1.901 (12) | C31B—C32B | 1.39 (3)   |
| Mn4—O11B | 1.90 (4)   | C31B—H31B | 0.9500     |
| Mn4—011  | 1.952 (12) | C32B—C33B | 1.39 (3)   |
| Mn4—N3   | 1.969 (12) | C32B—H32B | 0.9500     |
| Mn4—O10B | 2.07 (4)   | C33B—O15B | 1.37 (3)   |
| Mn4—022  | 2.230 (11) | C33B—C34B | 1.40 (3)   |
| Mn4—028  | 2.446 (12) | C34B—C35B | 1.38 (3)   |
| Mn4—C22B | 2.64 (5)   | C34B—H34B | 0.9500     |
| Mn4—Na1  | 3.651 (6)  | C35B—H35B | 0.9500     |
| Na1-025  | 2.396 (14) | O15B—H15B | 0.8400     |
| Na1-028  | 2.460 (13) | 016-C36   | 1.24 (2)   |
| Na1-027  | 2.486 (15) | 017 - C36 | 1.28(2)    |
| Na1-026  | 2.519 (15) | C36—C37   | 1.49 (3)   |
| Na1-010  | 2.682 (14) | C37—C38   | 1.40 (3)   |
| Na1—O1   | 2.704 (15) | C37—C42   | 1.41 (3)   |
| Nal—O7   | 2.725 (18) | C38—C39   | 1.40 (3)   |
| Na1—O4   | 2.740 (15) | C38—H38   | 0.9500     |
| Na1—O7B  | 2.85 (10)  | C39—C40   | 1.37 (3)   |
| Na1—O10B | 2.93 (7)   | C39—H39   | 0.9500     |
| Na1—Dv1  | 3.583 (7)  | C40—O18   | 1.36 (3)   |
| Nal—Mn1  | 3.621 (7)  | C40—C41   | 1.39 (3)   |
| O3—C7    | 1.37 (2)   | C41—C42   | 1.37 (3)   |
| 05       | 1.299 (18) | C41—H41   | 0.9500     |
| O6—C14   | 1.37 (2)   | C42—H42   | 0.9500     |
| 08—C15   | 1.287 (18) | O18—H18O  | 0.8400     |
| O9—C21   | 1.317 (19) | O16B—C36B | 1.26(2)    |
| O25—Mn1  | 2.435 (19) | O17B—C36B | 1.29 (2)   |
| O25—H25C | 0.9200     | C36B—C37B | 1.488 (19) |
| O25—H25D | 0.8696     | C37B—C38B | 1.3900     |
| O26—H26C | 0.85 (4)   | C37B—C42B | 1.3900     |
| O26—H26D | 0.84 (4)   | C38B—C39B | 1.3900     |
| O27—H27C | 0.87 (4)   | C38B—H38B | 0.9500     |
| O27—H27D | 0.87 (4)   | C39B—C40B | 1.3900     |
| O28—H28C | 0.88 (4)   | C39B—H39B | 0.9500     |
|          |            |           |            |

| O28 H28D          | 0.88 (4)               | C40B 018B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1355(17)           |
|-------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| N1 C1P            | 1.30(4)                | C40B - C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.335 (17)         |
| NI CI             | 1.30(4)                | $C_{40} = C_{41} = C$ | 1.3900             |
| N1_01             | 1.30(2)<br>1.204(16)   | $C_{41D} = C_{42D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0500             |
| NI OIP            | 1.394(10)<br>1.45(4)   | $C_{41D}$ $H_{41D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9500             |
| NI-OIB            | 1.43(4)                | C42D— $H42B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9300             |
| N3-C13            | 1.319(18)<br>1.205(17) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8400             |
| N3-07             | 1.393(17)              | 019-043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.238(17)          |
| N3-07B            | 1.05 (8)               | 020-043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.288 (18)         |
| $C_2 = C_3$       | 1.41 (2)               | C43—C44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.485 (18)         |
|                   | 1.42 (2)               | C44—C49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.385 (9)          |
|                   | 1.48 (2)               | C44—C45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.387 (9)          |
| C2—C1B            | 1.51 (4)               | C45—C46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.388 (9)          |
| C3—C4             | 1.33 (2)               | C45—H45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| С3—Н3             | 0.9500                 | C46—C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.387 (9)          |
| C4—C5             | 1.39 (3)               | C46—H46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| C4—H4             | 0.9500                 | C47—O21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.356 (15)         |
| C5—C6             | 1.40 (3)               | C47—C48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.390 (9)          |
| С5—Н5             | 0.9500                 | C48—C49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.388 (9)          |
| C6—C7             | 1.39 (2)               | C48—H48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| С6—Н6             | 0.9500                 | C49—H49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| C8—N2B            | 1.18 (8)               | O21—H21O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8400             |
| C8—N2             | 1.31 (2)               | O22—C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.280 (18)         |
| C8—C9             | 1.49 (2)               | O23—C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.268 (16)         |
| C9—C14            | 1.38 (2)               | C50—C51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.482 (19)         |
| C9—C10            | 1.38 (2)               | C51—C52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.395 (18)         |
| C10—C11           | 1.39 (2)               | C51—C56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.402 (19)         |
| С10—Н10           | 0.9500                 | C52—C53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.393 (18)         |
| C11—C12           | 1.37 (3)               | С52—Н52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| С11—Н11           | 0.9500                 | C53—C54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.38 (2)           |
| C12—C13           | 1.38 (3)               | С53—Н53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| C12—H12           | 0.9500                 | C54—O24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.370 (17)         |
| C13 - C14         | 1 41 (2)               | C54-C55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140(2)             |
| C13—H13           | 0.9500                 | $C_{55}$ — $C_{56}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.10(2)<br>1.37(2) |
| $C_{15}$ $C_{16}$ | 147(2)                 | C55—H55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| C16-C17           | 1.17(2)<br>1 40(2)     | C56—H56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
| $C_{16}$ $C_{21}$ | 1.40(2)<br>1.42(2)     | 024 - H240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9500             |
| C17 - C18         | 1.42(2)<br>1 30(2)     | 029-057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 28 (3)           |
| C17 H17           | 0.9500                 | C57 N5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.20(3)            |
| C18 $C19$         | 1 31 (3)               | C57 H57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500             |
|                   | 0.0500                 | N5 C58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.42(3)            |
| C10 C20           | 0.9500                 | N5_C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.42(3)            |
| $C_{19} = C_{20}$ | 1.58 (5)               | 1NJ = CJ9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.44(3)            |
| C19—H19           | 0.9300                 | C50—H50A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800             |
| $C_{20}$ $U_{20}$ | 1.43 (2)               | Сзо-Нэбв                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800             |
| $U_2 U - H_2 U$   | 0.9000                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800             |
| Dy1—014           | 2.250 (14)             | Сэу—НэуА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800             |
|                   | 2.552 (14)             | Сэу—Нэув                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800             |
| Dy1—010           | 2.425 (12)             | С59—Н59С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800             |
| Dyl—O7            | 2.438 (11)             | O29B—C57B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.28 (3)           |

| Dy1—O1                               | 2.439 (12)         | C57B—N5B   | 1.31 (3)           |
|--------------------------------------|--------------------|------------|--------------------|
| Dy1—04                               | 2.440 (10)         | С57В—Н57В  | 0.9500             |
| O1—Mn1                               | 1.906 (12)         | N5B—C59B   | 1.41 (3)           |
| O2—C1                                | 1.29 (2)           | N5B—C58B   | 1.42 (3)           |
| O2—Mn1                               | 1.938 (12)         | C58B—H58D  | 0.9800             |
| 04—N2                                | 1.427 (17)         | C58B—H58E  | 0.9800             |
| N4—C22                               | 1.33 (2)           | C58B—H58F  | 0.9800             |
| N4-010                               | 1.387 (16)         | C59B—H59D  | 0.9800             |
| N4—Mn1                               | 1.944 (13)         | C59B—H59E  | 0.9800             |
| 011-C22                              | 1 285 (19)         | C59B—H59F  | 0.9800             |
| $C^{22}$ = $C^{23}$                  | 1 47 (2)           | 030-060    | 1.24(3)            |
| C23—C24                              | 1 39 (2)           | C60—N6     | 1.21(3)<br>1.30(3) |
| $C^{23}$ $C^{28}$                    | 1.39(2)<br>1 42(2) | C60—H60    | 0.9500             |
| $C_{24}$ $C_{25}$                    | 1.12(2)<br>1 40(2) | N6-C61     | 1.39(3)            |
| C24—H24                              | 0.9500             | N6-C62     | 1.39(3)<br>1 48(3) |
| $C_{24} = C_{26}$                    | 1 35 (2)           | C61 - H61A | 0.9800             |
| C25—H25                              | 0.9500             | C61—H61B   | 0.9800             |
| C26 C27                              | 1.30(2)            |            | 0.9800             |
| $C_{20} = C_{27}$                    | 0.0500             | C62 H62A   | 0.9800             |
| $C_{20}$ $C_{120}$ $C_{27}$ $C_{28}$ | 1.40(2)            | C62 H62P   | 0.9800             |
| $C_{27} = C_{28}$                    | 1.40(2)            | С62—П02В   | 0.9800             |
| $C_2 = H_2 / C_2^2 = 0.12$           | 0.9300             | C02—H02C   | 0.9800             |
| $C_{28} = 012$                       | 1.34(2)            | 031 - 003  | 1.27(2)            |
| 012—Mill                             | 1.859(15)          | C63—N/     | 1.30 (2)           |
| Mn1—013                              | 2.14/(16)          | C63—H63    | 0.9500             |
| 013-029                              | 1.25 (2)           | N/         | 1.42 (3)           |
| 014—C29                              | 1.28 (2)           | N7—C65     | 1.42 (2)           |
| C29—C30                              | 1.49 (2)           | C64—H64A   | 0.9800             |
| C30—C35                              | 1.38 (3)           | C64—H64B   | 0.9800             |
| C30—C31                              | 1.41 (2)           | C64—H64C   | 0.9800             |
| C31—C32                              | 1.38 (2)           | С65—Н65А   | 0.9800             |
| C31—H31                              | 0.9500             | С65—Н65В   | 0.9800             |
| C32—C33                              | 1.40 (3)           | C65—H65C   | 0.9800             |
| C32—H32                              | 0.9500             | O32—C66    | 1.29 (3)           |
| C33—O15                              | 1.37 (2)           | C66—N8     | 1.33 (3)           |
| C33—C34                              | 1.40 (3)           | С66—Н66    | 0.9500             |
| C34—C35                              | 1.39 (2)           | N8—C67     | 1.39 (4)           |
| C34—H34                              | 0.9500             | N8—C68     | 1.43 (3)           |
| С35—Н35                              | 0.9500             | С67—Н67А   | 0.9800             |
| O15—H15O                             | 0.8400             | С67—Н67В   | 0.9800             |
| Dy1B—O20                             | 1.900 (18)         | С67—Н67С   | 0.9800             |
| Dy1B—O23                             | 2.193 (15)         | C68—H68A   | 0.9800             |
| Dy1B—O14B                            | 2.23 (3)           | C68—H68B   | 0.9800             |
| Dy1B—O7B                             | 2.43 (4)           | C68—H68C   | 0.9800             |
| Dy1B—O4B                             | 2.45 (4)           | O32B—C66B  | 1.31 (4)           |
| Dy1B—O10B                            | 2.45 (4)           | C66B—N8B   | 1.30 (3)           |
| Dy1B—O1B                             | 2.48 (3)           | C66B—H66B  | 0.9500             |
| O1B—Mn1B                             | 1.92 (3)           | N8B—C67B   | 1.42 (4)           |
| O2B—C1B                              | 1.30 (4)           | N8B—C68B   | 1.43 (3)           |

| O2B—Mn1B     | 1.93 (3)  | C67B—H67D     | 0.9800     |
|--------------|-----------|---------------|------------|
| O4B—N2B      | 1.43 (4)  | С67В—Н67Е     | 0.9800     |
| N4B—C22B     | 1.31 (4)  | C67B—H67F     | 0.9800     |
| N4B—O10B     | 1.40 (4)  | C68B—H68D     | 0.9800     |
| N4B—Mn1B     | 1.94 (3)  | C68B—H68E     | 0.9800     |
| O11B—C22B    | 1.28 (4)  | C68B—H68F     | 0.9800     |
|              |           |               |            |
| O4B—Mn2—O3   | 177 (3)   | O12—Mn1—Na1   | 124.8 (5)  |
| O3—Mn2—O4    | 172.9 (6) | O1—Mn1—Na1    | 46.9 (4)   |
| O4B—Mn2—O5   | 83.0 (17) | O2—Mn1—Na1    | 102.9 (4)  |
| O3—Mn2—O5    | 97.0 (5)  | N4—Mn1—Na1    | 65.7 (4)   |
| O4—Mn2—O5    | 82.0 (5)  | O13—Mn1—Na1   | 135.6 (5)  |
| O4B—Mn2—N1   | 89.8 (18) | O25—Mn1—Na1   | 41.0 (3)   |
| O3—Mn2—N1    | 90.8 (5)  | C29—O13—Mn1   | 124.3 (12) |
| O4—Mn2—N1    | 89.2 (5)  | C29—O14—Dy1   | 140.1 (13) |
| O5—Mn2—N1    | 168.0 (5) | O13—C29—O14   | 124.2 (18) |
| O3—Mn2—O16   | 90.5 (6)  | O13—C29—C30   | 119.0 (17) |
| O4—Mn2—O16   | 96.5 (6)  | O14—C29—C30   | 116.8 (19) |
| O5—Mn2—O16   | 90.1 (5)  | C35—C30—C31   | 120.6 (18) |
| N1—Mn2—O16   | 99.0 (5)  | C35—C30—C29   | 120.7 (18) |
| O4B—Mn2—O16B | 65 (3)    | C31—C30—C29   | 118.7 (18) |
| O3—Mn2—O16B  | 111 (2)   | C32—C31—C30   | 119 (2)    |
| O5—Mn2—O16B  | 90.8 (18) | С32—С31—Н31   | 120.7      |
| N1—Mn2—O16B  | 95.0 (19) | С30—С31—Н31   | 120.7      |
| O4B—Mn2—O26  | 90 (3)    | C31—C32—C33   | 121.5 (19) |
| O3—Mn2—O26   | 93.5 (5)  | С31—С32—Н32   | 119.2      |
| O4—Mn2—O26   | 79.4 (5)  | С33—С32—Н32   | 119.2      |
| O5—Mn2—O26   | 85.3 (5)  | O15—C33—C32   | 123.0 (19) |
| N1—Mn2—O26   | 85.1 (5)  | O15—C33—C34   | 118 (2)    |
| O16—Mn2—O26  | 174.2 (5) | C32—C33—C34   | 119.1 (19) |
| O16B—Mn2—O26 | 155 (2)   | C35—C34—C33   | 120 (2)    |
| O4B—Mn2—Na1  | 55 (3)    | С35—С34—Н34   | 120.2      |
| O3—Mn2—Na1   | 128.7 (5) | С33—С34—Н34   | 120.2      |
| O4—Mn2—Na1   | 45.3 (4)  | C30—C35—C34   | 120 (2)    |
| O5—Mn2—Na1   | 101.5 (3) | С30—С35—Н35   | 119.8      |
| N1—Mn2—Na1   | 66.5 (4)  | С34—С35—Н35   | 119.8      |
| O16—Mn2—Na1  | 136.4 (4) | C33—O15—H15O  | 109.5      |
| O16B—Mn2—Na1 | 116 (2)   | O20—Dy1B—O23  | 87.6 (7)   |
| O26—Mn2—Na1  | 42.0 (3)  | O20—Dy1B—O14B | 123.8 (19) |
| O7B—Mn3—O6   | 175 (2)   | O23—Dy1B—O14B | 77.7 (18)  |
| O6—Mn3—O7    | 174.1 (6) | O20—Dy1B—O7B  | 80 (2)     |
| O6—Mn3—N2    | 90.8 (6)  | O23—Dy1B—O7B  | 78 (2)     |
| O7—Mn3—N2    | 90.0 (6)  | O14B—Dy1B—O7B | 145 (3)    |
| O7B—Mn3—O8   | 88 (2)    | O20—Dy1B—O4B  | 82.8 (19)  |
| O6—Mn3—O8    | 96.2 (5)  | O23—Dy1B—O4B  | 141 (2)    |
| O7—Mn3—O8    | 82.1 (5)  | O14B—Dy1B—O4B | 137 (2)    |
| N2—Mn3—O8    | 168.3 (9) | O7B—Dy1B—O4B  | 63.6 (19)  |
| O7B—Mn3—O19  | 88 (3)    | O20—Dy1B—O10B | 139.6 (13) |

| O6—Mn3—O19                              | 91.3 (5)              | O23—Dy1B—O10B                              | 67.5 (16)          |
|-----------------------------------------|-----------------------|--------------------------------------------|--------------------|
| O8—Mn3—O19                              | 93.2 (5)              | O14B—Dy1B—O10B                             | 83 (2)             |
| O7B—Mn3—N2B                             | 85 (3)                | O7B—Dy1B—O10B                              | 64.9 (19)          |
| O6—Mn3—N2B                              | 90.8 (16)             | O4B—Dy1B—O10B                              | 97 (2)             |
| O8—Mn3—N2B                              | 170 (4)               | O20—Dy1B—O1B                               | 143.5 (11)         |
| O19—Mn3—N2B                             | 93 (4)                | O23—Dv1B—O1B                               | 127.4 (11)         |
| O7B—Mn3—O27                             | 86 (3)                | O14B—Dy1B—O1B                              | 79.2 (18)          |
| O6—Mn3—O27                              | 94.5 (5)              | 07B—Dv1B—01B                               | 96 (2)             |
| O7—Mn3—O27                              | 79.8 (6)              | O4B—Dv1B—O1B                               | 63.6 (18)          |
| N2—Mn3—O27                              | 84.7 (9)              | O10B— $Dv1B$ — $O1B$                       | 63.2 (15)          |
| 08—Mn3—027                              | 85.4 (4)              | $O_2O_{\rm Dv1B}$ Na1                      | 116.8 (6)          |
| 019—Mn3—027                             | 174.2 (5)             | O23— $Dv1B$ — $Na1$                        | 104.2 (5)          |
| N2B—Mn3—O27                             | 87 (4)                | O14B— $Dv1B$ — $Na1$                       | 119.4 (18)         |
| O7B—Mn3—Na1                             | 49 (3)                | O7B-Dv1B-Na1                               | 45 (2)             |
| 06-Mn3-Na1                              | 129 8 (4)             | O4B— $Dy1B$ — $Na1$                        | 50 (2)             |
| 07—Mn3—Na1                              | 45 7 (5)              | O10B $Dv1B$ $Na1$                          | 47 3 (16)          |
| $N_2$ —Mn <sub>3</sub> —Na <sub>1</sub> | 66 6 (8)              | O1B $Dy1B$ $Na1$                           | 51.2(14)           |
| $\Omega$ Mn3—Na1                        | 101.8(3)              | N1 - O1B - Mn1B                            | 110.9(19)          |
| 019 Mn3 Na1                             | 1332(3)               | N1 - O1B - Dv1B                            | 129(2)             |
| N2B_Mn3_Na1                             | 68 ( <i>A</i> )       | Mn1B_01B_Dv1B                              | 129(2)<br>1190(18) |
| $\Omega 27$ —Mn3—Na1                    | 419(3)                | C1B = O2B = Mn1B                           | 113.0(10)          |
| 09—Mn4— $010$                           | 169.6 (5)             | $N2B - O4B - Mn^2$                         | 106(4)             |
| 09 - Mn4 - 011B                         | 102.7(16)             | N2B - O4B - Dv1B                           | 100(4)<br>123(5)   |
| 09 Mn4 011D                             | 97.7(5)               | $Mn^2 - O4B - Dy1B$                        | 129(3)             |
| 010 - Mp4 - 011                         | 81 3 (5)              | C8 N2B O4B                                 | 123(3)             |
| 09 Mn4 N3                               | 81.5 (5)              | C8 N2B $Mn3$                               | 123 (6)            |
| 010 Mp4 N3                              | 89.5 (5)<br>89.6 (5)  | $O4B_N2B_Mn3$                              | 123(0)<br>112(4)   |
| 011B Mn4 N3                             | 167.3 (16)            | N1 - C1B - O2B                             | 112(4)<br>121(3)   |
| 011 Mn4 N3                              | 168 5 (6)             | N1 - C1B - C2                              | 121(3)<br>117(3)   |
| 09—Mn4— $010B$                          | 175.9(11)             | $O^2B - C^1B - C^2$                        | 123(3)             |
| 011B Mp4 $010B$                         | 81 3 (18)             | $C_{22}^{22}B = N_{4}^{22}B = O_{1}^{10}B$ | 123(3)<br>110(3)   |
| N3Mn4010B                               | 86.1 (12)             | $C_{22B} = M_{4B} = 010B$                  | 110(3)<br>128(4)   |
| 09 - Mn4 - 022                          | 91.6 (5)              | O10B— $N4B$ — $Mn1B$                       | 126(4)             |
| 011B - Mn4 - 022                        | 82 (5)                | $N_{3}$ $O_{7B}$ $M_{n_{3}}$               | 106(2)             |
| N3—Mn4—O22                              | 99 3 (4)              | $N_3 = O7B = Dv1B$                         | 100(2)<br>121(4)   |
| 0.10B - Mn4 - 0.022                     | 88 1 (19)             | Mn3 = O7B = Dy1B                           | 127(1)<br>127(4)   |
| 09 - Mn4 - 028                          | 90.3 (5)              | N3—O7B—Na1                                 | 94 (4)             |
| 010 - Mn4 - 028                         | 79.4 (5)              | Mn3 = 07B = Na1                            | 102(4)             |
| 011B - Mn4 - 028                        | 93 (5)                | Dv1B - 07B - Na1                           | 97 (2)             |
| 011 - Mn4 - 028                         | 86 2 (7)              | N4B-O10B-Mn4                               | 109(2)             |
| N3—Mn4—O28                              | 85 2 (4)              | N4B - O10B - Dv1B                          | 109(2)             |
| 0.10B - Mn4 - 0.28                      | 90.3(19)              | Mn4 - O10B - Dv1B                          | 126(2)             |
| 022 - Mn4 - 028                         | 175 2 (4)             | N4B-O10B-Na1                               | 108(4)             |
| 09—Mn4—C22B                             | 1/9.2(1)<br>129.3(11) | Mn4—O10B—Na1                               | 92 (2)             |
| O11B Mn4 $C22B$                         | 26.9 (14)             | Dv1B - O10B - Na1                          | 94.8 (16)          |
| N3—Mn4—C22B                             | 140.4 (10)            | C22B-O11B-Mn4                              | 110 (4)            |
| 010B—Mn4—C22B                           | 54.7 (13)             | 011B—C22B—N4B                              | 127 (4)            |
| O22—Mn4—C22B                            | 87 (2)                | O11B—C22B—C23B                             | 112 (4)            |
|                                         | \ /                   |                                            | ( )                |

| O28—Mn4—C22B | 89 (2)     | N4B—C22B—C23B  | 121 (4)   |
|--------------|------------|----------------|-----------|
| O9—Mn4—Na1   | 125.6 (4)  | O11B—C22B—Mn4  | 43 (2)    |
| O10-Mn4-Na1  | 45.4 (4)   | N4B—C22B—Mn4   | 86 (3)    |
| O11B—Mn4—Na1 | 104 (3)    | C23B—C22B—Mn4  | 153 (3)   |
| O11—Mn4—Na1  | 102.0 (6)  | C24B—C23B—C28B | 120.0     |
| N3—Mn4—Na1   | 66.5 (3)   | C24B—C23B—C22B | 116 (3)   |
| O10B—Mn4—Na1 | 53.4 (19)  | C28B—C23B—C22B | 124 (3)   |
| O22—Mn4—Na1  | 138.3 (3)  | C23B—C24B—C25B | 120.0     |
| O28—Mn4—Na1  | 42.1 (3)   | C23B—C24B—H24B | 120.0     |
| C22B—Mn4—Na1 | 83.1 (18)  | C25B—C24B—H24B | 120.0     |
| O25—Na1—O28  | 86.1 (5)   | C26B—C25B—C24B | 120.0     |
| O25—Na1—O27  | 152.0 (6)  | C26B—C25B—H25B | 120.0     |
| O28—Na1—O27  | 87.2 (4)   | C24B—C25B—H25B | 120.0     |
| O25—Na1—O26  | 87.5 (5)   | C25B—C26B—C27B | 120.0     |
| O28—Na1—O26  | 155.4 (5)  | C25B—C26B—H26B | 120.0     |
| O27—Na1—O26  | 87.4 (4)   | C27B—C26B—H26B | 120.0     |
| O25—Na1—O10  | 82.8 (5)   | C28B—C27B—C26B | 120.0     |
| O28—Na1—O10  | 66.0 (4)   | C28B—C27B—H27B | 120.0     |
| O27—Na1—O10  | 118.8 (4)  | C26B—C27B—H27B | 120.0     |
| O26—Na1—O10  | 136.5 (5)  | O12B—C28B—C27B | 117 (3)   |
| O25—Na1—O1   | 67.2 (6)   | O12B—C28B—C23B | 123 (3)   |
| O28—Na1—O1   | 119.7 (4)  | C27B—C28B—C23B | 120.0     |
| O27—Na1—O1   | 138.2 (5)  | C28B—O12B—Mn1B | 130 (3)   |
| O26—Na1—O1   | 79.1 (4)   | O12B—Mn1B—O1B  | 169 (3)   |
| O10—Na1—O1   | 58.0 (4)   | O12B—Mn1B—O2B  | 97 (2)    |
| O25—Na1—O7   | 140.2 (5)  | O1B—Mn1B—O2B   | 80.7 (18) |
| O28—Na1—O7   | 82.7 (4)   | O12B—Mn1B—N4B  | 92 (2)    |
| O27—Na1—O7   | 65.3 (4)   | O1B—Mn1B—N4B   | 88.1 (18) |
| O26—Na1—O7   | 116.5 (5)  | O2B—Mn1B—N4B   | 167 (2)   |
| O10—Na1—O7   | 57.8 (4)   | O12B—Mn1B—O13B | 96 (2)    |
| O1—Na1—O7    | 85.7 (4)   | O1B—Mn1B—O13B  | 95 (2)    |
| O25—Na1—O4   | 120.3 (6)  | O2B—Mn1B—O13B  | 91 (3)    |
| O28—Na1—O4   | 138.9 (4)  | N4B—Mn1B—O13B  | 97 (3)    |
| O27—Na1—O4   | 81.4 (4)   | C29B—O13B—Mn1B | 125 (4)   |
| O26—Na1—O4   | 63.5 (4)   | C29B—O14B—Dy1B | 141 (6)   |
| O10—Na1—O4   | 85.4 (4)   | O13B—C29B—O14B | 123 (4)   |
| O1—Na1—O4    | 57.2 (4)   | O13B—C29B—C30B | 123 (4)   |
| O7—Na1—O4    | 56.7 (4)   | O14B—C29B—C30B | 113 (4)   |
| O25—Na1—O7B  | 139.8 (12) | C31B—C30B—C35B | 119 (4)   |
| O28—Na1—O7B  | 88.0 (16)  | C31B—C30B—C29B | 120 (5)   |
| O27—Na1—O7B  | 66.9 (10)  | C35B—C30B—C29B | 117 (4)   |
| O26—Na1—O7B  | 111.8 (17) | C32B—C31B—C30B | 118 (4)   |
| O25—Na1—O10B | 86.6 (9)   | C32B—C31B—H31B | 121.1     |
| O28—Na1—O10B | 72.5 (8)   | C30B—C31B—H31B | 121.1     |
| O27—Na1—O10B | 117.1 (10) | C33B—C32B—C31B | 123 (5)   |
| O26—Na1—O10B | 130.8 (9)  | C33B—C32B—H32B | 118.7     |
| O7B—Na1—O10B | 53.9 (14)  | C31B—C32B—H32B | 118.7     |
| O25—Na1—Dy1  | 104.6 (5)  | O15B—C33B—C32B | 122 (5)   |
| •            |            |                | · /       |

| O28—Na1—Dy1   | 103.7 (3)  | O15B—C33B—C34B | 119 (5)    |
|---------------|------------|----------------|------------|
| O27—Na1—Dy1   | 103.4 (3)  | C32B—C33B—C34B | 116 (4)    |
| O26—Na1—Dy1   | 100.9 (4)  | C35B—C34B—C33B | 121 (4)    |
| O10—Na1—Dy1   | 42.6 (3)   | C35B—C34B—H34B | 119.6      |
| O1—Na1—Dy1    | 42.9 (3)   | C33B—C34B—H34B | 119.6      |
| O7—Na1—Dy1    | 42.8 (2)   | C34B—C35B—C30B | 120 (4)    |
| O4—Na1—Dy1    | 42.9 (2)   | C34B—C35B—H35B | 120.2      |
| O25—Na1—Mn1   | 41.9 (5)   | C30B—C35B—H35B | 120.2      |
| O28—Na1—Mn1   | 95.2 (3)   | C33B—O15B—H15B | 109.5      |
| O27—Na1—Mn1   | 166.1 (4)  | C36—O16—Mn2    | 122.5 (14) |
| O26—Na1—Mn1   | 95.8 (4)   | C36—O17—Dy1    | 138.2 (14) |
| O10—Na1—Mn1   | 51.0 (3)   | O16—C36—O17    | 125 (2)    |
| O1—Na1—Mn1    | 31.0 (3)   | O16—C36—C37    | 119.3 (18) |
| O7—Na1—Mn1    | 101.3 (3)  | O17—C36—C37    | 115.9 (19) |
| O4—Na1—Mn1    | 88.0 (3)   | C38—C37—C42    | 124 (2)    |
| Dy1—Na1—Mn1   | 62.77 (13) | C38—C37—C36    | 119 (2)    |
| C7—O3—Mn2     | 129.8 (10) | C42—C37—C36    | 117 (2)    |
| C8—O5—Mn2     | 111.3 (9)  | C37—C38—C39    | 115 (2)    |
| C14—O6—Mn3    | 128.9 (9)  | С37—С38—Н38    | 122.5      |
| C15—O8—Mn3    | 111.3 (8)  | С39—С38—Н38    | 122.5      |
| C21—O9—Mn4    | 130.4 (10) | C40—C39—C38    | 122 (3)    |
| Na1—O25—Mn1   | 97.1 (6)   | С40—С39—Н39    | 118.9      |
| Na1—O25—H25C  | 127.7      | С38—С39—Н39    | 118.9      |
| Mn1—O25—H25C  | 105.4      | O18—C40—C39    | 122 (3)    |
| Na1—O25—H25D  | 136.0      | O18—C40—C41    | 117 (3)    |
| Mn1—O25—H25D  | 71.8       | C39—C40—C41    | 120 (3)    |
| H25C—O25—H25D | 96.2       | C42—C41—C40    | 121 (3)    |
| Mn2—O26—Na1   | 98.6 (5)   | C42—C41—H41    | 119.5      |
| Mn2—O26—H26C  | 99 (10)    | C40—C41—H41    | 119.5      |
| Na1—O26—H26C  | 124 (5)    | C41—C42—C37    | 117 (3)    |
| Mn2—O26—H26D  | 94 (10)    | C41—C42—H42    | 121.6      |
| Na1—O26—H26D  | 125 (5)    | C37—C42—H42    | 121.6      |
| H26C—O26—H26D | 106 (6)    | C40—O18—H18O   | 109.5      |
| Mn3—O27—Na1   | 96.9 (4)   | C36B—O16B—Mn2  | 144 (6)    |
| Mn3—O27—H27C  | 83 (10)    | O16B—C36B—O17B | 124 (2)    |
| Na1—O27—H27C  | 128 (5)    | O16B—C36B—C37B | 118 (2)    |
| Mn3—O27—H27D  | 111 (10)   | O17B—C36B—C37B | 118 (2)    |
| Na1—O27—H27D  | 127 (5)    | C38B—C37B—C42B | 120.0      |
| H27C—O27—H27D | 101 (5)    | C38B—C37B—C36B | 117.5 (17) |
| Mn4—O28—Na1   | 96.2 (4)   | C42B—C37B—C36B | 120.3 (17) |
| Mn4—O28—H28C  | 93 (10)    | C37B—C38B—C39B | 120.0      |
| Na1—O28—H28C  | 126 (5)    | C37B—C38B—H38B | 120.0      |
| Mn4—O28—H28D  | 109 (10)   | C39B—C38B—H38B | 120.0      |
| Na1—O28—H28D  | 126 (5)    | C40B—C39B—C38B | 120.0      |
| H28C—O28—H28D | 100 (5)    | C40B—C39B—H39B | 120.0      |
| C1—N1—O1      | 110.6 (13) | C38B—C39B—H39B | 120.0      |
| C1B—N1—O1B    | 111 (2)    | O18B—C40B—C39B | 121.3 (16) |
| C1B—N1—Mn2    | 133.9 (19) | O18B—C40B—C41B | 118.5 (16) |

| C1—N1—Mn2                       | 130.1 (11)         | C39B—C40B—C41B             | 120.0                  |
|---------------------------------|--------------------|----------------------------|------------------------|
| O1—N1—Mn2                       | 114.9 (8)          | C42B—C41B—C40B             | 120.0                  |
| O1B—N1—Mn2                      | 113.8 (14)         | C42B—C41B—H41B             | 120.0                  |
| C15—N3—O7                       | 112.6 (11)         | C40B—C41B—H41B             | 120.0                  |
| C15—N3—O7B                      | 112 (2)            | C41B—C42B—C37B             | 120.0                  |
| C15—N3—Mn4                      | 131.0 (10)         | C41B—C42B—H42B             | 120.0                  |
| O7—N3—Mn4                       | 114.5 (9)          | C37B—C42B—H42B             | 120.0                  |
| O7B—N3—Mn4                      | 116 (2)            | C40B—O18B—H18B             | 109.5                  |
| C3—C2—C7                        | 116.4 (15)         | C43—O19—Mn3                | 128.8 (11)             |
| C3—C2—C1                        | 120.2 (15)         | C43—O20—Dv1B               | 145.8 (12)             |
| C7—C2—C1                        | 123.3 (14)         | Q19—C43—Q20                | 123.8 (14)             |
| $C_3 - C_2 - C_1 B$             | 118 (2)            | 019-C43-C44                | 118.2(13)              |
| C7-C2-C1B                       | 125 (2)            | 020-C43-C44                | 118.0(13)              |
| C4-C3-C2                        | 123(2)<br>1238(18) | C49-C44-C45                | 120.2(9)               |
| C4—C3—H3                        | 118.1              | C49-C44-C43                | 120.2(3)               |
| C2-C3-H3                        | 118.1              | $C_{45} - C_{44} - C_{43}$ | 121.5(10)<br>118 5(10) |
| $C_{2} = C_{3} = C_{4} = C_{5}$ | 110.1              | $C_{44}$ $C_{45}$ $C_{46}$ | 110.5(10)<br>119.7(9)  |
| $C_3 = C_4 = C_3$               | 119.0 (18)         | $C_{44} = C_{45} = C_{40}$ | 119.7 (9)              |
| $C_5 = C_4 = H_4$               | 120.2              | $C_{44} = C_{45} = 1145$   | 120.1                  |
| $C_{3}$                         | 120.2<br>120.2(17) | C40 - C45 - H43            | 120.1                  |
| C4 = C5 = U5                    | 120.2 (17)         | C47 = C46 = U46            | 120.0 (9)              |
| C4—C5—H5                        | 119.9              | C47 - C40 - H40            | 120.0                  |
| C6-C5-H5                        | 119.9              | C43 - C40 - H40            | 120.0                  |
| $C/-C_{0}$                      | 119.6 (17)         | 021 - 047 - 046            | 121.4 (10)             |
| С/—С6—Н6                        | 120.2              | 021 - C47 - C48            | 118.3 (10)             |
| С5—С6—Н6                        | 120.2              | C46—C47—C48                | 120.3 (9)              |
| 03                              | 116.9 (15)         | C49—C48—C47                | 119.5 (9)              |
| O3—C7—C2                        | 122.5 (14)         | C49—C48—H48                | 120.3                  |
| C6—C7—C2                        | 120.6 (16)         | C47—C48—H48                | 120.3                  |
| N2B—C8—O5                       | 115 (5)            | C44—C49—C48                | 120.2 (9)              |
| O5—C8—N2                        | 122.7 (15)         | C44—C49—H49                | 119.9                  |
| N2B—C8—C9                       | 126 (5)            | C48—C49—H49                | 119.9                  |
| O5—C8—C9                        | 119.0 (13)         | C47—O21—H21O               | 109.5                  |
| N2—C8—C9                        | 118.3 (15)         | C50—O22—Mn4                | 118.0 (9)              |
| C14—C9—C10                      | 119.1 (15)         | C50—O23—Dy1B               | 155.2 (11)             |
| C14—C9—C8                       | 123.5 (14)         | O23—C50—O22                | 122.3 (14)             |
| С10—С9—С8                       | 117.2 (15)         | O23—C50—C51                | 116.9 (13)             |
| C9—C10—C11                      | 122.0 (18)         | O22—C50—C51                | 120.7 (12)             |
| С9—С10—Н10                      | 119.0              | C52—C51—C56                | 118.8 (12)             |
| C11—C10—H10                     | 119.0              | C52—C51—C50                | 122.1 (12)             |
| C12—C11—C10                     | 118.7 (18)         | C56—C51—C50                | 119.2 (13)             |
| C12—C11—H11                     | 120.7              | C53—C52—C51                | 121.2 (13)             |
| C10-C11-H11                     | 120.7              | С53—С52—Н52                | 119.4                  |
| C11—C12—C13                     | 120.2 (17)         | С51—С52—Н52                | 119.4                  |
| C11—C12—H12                     | 119.9              | C54—C53—C52                | 119.4 (13)             |
| C13—C12—H12                     | 119.9              | С54—С53—Н53                | 120.3                  |
| C12—C13—C14                     | 120.5 (18)         | С52—С53—Н53                | 120.3                  |
| C12—C13—H13                     | 119.7              | O24—C54—C53                | 122.3 (13)             |
| C14—C13—H13                     | 119.7              | O24—C54—C55                | 117.9 (13)             |
|                                 |                    |                            |                        |

| O6—C14—C9                  | 123.9 (14) | C53—C54—C55                       | 119.7 (13) |
|----------------------------|------------|-----------------------------------|------------|
| O6—C14—C13                 | 116.9 (15) | C56—C55—C54                       | 121.2 (14) |
| C9—C14—C13                 | 119.2 (16) | С56—С55—Н55                       | 119.4      |
| O8—C15—N3                  | 121.1 (12) | С54—С55—Н55                       | 119.4      |
| O8—C15—C16                 | 119.2 (13) | C55—C56—C51                       | 119.8 (14) |
| N3—C15—C16                 | 119.7 (13) | С55—С56—Н56                       | 120.1      |
| C17—C16—C21                | 120.8 (15) | С51—С56—Н56                       | 120.1      |
| C17—C16—C15                | 118.1 (15) | C54—O24—H24O                      | 109.5      |
| C21—C16—C15                | 121.1 (14) | O29—C57—N5                        | 130 (4)    |
| C18—C17—C16                | 119.7 (18) | О29—С57—Н57                       | 115.2      |
| С18—С17—Н17                | 120.1      | N5—C57—H57                        | 115.2      |
| С16—С17—Н17                | 120.1      | C57—N5—C58                        | 115 (3)    |
| C19—C18—C17                | 120.8 (17) | C57—N5—C59                        | 124 (3)    |
| C19—C18—H18                | 119.6      | C58—N5—C59                        | 121 (3)    |
| С17—С18—Н18                | 119.6      | N5—C58—H58A                       | 109.5      |
| C18 - C19 - C20            | 121.8 (18) | N5-C58-H58B                       | 109.5      |
| C18 - C19 - H19            | 119.1      | H58A-C58-H58B                     | 109.5      |
| $C_{20}$ $C_{19}$ $H_{19}$ | 119.1      | N5-C58-H58C                       | 109.5      |
| C19 - C20 - C21            | 121 3 (18) | H58A-C58-H58C                     | 109.5      |
| C19 - C20 - H20            | 119.4      | H58B-C58-H58C                     | 109.5      |
| $C_{21}$ $C_{20}$ $H_{20}$ | 119.1      | N5-C59-H59A                       | 109.5      |
| 09-C21-C16                 | 126.0 (14) | N5-C59-H59B                       | 109.5      |
| 09-C21-C20                 | 118 5 (16) | H59A-C59-H59B                     | 109.5      |
| $C_{16} - C_{21} - C_{20}$ | 115.5 (15) | N5-C59-H59C                       | 109.5      |
| 014—Dv1—017                | 77.0 (5)   | H59A-C59-H59C                     | 109.5      |
| 014 Dy1 $017$              | 82.6 (5)   | H59B-C59-H59C                     | 109.5      |
| 017 - Dy1 - 010            | 143.9(5)   | $\Omega^{29B}$ $C^{57B}$ $N^{5B}$ | 125 (4)    |
| 014 Dy1 $010$              | 144.2 (5)  | $O_{29B}$ $C_{57B}$ $H_{57B}$     | 117.6      |
| 017 - 07                   | 138.6(5)   | N5B-C57B-H57B                     | 117.6      |
| 010 - Dy1 - 07             | 65.0 (4)   | C57B— $N5B$ — $C59B$              | 127 (3)    |
| 014—Dv1—O1                 | 79.9 (5)   | C57B—N5B—C58B                     | 115 (3)    |
| 017 - 01                   | 82.2 (5)   | C59B—N5B—C58B                     | 118 (3)    |
| 010 - Dy1 - 01             | 64.9 (4)   | N5B-C58B-H58D                     | 109.5      |
| 07—Dv1—01                  | 98.4 (5)   | N5B-C58B-H58E                     | 109.5      |
| 014 Dv1 $04$               | 139.5 (5)  | H58D—C58B—H58E                    | 109.5      |
| 017 - 017 - 04             | 79.4 (5)   | N5B-C58B-H58F                     | 109.5      |
| 010 - Dv1 - 04             | 98.3 (4)   | H58D—C58B—H58F                    | 109.5      |
| 07—Dv1—O4                  | 64.3 (4)   | H58E—C58B—H58F                    | 109.5      |
| 01-Dv1-04                  | 64.6 (4)   | N5B-C59B-H59D                     | 109.5      |
| O14— $Dv1$ — $Na1$         | 118.1 (5)  | N5B—C59B—H59E                     | 109.5      |
| 017— $Dv1$ — $Na1$         | 118.8 (4)  | H59D—C59B—H59E                    | 109.5      |
| O10— $Dv1$ — $Na1$         | 48.4 (3)   | N5B—C59B—H59F                     | 109.5      |
| 07—Dv1—Na1                 | 49.5 (4)   | H59D—C59B—H59F                    | 109.5      |
| O1—Dy1—Na1                 | 49.0 (3)   | H59E—C59B—H59F                    | 109.5      |
| O4—Dy1—Na1                 | 49.8 (3)   | O30—C60—N6                        | 127 (2)    |
| N1-01-Mn1                  | 114.1 (9)  | O30—C60—H60                       | 116.7      |
| N1-01-Dv1                  | 117.7 (9)  | N6—C60—H60                        | 116.7      |
| Mn1—O1—Dy1                 | 118.9 (6)  | C60—N6—C61                        | 121 (2)    |

| N1—O1—Na1   | 110.6 (8)  | C60—N6—C62    | 119 (2)    |
|-------------|------------|---------------|------------|
| Mn1—O1—Na1  | 102.1 (6)  | C61—N6—C62    | 120 (2)    |
| Dy1—O1—Na1  | 88.2 (4)   | N6—C61—H61A   | 109.5      |
| C1—O2—Mn1   | 110.9 (11) | N6—C61—H61B   | 109.5      |
| N2—O4—Mn2   | 113.3 (9)  | H61A—C61—H61B | 109.5      |
| N2—O4—Dy1   | 120.9 (10) | N6—C61—H61C   | 109.5      |
| Mn2—O4—Dy1  | 118.1 (6)  | H61A—C61—H61C | 109.5      |
| N2—O4—Na1   | 105.8 (12) | H61B—C61—H61C | 109.5      |
| Mn2—O4—Na1  | 105.1 (6)  | N6—C62—H62A   | 109.5      |
| Dy1—O4—Na1  | 87.3 (4)   | N6—C62—H62B   | 109.5      |
| C8—N2—O4    | 110.7 (15) | H62A—C62—H62B | 109.5      |
| C8—N2—Mn3   | 132.9 (13) | N6—C62—H62C   | 109.5      |
| O4—N2—Mn3   | 115.2 (10) | H62A—C62—H62C | 109.5      |
| O2—C1—N1    | 122.7 (16) | H62B—C62—H62C | 109.5      |
| O2—C1—C2    | 118.3 (15) | O31—C63—N7    | 127.3 (19) |
| N1—C1—C2    | 118.1 (15) | O31—C63—H63   | 116.3      |
| C22—N4—O10  | 112.5 (12) | N7—C63—H63    | 116.3      |
| C22—N4—Mn1  | 130.5 (11) | C63—N7—C64    | 119 (2)    |
| O10—N4—Mn1  | 116.0 (9)  | C63—N7—C65    | 122.3 (18) |
| N3—O7—Mn3   | 112.8 (8)  | C64—N7—C65    | 119 (2)    |
| N3—O7—Dy1   | 120.0 (9)  | N7—C64—H64A   | 109.5      |
| Mn3—O7—Dy1  | 119.7 (6)  | N7—C64—H64B   | 109.5      |
| N3—O7—Nal   | 106.1 (9)  | H64A—C64—H64B | 109.5      |
| Mn3—O7—Na1  | 104.4 (7)  | N7—C64—H64C   | 109.5      |
| Dy1—O7—Na1  | 87.7 (5)   | H64A—C64—H64C | 109.5      |
| N4—O10—Mn4  | 113.8 (9)  | H64B—C64—H64C | 109.5      |
| N4—O10—Dy1  | 119.7 (9)  | N7—C65—H65A   | 109.5      |
| Mn4—O10—Dy1 | 118.4 (5)  | N7—C65—H65B   | 109.5      |
| N4—O10—Na1  | 105.5 (8)  | H65A—C65—H65B | 109.5      |
| Mn4—O10—Na1 | 104.3 (5)  | N7—C65—H65C   | 109.5      |
| Dy1         | 89.0 (4)   | H65A—C65—H65C | 109.5      |
| C22—O11—Mn4 | 112.4 (11) | H65B—C65—H65C | 109.5      |
| O11—C22—N4  | 119.9 (15) | O32—C66—N8    | 126 (3)    |
| O11—C22—C23 | 120.0 (16) | O32—C66—H66   | 117.2      |
| N4—C22—C23  | 120.1 (14) | N8—C66—H66    | 117.2      |
| C24—C23—C28 | 120.1 (14) | C66—N8—C67    | 119 (3)    |
| C24—C23—C22 | 118.1 (15) | C66—N8—C68    | 115 (3)    |
| C28—C23—C22 | 121.8 (14) | C67—N8—C68    | 125 (4)    |
| C23—C24—C25 | 119.2 (17) | N8—C67—H67A   | 109.5      |
| C23—C24—H24 | 120.4      | N8—C67—H67B   | 109.5      |
| C25—C24—H24 | 120.4      | H67A—C67—H67B | 109.5      |
| C26—C25—C24 | 121.5 (17) | N8—C67—H67C   | 109.5      |
| C26—C25—H25 | 119.3      | Н67А—С67—Н67С | 109.5      |
| С24—С25—Н25 | 119.3      | Н67В—С67—Н67С | 109.5      |
| C25—C26—C27 | 120.4 (17) | N8—C68—H68A   | 109.5      |
| С25—С26—Н26 | 119.8      | N8—C68—H68B   | 109.5      |
| С27—С26—Н26 | 119.8      | H68A—C68—H68B | 109.5      |
| C26—C27—C28 | 120.9 (17) | N8—C68—H68C   | 109.5      |

| С26—С27—Н27     | 119.6      | H68A—C68—H68C    | 109.5      |
|-----------------|------------|------------------|------------|
| C28—C27—H27     | 119.6      | H68B—C68—H68C    | 109.5      |
| O12—C28—C27     | 117.5 (15) | N8B—C66B—O32B    | 122 (4)    |
| O12—C28—C23     | 124.4 (14) | N8B—C66B—H66B    | 119.2      |
| C27—C28—C23     | 118.0 (15) | O32B—C66B—H66B   | 119.2      |
| C28—O12—Mn1     | 128.7 (11) | C66B—N8B—C67B    | 118 (4)    |
| O12—Mn1—O1      | 170.3 (7)  | C66B—N8B—C68B    | 121 (3)    |
| O12—Mn1—O2      | 97.5 (6)   | C67B—N8B—C68B    | 120 (3)    |
| O1—Mn1—O2       | 81.3 (5)   | N8B—C67B—H67D    | 109.5      |
| O12—Mn1—N4      | 90.9 (6)   | N8B—C67B—H67E    | 109.5      |
| O1—Mn1—N4       | 89.2 (5)   | H67D—C67B—H67E   | 109.5      |
| O2—Mn1—N4       | 168.5 (6)  | N8B—C67B—H67F    | 109.5      |
| O12—Mn1—O13     | 94.4 (7)   | H67D—C67B—H67F   | 109.5      |
| O1—Mn1—O13      | 95.2 (6)   | H67E—C67B—H67F   | 109.5      |
| O2—Mn1—O13      | 90.1 (6)   | N8B—C68B—H68D    | 109.5      |
| N4—Mn1—O13      | 97.1 (6)   | N8B—C68B—H68E    | 109.5      |
| O12—Mn1—O25     | 89.8 (6)   | H68D—C68B—H68E   | 109.5      |
| O1—Mn1—O25      | 80.5 (5)   | N8B—C68B—H68F    | 109.5      |
| 02 - Mn1 - 025  | 88.6 (6)   | H68D—C68B—H68F   | 109.5      |
| N4—Mn1—O25      | 83.5 (6)   | H68E—C68B—H68F   | 109.5      |
| 013—Mn1—025     | 175.7 (6)  | 1002 0002 1001   | 10,10      |
|                 |            |                  |            |
| O5—Mn2—O3—C7    | 178.5 (15) | C9—C8—N2B—O4B    | 171 (8)    |
| N1—Mn2—O3—C7    | 7.7 (16)   | O5—C8—N2B—Mn3    | 164 (7)    |
| O16—Mn2—O3—C7   | -91.4 (16) | C9—C8—N2B—Mn3    | -23 (17)   |
| O16B—Mn2—O3—C7  | -88 (2)    | Mn2—O4B—N2B—C8   | 10 (16)    |
| O26—Mn2—O3—C7   | 92.8 (15)  | Dv1B—O4B—N2B—C8  | -154 (11)  |
| Na1—Mn2—O3—C7   | 67.7 (16)  | Mn2—O4B—N2B—Mn3  | -157 (7)   |
| N2—Mn3—O6—C14   | 6.5 (16)   | Dv1B—O4B—N2B—Mn3 | 39 (12)    |
| O8—Mn3—O6—C14   | 177.1 (13) | 01B—N1—C1B—O2B   | -9(5)      |
| O19—Mn3—O6—C14  | -89.5 (14) | Mn2—N1—C1B—O2B   | -174(4)    |
| N2B—Mn3—O6—C14  | 4 (5)      | O1B—N1—C1B—C2    | 172 (4)    |
| O27—Mn3—O6—C14  | 91.2 (14)  | Mn2—N1—C1B—C2    | 7 (6)      |
| Na1—Mn3—O6—C14  | 66.1 (14)  | Mn1B—O2B—C1B—N1  | -7(5)      |
| O10—Mn4—O9—C21  | 96 (3)     | Mn1B—O2B—C1B—C2  | 172 (4)    |
| O11B—Mn4—O9—C21 | -174 (5)   | C3—C2—C1B—N1     | -179(3)    |
| O11—Mn4—O9—C21  | 179.4 (14) | C7—C2—C1B—N1     | -9 (5)     |
| N3—Mn4—O9—C21   | 8.0 (13)   | C3—C2—C1B—O2B    | 3 (5)      |
| O22—Mn4—O9—C21  | -91.3 (13) | C7—C2—C1B—O2B    | 172 (4)    |
| O28—Mn4—O9—C21  | 93.2 (13)  | C15—N3—O7B—Mn3   | 10 (6)     |
| C22B—Mn4—O9—C21 | -178(3)    | Mn4—N3—O7B—Mn3   | -162(3)    |
| Na1—Mn4—O9—C21  | 68.6 (14)  | C15—N3—O7B—Dy1B  | -145 (4)   |
| C7—C2—C3—C4     | 1 (3)      | Mn4—N3—O7B—Dy1B  | 43 (6)     |
| C1—C2—C3—C4     | -175 (2)   | C15—N3—O7B—Na1   | 113.3 (17) |
| C1B—C2—C3—C4    | 171 (3)    | Mn4—N3—O7B—Na1   | -59 (2)    |
| C2—C3—C4—C5     | -2 (3)     | O8—Mn3—O7B—N3    | -9 (4)     |
| C3—C4—C5—C6     | 2 (3)      | O19—Mn3—O7B—N3   | -102 (4)   |
| C4—C5—C6—C7     | 0 (3)      | N2B—Mn3—O7B—N3   | 164 (6)    |
|                 | × /        |                  | ( )        |

| Mn2—O3—C7—C6    | 168.7 (13)  | O27—Mn3—O7B—N3                 | 77 (4)      |
|-----------------|-------------|--------------------------------|-------------|
| Mn2—O3—C7—C2    | -12 (3)     | Na1—Mn3—O7B—N3                 | 98 (5)      |
| C5—C6—C7—O3     | 177.8 (17)  | O8—Mn3—O7B—Dy1B                | 144 (5)     |
| C5—C6—C7—C2     | -1 (3)      | O19—Mn3—O7B—Dy1B               | 51 (5)      |
| C3—C2—C7—O3     | -178.1 (17) | N2B—Mn3—O7B—Dy1B               | -43 (6)     |
| C1—C2—C7—O3     | -3 (3)      | O27—Mn3—O7B—Dy1B               | -131 (5)    |
| C1B—C2—C7—O3    | 12 (3)      | Na1—Mn3—O7B—Dy1B               | -109 (6)    |
| C3—C2—C7—C6     | 1 (3)       | O8—Mn3—O7B—Nal                 | -107.1 (17) |
| C1—C2—C7—C6     | 176.0 (18)  | O19—Mn3—O7B—Na1                | 159.6 (18)  |
| C1B—C2—C7—C6    | -169 (3)    | N2B—Mn3—O7B—Na1                | 66 (5)      |
| Mn2—O5—C8—N2B   | -8 (9)      | O27—Mn3—O7B—Na1                | -21.6 (16)  |
| Mn2—O5—C8—N2    | -1(2)       | C22B—N4B—O10B—Mn4              | -1 (9)      |
| Mn2—O5—C8—C9    | 179.4 (11)  | Mn1B—N4B—O10B—Mn4              | -158 (4)    |
| N2B-C8-C9-C14   | 13 (10)     | C22B—N4B—O10B—Dy1B             | -155 (6)    |
| O5—C8—C9—C14    | -175.1 (15) | Mn1B—N4B—O10B—Dy1B             | 48 (7)      |
| N2—C8—C9—C14    | 5 (3)       | C22B—N4B—O10B—Na1              | 98 (7)      |
| N2B—C8—C9—C10   | -162 (10)   | Mn1B—N4B—O10B—Na1              | -59 (5)     |
| O5—C8—C9—C10    | 10 (2)      | Mn4—011B—C22B—N4B              | -14 (16)    |
| N2—C8—C9—C10    | -170.0(19)  | Mn4—O11B—C22B—C23B             | 170 (6)     |
| C14—C9—C10—C11  | 1 (3)       | O10B— $N4B$ — $C22B$ — $O11B$  | 10 (15)     |
| C8-C9-C10-C11   | 176.7 (17)  | Mn1B—N4B—C22B—O11B             | 164(10)     |
| C9-C10-C11-C12  | -4 (3)      | O10B— $N4B$ — $C22B$ — $C23B$  | -174(5)     |
| C10-C11-C12-C13 | 5 (3)       | Mn1B—N4B—C22B—C23B             | -21(11)     |
| C11—C12—C13—C14 | -4(3)       | O10B— $N4B$ — $C22B$ — $Mn4$   | 1(6)        |
| Mn3—O6—C14—C9   | -14(2)      | Mn1B—N4B—C22B—Mn4              | 154 (6)     |
| Mn3-06-C14-C13  | 168.4 (12)  | 011B-C22B-C23B-C24B            | 10(10)      |
| C10-C9-C14-O6   | -177.1 (16) | N4B—C22B—C23B—C24B             | -166(7)     |
| C8—C9—C14—O6    | 8 (3)       | Mn4—C22B—C23B—C24B             | 25 (10)     |
| C10-C9-C14-C13  | 0(2)        | O11B— $C22B$ — $C23B$ — $C28B$ | -170(10)    |
| C8-C9-C14-C13   | -174.5(16)  | N4B—C22B—C23B—C28B             | 14 (7)      |
| C12—C13—C14—O6  | 178.4 (17)  | Mn4—C22B—C23B—C28B             | -155(10)    |
| C12—C13—C14—C9  | 1 (3)       | C28B—C23B—C24B—C25B            | 0.0         |
| Mn3—O8—C15—N3   | -3.9(17)    | C22B - C23B - C24B - C25B      | -180.0(9)   |
| Mn3—O8—C15—C16  | 176.8 (10)  | C23B—C24B—C25B—C26B            | 0.0         |
| 07—N3—C15—O8    | 3.6 (19)    | C24B—C25B—C26B—C27B            | 0.0         |
| O7B—N3—C15—O8   | -4 (4)      | C25B—C26B—C27B—C28B            | 0.0         |
| Mn4—N3—C15—O8   | 166.7 (10)  | C26B—C27B—C28B—O12B            | 180 (3)     |
| O7—N3—C15—C16   | -177.1 (13) | C26B—C27B—C28B—C23B            | 0.0         |
| O7B—N3—C15—C16  | 176 (4)     | C24B—C23B—C28B—O12B            | -180(3)     |
| Mn4—N3—C15—C16  | -14 (2)     | C22B—C23B—C28B—O12B            | 0(3)        |
| O8—C15—C16—C17  | 10 (2)      | C24B—C23B—C28B—C27B            | 0.0         |
| N3-C15-C16-C17  | -168.9(14)  | C22B—C23B—C28B—C27B            | 180.0 (10)  |
| 08—C15—C16—C21  | -171.0(13)  | C27B—C28B—O12B—Mn1B            | 173 (5)     |
| N3—C15—C16—C21  | 10 (2)      | C23B—C28B—O12B—Mn1B            | -7 (6)      |
| C21—C16—C17—C18 | 0 (3)       | C28B—O12B—Mn1B—O1B             | 93 (12)     |
| C15—C16—C17—C18 | 178.9 (16)  | C28B—O12B—Mn1B—O2B             | 173 (5)     |
| C16—C17—C18—C19 | -1 (3)      | C28B—O12B—Mn1B—N4B             | 2 (5)       |
| C17—C18—C19—C20 | 2 (4)       | C28B—O12B—Mn1B—O13B            | -95 (5)     |

| C18—C19—C20—C21                                       | -1 (3)             | Mn1B-013B-C29B-014B                     | -16 (15)           |
|-------------------------------------------------------|--------------------|-----------------------------------------|--------------------|
| Mn4—O9—C21—C16                                        | -13 (2)            | Mn1B-013B-C29B-C30B                     | 152 (8)            |
| Mn4—O9—C21—C20                                        | 168.7 (12)         | Dy1B-014B-C29B-013B                     | 58 (15)            |
| C17—C16—C21—O9                                        | -178.1 (15)        | Dy1B—O14B—C29B—C30B                     | -111 (9)           |
| C15—C16—C21—O9                                        | 3 (2)              | O13B—C29B—C30B—C31B                     | 28 (17)            |
| C17—C16—C21—C20                                       | 0(2)               | O14B—C29B—C30B—C31B                     | -163(10)           |
| C15—C16—C21—C20                                       | -178.3 (15)        | O13B—C29B—C30B—C35B                     | -176(11)           |
| C19-C20-C21-O9                                        | 178.7 (17)         | 014B-C29B-C30B-C35B                     | -6(15)             |
| C19 - C20 - C21 - C16                                 | 0(3)               | C35B—C30B—C31B—C32B                     | 9 (20)             |
| C1-N1-O1-Mn1                                          | -62(17)            | $C_{29B} = C_{30B} = C_{31B} = C_{32B}$ | 165(14)            |
| $Mn^2 - N1 - O1 - Mn^1$                               | -1649(7)           | $C_{30B} = C_{31B} = C_{32B} = C_{33B}$ | 11 (26)            |
| C1 - N1 - O1 - Dv1                                    | -1526(13)          | $C_{31B} = C_{32B} = C_{33B} = O_{15B}$ | 179(15)            |
| $Mn^2 N1 O1 Dy1$                                      | 48 7 (12)          | $C_{31B} = C_{32B} = C_{33B} = C_{34B}$ | -20(25)            |
| $\frac{1}{1} \frac{N_1 - O_1 - O_2}{N_1 - O_1 - N_2}$ | 108.7(12)          | 015B - C33B - C34B - C35B               | 171(12)            |
| $Mn^2 N1 O1 Na1$                                      | -50.5(11)          | $C_{32B} = C_{33B} = C_{34B} = C_{35B}$ | 0(20)              |
| 05  C8  N2  O4                                        | 1(3)               | $C_{32B} = C_{33B} = C_{34B} = C_{35B}$ | $\frac{9}{20}$     |
| $C_{0} = C_{0} = N_{2} = O_{4}$                       | (3) -170 4 (15)    | $C_{33B} = C_{34B} = C_{35B} = C_{30B}$ | -10(20)            |
| $C_{9} = C_{0} = N_{2} = 04$                          | -1/9.4(13)         | $C_{31B} = C_{30B} = C_{35B} = C_{34B}$ | -19(19)<br>176(12) |
| $C_0 = C_0 = N_2 = M_{113}$                           | 107.3(10)<br>12(2) | $M_{r2} = 016 = 026 = 017$              | -170(12)           |
| $C_{9} = C_{8} = N_{2} = M_{113}$                     | -13(3)             | Mn2 = 016 = 036 = 017                   | -12(3)             |
| MIn2 - O4 - N2 - C8                                   | 0(2)               | Min2 = 016 = 0.36 = 0.37                | 1/1.8 (10)         |
| Dy1-04-N2-C8                                          | -149.3(15)         | Dy1 = 017 = 036 = 016                   | 57 (4)             |
| Na1 - 04 - N2 - C8                                    | 114.2 (18)         | Dy1 = 017 = 036 = 037                   | -12/(2)            |
| Mn2—O4—N2—Mn3                                         | -169.5 (11)        | 016-036-037-038                         | 9(4)               |
| Dy1—O4—N2—Mn3                                         | 42 (2)             | 017—C36—C37—C38                         | -167 (3)           |
| Nal—O4—N2—Mn3                                         | -54.9 (17)         | 016-C36-C37-C42                         | -172 (3)           |
| Mn1—O2—C1—N1                                          | -7 (3)             | O17—C36—C37—C42                         | 12 (3)             |
| Mn1—O2—C1—C2                                          | -175.4 (14)        | C42—C37—C38—C39                         | 1 (4)              |
| 01—N1—C1—O2                                           | 9 (3)              | C36—C37—C38—C39                         | -180(2)            |
| Mn2—N1—C1—O2                                          | 163.3 (15)         | C37—C38—C39—C40                         | 1 (4)              |
| 01—N1—C1—C2                                           | 177.3 (15)         | C38—C39—C40—O18                         | 180 (3)            |
| Mn2—N1—C1—C2                                          | -28 (3)            | C38—C39—C40—C41                         | 2 (5)              |
| C3—C2—C1—O2                                           | 7 (3)              | O18—C40—C41—C42                         | 176 (3)            |
| C7—C2—C1—O2                                           | -168.5 (18)        | C39—C40—C41—C42                         | -6 (5)             |
| C3—C2—C1—N1                                           | -162.4 (18)        | C40—C41—C42—C37                         | 8 (5)              |
| C7—C2—C1—N1                                           | 23 (3)             | C38—C37—C42—C41                         | -6 (5)             |
| C15—N3—O7—Mn3                                         | -1.5 (16)          | C36—C37—C42—C41                         | 175 (3)            |
| Mn4—N3—O7—Mn3                                         | -167.5 (7)         | Mn2-016B-C36B-017B                      | 39 (23)            |
| C15—N3—O7—Dy1                                         | -151.0 (10)        | Mn2—O16B—C36B—C37B                      | -148 (7)           |
| Mn4—N3—O7—Dy1                                         | 43.0 (14)          | O16B—C36B—C37B—C38B                     | 76 (11)            |
| C15—N3—O7—Na1                                         | 112.2 (10)         | O17B—C36B—C37B—C38B                     | -110 (11)          |
| Mn4—N3—O7—Na1                                         | -53.9 (9)          | O16B—C36B—C37B—C42B                     | -121 (10)          |
| C22—N4—O10—Mn4                                        | 2.8 (17)           | O17B—C36B—C37B—C42B                     | 53 (13)            |
| Mn1—N4—O10—Mn4                                        | -167.4 (7)         | C42B—C37B—C38B—C39B                     | 0.0                |
| C22—N4—O10—Dy1                                        | -145.6 (12)        | C36B—C37B—C38B—C39B                     | 163 (6)            |
| Mn1—N4—O10—Dy1                                        | 44.2 (13)          | C37B—C38B—C39B—C40B                     | 0.0                |
| C22—N4—O10—Na1                                        | 116.5 (13)         | C38B—C39B—C40B—O18B                     | -175 (13)          |
| Mn1—N4—O10—Na1                                        | -53.6 (11)         | C38B—C39B—C40B—C41B                     | 0.0                |
| Mn4—011—C22—N4                                        | 0 (2)              | O18B—C40B—C41B—C42B                     | 175 (12)           |

| Mn4—O11—C22—C23                                | 179.2 (13)     | C39B—C40B—C41B—C42B                                  | 0.0                   |
|------------------------------------------------|----------------|------------------------------------------------------|-----------------------|
| O10—N4—C22—O11                                 | -2 (2)         | C40B—C41B—C42B—C37B                                  | 0.0                   |
| Mn1—N4—C22—O11                                 | 166.4 (15)     | C38B—C37B—C42B—C41B                                  | 0.0                   |
| O10—N4—C22—C23                                 | 179.1 (14)     | C36B—C37B—C42B—C41B                                  | -163 (6)              |
| Mn1—N4—C22—C23                                 | -13 (3)        | O23—Dy1B—O20—C43                                     | 51 (2)                |
| O11—C22—C23—C24                                | 14 (3)         | O14B—Dy1B—O20—C43                                    | 125 (3)               |
| N4—C22—C23—C24                                 | -166.7 (17)    | O7B—Dy1B—O20—C43                                     | -27 (3)               |
| O11—C22—C23—C28                                | -165.5 (19)    | O4B—Dy1B—O20—C43                                     | -91 (3)               |
| N4—C22—C23—C28                                 | 13 (3)         | O10B—Dy1B—O20—C43                                    | 1 (4)                 |
| C28—C23—C24—C25                                | 0(3)           | O1B—Dy1B—O20—C43                                     | -114 (3)              |
| C22—C23—C24—C25                                | -179.4 (17)    | Na1—Dy1B—O20—C43                                     | -53 (2)               |
| C23—C24—C25—C26                                | 1 (3)          | Mn3—O19—C43—O20                                      | -2(2)                 |
| C24—C25—C26—C27                                | -1(3)          | Mn3—O19—C43—C44                                      | 179.4 (10)            |
| C25—C26—C27—C28                                | 0(3)           | Dy1B-020-C43-019                                     | 47 (3)                |
| C26—C27—C28—O12                                | 177 (2)        | Dv1B-020-C43-C44                                     | -134.3 (18)           |
| $C_{26}$ $C_{27}$ $C_{28}$ $C_{23}$            | 1 (3)          | 019—C43—C44—C49                                      | -167.4(16)            |
| $C_{24}$ $C_{23}$ $C_{28}$ $O_{12}$            | -177.5(19)     | 020-C43-C44-C49                                      | 14 (2)                |
| $C_{22} = C_{23} = C_{28} = 012$               | 2 (3)          | 019-C43-C44-C45                                      | 12(2)                 |
| $C_{24}$ $C_{23}$ $C_{28}$ $C_{27}$            | -1(3)          | 020-C43-C44-C45                                      | -1664(15)             |
| $C_{22} = C_{23} = C_{28} = C_{27}$            | 178 3 (18)     | C49-C44-C45-C46                                      | -1(2)                 |
| $C_{27} = C_{28} = O_{12} = M_{n1}$            | 164 1 (15)     | C43 - C44 - C45 - C46                                | 179.8(14)             |
| $C_{23}$ $C_{28}$ $O_{12}$ $M_{n1}$            | -20(3)         | C44-C45-C46-C47                                      | 0(2)                  |
| $C_{28} = 012 = Mn1 = 02$                      | -1710(17)      | $C_{45} - C_{46} - C_{47} - O_{21}$                  | -1799(14)             |
| $C_{28} = 012 = Mn1 = 02$                      | 168(17)        | $C_{45}$ $C_{46}$ $C_{47}$ $C_{48}$                  | -1(2)                 |
| $C_{28} = 012 = Mm1 = 013$                     | -80.4(17)      | 021-C47-C48-C49                                      | -1794(16)             |
| $C_{28} = 012 = Mm1 = 015$                     | 100.4(17)      | $C_{46} C_{47} C_{48} C_{49}$                        | 2 (3)                 |
| $C_{28} = 012$ Mm1 $025$                       | 77 5 (18)      | $C_{45} - C_{44} - C_{49} - C_{48}$                  | $\frac{2}{1}(3)$      |
| $M_{n1} = 013 = C29 = 014$                     | -14(3)         | $C_{43}$ $C_{44}$ $C_{49}$ $C_{48}$                  | -1792(16)             |
| Mn1 = 013 = 029 = 014<br>Mn1 = 013 = 029 = 030 | 166.8(14)      | C47 $C48$ $C49$ $C44$                                | -2(3)                 |
| $D_{\rm W1} = 013 = 029 = 013$                 | 55 (3)         | $D_{1}^{1}D_{2}^{1}D_{2}^{2}$                        | 2(3)                  |
| Dy1 = 014 = 029 = 013                          | -126(2)        | Dy1B = 023 = 050 = 022                               | -108(2)               |
| 013 $020$ $020$ $025$                          | -168(2)        | $M_{\rm p4} = 022 = 0.00000000000000000000000000000$ | -2.8(10)              |
| 013 - 029 - 030 - 035                          | -108(2)        | Mn4 = 022 = 020 = 023                                | -2.8(19)<br>178.3(10) |
| 014 - 029 - 030 - 033                          | 13(3)<br>12(2) | 022 - 050 - 051                                      | -1664(14)             |
| 013 - 029 - 030 - 031                          | -165.6(10)     | 023 - 050 - 051 - 052                                | -100.4(14)            |
| $C_{25}$ $C_{20}$ $C_{21}$ $C_{22}$            | -103.0(19)     | 022 - 030 - 051 - 052                                | 13(2)                 |
| $C_{33} = C_{30} = C_{31} = C_{32}$            | 0(3)           | 023 - 050 - 051 - 056                                | 15(2)                 |
| $C_{29} = C_{30} = C_{31} = C_{32}$            | 1/8(2)         | 022 - 030 - 031 - 030                                | -108.0(14)            |
| $C_{30} - C_{31} - C_{32} - C_{33}$            | 1(3)           | $C_{50} = C_{51} = C_{52} = C_{53}$                  | 0(2)                  |
| $C_{31} = C_{32} = C_{33} = C_{13}$            | -1/3(3)        | $C_{50} = C_{51} = C_{52} = C_{53}$                  | 1/9.2 (14)            |
| $C_{31} - C_{32} - C_{33} - C_{34}$            | 0 (4)          | $C_{51} = C_{52} = C_{53} = C_{54}$                  | 0(2)                  |
| 015 - 033 - 034 - 035                          | 1/2(3)         | $C_{52} = C_{53} = C_{54} = 0.24$                    | -1/6.4(13)            |
| C32—C33—C34—C35                                | -2(5)          | C52—C53—C54—C55                                      | 1 (2)                 |
| $C_{31} - C_{30} - C_{35} - C_{34}$            | -1(4)          | 024-054-055-056                                      | 1/6.3 (15)            |
| C29—C30—C35—C34                                | -179 (2)       | C53—C54—C55—C56                                      | -1(3)                 |
| C33—C34—C35—C30                                | 2 (4)          | C54—C55—C56—C51                                      | 1 (3)                 |
| C1B—N1—O1B—Mn1B                                | 20 (5)         | C52—C51—C56—C55                                      | 0(2)                  |
| Mn2—N1—O1B—Mn1B                                | -171.3 (19)    | C50—C51—C56—C55                                      | -179.4 (15)           |
| C1B—N1—O1B—Dy1B                                | -145 (4)       | O29—C57—N5—C58                                       | 8 (6)                 |

| Mn2—N1—O1B—Dy1B   | 24 (5)   | O29—C57—N5—C59     | -170 (4)   |
|-------------------|----------|--------------------|------------|
| O5—Mn2—O4B—N2B    | -10(7)   | O29B—C57B—N5B—C59B | -162 (8)   |
| N1—Mn2—O4B—N2B    | 160 (7)  | O29B—C57B—N5B—C58B | 21 (10)    |
| O16B—Mn2—O4B—N2B  | -104 (8) | O30-C60-N6-C61     | -3 (3)     |
| O26—Mn2—O4B—N2B   | 75 (7)   | O30—C60—N6—C62     | -176 (2)   |
| Na1—Mn2—O4B—N2B   | 99 (8)   | O31—C63—N7—C64     | -1 (3)     |
| O5—Mn2—O4B—Dy1B   | 153 (5)  | O31—C63—N7—C65     | 176.2 (19) |
| N1—Mn2—O4B—Dy1B   | -37 (5)  | O32—C66—N8—C67     | -2 (7)     |
| O16B—Mn2—O4B—Dy1B | 59 (5)   | O32—C66—N8—C68     | -176 (4)   |
| O26—Mn2—O4B—Dy1B  | -122 (5) | O32B—C66B—N8B—C67B | -7 (8)     |
| Na1—Mn2—O4B—Dy1B  | -98 (5)  | O32B—C66B—N8B—C68B | -176 (4)   |
| O5—C8—N2B—O4B     | -2 (17)  |                    |            |
|                   |          |                    |            |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                               | <i>D</i> —Н | H···A     | D····A     | D—H···A  |
|---------------------------------------|-------------|-----------|------------|----------|
| 025—H25C···O29                        | 0.92        | 2.00      | 2.74 (3)   | 137      |
| O25—H25D…O12                          | 0.87        | 2.41      | 3.06 (2)   | 132      |
| O26—H26C···O30                        | 0.85 (4)    | 2.04 (9)  | 2.74 (2)   | 138 (10) |
| O26—H26D···O29                        | 0.84 (4)    | 2.03 (11) | 2.70 (4)   | 136 (11) |
| O27—H27C···O30                        | 0.87 (4)    | 2.12 (14) | 2.730 (19) | 127 (14) |
| O27—H27D···O31                        | 0.87 (4)    | 2.09 (7)  | 2.798 (18) | 138 (6)  |
| O28—H28C···O31                        | 0.88 (4)    | 2.07 (10) | 2.776 (17) | 137 (10) |
| O28—H28D···O32                        | 0.88 (4)    | 1.94 (7)  | 2.68 (3)   | 142 (6)  |
| C32—H32···O3 <sup>i</sup>             | 0.95        | 2.66      | 3.35 (2)   | 131      |
| O15—H15 <i>O</i> ···O3 <sup>i</sup>   | 0.84        | 1.93      | 2.77 (2)   | 175      |
| C46—H46…O9 <sup>ii</sup>              | 0.95        | 2.24      | 3.168 (15) | 165      |
| O21—H21 <i>O</i> ···O22 <sup>ii</sup> | 0.84        | 2.01      | 2.794 (16) | 155      |
| O24—H24 <i>O</i> …O6 <sup>iii</sup>   | 0.84        | 2.02      | 2.815 (16) | 158      |

Symmetry codes: (i) *x*-1/2, -*y*+1, *z*+1/2; (ii) *x*-1/2, -*y*+2, *z*-1/2; (iii) *x*-1/2, -*y*+2, *z*+1/2.

Tetra- $\mu$ -aqua-tetrakis{2-[azanidylene(oxido)methyl]phenolato}tetrakis( $\mu_2$ -3hydroxybenzoato)dysprosium(III)tetramanganese(III)sodium(I) *N*,*N*-dimethylacetamide decasolvate (1)

#### Crystal data

| $D_x = 1.488 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 9707 reflections<br>$\theta = 2.7-32.8^{\circ}$<br>$\mu = 1.19 \text{ mm}^{-1}$<br>T = 150  K<br>Block, brown<br>$0.25 \times 0.23 \times 0.15 \text{ mm}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                              |
| Triumph curved graphite crystal<br>monochromator<br>Detector resolution: 10.4167 pixels mm <sup>-1</sup><br>ω and phi scans                                                                                                                                                  |
|                                                                                                                                                                                                                                                                              |

| Absorption correction: multi-scan      | $R_{\rm int} = 0.042$                                                     |
|----------------------------------------|---------------------------------------------------------------------------|
| (SADABS; Krause et al., 2015)          | $\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ |
| $T_{\min} = 0.024, \ T_{\max} = 0.055$ | $h = -25 \rightarrow 24$                                                  |
| 58638 measured reflections             | $k = -27 \rightarrow 24$                                                  |
| 7967 independent reflections           | $l = -17 \rightarrow 19$                                                  |
| 6605 reflections with $I > 2\sigma(I)$ |                                                                           |
| Refinement                             |                                                                           |
| Refinement on $F^2$                    | Hydrogen site location: mixed                                             |
| Least-squares matrix: full             | H-atom parameters constrained                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.051$        | $w = 1/[\sigma^2(F_o^2) + (0.0823P)^2 + 8.7362P]$                         |
| $wR(F^2) = 0.151$                      | where $P = (F_o^2 + 2F_c^2)/3$                                            |
| S = 1.04                               | $(\Delta/\sigma)_{\rm max} = 0.001$                                       |
| 7967 reflections                       | $\Delta  ho_{ m max} = 2.49 \ { m e} \ { m \AA}^{-3}$                     |
| 761 parameters                         | $\Delta  ho_{\min} = -0.91 \text{ e} \text{ Å}^{-3}$                      |
| 1550 restraints                        |                                                                           |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Whole molecule disorder is observed for the main molecule, excluding only the Dy and Na ions. Equivalent disordered organic moieties were restrained to have similar geometries, and Uij components of ADPs for all disordered atoms closer to each other than 2.0 Angstrom were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.8018 (14) to 0.1982 (14).

Three DMA molecules were refined as disordered. Two in general positions by an approximate 180 degree rotation. The third is in addition also disordered by an exact 180 degree rotation from a two fold axis that bisects it. All DMA moieties were restrained to have similar geometries SAME command of Shelxl). All N-CH3 bond lengths were restrained to be similar to each other, and all 1,3 distances of the C-N-CH3 angles were also restrained to be similar. Uij components of ADPs for all DMA atoms closer to each other than 2.0 Angstrom were restrained to be similar, and the atoms of the four fold disordered molecule were restrained to be close to isotropic. The least occupied DMA molecule (the minor component disordered by two fold symmetry) was restrained to be close to planar. Subject to these conditions the occupancy ratios refined to 0.496 (8) to 0.504 (8), 0.608 (9) to 0.392 (9), and two times 0.275 (7) to two times 0.225 (7). Alcohol H atoms were initially allowed to rotate and Water H atom positions were initially refined while a damping factor was applied and O-H and H…H distances were restrained to 0.84 (2) and 1.36 (2) Angstrom, respectively. Some water H atom positions were further restrained based on hydrogen bonding considerations. In the final refinement cycles these H atoms were set to ride on their carrier oxygen atoms and the damping factor was removed.

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)   |
|-----|--------------|--------------|--------------|-----------------------------|-------------|
| Mn1 | 0.84667 (3)  | 0.88157 (3)  | 0.49946 (4)  | 0.02920 (15)                | 0.8018 (14) |
| 01  | 0.76087 (12) | 0.84232 (12) | 0.47528 (18) | 0.0294 (5)                  | 0.8018 (14) |
| N1  | 0.7083 (4)   | 0.8872 (3)   | 0.4910 (14)  | 0.0291 (9)                  | 0.8018 (14) |
| O2  | 0.79161 (13) | 0.96071 (14) | 0.5213 (2)   | 0.0333 (5)                  | 0.8018 (14) |
| C1  | 0.72846 (17) | 0.94758 (17) | 0.5145 (2)   | 0.0300 (6)                  | 0.8018 (14) |
| C2  | 0.67924 (19) | 1.0008 (2)   | 0.5321 (4)   | 0.0315 (8)                  | 0.8018 (14) |
| C3  | 0.7020(2)    | 1.0669 (2)   | 0.5343 (4)   | 0.0453 (9)                  | 0.8018 (14) |
| H3  | 0.748483     | 1.075493     | 0.526983     | 0.054*                      | 0.8018 (14) |
| C4  | 0.6587 (3)   | 1.1202 (3)   | 0.5468 (6)   | 0.0559 (13)                 | 0.8018 (14) |
| H4  | 0.674759     | 1.164916     | 0.545125     | 0.067*                      | 0.8018 (14) |
| C5  | 0.5909(2)    | 1.1072 (3)   | 0.5619 (5)   | 0.0480 (12)                 | 0.8018 (14) |
|     |              |              |              |                             |             |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| H5         | 0.560912     | 1.143107              | 0.573807              | 0.058*               | 0.8018 (14)              |
|------------|--------------|-----------------------|-----------------------|----------------------|--------------------------|
| C6         | 0.5671 (2)   | 1.04252 (19)          | 0.5595 (3)            | 0.0385 (8)           | 0.8018 (14)              |
| H6         | 0.520704     | 1.034486              | 0.568776              | 0.046*               | 0.8018 (14)              |
| C7         | 0.61041 (18) | 0.98822 (18)          | 0.5437 (3)            | 0.0326 (7)           | 0.8018 (14)              |
| O3         | 0.58331 (14) | 0.92701 (16)          | 0.5428 (2)            | 0.0378 (6)           | 0.8018 (14)              |
| O4         | 0.86173 (16) | 0.91072 (15)          | 0.3509 (2)            | 0.0427 (6)           | 0.8018 (14)              |
| 05         | 0.82694 (16) | 0.81397 (16)          | 0.2889 (2)            | 0.0477 (7)           | 0.8018 (14)              |
| C8         | 0.8473 (2)   | 0.8741 (2)            | 0.2817 (3)            | 0.0448 (8)           | 0.8018 (14)              |
| C9         | 0.8557 (2)   | 0.9003 (2)            | 0.1808 (3)            | 0.0501 (9)           | 0.8018 (14)              |
| C10        | 0.8788 (3)   | 0.9631 (3)            | 0.1655 (4)            | 0.0600 (12)          | 0.8018 (14)              |
| H10        | 0.889378     | 0.991320              | 0.218185              | 0.072*               | 0.8018 (14)              |
| C11        | 0.8870 (4)   | 0.9860(3)             | 0.0718 (4)            | 0.0699(15)           | 0.8018 (14)              |
| C12        | 0.8687(4)    | 0.9467(3)             | -0.0058(4)            | 0.0733(15)           | 0.8018 (14)              |
| H12        | 0.873706     | 0.963218              | -0.069169             | 0.088*               | 0.8018 (14)              |
| C13        | 0.8433(5)    | 0.903210<br>0.8838(4) | 0.009(4)              | 0.0833(17)           | 0.8018(14)               |
| H13        | 0.829448     | 0.856841              | -0.042877             | 0.100*               | 0.8018(14)<br>0.8018(14) |
| C14        | 0.8382(4)    | 0.8507 (3)            | 0.042077<br>0.1036(4) | 0.100<br>0.0731 (14) | 0.8018(14)               |
| U14        | 0.8362 (4)   | 0.8597 (5)            | 0.1030(4)<br>0.114722 | 0.0751 (14)          | 0.8018(14)               |
| 06         | 0.022030     | 1.0496(2)             | 0.114/32              | $0.000^{\circ}$      | 0.8018(14)               |
|            | 0.9103(4)    | 1.0460 (5)            | 0.0391(3)             | 0.107 (3)            | 0.8018(14)               |
| П0А1<br>07 | 0.930908     | 1.031182              | 0.000081              | $0.101^{\circ}$      | 0.8018(14)               |
|            | 0.81/29 (18) | 0.8449 (2)            | 0.0013(3)             | 0.0383 (7)           | 0.8018(14)               |
| H/A        | 0.790436     | 0.8/28/5              | 0.081/29              | 0.058*               | 0.8018(14)               |
| H/B        | 0.846055     | 0.835775              | 0.700792              | 0.058*               | 0.8018 (14)              |
| MnIB       | 0.8003/(11)  | 0.90547 (11)          | 0.50499 (15)          | 0.0296 (6)           | 0.1982 (14)              |
| OIB        | 0.6868 (5)   | 0.8187 (5)            | 0.4794 (7)            | 0.0309 (17)          | 0.1982 (14)              |
| N1B        | 0.7022 (16)  | 0.8864 (12)           | 0.494 (6)             | 0.029 (3)            | 0.1982 (14)              |
| O2B        | 0.5921 (5)   | 0.8978 (6)            | 0.5262 (9)            | 0.033 (2)            | 0.1982 (14)              |
| C1B        | 0.6507 (6)   | 0.9230 (6)            | 0.5201 (11)           | 0.0326 (17)          | 0.1982 (14)              |
| C2B        | 0.6592 (7)   | 0.9958 (7)            | 0.5358 (19)           | 0.032 (2)            | 0.1982 (14)              |
| C3B        | 0.6023 (8)   | 1.0354 (7)            | 0.5408 (13)           | 0.040 (2)            | 0.1982 (14)              |
| H3B        | 0.559206     | 1.015307              | 0.539614              | 0.048*               | 0.1982 (14)              |
| C4B        | 0.6085 (10)  | 1.1051 (10)           | 0.548 (2)             | 0.048 (3)            | 0.1982 (14)              |
| H4B        | 0.570364     | 1.132836              | 0.539250              | 0.057*               | 0.1982 (14)              |
| C5B        | 0.6702 (10)  | 1.1335 (10)           | 0.567 (2)             | 0.050 (3)            | 0.1982 (14)              |
| H5B        | 0.673353     | 1.178950              | 0.586179              | 0.059*               | 0.1982 (14)              |
| C6B        | 0.7271 (8)   | 1.0951 (7)            | 0.5574 (15)           | 0.045 (2)            | 0.1982 (14)              |
| H6B        | 0.769744     | 1.116048              | 0.559490              | 0.054*               | 0.1982 (14)              |
| C7B        | 0.7232 (6)   | 1.0252 (6)            | 0.5449 (12)           | 0.0356 (19)          | 0.1982 (14)              |
| O3B        | 0.7818 (5)   | 0.9910 (6)            | 0.5478 (9)            | 0.0333 (18)          | 0.1982 (14)              |
| O4B        | 0.8128 (6)   | 0.9351 (6)            | 0.3564 (7)            | 0.041 (2)            | 0.1982 (14)              |
| O5B        | 0.7561 (6)   | 0.8492 (6)            | 0.2932 (9)            | 0.048 (2)            | 0.1982 (14)              |
| C8B        | 0.7903 (9)   | 0.9028 (8)            | 0.2876 (9)            | 0.045 (2)            | 0.1982 (14)              |
| C9B        | 0.8068 (11)  | 0.9253 (9)            | 0.1869 (10)           | 0.058 (2)            | 0.1982 (14)              |
| C10B       | 0.8423 (14)  | 0.9834 (11)           | 0.1727 (13)           | 0.063 (3)            | 0.1982 (14)              |
| H10B       | 0.854922     | 1.010086              | 0.226086              | 0.075*               | 0.1982(14)               |
| C11B       | 0.8600 (16)  | 1.0033 (12)           | 0.0797 (13)           | 0.072(3)             | 0.1982(14)               |
| C12B       | 0.8321 (17)  | 0.9692(13)            | 0.0022(14)            | 0.078(3)             | 0.1982(14)               |
| H12B       | 0.837071     | 0.986818              | -0.060584             | 0.094*               | 0.1982(14)               |
|            | 0.00/0/1     |                       | 0.0000001             | U.U.Z. I             | ···/ (··/)               |

| C13B | 0.7975 (17) | 0.9106 (13) | 0.0155 (13) | 0.076 (3)   | 0.1982 (14) |
|------|-------------|-------------|-------------|-------------|-------------|
| H13B | 0.781114    | 0.886496    | -0.038287   | 0.091*      | 0.1982 (14) |
| C14B | 0.7863 (14) | 0.8865 (11) | 0.1081 (11) | 0.068 (3)   | 0.1982 (14) |
| H14B | 0.765235    | 0.844480    | 0.117654    | 0.081*      | 0.1982 (14) |
| O6B  | 0.8818 (16) | 1.0672 (11) | 0.072 (2)   | 0.088 (6)   | 0.1982 (14) |
| H6B1 | 0.893403    | 1.072920    | 0.014649    | 0.133*      | 0.1982 (14) |
| O7B  | 0.7925 (6)  | 0.8580 (8)  | 0.6681 (10) | 0.033 (2)   | 0.1982 (14) |
| H7C  | 0.785662    | 0.887227    | 0.710119    | 0.049*      | 0.1982 (14) |
| H7D  | 0.829921    | 0.840159    | 0.679782    | 0.049*      | 0.1982 (14) |
| 08   | 0.7267 (4)  | 0.9190 (4)  | 0.7513 (9)  | 0.0471 (16) | 0.496 (8)   |
| C15  | 0.7303 (5)  | 0.9804 (4)  | 0.7656 (7)  | 0.071 (2)   | 0.496 (8)   |
| C16  | 0.7934 (6)  | 1.0243 (8)  | 0.7470 (11) | 0.069 (3)   | 0.496 (8)   |
| H16A | 0.830606    | 0.995602    | 0.726844    | 0.104*      | 0.496 (8)   |
| H16B | 0.805643    | 1.047829    | 0.806064    | 0.104*      | 0.496 (8)   |
| H16C | 0.783652    | 1.056920    | 0.696582    | 0.104*      | 0.496 (8)   |
| N2   | 0.6781(4)   | 1.0137 (4)  | 0.7929(6)   | 0.0651 (19) | 0.496 (8)   |
| C17  | 0.6152 (6)  | 0.9691 (8)  | 0.8040(12)  | 0.064 (3)   | 0.496 (8)   |
| H17A | 0 587299    | 0.973098    | 0.746621    | 0.096*      | 0 496 (8)   |
| H17B | 0.589671    | 0.983588    | 0.860243    | 0.096*      | 0.496 (8)   |
| H17C | 0.628959    | 0.922380    | 0.812295    | 0.096*      | 0 496 (8)   |
| C18  | 0.6987(10)  | 1.0894 (6)  | 0.8151(17)  | 0.103(5)    | 0.496 (8)   |
| H18A | 0 712974    | 1 111290    | 0.755691    | 0.154*      | 0 496 (8)   |
| H18B | 0.735553    | 1.090030    | 0.861402    | 0.154*      | 0.496 (8)   |
| H18C | 0.660178    | 1 113333    | 0.841844    | 0.154*      | 0.496 (8)   |
| O8B  | 0 7021 (7)  | 0.9110 (5)  | 0.7572 (10) | 0.088(3)    | 0 504 (8)   |
| C15B | 0.6841(5)   | 0.9691(4)   | 0.7775 (6)  | 0.069(2)    | 0.504 (8)   |
| C16B | 0.6074 (7)  | 0.9806 (10) | 0.7853 (14) | 0.086(4)    | 0.504 (8)   |
| H16D | 0.594807    | 1.019693    | 0.746971    | 0.129*      | 0.504 (8)   |
| H16E | 0.595329    | 0.988266    | 0.852428    | 0.129*      | 0.504 (8)   |
| H16F | 0.583732    | 0.941032    | 0.761345    | 0.129*      | 0.504 (8)   |
| N2B  | 0.7244 (5)  | 1.0225 (4)  | 0.7873 (7)  | 0.078 (2)   | 0.504 (8)   |
| C17B | 0.7972 (6)  | 1.0092 (9)  | 0.7693 (15) | 0.104 (5)   | 0.504 (8)   |
| H17D | 0.807718    | 1.018857    | 0.702167    | 0.155*      | 0.504 (8)   |
| H17E | 0.807091    | 0.962171    | 0.783142    | 0.155*      | 0.504 (8)   |
| H17F | 0.824296    | 1.037917    | 0.810972    | 0.155*      | 0.504 (8)   |
| C18B | 0.6739 (9)  | 1.0864 (5)  | 0.7973 (14) | 0.087 (4)   | 0.504 (8)   |
| H18D | 0.672813    | 1.111050    | 0.736713    | 0.131*      | 0.504 (8)   |
| H18E | 0.689809    | 1.115905    | 0.848546    | 0.131*      | 0.504 (8)   |
| H18F | 0.628823    | 1.070413    | 0.812822    | 0.131*      | 0.504 (8)   |
| 09   | 0.9251 (8)  | 1.0845 (6)  | 0.8857 (9)  | 0.090 (4)   | 0.608 (9)   |
| C19  | 0.9589 (5)  | 1.1335 (4)  | 0.8605 (5)  | 0.0737 (19) | 0.608 (9)   |
| C20  | 0.9736 (9)  | 1.1944 (8)  | 0.9272 (10) | 0.096 (4)   | 0.608 (9)   |
| H20A | 1.019835    | 1.209408    | 0.917513    | 0.145*      | 0.608 (9)   |
| H20B | 0.967498    | 1.181067    | 0.994213    | 0.145*      | 0.608 (9)   |
| H20C | 0.942838    | 1.231018    | 0.911850    | 0.145*      | 0.608 (9)   |
| N3   | 0.9712 (4)  | 1.1468 (4)  | 0.7693 (5)  | 0.0734 (17) | 0.608 (9)   |
| C21  | 0.9586 (13) | 1.0828 (8)  | 0.7072 (10) | 0.102 (4)   | 0.608 (9)   |
| H21A | 0.917348    | 1.088456    | 0.670116    | 0.153*      | 0.608 (9)   |
|      |             |             |             |             |             |

| H21B  | 0.954167    | 1.043764                | 0.749307     | 0.153*               | 0.608 (9) |
|-------|-------------|-------------------------|--------------|----------------------|-----------|
| H21C  | 0.996310    | 1.076029                | 0.663456     | 0.153*               | 0.608 (9) |
| C22   | 1.0080 (10) | 1.2133 (7)              | 0.7482 (10)  | 0.084 (4)            | 0.608 (9) |
| H22A  | 1.044163    | 1.219537                | 0.794745     | 0.126*               | 0.608 (9) |
| H22B  | 0.976308    | 1.250613                | 0.753216     | 0.126*               | 0.608 (9) |
| H22C  | 1.026709    | 1.211994                | 0.683363     | 0.126*               | 0.608 (9) |
| 09B   | 0.9394(13)  | 1.0698 (9)              | 0.8677 (14)  | 0.082(4)             | 0.392 (9) |
| C19B  | 0.9602(7)   | 1 1050 (6)              | 0.8021 (8)   | 0.075(2)             | 0.392(9)  |
| C20B  | 0.9663(16)  | 1 0947 (11)             | 0.6932(10)   | 0.067(3)             | 0.392(9)  |
| H20D  | 0.929162    | 1 117404                | 0.660820     | 0.100*               | 0.392(9)  |
| H20E  | 0.929102    | 1.046742                | 0.678604     | 0.100*               | 0.392(9)  |
| H20E  | 1 008830    | 1 113331                | 0.670687     | 0.100*               | 0.392(9)  |
| N3R   | 0.0812(7)   | 1.1667 (6)              | 0.8714(7)    | 0.100                | 0.392(9)  |
| C21B  | 0.9812(7)   | 1.1007(0)<br>1.1761(12) | 0.0214(7)    | 0.000(2)             | 0.392(9)  |
| U21D  | 1.012851    | 1.1701 (12)             | 0.9321(12)   | 0.097 (0)            | 0.392(9)  |
|       | 1.012831    | 1.210001                | 0.944349     | 0.145*               | 0.392(9)  |
|       | 1.01/885    | 1.139437                | 0.937422     | 0.145*               | 0.392 (9) |
| H21F  | 0.946656    | 1.1/5/8/                | 0.963438     | 0.145*               | 0.392 (9) |
| C22B  | 0.9940 (17) | 1.2076 (12)             | 0.7265 (14)  | 0.088 (5)            | 0.392 (9) |
| H22D  | 1.026460    | 1.183676                | 0.686535     | 0.131*               | 0.392 (9) |
| H22E  | 1.011672    | 1.251904                | 0.742683     | 0.131*               | 0.392 (9) |
| H22F  | 0.951855    | 1.212551                | 0.691363     | 0.131*               | 0.392 (9) |
| Nal   | 0.750000    | 0.750000                | 0.61298 (18) | 0.0325 (5)           |           |
| O10   | 0.6805 (12) | 1.2775 (16)             | 0.703 (2)    | 0.136 (6)            | 0.275 (7) |
| C23   | 0.7332 (14) | 1.255 (2)               | 0.7402 (15)  | 0.123 (4)            | 0.275 (7) |
| C24   | 0.7931 (15) | 1.226 (2)               | 0.678 (2)    | 0.129 (6)            | 0.275 (7) |
| H24A  | 0.829103    | 1.210734                | 0.720129     | 0.194*               | 0.275 (7) |
| H24B  | 0.776972    | 1.187951                | 0.639447     | 0.194*               | 0.275 (7) |
| H24C  | 0.809989    | 1.260828                | 0.634971     | 0.194*               | 0.275 (7) |
| N4    | 0.7436 (13) | 1.244 (2)               | 0.8306 (14)  | 0.128 (4)            | 0.275 (7) |
| C25   | 0.6840 (17) | 1.261 (2)               | 0.897 (2)    | 0.138 (7)            | 0.275 (7) |
| H25A  | 0.696127    | 1.251165                | 0.963847     | 0.207*               | 0.275 (7) |
| H25B  | 0.673215    | 1.308695                | 0.891161     | 0.207*               | 0.275 (7) |
| H25C  | 0.644929    | 1.234266                | 0.879075     | 0.207*               | 0.275 (7) |
| C26   | 0.8176 (14) | 1.2228 (19)             | 0.852 (2)    | 0.123 (7)            | 0.275 (7) |
| H26A  | 0.822756    | 1.214984                | 0.921383     | 0.185*               | 0.275 (7) |
| H26B  | 0.828308    | 1.181623                | 0.817452     | 0.185*               | 0.275 (7) |
| H26C  | 0.847942    | 1.258560                | 0.832208     | 0.185*               | 0.275 (7) |
| O10B  | 0.743 (2)   | 1.2564 (18)             | 0.6231 (15)  | 0.131 (6)            | 0.225 (7) |
| C23B  | 0.7383 (13) | 1.2528 (11)             | 0.7142 (16)  | 0.123 (4)            | 0.225 (7) |
| C24B  | 0.6694 (14) | 1.2653 (18)             | 0.765 (3)    | 0.135 (6)            | 0.225 (7) |
| H24D  | 0.675022    | 1.260517                | 0.834813     | 0.202*               | 0.225(7)  |
| H24E  | 0.653621    | 1.310539                | 0.750689     | 0.202*               | 0.225(7)  |
| H24F  | 0.636573    | 1.232511                | 0.742579     | 0.202*               | 0.225(7)  |
| N4B   | 0.7880 (11) | 1 2390 (11)             | 0 7703 (16)  | 0.121(4)             | 0.225(7)  |
| C25B  | 0.8556 (13) | 1 2272 (17)             | 0.714(3)     | 0.121(7)<br>0.130(8) | 0.225(7)  |
| H25D  | 0.891378    | 1 217022                | 0 759840     | 0.194*               | 0.225(7)  |
| H25E  | 0.850128    | 1 189670                | 0.669709     | 0.194*               | 0.225(7)  |
| H25E  | 0.8671/3    | 1.10767680              | 0.678120     | 0.194*               | 0.225(7)  |
| 11401 | 0.00/175    | 1,20,007                | 0.070120     | 0.177                | 0.225(7)  |

| C26B | 0.7712 (18) | 1.237 (2) | 0.8796 (15) | 0.123 (7)    | 0.225 (7) |
|------|-------------|-----------|-------------|--------------|-----------|
| H26D | 0.811704    | 1.226485  | 0.915929    | 0.185*       | 0.225 (7) |
| H26E | 0.754256    | 1.281090  | 0.899651    | 0.185*       | 0.225 (7) |
| H26F | 0.737029    | 1.203096  | 0.891637    | 0.185*       | 0.225 (7) |
| Dy1  | 0.750000    | 0.750000  | 0.36449 (2) | 0.03521 (10) |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|------|-------------|-------------|-------------|---------------|---------------|--------------|
| Mn1  | 0.0247 (3)  | 0.0243 (3)  | 0.0386 (3)  | -0.00064 (18) | -0.00242 (18) | 0.00210 (18) |
| 01   | 0.0239 (10) | 0.0244 (10) | 0.0398 (12) | 0.0020 (9)    | -0.0009 (9)   | -0.0025 (9)  |
| N1   | 0.026 (2)   | 0.0272 (15) | 0.034 (2)   | 0.0023 (14)   | -0.003(2)     | 0.0011 (13)  |
| O2   | 0.0261 (12) | 0.0283 (13) | 0.0455 (14) | -0.0007 (10)  | -0.0043 (10)  | 0.0002 (11)  |
| C1   | 0.0283 (14) | 0.0273 (14) | 0.0345 (14) | 0.0006 (12)   | -0.0043 (11)  | 0.0007 (11)  |
| C2   | 0.0289 (19) | 0.0261 (15) | 0.0395 (17) | 0.0012 (14)   | -0.0069 (18)  | 0.0019 (13)  |
| C3   | 0.0361 (19) | 0.0270 (17) | 0.073 (2)   | 0.0007 (15)   | -0.0048 (17)  | -0.0010 (17) |
| C4   | 0.047 (3)   | 0.029 (2)   | 0.093 (4)   | 0.0036 (19)   | -0.009 (2)    | -0.008(2)    |
| C5   | 0.038 (2)   | 0.0306 (18) | 0.076 (3)   | 0.0080 (18)   | -0.004 (2)    | -0.0077 (18) |
| C6   | 0.0312 (17) | 0.0326 (17) | 0.052 (2)   | 0.0057 (15)   | -0.0076 (15)  | -0.0068 (15) |
| C7   | 0.0294 (15) | 0.0298 (15) | 0.0387 (16) | 0.0026 (13)   | -0.0053 (12)  | -0.0034 (12) |
| O3   | 0.0286 (13) | 0.0276 (14) | 0.0572 (17) | 0.0015 (11)   | 0.0010 (11)   | -0.0065 (13) |
| O4   | 0.0432 (15) | 0.0422 (15) | 0.0427 (15) | -0.0030 (12)  | 0.0010 (11)   | 0.0125 (11)  |
| O5   | 0.0502 (16) | 0.0479 (16) | 0.0451 (15) | -0.0028 (13)  | 0.0089 (12)   | 0.0067 (12)  |
| C8   | 0.0400 (18) | 0.048 (2)   | 0.0464 (19) | 0.0015 (15)   | 0.0037 (15)   | 0.0128 (16)  |
| C9   | 0.054 (2)   | 0.055 (2)   | 0.0407 (19) | -0.0028 (18)  | 0.0067 (17)   | 0.0172 (17)  |
| C10  | 0.074 (3)   | 0.061 (3)   | 0.045 (2)   | -0.015 (2)    | -0.010 (2)    | 0.015 (2)    |
| C11  | 0.092 (4)   | 0.069 (3)   | 0.048 (2)   | -0.020 (3)    | -0.011 (3)    | 0.020 (2)    |
| C12  | 0.102 (4)   | 0.074 (3)   | 0.044 (2)   | -0.014 (3)    | 0.002 (3)     | 0.018 (2)    |
| C13  | 0.118 (4)   | 0.083 (4)   | 0.048 (3)   | -0.025 (3)    | 0.005 (3)     | 0.005 (2)    |
| C14  | 0.098 (4)   | 0.073 (3)   | 0.048 (2)   | -0.021 (3)    | 0.010 (3)     | 0.006 (2)    |
| O6   | 0.172 (7)   | 0.095 (4)   | 0.056 (3)   | -0.062 (4)    | -0.014 (4)    | 0.030 (3)    |
| O7   | 0.0342 (19) | 0.0380 (19) | 0.0434 (16) | 0.0042 (15)   | -0.0043 (15)  | -0.0048 (13) |
| Mn1B | 0.0308 (11) | 0.0282 (11) | 0.0298 (10) | -0.0005 (8)   | 0.0006 (7)    | 0.0018 (7)   |
| O1B  | 0.027 (4)   | 0.029 (4)   | 0.037 (4)   | 0.004 (3)     | -0.001 (3)    | -0.001 (3)   |
| N1B  | 0.025 (4)   | 0.026 (4)   | 0.036 (4)   | 0.006 (4)     | 0.000 (4)     | -0.002 (4)   |
| O2B  | 0.027 (4)   | 0.029 (4)   | 0.044 (4)   | -0.001 (4)    | -0.004 (3)    | 0.001 (4)    |
| C1B  | 0.032 (3)   | 0.026 (3)   | 0.039 (3)   | 0.001 (3)     | -0.005 (3)    | -0.002 (3)   |
| C2B  | 0.030 (4)   | 0.023 (4)   | 0.043 (4)   | 0.002 (4)     | -0.006 (4)    | -0.003 (3)   |
| C3B  | 0.033 (4)   | 0.031 (4)   | 0.056 (4)   | 0.006 (4)     | -0.007 (4)    | -0.009 (4)   |
| C4B  | 0.040 (5)   | 0.031 (4)   | 0.073 (5)   | 0.009 (4)     | -0.003 (5)    | -0.010 (4)   |
| C5B  | 0.038 (5)   | 0.034 (5)   | 0.076 (5)   | 0.003 (4)     | -0.009 (4)    | -0.009 (4)   |
| C6B  | 0.039 (5)   | 0.029 (4)   | 0.068 (5)   | -0.001 (4)    | -0.005 (4)    | -0.005 (4)   |
| C7B  | 0.035 (4)   | 0.027 (4)   | 0.045 (4)   | 0.001 (3)     | -0.003 (3)    | 0.002 (3)    |
| O3B  | 0.029 (4)   | 0.030 (4)   | 0.041 (4)   | 0.001 (3)     | 0.000 (3)     | -0.001 (3)   |
| O4B  | 0.041 (4)   | 0.044 (4)   | 0.036 (4)   | -0.004 (4)    | 0.001 (4)     | 0.008 (4)    |
| O5B  | 0.053 (5)   | 0.053 (5)   | 0.039 (4)   | -0.001 (4)    | -0.002 (4)    | 0.011 (4)    |
| C8B  | 0.048 (4)   | 0.050 (4)   | 0.038 (4)   | -0.002 (4)    | 0.003 (3)     | 0.011 (3)    |
| C9B  | 0.068 (4)   | 0.062 (4)   | 0.043 (4)   | -0.012 (4)    | 0.003 (4)     | 0.013 (4)    |

| C10B | 0.078 (5)    | 0.067 (5)    | 0.043 (4)    | -0.018 (5)  | -0.003(5)   | 0.016 (4)   |
|------|--------------|--------------|--------------|-------------|-------------|-------------|
| C11B | 0.095 (5)    | 0.074 (5)    | 0.047 (4)    | -0.024(5)   | -0.002(5)   | 0.017 (4)   |
| C12B | 0.106 (5)    | 0.081 (5)    | 0.048 (5)    | -0.019 (5)  | 0.000 (5)   | 0.014 (5)   |
| C13B | 0.103 (5)    | 0.078 (5)    | 0.047 (4)    | -0.021 (5)  | 0.000 (5)   | 0.008 (5)   |
| C14B | 0.090 (5)    | 0.070 (5)    | 0.044 (4)    | -0.019 (5)  | 0.003 (5)   | 0.010 (4)   |
| O6B  | 0.115 (11)   | 0.090 (10)   | 0.060 (9)    | -0.039 (9)  | -0.001 (9)  | 0.033 (8)   |
| O7B  | 0.027 (6)    | 0.036 (6)    | 0.036 (5)    | 0.011 (5)   | 0.001 (5)   | 0.000 (4)   |
| 08   | 0.043 (3)    | 0.041 (3)    | 0.057 (4)    | -0.006(2)   | 0.005 (3)   | -0.014 (2)  |
| C15  | 0.102 (5)    | 0.062 (4)    | 0.050 (4)    | 0.011 (4)   | -0.002 (4)  | -0.004(3)   |
| C16  | 0.087 (6)    | 0.064 (7)    | 0.056 (6)    | -0.022 (5)  | -0.015 (5)  | 0.011 (4)   |
| N2   | 0.095 (5)    | 0.048 (3)    | 0.052 (3)    | 0.010 (4)   | 0.005 (4)   | -0.004 (3)  |
| C17  | 0.086 (6)    | 0.054 (6)    | 0.052 (6)    | 0.018 (5)   | -0.003 (5)  | 0.006 (5)   |
| C18  | 0.170 (11)   | 0.057 (6)    | 0.081 (9)    | 0.009 (7)   | -0.012 (9)  | -0.020 (5)  |
| O8B  | 0.149 (9)    | 0.054 (5)    | 0.059 (4)    | 0.023 (6)   | -0.008 (7)  | -0.018 (4)  |
| C15B | 0.112 (5)    | 0.053 (4)    | 0.042 (3)    | 0.016 (4)   | 0.005 (4)   | -0.004 (3)  |
| C16B | 0.128 (9)    | 0.064 (7)    | 0.066 (8)    | 0.030 (6)   | 0.034 (7)   | 0.027 (5)   |
| N2B  | 0.120 (5)    | 0.055 (4)    | 0.059 (3)    | 0.007 (4)   | -0.001 (4)  | -0.016 (3)  |
| C17B | 0.140 (9)    | 0.071 (8)    | 0.100 (10)   | -0.016 (7)  | -0.047 (7)  | -0.015 (7)  |
| C18B | 0.143 (10)   | 0.042 (5)    | 0.075 (8)    | 0.016 (6)   | -0.015 (7)  | -0.012 (4)  |
| 09   | 0.106 (8)    | 0.108 (7)    | 0.057 (5)    | -0.037 (6)  | 0.009 (4)   | 0.031 (5)   |
| C19  | 0.079 (4)    | 0.095 (5)    | 0.048 (3)    | -0.023 (4)  | 0.006 (3)   | 0.009 (3)   |
| C20  | 0.106 (9)    | 0.117 (9)    | 0.067 (5)    | -0.011 (7)  | 0.006 (5)   | -0.011 (6)  |
| N3   | 0.085 (4)    | 0.083 (4)    | 0.052 (3)    | -0.027 (3)  | 0.007 (3)   | 0.009 (3)   |
| C21  | 0.105 (8)    | 0.108 (9)    | 0.094 (8)    | -0.010 (7)  | 0.041 (7)   | 0.015 (7)   |
| C22  | 0.105 (9)    | 0.071 (5)    | 0.077 (7)    | -0.033 (5)  | 0.007 (6)   | 0.013 (5)   |
| O9B  | 0.091 (9)    | 0.098 (8)    | 0.058 (7)    | -0.004 (6)  | 0.008 (6)   | 0.016 (6)   |
| C19B | 0.079 (5)    | 0.083 (5)    | 0.063 (5)    | -0.023 (4)  | -0.001 (4)  | 0.012 (4)   |
| C20B | 0.083 (8)    | 0.071 (7)    | 0.046 (5)    | -0.032 (6)  | 0.023 (6)   | 0.007 (5)   |
| N3B  | 0.087 (5)    | 0.092 (5)    | 0.061 (5)    | -0.020 (4)  | 0.003 (4)   | 0.007 (4)   |
| C21B | 0.099 (11)   | 0.116 (11)   | 0.076 (8)    | -0.023 (9)  | 0.000 (8)   | 0.003 (8)   |
| C22B | 0.105 (11)   | 0.088 (8)    | 0.070 (9)    | -0.034 (8)  | 0.011 (8)   | -0.001 (7)  |
| Na1  | 0.0267 (6)   | 0.0267 (6)   | 0.0442 (12)  | 0.000       | 0.000       | 0.000       |
| O10  | 0.131 (10)   | 0.120 (9)    | 0.158 (10)   | -0.006 (9)  | -0.003 (9)  | -0.004 (9)  |
| C23  | 0.125 (7)    | 0.106 (6)    | 0.138 (6)    | -0.015 (6)  | -0.009 (6)  | 0.002 (6)   |
| C24  | 0.130 (10)   | 0.118 (9)    | 0.140 (10)   | -0.020 (9)  | -0.019 (9)  | 0.014 (9)   |
| N4   | 0.130 (7)    | 0.115 (6)    | 0.141 (6)    | -0.012 (5)  | -0.012 (6)  | -0.002 (6)  |
| C25  | 0.139 (11)   | 0.132 (11)   | 0.143 (11)   | 0.005 (10)  | -0.015 (10) | 0.000 (10)  |
| C26  | 0.133 (11)   | 0.117 (11)   | 0.119 (11)   | -0.011 (10) | -0.026 (10) | -0.003 (10) |
| O10B | 0.121 (10)   | 0.111 (9)    | 0.160 (10)   | -0.028 (8)  | -0.011 (10) | 0.006 (10)  |
| C23B | 0.124 (7)    | 0.107 (6)    | 0.137 (6)    | -0.014 (6)  | -0.010 (6)  | 0.001 (6)   |
| C24B | 0.137 (10)   | 0.122 (9)    | 0.145 (10)   | -0.005 (9)  | -0.004 (9)  | 0.000 (9)   |
| N4B  | 0.124 (7)    | 0.110 (6)    | 0.130 (7)    | -0.013 (6)  | -0.009 (5)  | 0.000 (6)   |
| C25B | 0.125 (13)   | 0.121 (12)   | 0.142 (13)   | -0.008 (12) | -0.009 (12) | 0.002 (12)  |
| C26B | 0.131 (11)   | 0.120 (10)   | 0.119 (10)   | -0.012 (10) | -0.027 (9)  | 0.001 (9)   |
| Dy1  | 0.03543 (12) | 0.03543 (12) | 0.03478 (15) | 0.000       | 0.000       | 0.000       |

Geometric parameters (Å, °)

| Mn1—O3 <sup>i</sup>   | 1.854 (3)   | O8—C15    | 1.245 (10) |
|-----------------------|-------------|-----------|------------|
| Mn1—O1                | 1.916 (2)   | C15—N2    | 1.295 (10) |
| Mn1—O2                | 1.951 (3)   | C15—C16   | 1.557 (13) |
| Mn1—N1 <sup>i</sup>   | 1.974 (7)   | C16—H16A  | 0.9800     |
| Mn1—O4                | 2.175 (3)   | C16—H16B  | 0.9800     |
| Mn1—O7                | 2.448 (4)   | C16—H16C  | 0.9800     |
| Mn1—Na1               | 3.6274 (12) | N2—C17    | 1.548 (12) |
| O1—N1                 | 1.399 (6)   | N2—C18    | 1.599 (11) |
| O1—Dy1                | 2.417 (2)   | C17—H17A  | 0.9800     |
| O1—Na1                | 2.673 (3)   | C17—H17B  | 0.9800     |
| N1C1                  | 1.314 (7)   | C17—H17C  | 0.9800     |
| O2—C1                 | 1.293 (4)   | C18—H18A  | 0.9800     |
| C1—C2                 | 1.470 (5)   | C18—H18B  | 0.9800     |
| C2—C3                 | 1.398 (6)   | C18—H18C  | 0.9800     |
| C2—C7                 | 1.408 (5)   | O8B—C15B  | 1.248 (10) |
| C3—C4                 | 1.384 (7)   | C15B—N2B  | 1.345 (10) |
| С3—Н3                 | 0.9500      | C15B—C16B | 1.554 (14) |
| C4—C5                 | 1.396 (7)   | C16B—H16D | 0.9800     |
| C4—H4                 | 0.9500      | C16B—H16E | 0.9800     |
| C5—C6                 | 1.377 (7)   | C16B—H16F | 0.9800     |
| С5—Н5                 | 0.9500      | N2B—C17B  | 1.500 (13) |
| C6—C7                 | 1.406 (5)   | N2B—C18B  | 1.632 (11) |
| С6—Н6                 | 0.9500      | C17B—H17D | 0.9800     |
| С7—О3                 | 1.338 (5)   | C17B—H17E | 0.9800     |
| O4—C8                 | 1.245 (6)   | C17B—H17F | 0.9800     |
| O5—C8                 | 1.273 (5)   | C18B—H18D | 0.9800     |
| O5—Dy1                | 2.261 (3)   | C18B—H18E | 0.9800     |
| C8—C9                 | 1.512 (6)   | C18B—H18F | 0.9800     |
| C9—C10                | 1.354 (7)   | O9—C19    | 1.241 (10) |
| C9—C14                | 1.393 (8)   | C19—N3    | 1.323 (8)  |
| C10—C11               | 1.396 (7)   | C19—C20   | 1.561 (12) |
| C10—H10               | 0.9500      | C20—H20A  | 0.9800     |
| C11—O6                | 1.348 (7)   | C20—H20B  | 0.9800     |
| C11—C12               | 1.386 (8)   | C20—H20C  | 0.9800     |
| C12—C13               | 1.373 (9)   | N3—C22    | 1.548 (10) |
| C12—H12               | 0.9500      | N3—C21    | 1.565 (12) |
| C13—C14               | 1.400 (8)   | C21—H21A  | 0.9800     |
| С13—Н13               | 0.9500      | C21—H21B  | 0.9800     |
| C14—H14               | 0.9500      | C21—H21C  | 0.9800     |
| O6—H6A1               | 0.8401      | C22—H22A  | 0.9800     |
| O7—Na1                | 2.422 (4)   | C22—H22B  | 0.9800     |
| O7—H7A                | 0.8243      | C22—H22C  | 0.9800     |
| O7—H7B                | 0.8155      | O9B—C19B  | 1.228 (13) |
| Mn1B—O3B              | 1.848 (12)  | C19B—N3B  | 1.331 (12) |
| Mn1B—O1B <sup>i</sup> | 1.915 (10)  | C19B—C20B | 1.539 (14) |
| Mn1B—O2B <sup>i</sup> | 1.970 (13)  | C20B—H20D | 0.9800     |

| Mn1B—N1B                         | 2 00 (3)                | C20B—H20E      | 0 9800                 |
|----------------------------------|-------------------------|----------------|------------------------|
| Mn1B-04B                         | 2.00(3)<br>2.171(10)    | $C_{20B}$ H20E | 0.9800                 |
| Mn1B-07B                         | 2 471 (15)              | N3B-C21B       | 1.568(13)              |
| Mn1B—Na1                         | 3 597 (2)               | N3B-C22B       | 1.500(12)<br>1.576(12) |
| OIB-NIB                          | 1402(18)                | $C_{21B}$ H21D | 0.9800                 |
| $O1B_{\rm Dv1}$                  | 2 460 (9)               | C21B_H21E      | 0.9800                 |
| OIB Nal                          | 2.400(9)<br>2.637(10)   | C21B H21E      | 0.9800                 |
| NIR CIR                          | 2.037(10)<br>1 316 (10) |                | 0.9800                 |
| $\Omega^2 R C^1 R$               | 1.310(19)<br>1.277(13)  | C22B H22E      | 0.9800                 |
| $C_{1}^{1}$                      | 1.277(13)<br>1.480(14)  | C22D—H22E      | 0.9800                 |
| C1B - C2B                        | 1.460(14)<br>1.280(15)  | C22D—II22F     | 0.9800                 |
| C2D—C3D                          | 1.389 (13)              | Na1 - H/D      | 2.3822                 |
|                                  | 1.412 (14)              | 010-023        | 1.262 (14)             |
| C3B—C4B                          | 1.402 (18)              | C23—N4         | 1.297 (14)             |
| C3B—H3B                          | 0.9500                  | C23—C24        | 1.590 (17)             |
| C4B—C5B                          | 1.384 (17)              | C24—H24A       | 0.9800                 |
| C4B—H4B                          | 0.9500                  | C24—H24B       | 0.9800                 |
| С5В—С6В                          | 1.378 (18)              | C24—H24C       | 0.9800                 |
| C5B—H5B                          | 0.9500                  | N4—C25         | 1.552 (14)             |
| C6B—C7B                          | 1.411 (14)              | N4—C26         | 1.567 (14)             |
| C6B—H6B                          | 0.9500                  | C25—H25A       | 0.9800                 |
| C7B—O3B                          | 1.357 (13)              | C25—H25B       | 0.9800                 |
| O4B—C8B                          | 1.240 (14)              | C25—H25C       | 0.9800                 |
| O5B—C8B                          | 1.272 (14)              | C26—H26A       | 0.9800                 |
| O5B—Dy1                          | 2.222 (11)              | C26—H26B       | 0.9800                 |
| C8B—C9B                          | 1.513 (15)              | C26—H26C       | 0.9800                 |
| C9B—C10B                         | 1.375 (16)              | O10B—C23B      | 1.277 (15)             |
| C9B—C14B                         | 1.407 (17)              | C23B—N4B       | 1.293 (15)             |
| C10B—C11B                        | 1.404 (17)              | C23B—C24B      | 1.572 (17)             |
| C10B—H10B                        | 0.9500                  | C24B—H24D      | 0.9800                 |
| C11B—O6B                         | 1.353 (17)              | C24B—H24E      | 0.9800                 |
| C11B—C12B                        | 1.395 (17)              | C24B—H24F      | 0.9800                 |
| C12B—C13B                        | 1.373 (18)              | N4B—C26B       | 1.562 (14)             |
| C12B—H12B                        | 0.9500                  | N4B—C25B       | 1.580 (14)             |
| C13B—C14B                        | 1.397 (17)              | C25B—H25D      | 0.9800                 |
| C13B—H13B                        | 0.9500                  | С25В—Н25Е      | 0.9800                 |
| C14B—H14B                        | 0.9500                  | C25B—H25F      | 0.9800                 |
| O6B—H6B1                         | 0.8400                  | C26B—H26D      | 0.9800                 |
| O7B—Na1                          | 2.444 (16)              | C26B—H26E      | 0.9800                 |
| O7B—H7C                          | 0.8387                  | C26B—H26F      | 0.9800                 |
| O7B—H7D                          | 0 8449                  |                |                        |
| 0/2 11/2                         |                         |                |                        |
| $O3^{i}$ —Mn1—O1                 | 171.06 (13)             | O9—C19—C20     | 123.3 (10)             |
| $O3^{i}$ Mn1 $-O2$               | 97.51 (12)              | N3—C19—C20     | 112.5 (8)              |
| 01—Mn1—02                        | 81.64 (10)              | C19—C20—H20A   | 109.5                  |
| $O3^{i}$ Mn1 N1 <sup>i</sup>     | 90.50 (16)              | C19—C20—H20B   | 109.5                  |
| 01—Mn1—N1 <sup>i</sup>           | 89.09 (16)              | H20A—C20—H20B  | 109.5                  |
| $\Omega_{2}$ Mn1 N1 <sup>i</sup> | 168.1 (4)               | C19—C20—H20C   | 109.5                  |
| $O3^{i}$ —Mn1—O4                 | 95.15 (13)              | H20A—C20—H20C  | 109.5                  |
|                                  | ( )                     |                |                        |

| O1—Mn1—O4                | 93.76 (11)  | H20B-C20-H20C                              | 109.5      |
|--------------------------|-------------|--------------------------------------------|------------|
| O2—Mn1—O4                | 90.56 (12)  | C19—N3—C22                                 | 116.3 (8)  |
| N1 <sup>i</sup> —Mn1—O4  | 97.5 (6)    | C19—N3—C21                                 | 109.8 (7)  |
| O3 <sup>i</sup> —Mn1—O7  | 91.12 (14)  | C22—N3—C21                                 | 132.4 (10) |
| O1—Mn1—O7                | 79.96 (12)  | N3—C21—H21A                                | 109.5      |
| O2—Mn1—O7                | 87.86 (12)  | N3—C21—H21B                                | 109.5      |
| N1 <sup>i</sup> —Mn1—O7  | 83.2 (6)    | H21A—C21—H21B                              | 109.5      |
| O4—Mn1—O7                | 173.68 (12) | N3—C21—H21C                                | 109.5      |
| O3 <sup>i</sup> —Mn1—Na1 | 126.39 (11) | H21A—C21—H21C                              | 109.5      |
| O1—Mn1—Na1               | 45.84 (8)   | H21B—C21—H21C                              | 109.5      |
| O2—Mn1—Na1               | 102.65 (8)  | N3—C22—H22A                                | 109.5      |
| N1 <sup>i</sup> —Mn1—Na1 | 65.5 (4)    | N3—C22—H22B                                | 109.5      |
| O4—Mn1—Na1               | 133.19 (9)  | H22A—C22—H22B                              | 109.5      |
| O7—Mn1—Na1               | 41.59 (10)  | N3—C22—H22C                                | 109.5      |
| N1—O1—Mn1                | 112.5 (4)   | H22A—C22—H22C                              | 109.5      |
| N1—O1—Dy1                | 121.5 (6)   | H22B—C22—H22C                              | 109.5      |
| Mn1—O1—Dv1               | 120.38 (11) | O9B—C19B—N3B                               | 119.2 (14) |
| N1—O1—Na1                | 105.6 (7)   | O9B—C19B—C20B                              | 133.4 (14) |
| Mn1—O1—Na1               | 103.22 (10) | N3B—C19B—C20B                              | 107.4 (10) |
| Dv1—O1—Na1               | 85.74 (8)   | C19B—C20B—H20D                             | 109.5      |
| C1—N1—O1                 | 113.4 (6)   | C19B—C20B—H20E                             | 109.5      |
| $C1-N1-Mn1^{ii}$         | 129.9 (4)   | H20D—C20B—H20E                             | 109.5      |
| O1—N1—Mn1 <sup>ii</sup>  | 115.5 (3)   | C19B—C20B—H20F                             | 109.5      |
| C1—O2—Mn1                | 112.0 (2)   | H20D-C20B-H20F                             | 109.5      |
| 02—C1—N1                 | 120.3 (4)   | H20E—C20B—H20F                             | 109.5      |
| O2—C1—C2                 | 119.6 (3)   | C19B—N3B—C21B                              | 110.3 (10) |
| N1—C1—C2                 | 120.1 (4)   | C19B—N3B—C22B                              | 111.2 (10) |
| C3—C2—C7                 | 119.0 (4)   | C21B—N3B—C22B                              | 138.3 (14) |
| C3—C2—C1                 | 118.0 (4)   | N3B—C21B—H21D                              | 109.5      |
| C7—C2—C1                 | 122.9 (3)   | N3B—C21B—H21E                              | 109.5      |
| C4—C3—C2                 | 121.8 (4)   | H21D—C21B—H21E                             | 109.5      |
| С4—С3—Н3                 | 119.1       | N3B—C21B—H21F                              | 109.5      |
| С2—С3—Н3                 | 119.1       | H21D—C21B—H21F                             | 109.5      |
| C3—C4—C5                 | 118.9 (5)   | H21E—C21B—H21F                             | 109.5      |
| C3—C4—H4                 | 120.6       | N3B—C22B—H22D                              | 109.5      |
| C5—C4—H4                 | 120.6       | N3B—C22B—H22E                              | 109.5      |
| C6—C5—C4                 | 120.4 (5)   | H22D—C22B—H22E                             | 109.5      |
| С6—С5—Н5                 | 119.8       | N3B—C22B—H22F                              | 109.5      |
| C4—C5—H5                 | 119.8       | H22D—C22B—H22F                             | 109.5      |
| C5—C6—C7                 | 121.1 (4)   | H22E—C22B—H22F                             | 109.5      |
| С5—С6—Н6                 | 119.5       | O7—Na1—O7 <sup>iii</sup>                   | 147.5 (2)  |
| С7—С6—Н6                 | 119.5       | O7—Na1—O7 <sup>i</sup>                     | 85.52 (6)  |
| O3—C7—C6                 | 117.3 (3)   | O7 <sup>iii</sup> —Na1—O7 <sup>i</sup>     | 85.52 (6)  |
| O3—C7—C2                 | 123.9 (3)   | O7—Na1—O7 <sup>ii</sup>                    | 85.52 (6)  |
| C6—C7—C2                 | 118.8 (3)   | O7 <sup>iii</sup> —Na1—O7 <sup>ii</sup>    | 85.52 (6)  |
| C7—O3—Mn1 <sup>ii</sup>  | 129.9 (3)   | O7 <sup>i</sup> —Na1—O7 <sup>ii</sup>      | 147.5 (2)  |
| C8—O4—Mn1                | 123.4 (3)   | O7—Na1—O7B <sup>iii</sup>                  | 142.8 (3)  |
| C8—O5—Dy1                | 142.0 (3)   | O7 <sup>iiii</sup> —Na1—O7B <sup>iii</sup> | 13.4 (2)   |
| ,                        |             |                                            |            |

| O4—C8—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.6 (4)                      | O7 <sup>i</sup> —Na1—O7B <sup>iii</sup>                                           | 72.2 (3)              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------|-----------------------|
| O4—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.6 (4)                      | O7 <sup>ii</sup> —Na1—O7B <sup>iii</sup>                                          | 97.5 (3)              |
| O5—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.8 (4)                      | O7B—Na1—O7B <sup>iii</sup>                                                        | 143.3 (7)             |
| C10—C9—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.2 (4)                      | O7—Na1—O7B <sup>i</sup>                                                           | 72.2 (3)              |
| C10—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3 (5)                      | O7 <sup>iii</sup> —Na1—O7B <sup>i</sup>                                           | 97.5 (3)              |
| C14—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4 (4)                      | O7 <sup>i</sup> —Na1—O7B <sup>i</sup>                                             | 13.4 (2)              |
| C9—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.4 (5)                      | O7 <sup>ii</sup> —Na1—O7B <sup>i</sup>                                            | 142.8 (3)             |
| C9—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.3                          | O7B—Na1—O7B <sup>i</sup>                                                          | 84.3 (2)              |
| С11—С10—Н10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3                          | O7B <sup>iii</sup> —Na1—O7B <sup>i</sup>                                          | 84.3 (2)              |
| 06—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.0 (5)                      | $07$ —Na1— $07B^{ii}$                                                             | 97.5 (3)              |
| 06-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1179(6)                        | $07^{iii}$ Na1 $07B^{ii}$                                                         | 72.2 (3)              |
| C12-C11-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1210(5)                        | $O7^{i}$ Na1 $O7B^{ii}$                                                           | 142.8(3)              |
| C13 - C12 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1196(5)                        | $07^{ii}$ Na1 $-07B^{ii}$                                                         | 134(2)                |
| C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.2                          | $0.7B$ Na1 $-0.7B^{ii}$                                                           | 84 3 (2)              |
| C11 - C12 - H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.2                          | $07B^{iii}$ Na1 $-07B^{ii}$                                                       | 84 3 (2)              |
| C12 - C13 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.2 (6)                      | $O7B^{i}$ Na1 $O7B^{i}$                                                           | 1433(7)               |
| C12 - C13 - H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.4                          | 07B Nal- $01B$                                                                    | 85 9 (4)              |
| C12 C13 H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.4                          | $07B^{ii}$ Na1 $-01B$                                                             | 1211(4)               |
| $C_{14} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.4 (6)                      | $07B^{i}$ Na1-01B                                                                 | 121.1(4)<br>145.7(4)  |
| $C_{0}$ $C_{14}$ $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.8                          | $O7B^{ii}$ Na1 $O1B$                                                              | 67 6 (4)              |
| $C_{13}$ $C_{14}$ $H_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.8                          | $07$ Na1 $01B^{ii}$                                                               | 1495(2)               |
| $C_{11}$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.9                          | $07^{iii}$ Na1 $-01B^{ii}$                                                        | (1+).5(2)             |
| Na1_07_Mn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96 27 (14)                     | $O^{i}$ Na1 $O^{1}B^{i}$                                                          | 1099(2)               |
| Na1_07_H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105.4                          | $07^{ii}$ Na1 01B                                                                 | 93 2 (2)              |
| Mn1H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.7                          | $0.7$ Nul $0.1$ $B^{ii}$                                                          | 145.7(4)              |
| Na1_07_H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113.8                          | $07B^{ii}$ Na1 $-01B^{ii}$                                                        | 67.6(4)               |
| Mn1H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.3                          | $0.7B^{i}$ Na1-01 $B^{ii}$                                                        | 1211(4)               |
| H7A = 07 = H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112.1.5                        | $O7B^{ii}$ Na1 $O1B^{ii}$                                                         | 121.1(4)<br>859(4)    |
| $\begin{array}{ccc} \mathbf{\Omega}\mathbf{R} & \mathbf{M}\mathbf{n}1\mathbf{R} & \mathbf{\Omega}1\mathbf{R}^{\mathrm{i}} \\ \mathbf{\Omega}\mathbf{R} & \mathbf{M}\mathbf{n}1\mathbf{R} & \mathbf{\Omega}1\mathbf{R}^{\mathrm{i}} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171.8 (5)                      | $01B N_{2}1 01B^{ii}$                                                             | 60.0(7)               |
| $O_{3B} = Mn1B = N1B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 171.8(5)                       | OT Na1 OIB                                                                        | 100.0(2)              |
| $O1B^{i}$ Mp1B N1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90.3 (5)<br>80 4 (6)           | $07^{iii}$ Nal $018^{iii}$                                                        | 107.7(2)              |
| $O^2B^i Mn^1B N^1B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 169.6 (16)                     | $O_{1}^{i}$ Na1-O1B <sup>iii</sup>                                                | 53.2(2)               |
| $O_{2B} = Mn1B = O_{4B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94.6(5)                        | $O_7^{ii}$ Na1 $O_1 B^{iii}$                                                      | 149.5(2)              |
| $O_{3}D$ Mill $O_{4}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94.0(5)                        | O7 = Na1 = O1B                                                                    | 149.3(2)              |
| $O^2B^i$ Mn1B $O^4B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.0(5)                        | $O7B^{iii}$ Na1 $O1B^{iii}$                                                       | 121.1(4)              |
| $\frac{1}{12} \frac{1}{12} \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91.4(3)                        | O/B = Na1 = O1B                                                                   | 67.6 (4)              |
| $\Omega_{3B}^{}Mn1B = \Omega_{7B}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93(3)                          | $O7B^{ii}$ Na1 $O1B^{iii}$                                                        | 145.7(4)              |
| $O_{3}D_{min} M_{n} 1B_{min} O_{7}B_{min} O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.3(5)                        | O/B - Na1 - OIB                                                                   | 143.7(4)              |
| $O^2B^i$ Mn1B $O^7B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86 2 (5)                       | $\begin{array}{c} 01B^{ii} \\ 01B^{ii} \\ 1 \\ 01B^{ii} \\ 01B^{iii} \end{array}$ | 90.0(4)               |
| N1B Mn1B O7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 86 (3)                         | 01D - Na1 - 01D<br>$07 Na1 - 01B^{i}$                                             | 62, 2, (2)            |
| OAB Mn1B O7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172.7(5)                       | $O_{iii}^{iii}$ No1 $O_{i}B^{i}$                                                  | 140.5(2)              |
| $O_{4}D_{min}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{min}O_{7}D_{m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172.7(3)<br>127.4(4)           | $O_{7}^{i}$ Nal $O_{1}B^{i}$                                                      | 149.3(2)              |
| O1Di Mra1D Na1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127.4(4)                       | $O_{i}^{i}$ No1 $O_{i}^{i}$                                                       | 93.2(2)               |
| $O2B^{i} Mn^{1}B Na^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103 6 (3)                      | 0.7 - 10 - 0.1 B<br>$0.7 B - 0.1 B^{i}$                                           | 109.9 (2)<br>67.6 (4) |
| N1B_Mn1B_Na1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.1 (18)                      | $07B^{iii} Na1 - 01B^{i}$                                                         | 145.7(4)              |
| $\Omega 4R Mn 1R No1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 131 Q (3)                      | $07B^{i}$ Na1-01B <sup>i</sup>                                                    | 85 Q (A)              |
| $O7B_Mn1B_Na1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42 7 (4)                       | $O7B^{ii}$ $N_{2}1$ $O1B^{ii}$                                                    | 121 1 (4)             |
| $\mathbf{N}_{\mathbf{I}} \mathbf{P}_{\mathbf{I}} \mathbf{P}$ | יבי <i>ו (ד)</i><br>111 7 (12) | $O1B \qquad N_21 \qquad O1B^i$                                                    | 121.1(4)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111./ (14)                     |                                                                                   | 00.0(2)               |

| N1B—O1B—Dy1                 | 121 (2)    | O1B <sup>ii</sup> —Na1—O1B <sup>i</sup>  | 90.0 (4)   |
|-----------------------------|------------|------------------------------------------|------------|
| Mn1B <sup>ii</sup> —O1B—Dy1 | 120.6 (5)  | O1B <sup>iii</sup> —Na1—O1B <sup>i</sup> | 60.0 (2)   |
| N1B—O1B—Na1                 | 107 (3)    | O7B—Na1—H7D                              | 19.1       |
| Mn1B <sup>ii</sup> —O1B—Na1 | 103.3 (4)  | O7B <sup>iii</sup> —Na1—H7D              | 135.9      |
| Dy1—O1B—Na1                 | 85.7 (3)   | O7B <sup>i</sup> —Na1—H7D                | 65.3       |
| C1B—N1B—O1B                 | 114 (2)    | O7B <sup>ii</sup> —Na1—H7D               | 101.0      |
| C1B—N1B—Mn1B                | 130 (2)    | O1B—Na1—H7D                              | 100.8      |
| O1B—N1B—Mn1B                | 114.2 (17) | O1B <sup>ii</sup> —Na1—H7D               | 155.7      |
| C1B—O2B—Mn1B <sup>ii</sup>  | 111.0 (9)  | O1B <sup>iii</sup> —Na1—H7D              | 108.8      |
| O2B—C1B—N1B                 | 121.1 (15) | O1B <sup>i</sup> —Na1—H7D                | 66.4       |
| O2B—C1B—C2B                 | 119.0 (11) | O10—C23—N4                               | 126.8 (19) |
| N1B—C1B—C2B                 | 119.8 (14) | O10—C23—C24                              | 122.2 (19) |
| C3B—C2B—C7B                 | 120.0 (12) | N4—C23—C24                               | 110.5 (16) |
| C3B—C2B—C1B                 | 118.2 (12) | C23—C24—H24A                             | 109.5      |
| C7B—C2B—C1B                 | 121.8 (11) | C23—C24—H24B                             | 109.5      |
| C2B—C3B—C4B                 | 119.8 (14) | H24A—C24—H24B                            | 109.5      |
| С2В—С3В—Н3В                 | 120.1      | C23—C24—H24C                             | 109.5      |
| C4B—C3B—H3B                 | 120.1      | H24A—C24—H24C                            | 109.5      |
| C5B—C4B—C3B                 | 120.0 (18) | H24B—C24—H24C                            | 109.5      |
| C5B—C4B—H4B                 | 120.0      | C23—N4—C25                               | 115.0 (13) |
| C3B—C4B—H4B                 | 120.0      | C23—N4—C26                               | 112.7 (12) |
| C6B—C5B—C4B                 | 119.3 (17) | C25—N4—C26                               | 131.9 (16) |
| C6B—C5B—H5B                 | 120.4      | N4—C25—H25A                              | 109.5      |
| C4B—C5B—H5B                 | 120.4      | N4—C25—H25B                              | 109.5      |
| C5B—C6B—C7B                 | 121.2 (14) | H25A—C25—H25B                            | 109.5      |
| С5В—С6В—Н6В                 | 119.4      | N4—C25—H25C                              | 109.5      |
| С7В—С6В—Н6В                 | 119.4      | H25A—C25—H25C                            | 109.5      |
| O3B—C7B—C6B                 | 116.5 (12) | H25B—C25—H25C                            | 109.5      |
| O3B—C7B—C2B                 | 125.1 (11) | N4—C26—H26A                              | 109.5      |
| C6B—C7B—C2B                 | 118.3 (11) | N4—C26—H26B                              | 109.5      |
| C7B—O3B—Mn1B                | 129.0 (9)  | H26A—C26—H26B                            | 109.5      |
| C8B—O4B—Mn1B                | 123.7 (9)  | N4—C26—H26C                              | 109.5      |
| C8B—O5B—Dy1                 | 143.9 (11) | H26A—C26—H26C                            | 109.5      |
| O4B—C8B—O5B                 | 125.8 (13) | H26B—C26—H26C                            | 109.5      |
| O4B—C8B—C9B                 | 119.0 (12) | O10B—C23B—N4B                            | 124 (2)    |
| O5B—C8B—C9B                 | 115.1 (12) | O10B—C23B—C24B                           | 121 (2)    |
| C10B—C9B—C14B               | 120.2 (13) | N4B—C23B—C24B                            | 115.5 (18) |
| C10B—C9B—C8B                | 119.8 (13) | C23B—C24B—H24D                           | 109.5      |
| C14B—C9B—C8B                | 120.0 (13) | C23B—C24B—H24E                           | 109.5      |
| C9B—C10B—C11B               | 120.2 (16) | H24D—C24B—H24E                           | 109.5      |
| C9B-C10B-H10B               | 119.9      | C23B—C24B—H24F                           | 109.5      |
| C11B—C10B—H10B              | 119.9      | H24D—C24B—H24F                           | 109.5      |
| O6B-C11B-C12B               | 122 (2)    | H24E—C24B—H24F                           | 109.5      |
| O6B-C11B-C10B               | 115.0 (19) | C23B—N4B—C26B                            | 115.5 (12) |
| C12B—C11B—C10B              | 118.5 (16) | C23B—N4B—C25B                            | 112.8 (12) |
| C13B—C12B—C11B              | 121.0 (17) | C26B—N4B—C25B                            | 131.6 (17) |
| C13B—C12B—H12B              | 119.5      | N4B—C25B—H25D                            | 109.5      |
| C11B—C12B—H12B              | 119.5      | N4B—C25B—H25E                            | 109.5      |

| C12B—C13B—C14B                                       | 119.9 (17)           | H25D—C25B—H25E                               | 109.5                  |
|------------------------------------------------------|----------------------|----------------------------------------------|------------------------|
| C12B—C13B—H13B                                       | 120.0                | N4B—C25B—H25F                                | 109.5                  |
| C14B—C13B—H13B                                       | 120.0                | H25D—C25B—H25F                               | 109.5                  |
| C13B—C14B—C9B                                        | 119.2 (16)           | H25E—C25B—H25F                               | 109.5                  |
| C13B—C14B—H14B                                       | 120.4                | N4B—C26B—H26D                                | 109.5                  |
| C9B—C14B—H14B                                        | 120.4                | N4B—C26B—H26E                                | 109.5                  |
| C11B—O6B—H6B1                                        | 107.1                | H26D—C26B—H26E                               | 109.5                  |
| Na1—O7B—Mn1B                                         | 94.1 (5)             | N4B—C26B—H26F                                | 109.5                  |
| Na1—O7B—H7C                                          | 141.1                | H26D—C26B—H26F                               | 109.5                  |
| Mn1B—O7B—H7C                                         | 112.8                | H26E—C26B—H26F                               | 109.5                  |
| Na1—O7B—H7D                                          | 89.7                 | O5B—Dv1—O5B <sup>iii</sup>                   | 126.8 (7)              |
| Mn1B-07B-H7D                                         | 106.5                | $0.5B$ — $Dv1$ — $0.5B^{ii}$                 | 78.4 (3)               |
| H7C - O7B - H7D                                      | 107.6                | $05B^{iii}$ Dv1 $05B^{ii}$                   | 78 4 (3)               |
| 08-C15-N2                                            | 120 5 (9)            | 05B $Dy1$ $05B$                              | 1095(3)                |
| 08-C15-C16                                           | 125.1(10)            | $O5B^{iii}$ $Dv1$ $O5^{iii}$                 | 41 3 (3)               |
| $N_{2}$ C15 C16                                      | 114 3 (9)            | $O5B^{ii}$ $Dy1 - O5^{iii}$                  | 383(3)                 |
| $C_{15}$ $C_{16}$ $H_{16A}$                          | 109.5                | $O5B^{i}$ $Dy1 O5^{iii}$                     | 1115(4)                |
| C15 C16 H16R                                         | 109.5                | 05 Dy1 05                                    | 111.3(4)<br>124.37(17) |
|                                                      | 109.5                | 05 - Dy1 - 05                                | 124.37(17)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5                | 05 - Dy - 05                                 | 77.42 (7)              |
|                                                      | 109.5                | $05P$ Dyl $05^{ii}$                          | 77.42 (7)              |
| H10A - C10 - H10C                                    | 109.5                | $O_{3B}$ $D_{3B}$ $D_{3B}$ $D_{3B}$ $D_{3B}$ | 36.3(3)                |
| H16B - C16 - H16C                                    | 109.5                | 05B"                                         | 111.5 (4)              |
| C15 - N2 - C17                                       | 112.8 (8)            | $OSB^{i}$ Dy1-OS <sup>ii</sup>               | 41.3 (3)               |
| C15—N2—C18                                           | 109.6 (9)            | O5B'—Dy1—O5"                                 | 109.5 (3)              |
| C17—N2—C18                                           | 137.3 (11)           | O5—Dy1—O5 <sup>n</sup>                       | 77.42 (7)              |
| N2—C17—H17A                                          | 109.5                | $O5^{m}$ — $Dy1$ — $O5^{n}$                  | 77.42 (7)              |
| N2—C17—H17B                                          | 109.5                | $O5^{i}$ —Dy1—O5 <sup>ii</sup>               | 124.37 (17)            |
| H17A—C17—H17B                                        | 109.5                | O5B—Dy1—O1 <sup>i</sup>                      | 108.9 (3)              |
| N2—C17—H17C                                          | 109.5                | O5B <sup>iii</sup> —Dy1—O1 <sup>i</sup>      | 104.4 (4)              |
| H17A—C17—H17C                                        | 109.5                | O5B <sup>ii</sup> —Dy1—O1 <sup>i</sup>       | 166.6 (3)              |
| H17B—C17—H17C                                        | 109.5                | $O5B^{i}$ — $Dy1$ — $O1^{i}$                 | 66.4 (3)               |
| N2—C18—H18A                                          | 109.5                | O5—Dy1—O1 <sup>i</sup>                       | 80.22 (10)             |
| N2-C18-H18B                                          | 109.5                | O5 <sup>iii</sup> —Dy1—O1 <sup>i</sup>       | 140.07 (10)            |
| H18A—C18—H18B                                        | 109.5                | O5 <sup>i</sup> —Dy1—O1 <sup>i</sup>         | 78.80 (10)             |
| N2—C18—H18C                                          | 109.5                | O5 <sup>ii</sup> —Dy1—O1 <sup>i</sup>        | 142.30 (10)            |
| H18A—C18—H18C                                        | 109.5                | O5B—Dy1—O1 <sup>ii</sup>                     | 104.4 (3)              |
| H18B—C18—H18C                                        | 109.5                | O5B <sup>iii</sup> —Dy1—O1 <sup>ii</sup>     | 108.9 (3)              |
| O8B—C15B—N2B                                         | 126.1 (10)           | $O5B^{ii}$ — $Dy1$ — $O1^{ii}$               | 66.4 (3)               |
| O8B-C15B-C16B                                        | 116.0 (11)           | $O5B^{i}$ — $Dy1$ — $O1^{ii}$                | 166.6 (3)              |
| N2B-C15B-C16B                                        | 117.8 (10)           | 05—Dv1—O1 <sup>ii</sup>                      | 140.07 (10)            |
| C15B—C16B—H16D                                       | 109.5                | $05^{iii}$ Dv1 $-01^{ii}$                    | 80.22 (10)             |
| C15B— $C16B$ — $H16E$                                | 109.5                | $05^{i}$ Dv1 $-01^{ii}$                      | 142.30(10)             |
| $H_{16D}$ $-C_{16B}$ $-H_{16E}$                      | 109.5                | $05^{ii}$ Dy1 $01^{ii}$                      | 78 80 (10)             |
| C15B-C16B-H16F                                       | 109.5                | $01^{i}$ Dy1 01                              | 100.46(12)             |
| $H_{16D}$ $C_{16B}$ $H_{16F}$                        | 109.5                | $0.5B - Dv1 - 01^{iii}$                      | 166.6(3)               |
| $H_{16F}$ $C_{16B}$ $H_{16F}$                        | 109.5                | 05B - Dy1 - 01                               | 66.4(3)                |
| C15P N2P C17P                                        | 115.0 (0)            | $O_{2} = D_{2} = O_{1}$                      | 104 4 (2)              |
| C15D = N2D = C17D                                    | 113.0(7)<br>105.0(9) | $O_{2}D = D_{2} D_{2} D_{1} = O_{1}$         | 104.4(3)<br>1080(2)    |
| $U13D$ $N2D$ $U1\delta B$                            | 103.0 (8)            | U1-U1-U1-                                    | 100.9 (3)              |

| C17B—N2B—C18B<br>N2B—C17B—H17D<br>N2B—C17B—H17E<br>H17D—C17B—H17E<br>N2B—C17B—H17F<br>H17D—C17B—H17F<br>H17E—C17B—H17F<br>N2B—C18B—H17F<br>N2B—C18B—H18D<br>N2B—C18B—H18E<br>H18D—C18B—H18F<br>H18D—C18B—H18F<br>H18E—C18B—H18F | 138.8 (11)<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5<br>109.5 | $\begin{array}{c} O5 - Dy1 - O1^{iii} \\ O5^{iii} - Dy1 - O1^{iii} \\ O5^{ii} - Dy1 - O1^{iii} \\ O5^{ii} - Dy1 - O1^{iii} \\ O1^{ii} - Dy1 - O1^{iii} \\ O1^{ii} - Dy1 - O1^{iii} \\ O5 - Dy1 - O1 \\ O5^{iii} - Dy1 - O1 \\ O5^{ii} - Dy1 - O1 \\ O5^{ii} - Dy1 - O1 \\ O1^{ii} - Dy1 - O1 \\ O1^{iii} - Dy1 - O1 \\ O1^{ii} - Dy1 \\ O1^{ii} - D$ | 142.30 (10) 78.80 (10) 80.22 (10) 140.07 (10) 65.84 (6) 65.84 (6) 78.80 (10) 142.30 (10) 140.07 (10) 80.22 (10) 65.84 (6) 65.84 (6) 100.46 (12) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| O9—C19—N3                                                                                                                                                                                                                       | 122.1 (9)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
| Mn1—O1—N1—C1<br>Dy1—O1—N1—C1                                                                                                                                                                                                    | 3.0 (17)<br>-150.5 (9)                                                                                                                   | N1B—C1B—C2B—C7B<br>C7B—C2B—C3B—C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -15 (5)<br>5 (4)                                                                                                                                |
| Na1—O1—N1—C1<br>Mn1—O1—N1—Mn1 <sup>ii</sup>                                                                                                                                                                                     | 114.9 (12)<br>-165.5 (7)                                                                                                                 | C1B—C2B—C3B—C4B<br>C2B—C3B—C4B—C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -175 (2)<br>-12 (4)                                                                                                                             |
| Dy1—O1—N1—Mn1 <sup>ii</sup><br>Na1—O1—N1—Mn1 <sup>ii</sup>                                                                                                                                                                      | 41.0 (15)<br>-53.6 (12)                                                                                                                  | C3B—C4B—C5B—C6B<br>C4B—C5B—C6B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15 (5)<br>-11 (4)                                                                                                                               |
| Mn1—O2—C1—N1<br>Mn1—O2—C1—C2                                                                                                                                                                                                    | -2.9 (11)<br>177.9 (3)                                                                                                                   | C5B—C6B—C7B—O3B<br>C5B—C6B—C7B—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -172 (2)<br>4 (3)                                                                                                                               |
| O1—N1—C1—O2<br>Mn1 <sup>ii</sup> —N1—C1—O2                                                                                                                                                                                      | 0.0 (18)<br>166.4 (10)                                                                                                                   | C3B—C2B—C7B—O3B<br>C1B—C2B—C7B—O3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175.2 (18)<br>-5 (3)                                                                                                                            |
| 01—N1—C1—C2<br>Mn1 <sup>ii</sup> —N1—C1—C2                                                                                                                                                                                      | 179.1 (8)<br>-14 (2)                                                                                                                     | C3B—C2B—C7B—C6B<br>C1B—C2B—C7B—C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1 (3)<br>178.5 (19)                                                                                                                            |
| O2—C1—C2—C3                                                                                                                                                                                                                     | 14.2 (6)                                                                                                                                 | C6B—C7B—O3B—Mn1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -162.8 (13)                                                                                                                                     |
| N1C1C2C3<br>O2C1C2C7                                                                                                                                                                                                            | -165.0(11)<br>-167.8(4)                                                                                                                  | $O2B^{i}$ Mn1B $O3B$ C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 (3)<br>173.3 (13)                                                                                                                            |
| N1—C1—C2—C7                                                                                                                                                                                                                     | 13.0 (12)                                                                                                                                | N1B—Mn1B—O3B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -14(3)                                                                                                                                          |
| C1-C2-C3-C4<br>C1-C2-C3-C4                                                                                                                                                                                                      | -0.5 (8)<br>177.6 (5)                                                                                                                    | 07B—Mn1B—03B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -100.2(13)                                                                                                                                      |
| C2-C3-C4-C5                                                                                                                                                                                                                     | 2.9 (10)                                                                                                                                 | Na1—Mn1B—O3B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -73.4 (13)                                                                                                                                      |
| C3-C4-C5-C6<br>C4-C5-C6-C7                                                                                                                                                                                                      | -3.2(11)<br>1.1(10)                                                                                                                      | Mn1B—04B—C8B—05B<br>Mn1B—04B—C8B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -175.2(14)                                                                                                                                      |
| C5—C6—C7—O3                                                                                                                                                                                                                     | 179.8 (5)                                                                                                                                | Dy1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -46 (3)                                                                                                                                         |
| C5—C6—C7—C2                                                                                                                                                                                                                     | 1.3 (7)                                                                                                                                  | Dy1—O5B—C8B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 131.2 (18)                                                                                                                                      |
| $C_3 = C_2 = C_1 = 0_3$                                                                                                                                                                                                         | -180.0(4)                                                                                                                                | O4B = C8B = C9B = C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4(3)                                                                                                                                           |
| $C_1 = C_2 = C_7 = C_5$                                                                                                                                                                                                         | 2.0(7)                                                                                                                                   | $O_{3B}$ $C_{8B}$ $C_{9B}$ $C_{14B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 179(2)                                                                                                                                          |
| $C_1 = C_2 = C_7 = C_6$                                                                                                                                                                                                         | -1796(4)                                                                                                                                 | 05B-C8B-C9B-C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2(3)                                                                                                                                           |
| $C6-C7-O3-Mn1^{ii}$                                                                                                                                                                                                             | 165.2 (3)                                                                                                                                | C14B-C9B-C10B-C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2(4)                                                                                                                                           |
| C2—C7—O3—Mn1 <sup>ii</sup>                                                                                                                                                                                                      | -16.3 (6)                                                                                                                                | C8B—C9B—C10B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 178 (3)                                                                                                                                         |
| Mn1—O4—C8—O5                                                                                                                                                                                                                    | -5.4 (6)                                                                                                                                 | C9B—C10B—C11B—O6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 166 (3)                                                                                                                                         |
| Mn1—O4—C8—C9                                                                                                                                                                                                                    | 176.3 (3)                                                                                                                                | C9B—C10B—C11B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 (5)                                                                                                                                          |
| Dy1                                                                                                                                                                                                                             | 50.8 (7)                                                                                                                                 | O6B—C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -166 (3)                                                                                                                                        |
| Dy1                                                                                                                                                                                                                             | -130.8 (4)                                                                                                                               | C10B—C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11 (5)                                                                                                                                         |

| O4—C8—C9—C10                     | 0.2 (7)     | C11B—C12B—C13B—C14B | 4 (6)       |
|----------------------------------|-------------|---------------------|-------------|
| O5—C8—C9—C10                     | -178.3 (5)  | C12B—C13B—C14B—C9B  | 4 (5)       |
| O4—C8—C9—C14                     | -178.6 (5)  | C10B—C9B—C14B—C13B  | -6 (4)      |
| O5—C8—C9—C14                     | 3.0 (7)     | C8B—C9B—C14B—C13B   | 175 (3)     |
| C14—C9—C10—C11                   | -2.1 (10)   | O8—C15—N2—C17       | -0.2 (15)   |
| C8—C9—C10—C11                    | 179.2 (6)   | C16—C15—N2—C17      | 176.2 (10)  |
| C9—C10—C11—O6                    | -179.5 (7)  | O8—C15—N2—C18       | 174.7 (13)  |
| C9—C10—C11—C12                   | 3.2 (11)    | C16—C15—N2—C18      | -9.0 (15)   |
| O6-C11-C12-C13                   | -178.4 (9)  | O8B—C15B—N2B—C17B   | 1.5 (18)    |
| C10-C11-C12-C13                  | -1.2 (13)   | C16B—C15B—N2B—C17B  | -174.2 (13) |
| C11—C12—C13—C14                  | -1.8 (14)   | O8B-C15B-N2B-C18B   | 171.6 (13)  |
| C10-C9-C14-C13                   | -0.9 (11)   | C16B—C15B—N2B—C18B  | -4.1 (14)   |
| C8—C9—C14—C13                    | 177.8 (7)   | O9—C19—N3—C22       | 174.0 (15)  |
| C12—C13—C14—C9                   | 2.9 (13)    | C20-C19-N3-C22      | 9.9 (16)    |
| Mn1B <sup>ii</sup> —O1B—N1B—C1B  | -1 (7)      | O9—C19—N3—C21       | -18.4 (19)  |
| Dy1—O1B—N1B—C1B                  | 151 (4)     | C20-C19-N3-C21      | 177.4 (14)  |
| Na1—O1B—N1B—C1B                  | -113 (6)    | O9B—C19B—N3B—C21B   | 14 (3)      |
| Mn1B <sup>ii</sup> —O1B—N1B—Mn1B | 164 (3)     | C20B—C19B—N3B—C21B  | -168 (2)    |
| Dy1—O1B—N1B—Mn1B                 | -44 (6)     | O9B—C19B—N3B—C22B   | -170 (2)    |
| Na1—O1B—N1B—Mn1B                 | 51 (5)      | C20B—C19B—N3B—C22B  | 8 (3)       |
| Mn1B <sup>ii</sup> —O2B—C1B—N1B  | 6 (5)       | O10-C23-N4-C25      | 0(7)        |
| Mn1B <sup>ii</sup> —O2B—C1B—C2B  | -178.8 (14) | C24—C23—N4—C25      | -172 (3)    |
| O1B—N1B—C1B—O2B                  | -3 (8)      | O10-C23-N4-C26      | -174 (4)    |
| Mn1B—N1B—C1B—O2B                 | -165 (4)    | C24—C23—N4—C26      | 15 (5)      |
| O1B—N1B—C1B—C2B                  | -179 (4)    | O10B—C23B—N4B—C26B  | 179.9 (3)   |
| Mn1B—N1B—C1B—C2B                 | 20 (9)      | C24B—C23B—N4B—C26B  | -0.2 (6)    |
| O2B—C1B—C2B—C3B                  | -10(3)      | O10B—C23B—N4B—C25B  | 0.2 (6)     |
| N1B—C1B—C2B—C3B                  | 165 (5)     | C24B—C23B—N4B—C25B  | -179.9 (3)  |
| O2B—C1B—C2B—C7B                  | 170.1 (18)  |                     |             |
|                                  |             |                     |             |

Symmetry codes: (i) y, -x+3/2, z; (ii) -y+3/2, x, z; (iii) -x+3/2, -y+3/2, z.

### Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | H···A | D···A      | D—H···A |
|--------------------------------------|-------------|-------|------------|---------|
| O6—H6A1···O9 <sup>iv</sup>           | 0.84        | 1.82  | 2.542 (13) | 143     |
| O7—H7 <i>A</i> ···O8                 | 0.82        | 1.85  | 2.653 (9)  | 165     |
| O7—H7 <i>B</i> ···O8 <sup>i</sup>    | 0.82        | 2.05  | 2.785 (9)  | 151     |
| C17—H17 <i>B</i> ····O6 <sup>v</sup> | 0.98        | 2.53  | 3.348 (19) | 141     |

Symmetry codes: (i) y, -x+3/2, z; (iv) x, y, z-1; (v) y-1/2, -x+2, -z+1.