

Crystal structure and Hirshfeld surface analysis of phenyl(5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridin-6-yl)methanone with an unknown solvent

Farid N. Naghiyev,^a Gunay Z. Mammadova,^a Ibrahim G. Mamedov,^a Afet T. Huseynova,^a Sevim Türktekin Çelikesir,^b Mehmet Akkurt^b and Anzurat A. Akobirshoeva^c*

^aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, ^bDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey, and ^cAcademy of Science of the Republic of Tadzhikistan, Kh. Yu. Yusufbekov Pamir Biological Institute, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan. *Correspondence e-mail: anzurat2003@mail.ru

In the title compound, $C_{32}H_{28}N_2O$, the imidazolidine and pyridine rings of the central hexahydroimidazo[1,2-a]pyridine ring system adopt envelope and screwboat conformations, respectively. The molecule exhibits two weak intramolecular π - π interactions between phenyl rings. In the crystal, molecules are linked via pairs of $C-H \cdots O$ hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of $C-H\cdots\pi$ interactions, forming infinite chains along the *c*-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from $H \cdot \cdot \cdot H$ (73.4%), $C \cdots H/H \cdots C$ (18.8%) and $O \cdots H/H \cdots O$ (5.7%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.

1. Chemical context

Carbon-carbon and carbon-heteroatom bond-forming reactions are the most powerful and fundamental tools in synthetic organic chemistry. These synthetic approaches have successfully found applications in the construction of carbo- and heterocyclic ring systems (Khalilov et al., 2011; Yin et al., 2020). The use of nitrogen as the bridgehead atom is being assessed extensively. Bridgehead nitrogen heterocycles comprising imidazole rings are prevalent structural motifs in many compounds having applications in medicinal chemistry, coordination chemistry and material science (Afkhami et al., 2017; Mahmoudi et al., 2017a,b; Mahmudov et al., 2019, 2020). Various imidazo[1,2-a]pyridine moieties are included in synthetic drugs, such as alpidem, olprinone, saripidem, necopidem, miroprofen, zolimidine and zolpidem, which have already found use in medicinal practice. On the other hand, the imidazo[1,2-a]pyridine motif is also found in a series of natural products, such as oxaline and neoxaline (Koizumi et al., 2004). As a result of the considerable interest to this field, there have been significant developments in the synthesis of imidazo[1,2-a]pyridine derivatives. In the framework of our ongoing structural studies (Akkurt et al., 2018; Khalilov et al., 2019), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

Received 6 July 2020 Accepted 19 July 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure: cycloaddition products; hexahydroimidazo[1,2-a]pyridine ring; SQUEEZE.

CCDC reference: 2017791

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

2. Structural commentary

In the title compound (Fig. 1), the imidazolidine ring (N1/C1/ C2/N2/C3) of the central hexahydroimidazo[1,2-*a*]pyridine ring system (N1/C1/C2/N2/C3–C7) adopts an envelope conformation with atom C2 as the flap lying 0.222 (2) Å from the mean plane of the remaining four atoms, while the pyridine ring (N1/C3–C7) is puckered with the puckering parameters $Q_{\rm T} = 0.4970$ (15) Å, $\theta = 62.27$ (17)° and $\varphi = 96.49$ (19)°. The dihedral angles between phenyl rings are A/B = 34.51 (8), A/C = 48.27 (8), A/D = 74.89 (8), B/C = 37.27 (8), B/D =

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Table 1		_	
Hydrogen-bond	geometry	(Å,	°).

Cg3 is the centroid of the C9-C14 phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2B\cdots O1^{i}$ $C24-H24\cdots Cg3^{ii}$	0.99	2.43	3.4084 (19)	168
	0.95	2.83	3.5886 (18)	138

Symmetry codes: (i) -x, -y, -z + 2; (ii) -x, -y, -z + 1.

56.29 (8) and C/D = 26.72 (8)°, where *A*, *B*, *C* and *D* are the phenyl rings C9–C14, C15–C20, C21–C26 and C27–C32, respectively. The *A*, *B*, *C* and *D* ring planes are inclined to the central hexahydroimidazo[1,2-*a*]pyridine ring system, making dihedral angles of 60.24 (7), 61.73 (7), 81.91 (7) and 63.08 (7)°, respectively, with the mean plane of the central ring system. There are two weak intramolecular π - π interactions [*Cg*3···*Cg*4 = 3.7628 (11) Å and *Cg*5···*Cg*6 = 3.9822 (10) Å; *Cg*3, *Cg*4, *Cg*5 and *Cg*6 are the centroids of rings *A*, *B*, *C* and *D*, respectively].

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, molecules are linked *via* pairs of C-H···O hydrogen bonds, forming inversion dimers. The dimers are further linked by pairs of C-H··· π interactions, forming an infinite chain along the *c*-axis direction (Table 1 and Fig. 2).

In order to obtain further insight into the intermolecular interactions, we used *Crystal Explorer* (Turner *et al.*, 2017). The Hirshfeld surface of the title compound mapped over d_{norm} is depicted in Fig. 3, where the red regions are apparent around atom O1, which participates in the C-H···O interactions (Table 1). The fingerprint plots (Fig. 4) show that the

Figure 2

The crystal packing of the title compound. Dashed lines indicate C– H···O, C–H··· π and π - π stacking interactions. Cg3, Cg4, Cg5 and Cg6 are the centroids of the C9–C14, C15–C20, C21–C26 and C27–C32 phenyl rings, respectively. [Symmetry codes: (a) -x, -y, -z + 1; (b) -x, -y, -z + 2.]

A view of the Hirshfeld surface of the title compound plotted over d_{norm} , showing the C-H···O interactions.

largest contribution to the overall crystal packing is from $H \cdots H$ contacts (73.4%). The second largest percentage (18.8%) can be attributed to $C \cdots H/H \cdots C$ contacts, which correlate with the $C-H \cdots \pi$ interactions. $O \cdots H/H \cdots O$ contacts (5.7%), which correlate with the $C-H \cdots O$ interactions, provide another significant contribution to the Hirshfeld surface. Other contributions include $N \cdots H/H \cdots N$ (1.9%) and $C \cdots C$ (0.2%). The removal of the contribution of the disordered solvent to the scattering using the SQUEEZE routine of *PLATON* may be responsible for a small change in the given percentage contributions.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.41, updated to March 2020; Groom et al., 2016) gave three hits for the 1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridine moiety, viz. 5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo-[1,2-a]pyridine (KICJUE; Alvim et al., 2018), 7-(4-bromophenyl)-5,8a-diphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridine (TEZJOZ; Wang et al., 2013) and 8-benzyloxy-8amethyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridin-7-one monohydrate (YUYREP; Wireko et al., 1995). In KICJUE, single crystal X-ray analysis confirmed the trans derivative as the only isomer. The structure of TEZJOZ shows that the aromatic ring of the aldehyde is on the other plane of the ketone in the purposed mechanism for the reaction. In the crystal of YUYREP, each water molecule bridges two molecules of the compound, hydrogen bonding with the carbonyl O atom of one molecule $[O \cdots OW = 2.796 (4) \text{ Å}]$ and with the N atom of the other $[N \cdots OW = 2.903 (4) \text{ Å}]$. The methyl group at the bridgehead is axially located in a trans position with respect to the bulky benzyloxy group. The pyridone ring assumes a slightly distorted half-chair conformation.

5. Synthesis and crystallization

To a solution of 2-benzoyl-1,3,5-triphenylpentane-1,5-dione (3.5 mmol) in ethanol (35 ml) was added ethylenediamine (3.7 mmol) and 5 drops of concentrated HCl. The mixture was stirred at room temperature for 15 min, then refluxed for 4 h and cooled down to room temperature. The reaction product precipitated from the reaction mixture as colourless single crystals, which were collected by filtration and purified by recrystallization from ethanol (yield 76%; m.p. 465–466 K).

¹H NMR (300 MHz, DMSO- d_6): δ 2.28 (dd, 2H, CH₂N), 2.77 (dd, 2H, CH₂N), 3.02 (t, 1H, CH), 3.41–3.63 (dd, 2H, CH₂), 5.34 (s, 1H, NH), 6.82–7.78 (m, 20H, 4Ar-H). ¹³C NMR (75 MHz, DMSO- d_6): δ 37.63, 45.55, 48.71, 48.98, 75.80, 125.99, 126.72, 127.53, 128.06, 128.18, 128.43, 128.54, 128.99, 133.34, 136.99, 145.47, 146.49, 170.71, 199.38.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atom was located in a difference-Fourier map and refined freely [N2-H2N =

(a) A full two-dimensional fingerprint plot for the title compound, together with those delineated into (b) $H \cdots H$, (c) $C \cdots H/H \cdots C$, (d) $O \cdots H/H \cdots O$, (e) $N \cdots H/H \cdots N$ and (f) $C \cdots C$ contacts.

research communications

0.908 (16) Å]. The remaining H atoms were placed in calculated positions (C–H = 0.95-1.00 Å) and allowed to ride on their carrier atoms, with $U_{iso} = 1.2U_{eq}(C)$. The residual electron density was difficult to model and therefore the SQUEEZE routine (Spek, 2015) in PLATON (Spek, 2020) was used to remove the contribution of the electron density in the solvent region from the intensity data and the solvent-free model was employed for the final refinement. The solvent formula mass and unit-cell characteristics were not taken into account during refinement. The cavity of volume ca 119 $Å^3$ (ca 9.4% of the unit-cell volume) contains approximately 28 electrons.

References

- Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.
- Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.
- Alvim, H. G. O., Correa, J. R., Assumpção, J. A. F., da Silva, W. A., Rodrigues, M. O., de Macedo, J. L., Fioramonte, M., Gozzo, F. C., Gatto, C. C. & Neto, B. A. D. (2018). J. Org. Chem. 83, 4044-4053.
- Bruker (2007). XSCANS . Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.
- Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.
- Koizumi, Y., Arai, M., Tomoda, H. & Omura, S. (2004). Biochim. Biophys. Acta, 1693, 47-55.
- Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.
- Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. 40, 4763-4772.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
- Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{32}H_{28}N_2O$
M _r	456.56
Crystal system, space group	Triclinic, P1
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.7807 (9), 11.9566 (12),
	12.9121 (13)
α, β, γ (°)	77.982 (1), 78.711 (1), 75.612 (1)
$V(\dot{A}^3)$	1269.4 (2)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.07
Crystal size (mm)	$0.28 \times 0.25 \times 0.23$
Data collection	
Diffractometer	Bruker P4
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)
T_{\min}, T_{\max}	0.980, 0.984
No. of measured, independent and	16061, 6472, 4328
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.695
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.051, 0.117, 1.03
No. of reflections	6472
No. of parameters	320
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$	0.25 - 0.23

Computer programs: XSCANS (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia. http://hirshfeldsurface.net.
- Wang, R.-L., Zhu, P., Lu, Y., Huang, F.-P. & Hui, X.-P. (2013). Adv. Synth. Catal. 355, 87-92.
- Wireko, F. C., Matthews, R. S., Thoman, S. M., Hennes, D. H. & Sickman, L. H. (1995). Acta Cryst. C51, 1404-1407.
- Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60-63.

supporting information

Acta Cryst. (2020). E76, 1365-1368 [https://doi.org/10.1107/S2056989020009871]

Crystal structure and Hirshfeld surface analysis of phenyl(5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-*a*]pyridin-6-yl)methanone with an unknown solvent

Farid N. Naghiyev, Gunay Z. Mammadova, Ibrahim G. Mamedov, Afet T. Huseynova, Sevim Türktekin Çelikesir, Mehmet Akkurt and Anzurat A. Akobirshoeva

Computing details

Data collection: *XSCANS* (Bruker, 2007); cell refinement: *XSCANS* (Bruker, 2007); data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

Phenyl(5,7,8a-triphenyl-1,2,3,7,8,8a-hexahydroimidazo[1,2-a]pyridin-6-yl)methanone

Crystal data

 $C_{32}H_{28}N_2O$ $M_r = 456.56$ Triclinic, *P*1 *a* = 8.7807 (9) Å *b* = 11.9566 (12) Å *c* = 12.9121 (13) Å *a* = 77.982 (1)° *β* = 78.711 (1)° *y* = 75.612 (1)° *V* = 1269.4 (2) Å³

Data collection

Bruker P4 diffractometer Radiation source: sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.980, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.117$ S = 1.03 Z = 2 F(000) = 484 $D_x = 1.195 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2538 reflections $\theta = 2.2-24.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 150 KPrism, colourless $0.28 \times 0.25 \times 0.23 \text{ mm}$

16061 measured reflections 6472 independent reflections 4328 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 29.6^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$

6472 reflections 320 parameters 0 restraints Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.0165P]$	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.44939 (17)	0.02866 (13)	0.83139 (12)	0.0254 (3)	
H1A	0.417532	0.092805	0.874131	0.031*	
H1B	0.532449	0.047058	0.770600	0.031*	
C2	0.50577 (18)	-0.08820 (13)	0.89972 (12)	0.0268 (3)	
H2A	0.620705	-0.101848	0.903228	0.032*	
H2B	0.446137	-0.091719	0.973388	0.032*	
C3	0.32476 (16)	-0.11911 (12)	0.80213 (11)	0.0207 (3)	
C4	0.18403 (17)	-0.15217 (12)	0.88356 (11)	0.0228 (3)	
H4A	0.188777	-0.236789	0.889250	0.027*	
H4B	0.193319	-0.138146	0.954753	0.027*	
C5	0.02321 (16)	-0.08252 (12)	0.85304 (11)	0.0210 (3)	
Н5	-0.054074	-0.085719	0.921116	0.025*	
C6	0.02583 (16)	0.04591 (12)	0.81466 (11)	0.0195 (3)	
C7	0.16526 (16)	0.08404 (12)	0.80012 (11)	0.0198 (3)	
C8	-0.13267 (17)	0.12259 (12)	0.81093 (11)	0.0215 (3)	
С9	-0.16490 (17)	0.23969 (12)	0.74001 (12)	0.0229 (3)	
C10	-0.29651 (18)	0.32328 (14)	0.77432 (13)	0.0316 (4)	
H10	-0.360310	0.305622	0.841463	0.038*	
C11	-0.3348 (2)	0.43204 (14)	0.71104 (14)	0.0390 (4)	
H11	-0.423388	0.489185	0.735723	0.047*	
C12	-0.2450 (2)	0.45780 (14)	0.61222 (14)	0.0373 (4)	
H12	-0.271383	0.532550	0.569140	0.045*	
C13	-0.1165 (2)	0.37451 (14)	0.57624 (13)	0.0331 (4)	
H13	-0.055757	0.391481	0.507747	0.040*	
C14	-0.07625 (18)	0.26622 (13)	0.63998 (12)	0.0257 (3)	
H14	0.012783	0.209572	0.615064	0.031*	
C15	0.17191 (16)	0.20907 (12)	0.78945 (11)	0.0206 (3)	
C16	0.07779 (18)	0.27811 (13)	0.86290 (12)	0.0262 (3)	
H16	0.010893	0.244616	0.922039	0.031*	
C17	0.0815 (2)	0.39533 (14)	0.84988 (14)	0.0377 (4)	
H17	0.017135	0.441920	0.900193	0.045*	
C18	0.1783 (2)	0.44495 (14)	0.76422 (15)	0.0409 (4)	
H18	0.179183	0.525745	0.754894	0.049*	
C19	0.27404 (19)	0.37652 (14)	0.69207 (14)	0.0361 (4)	
H19	0.341594	0.410217	0.633493	0.043*	

C20	0.27169 (17)	0.25941 (13)	0.70494 (12)	0.0267 (3)
H20	0.338866	0.212733	0.655604	0.032*
C21	0.33725 (16)	-0.15426 (12)	0.69346 (11)	0.0211 (3)
C22	0.34714 (18)	-0.07518 (13)	0.59878 (12)	0.0264 (3)
H22	0.341812	0.004668	0.600857	0.032*
C23	0.36476 (18)	-0.11116 (14)	0.50068 (12)	0.0306 (4)
H23	0.371794	-0.055874	0.436337	0.037*
C24	0.37210 (18)	-0.22659 (14)	0.49615 (13)	0.0297 (4)
H24	0.382339	-0.251013	0.429194	0.036*
C25	0.36436 (19)	-0.30625 (13)	0.59033 (13)	0.0322 (4)
H25	0.370629	-0.386175	0.587958	0.039*
C26	0.34759 (18)	-0.27082 (13)	0.68784 (12)	0.0292 (4)
H26	0.343066	-0.326753	0.751869	0.035*
C27	-0.03918 (16)	-0.13787 (12)	0.77793 (12)	0.0221 (3)
C28	-0.05435 (18)	-0.08759 (13)	0.67303 (12)	0.0275 (3)
H28	-0.024649	-0.014775	0.644757	0.033*
C29	-0.1118 (2)	-0.14096 (15)	0.60841 (14)	0.0363 (4)
H29	-0.120172	-0.104929	0.536272	0.044*
C30	-0.15699 (19)	-0.24589 (15)	0.64757 (15)	0.0378 (4)
H30	-0.197606	-0.281885	0.603040	0.045*
C31	-0.14290 (18)	-0.29836 (14)	0.75188 (15)	0.0350 (4)
H31	-0.172882	-0.371193	0.779443	0.042*
C32	-0.08480 (18)	-0.24458 (13)	0.81661 (13)	0.0292 (4)
H32	-0.075911	-0.281070	0.888577	0.035*
N1	0.31103 (13)	0.00872 (10)	0.79395 (9)	0.0209 (3)
N2	0.47413 (15)	-0.17512 (11)	0.84545 (11)	0.0263 (3)
H2N	0.553 (2)	-0.1864 (13)	0.7890 (13)	0.033 (4)*
O1	-0.24961 (12)	0.08722 (9)	0.86497 (8)	0.0286 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0190 (8)	0.0297 (8)	0.0306 (8)	-0.0071 (6)	-0.0052 (6)	-0.0079 (7)
C2	0.0208 (8)	0.0331 (9)	0.0278 (8)	-0.0051 (7)	-0.0058 (6)	-0.0068 (7)
C3	0.0187 (7)	0.0172 (7)	0.0251 (8)	-0.0023 (6)	-0.0034 (6)	-0.0029 (6)
C4	0.0237 (8)	0.0212 (7)	0.0227 (8)	-0.0056 (6)	-0.0024 (6)	-0.0019 (6)
C5	0.0191 (7)	0.0217 (7)	0.0214 (7)	-0.0069 (6)	0.0006 (6)	-0.0027 (6)
C6	0.0199 (7)	0.0207 (7)	0.0186 (7)	-0.0049 (6)	-0.0011 (6)	-0.0055 (6)
C7	0.0214 (7)	0.0222 (7)	0.0161 (7)	-0.0049 (6)	-0.0008 (6)	-0.0056 (6)
C8	0.0209 (7)	0.0236 (7)	0.0222 (7)	-0.0060(6)	-0.0010 (6)	-0.0095 (6)
C9	0.0197 (7)	0.0240 (8)	0.0279 (8)	-0.0047 (6)	-0.0063 (6)	-0.0083 (6)
C10	0.0263 (9)	0.0321 (9)	0.0346 (9)	0.0008 (7)	-0.0043 (7)	-0.0103 (7)
C11	0.0374 (10)	0.0297 (9)	0.0488 (11)	0.0051 (8)	-0.0142 (8)	-0.0123 (8)
C12	0.0440 (11)	0.0256 (9)	0.0463 (11)	-0.0066 (8)	-0.0222 (9)	-0.0016 (7)
C13	0.0378 (10)	0.0328 (9)	0.0314 (9)	-0.0127 (8)	-0.0096 (7)	-0.0013 (7)
C14	0.0241 (8)	0.0266 (8)	0.0282 (8)	-0.0055 (6)	-0.0058 (6)	-0.0068 (6)
C15	0.0185 (7)	0.0211 (7)	0.0244 (8)	-0.0057 (6)	-0.0061 (6)	-0.0040 (6)
C16	0.0271 (8)	0.0270 (8)	0.0264 (8)	-0.0075 (7)	-0.0023 (6)	-0.0080 (6)

supporting information

C17	0.0416 (10)	0.0283 (9)	0.0455 (10)	-0.0085 (8)	0.0022 (8)	-0.0182 (8)
C18	0.0419 (11)	0.0203 (8)	0.0618 (12)	-0.0120 (7)	-0.0029 (9)	-0.0083 (8)
C19	0.0311 (9)	0.0282 (9)	0.0476 (11)	-0.0130 (7)	0.0008 (8)	-0.0013 (8)
C20	0.0228 (8)	0.0256 (8)	0.0316 (9)	-0.0072 (6)	0.0000 (6)	-0.0058 (7)
C21	0.0158 (7)	0.0230 (7)	0.0246 (8)	-0.0039 (6)	-0.0015 (6)	-0.0057 (6)
C22	0.0290 (8)	0.0226 (8)	0.0280 (8)	-0.0082 (6)	0.0001 (7)	-0.0059 (6)
C23	0.0326 (9)	0.0338 (9)	0.0241 (8)	-0.0094 (7)	0.0014 (7)	-0.0047 (7)
C24	0.0252 (8)	0.0390 (9)	0.0278 (8)	-0.0104 (7)	0.0016 (7)	-0.0134 (7)
C25	0.0357 (9)	0.0250 (8)	0.0381 (9)	-0.0093 (7)	-0.0001 (7)	-0.0120 (7)
C26	0.0346 (9)	0.0232 (8)	0.0288 (8)	-0.0061 (7)	-0.0020 (7)	-0.0050 (6)
C27	0.0158 (7)	0.0209 (7)	0.0295 (8)	-0.0034 (6)	0.0001 (6)	-0.0078 (6)
C28	0.0297 (9)	0.0244 (8)	0.0304 (9)	-0.0072 (7)	-0.0036 (7)	-0.0083 (6)
C29	0.0391 (10)	0.0367 (10)	0.0355 (9)	-0.0026 (8)	-0.0095 (8)	-0.0148 (8)
C30	0.0320 (9)	0.0373 (10)	0.0518 (11)	-0.0033 (8)	-0.0096 (8)	-0.0263 (9)
C31	0.0271 (9)	0.0233 (8)	0.0576 (12)	-0.0075 (7)	-0.0029 (8)	-0.0143 (8)
C32	0.0253 (8)	0.0228 (8)	0.0389 (9)	-0.0061 (6)	-0.0027 (7)	-0.0045 (7)
N1	0.0177 (6)	0.0212 (6)	0.0255 (6)	-0.0057 (5)	-0.0032 (5)	-0.0061 (5)
N2	0.0206 (7)	0.0289 (7)	0.0289 (7)	-0.0016 (5)	-0.0042 (6)	-0.0080 (6)
01	0.0201 (5)	0.0320 (6)	0.0333 (6)	-0.0078 (5)	0.0015 (5)	-0.0069 (5)

Geometric parameters (Å, °)

C1—N1	1.4794 (18)	C15—C20	1.3910 (19)
C1—C2	1.513 (2)	C15—C16	1.3943 (19)
C1—H1A	0.9900	C16—C17	1.384 (2)
C1—H1B	0.9900	C16—H16	0.9500
C2—N2	1.4736 (18)	C17—C18	1.381 (2)
C2—H2A	0.9900	C17—H17	0.9500
C2—H2B	0.9900	C18—C19	1.383 (2)
C3—N2	1.4752 (18)	C18—H18	0.9500
C3—N1	1.4859 (17)	C19—C20	1.380 (2)
C3—C21	1.5231 (19)	С19—Н19	0.9500
C3—C4	1.5328 (18)	C20—H20	0.9500
C4—C5	1.530 (2)	C21—C22	1.384 (2)
C4—H4A	0.9900	C21—C26	1.3901 (19)
C4—H4B	0.9900	C22—C23	1.389 (2)
C5—C6	1.5166 (18)	C22—H22	0.9500
C5—C27	1.5279 (19)	C23—C24	1.379 (2)
С5—Н5	1.0000	С23—Н23	0.9500
C6—C7	1.3761 (19)	C24—C25	1.381 (2)
C6—C8	1.4675 (19)	C24—H24	0.9500
C7—N1	1.3685 (17)	C25—C26	1.380 (2)
C7—C15	1.4872 (18)	C25—H25	0.9500
C8—O1	1.2379 (16)	C26—H26	0.9500
C8—C9	1.500 (2)	C27—C28	1.380 (2)
C9—C14	1.390 (2)	C27—C32	1.3957 (19)
C9—C10	1.393 (2)	C28—C29	1.380 (2)
C10—C11	1.385 (2)	C28—H28	0.9500

supporting information

C10—H10	0.9500	C29—C30	1.376 (2)
C11—C12	1.382 (2)	С29—Н29	0.9500
C11—H11	0.9500	C30—C31	1.378 (2)
C12—C13	1.381 (2)	C30—H30	0.9500
С12—Н12	0.9500	$C_{31} - C_{32}$	1388(2)
C13 $C14$	1 386 (2)	C31 H31	0.9500
$C_{13} = C_{14}$	0.0500	C_{22} H_{22}	0.9500
	0.9300		0.9300
C14—H14	0.9500	N2—H2N	0.908 (16)
N1 C1 C2	101 01 (11)	C16 C15 C7	120.00 (12)
NI = CI = UIA	101.91 (11)		120.90(12)
NI—CI—HIA	111.4	C17 - C16 - C15	120.18 (14)
C2—C1—HIA	111.4	C17—C16—H16	119.9
N1—C1—H1B	111.4	C15—C16—H16	119.9
C2—C1—H1B	111.4	C18—C17—C16	120.41 (15)
H1A—C1—H1B	109.3	C18—C17—H17	119.8
N2—C2—C1	104.60 (12)	С16—С17—Н17	119.8
N2—C2—H2A	110.8	C17—C18—C19	119.71 (15)
C1—C2—H2A	110.8	C17—C18—H18	120.1
N2—C2—H2B	110.8	C19—C18—H18	120.1
C1—C2—H2B	110.8	C20—C19—C18	120.19 (15)
$H^2A - C^2 - H^2B$	108.9	C_{20} C_{19} H_{19}	119.9
N2_C3_N1	105.07(11)	C18 - C19 - H19	110.0
$N_2 = C_3 = C_1$	108.59 (11)	C_{10} C_{20} C_{15}	119.9 120.63 (14)
$N_2 = C_3 = C_2 I$	100.39(11) 112.22(11)	$C_{19} = C_{20} = C_{13}$	120.03 (14)
N1 - C3 - C21	112.32(11)	C19—C20—H20	119.7
N2-C3-C4	109.35 (11)	C15—C20—H20	119.7
N1—C3—C4	107.36 (11)	C22—C21—C26	118.31 (13)
C21—C3—C4	113.77 (11)	C22—C21—C3	122.27 (12)
C5—C4—C3	112.67 (11)	C26—C21—C3	119.33 (13)
С5—С4—Н4А	109.1	C21—C22—C23	120.79 (14)
C3—C4—H4A	109.1	C21—C22—H22	119.6
C5—C4—H4B	109.1	C23—C22—H22	119.6
C3—C4—H4B	109.1	C24—C23—C22	120.40 (15)
H4A—C4—H4B	107.8	C24—C23—H23	119.8
C6—C5—C27	114.32 (12)	C22—C23—H23	119.8
C6—C5—C4	110.99 (11)	C23—C24—C25	119.08 (14)
C27 - C5 - C4	113 18 (11)	C23—C24—H24	120.5
C6-C5-H5	105.9	$C_{25} = C_{24} = H_{24}$	120.5
C_{27} C_{5} H5	105.9	$C_{26} = C_{25} = C_{24}$	120.62 (14)
C4-C5-H5	105.9	$C_{26} = C_{25} = H_{25}$	119 7
C7 - C6 - C8	124 93 (12)	C_{24} C_{25} H_{25}	119.7
C7 - C6 - C5	120.66 (12)	C_{25} C_{26} C_{21}	120 79 (14)
C_{8} C_{6} C_{5}	113 82 (12)	$C_{25} = C_{26} = H_{26}$	119.6
N1 - C7 - C6	122 21 (12)	C21_C26_H26	119.6
N1 C7 C15	122.21(12) 114.14(12)	$C_{21} = C_{20} = 1120$	117 50 (14)
$C_{6} C_{7} C_{15}$	117.17(12) 122 64 (12)	$C_{20} - C_{21} - C_{32}$	117.57(14) 102.52(12)
$C_{0} = C_{1} = C_{1}$	123.04(12)	$C_{20} = C_{21} = C_{3}$	123.32(13)
01 - 0 - 0	110.00 (13)	$C_{22} = C_{21} = C_{27}$	110.89 (13)
01-08-09	116.85 (13)	C29—C28—C27	121.33 (15)
C6—C8—C9	124.17 (12)	C29—C28—H28	119.3

C14—C9—C10	118.77 (14)	С27—С28—Н28	119.3
C14—C9—C8	123.47 (13)	C30—C29—C28	120.55 (16)
С10—С9—С8	117.65 (13)	С30—С29—Н29	119.7
C11—C10—C9	120.35 (15)	С28—С29—Н29	119.7
C11—C10—H10	119.8	C29—C30—C31	119.46 (15)
С9—С10—Н10	119.8	С29—С30—Н30	120.3
C12—C11—C10	120.33 (16)	С31—С30—Н30	120.3
C12—C11—H11	119.8	C30—C31—C32	119.85 (15)
C10—C11—H11	119.8	С30—С31—Н31	120.1
C13—C12—C11	119.80 (16)	С32—С31—Н31	120.1
C13—C12—H12	120.1	C31—C32—C27	121.21 (16)
C11—C12—H12	120.1	C31—C32—H32	119.4
C12-C13-C14	120.08 (16)	C27—C32—H32	119.4
C12—C13—H13	120.00 (10)	C7-N1-C1	123 36 (11)
C12 - C13 - H13	120.0	$C7$ _N1_C3	120.30(11) 120.74(11)
C_{13} C_{14} C_{9}	120.0	$C_1 = N_1 = C_3$	120.74(11) 100.49(11)
$C_{13} = C_{14} = C_{14}$	110.7	$C_1 = N_1 = C_3$	105.45(11)
C_{13} C_{14} U_{14}	119.7	$C_2 = N_2 = C_3$	103.03(11)
$C_{2} = C_{14} = H_{14}$	119.7	$C_2 = N_2 = H_2 N_1$	107.9(10)
$C_{20} = C_{15} = C_{16}$	118.84 (13)	C3—N2—H2N	107.7 (10)
C20—C15—C7	120.26 (12)		
N1 - C1 - C2 - N2	3454(14)	N2_C3_C21_C22	-110.98(15)
$N_{2} = C_{3} = C_{4} = C_{5}$	170.85(11)	$N_2 = C_3 = C_{21} = C_{22}$	4 78 (18)
$N_2 - C_3 - C_4 - C_5$	57.36 (15)	$-C_{21} - C_{22} - C_{22}$	127.01(14)
N1 - C3 - C4 - C3	57.50(15)	C4 - C3 - C21 - C22	127.01(14)
$C_{21} = C_{3} = C_{4} = C_{5}$	-0/.50(15)	$N_2 = C_3 = C_2 I = C_2 G_2 G_2 G_2 G_2 G_2 G_2 G_2 G_2 G_2 G$	05.54 (10)
C_{3} C_{4} C_{5} C_{6}	-43.04(15)	$NI = C_3 = C_2 I = C_2 G_1$	-1/8.70(12)
$C_3 - C_4 - C_5 - C_2 / C_2$	86.46 (14)	C4 - C3 - C21 - C26	-56.47 (17)
C2/_C5_C6_C/	-122.71 (14)	C26—C21—C22—C23	0.9 (2)
C4—C5—C6—C7	6.78 (18)	C3—C21—C22—C23	177.43 (14)
C27—C5—C6—C8	65.67 (15)	C21—C22—C23—C24	0.2 (2)
C4—C5—C6—C8	-164.83 (11)	C22—C23—C24—C25	-1.1 (2)
C8—C6—C7—N1	-173.38 (13)	C23—C24—C25—C26	0.8 (2)
C5—C6—C7—N1	16.0 (2)	C24—C25—C26—C21	0.4 (2)
C8—C6—C7—C15	6.4 (2)	C22—C21—C26—C25	-1.2 (2)
C5—C6—C7—C15	-164.19 (12)	C3—C21—C26—C25	-177.83 (14)
C7—C6—C8—O1	-150.77 (14)	C6—C5—C27—C28	15.65 (19)
C5—C6—C8—O1	20.43 (18)	C4—C5—C27—C28	-112.74 (15)
C7—C6—C8—C9	33.3 (2)	C6—C5—C27—C32	-163.87 (12)
C5—C6—C8—C9	-155.55 (13)	C4—C5—C27—C32	67.74 (16)
O1-C8-C9-C14	-144.49 (14)	C32—C27—C28—C29	-0.3 (2)
C6—C8—C9—C14	31.6 (2)	C5—C27—C28—C29	-179.83 (14)
O1—C8—C9—C10	31.66 (19)	C27—C28—C29—C30	0.6 (2)
C6-C8-C9-C10	-152.29(14)	C28—C29—C30—C31	-0.7(2)
C14-C9-C10-C11	-2.0(2)	C29 - C30 - C31 - C32	0.6 (2)
C8 - C9 - C10 - C11	-17833(14)	C_{30} C_{31} C_{32} C_{27}	-0.3(2)
C9-C10-C11-C12	14(3)	C_{28} C_{27} C_{32} C_{31}	0.2(2)
C_{10} C_{11} C_{12} C_{13}	0.2(3)	C_{5} C_{7} C_{32} C_{31}	17972(13)
$C_{11} = C_{12} = C_{13} = C_{14}$	-12(2)	$C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3$	-1/8/10(12)
UII-UI2-UI3-UI4	1.2 (2)		140.49 (13)

C12—C13—C14—C9	0.6 (2)	C15—C7—N1—C1	31.67 (18)
C10-C9-C14-C13	1.0 (2)	C6—C7—N1—C3	0.4 (2)
C8—C9—C14—C13	177.12 (13)	C15—C7—N1—C3	-179.42 (11)
N1-C7-C15-C20	50.14 (18)	C2-C1-N1-C7	130.66 (13)
C6—C7—C15—C20	-129.69 (15)	C2-C1-N1-C3	-21.25 (14)
N1-C7-C15-C16	-130.46 (14)	N2—C3—N1—C7	-152.67 (12)
C6—C7—C15—C16	49.7 (2)	C21—C3—N1—C7	89.46 (14)
C20-C15-C16-C17	1.5 (2)	C4—C3—N1—C7	-36.33 (16)
C7—C15—C16—C17	-177.90 (14)	N2-C3-N1-C1	0.10 (14)
C15—C16—C17—C18	0.0 (3)	C21—C3—N1—C1	-117.77 (12)
C16—C17—C18—C19	-1.1 (3)	C4—C3—N1—C1	116.44 (12)
C17—C18—C19—C20	0.7 (3)	C1—C2—N2—C3	-35.78 (14)
C18—C19—C20—C15	0.9 (3)	N1—C3—N2—C2	22.05 (14)
C16—C15—C20—C19	-1.9 (2)	C21—C3—N2—C2	142.42 (11)
C7—C15—C20—C19	177.47 (14)	C4—C3—N2—C2	-92.91 (13)

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C2— $H2B$ ···O1 ⁱ	0.99	2.43	3.4084 (19)	168
C24—H24…Cg3 ⁱⁱ	0.95	2.83	3.5886 (18)	138

Symmetry codes: (i) -x, -y, -z+2; (ii) -x, -y, -z+1.