

Received 1 July 2020

Accepted 8 July 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; 8-quinolinol ; bridging ligand; tridentate ligand; $C - H \cdots \pi$ interactions.

CCDC reference: 2014831

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 7,7'-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol)

Yukiyasu Kashiwagi,^a* Koji Kubono^b and Toshiyuki Tamai^a

^aOsaka Research Institute of Industrial Science and Technology, Joto-ku, Osaka, 536-8553, Japan, and ^bOsaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan. *Correspondence e-mail: kasiwagi@omtri.or.jp

In the title compound, $C_{24}H_{15}Cl_2N_3O_2$, one quinoline ring system is essentially planar and the other is slightly bent. An intramolecular $O-H\cdots N$ hydrogen bond involving the hydroxy group and a pyridine N atom forms an S(5) ring motif. In the crystal, two molecules are associated into an inversion dimer with two $R_2^2(7)$ ring motifs through intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonds. The dimers are further linked by an intermolecular $C-H\cdots O$ hydrogen bond and four $C-H\cdots \pi$ interactions, forming a two-dimensional network parallel to (001).

1. Chemical context

8-Quinolinol and its derivatives are well-known chelating agents in analytical chemistry and bidentate ligands to metal ions in structural chemistry. Recently, multinuclear metal complexes based on the dimeric 8-quinolinol ligand, 1,1-bis(8hydroxyquinolin-7-yl)ethane, have been investigated (Zhu et al., 2012; Zhang et al., 2014; Wu et al., 2017; Gao et al., 2018). On the other hand, Yamato et al. (1986, 1987) reported the aromatic-group-substituted dimeric 8-quinolinol derivatives, 1,1-bis(8-hydroxyquinolin-7-yl)-1-(4-methoxyphenyl)methane, 1,1-bis(8-hydroxyquinolin-7-yl)-1-(furan-2-yl)methane 1,1-bis(8-hydroxyquinolin-7-yl)-1-(thiophen-2-yl)methand ane, to be candidates for antitumor agents. We are attempting to develop a 2-pyridyl group-introduced dimeric 8-quinolinolbased ligand for mono- and multi-nuclear metal complexes, and report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. One quinoline ring system is essentially planar, the dihedral angle between the mean planes through C22–C24/N6 and C26/C18–C20 being 0.5 (2)°. The other quinoline ring system is slightly bent, the dihedral angle between the mean planes through N5/C10–C12 and C14–C16/C8 being 5.77 (18)°.

research communications

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1, Cg2 and Cg3 are the centroids of the C18–C21/C25/C26, C8/C9/C13–C16 and N7/C27–C31 rings, respectively.

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
03_H3N5	0.82(2)	223(3)	2 727 (2)	119(2)
$O3-H3\cdots O4^{i}$	0.82(2)	2.26(3)	3.044(2)	119(2) 159(2)
$O4-H4\cdots N5^i$	0.84(4)	2.16 (3)	2.878 (3)	144(2)
$O4-H4\cdots N6$	0.84 (4)	2.20 (4)	2.674 (3)	115 (3)
C29−H29···O3 ⁱⁱ	0.95	2.53	3.377 (3)	148
$C10-H10\cdots Cg1^{iii}$	0.95	2.75	3.659 (3)	161
$C22-H22\cdots Cg2^{iv}$	0.95	2.92	3.667 (3)	136
$C24 - H24 \cdots Cg3^{v}$	0.95	2.65	3.528 (3)	153
$C30-H30\cdots Cg1^{ii}$	0.95	2.73	3.562 (3)	147

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) x - 1, y, z; (iii) x + 1, y + 1, z; (iv) x, y - 1, z; (v) -x, -y + 1, -z + 2.

There are two intramolecular $O-H\cdots N$ hydrogen bonds involving the hydroxy groups and quinoline N atoms (O3– H3···N5 and O4–H4···N6; Table 1) generating *S*(5) ring motifs (Fig. 1). The arrangement of the 2-pyridyl and two quinoline rings is propeller-wise, which is a common arrangement for Ar₃C-H fragments. The bond angles C16– C17–C18, C16–C17–C27, and C18–C17–C27 are 112.21 (16), 112.64 (16) and 112.94 (16)°, respectively. The torsion angles C8–C16–C17–C18, C26–C18–C17–C27, and C28–C27–C17–C16 are -88.6 (2), -101.2 (2) and -87.8 (2)°, respectively.

3. Supramolecular features

In the crystal, molecules are linked by intermolecular O– H···O and O–H···N hydrogen bonds $[O3-H3···O4^i]$ and O4–H4···N5ⁱ; symmetry code: (i) -x + 1, -y + 2, -z + 2], forming an inversion dimer with two $R_2^2(7)$ ring motifs (Fig. 2 and Table 1). In contrast, the crystal structure of 1,1-bis(8-hydroxyquinolin-7-yl)methane, an analogue of the title

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intramolecular $O-H\cdots N$ hydrogen bonds are shown as dashed lines.

A centrosymmetric dimeric structure of the title compound. The intraand intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 2, -z + 2.]

compound with the 2-pyridyl group omitted, exhibits a supramolecular 1D-polymeric structure with intermolecular hydrogen bonding between each 8-quinolinol unit and two other molecules (CSD refcode CIBCEV; Albrecht *et al.*, 1999). The dimers of the title compound are linked by complementary $C-H\cdots\pi$ interactions [C10-H10···Cg1ⁱⁱⁱ and C24-H24···Cg3^v; Cg1 is the centroid of the C18-C21/C25/C26 ring and Cg3 is the centroid of the N7/C27-C31 ring; symmetry codes: (iii) x + 1, y + 1, z; (v) -x, -y + 1, -z + 2], forming a ribbon structure along [110] (Fig. 3). Considered separately, the 1D-chain structure propagates along the *a*-axis direction through a $C-H\cdots$ O hydrogen bond [C29-H29···O3ⁱⁱ;

Figure 3

A packing diagram of the title compound, showing the ribbon structure. The $C-H \cdots \pi$ interactions between the dimers are shown as dashed lines. H atoms not involved in the interactions have been omitted for clarity.

Figure 4

A packing diagram of the title compound viewed along the *c* axis, showing the two-dimensional network sheet structure. The $C-H\cdots\pi$ interactions and $C-H\cdots$ hydrogen bonds are shown as dashed lines. H atoms not involved in the interactions have been omitted for clarity.

symmetry code: (ii) x - 1, y, z] and a C-H··· π interaction [C30-H30···Cg1ⁱⁱ; Cg1 is the centroid of the C18-C21/C25/ C26 ring]. The chains are linked by two C-H··· π interactions [C10-H10···Cg1ⁱⁱⁱ and C22-H22···Cg2^{iv}; Cg2 is the centroid of the C8/C9/C13-C16 ring; symmetry code: (iv) x, y - 1, z], generating a two-dimensional network parallel to (001) (Fig. 4).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of March 2020; Groom et al., 2016) for compounds containing the bis(phenol-2-yl)methane skeleton gave 9360 hits, and for those containing the 8-quinolinol skeleton gave 3200 hits. A search for the fragment of 1,1-bis(8hydroxyquinolin-7-yl)methane gave 23 hits (21 compounds), which included only one organic compound, 1,1-bis(8-hydroxyquinolin-7-yl)methane (CIBCEV; Albrecht et al., 1999), and 20 metal complexes with 1,1-bis(8-hydroxyquinolin-7yl)ethane as bridging ligands. The 20 metal complexes include two dinuclear complexes, Zn₂ (Wu et al., 2017; Gao et al., 2018) and Cd₂ (Gao et al., 2018), one homo-trinuclear La₃ complex (Wu et al., 2017), 16 hetero-trinuclear complexes, Co₂Sm, Ni₂Sm, Zn₂Sm, Co₂Eu, Ni₂Eu, Zn₂Eu, Cd₂Eu, Co₂Gd, Ni₂Gd, Cd₂Gd, Co₂Tb, Ni₂Tb, Zn₂Tb, Fe₂Dy, Co₂Dy, Cd₂Dy (Zhu et al., 2012) and one hexanuclear Na₂Co₄ complex (Zhang et al., 2014). The crystal structure of 1,1-bis(8-hydroxyquinolin-7yl)ethane itself has not been reported.

5. Synthesis and crystallization

The title compound was prepared by a modification of the reported K_2CO_3 -catalysed synthetic method for 1,1-bis(5-chloro-8-hydroxyquinolin-7-yl)methane (Ozawa & Shibuya, 1963*a*,*b*). 5-Chloro-8-hydroxyquinoline (898 mg, 5.0 mmol), 2-pyridinecarboxaldehyde (321 mg, 3.0 mmol), K_2CO_3 (100 mg,

Experimental details.	
Crystal data	
Chemical formula	$C_{24}H_{15}Cl_2N_3O_2$
M _r	448.31
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	8.7077 (8), 10.4281 (10), 12.1329 (11)
α, β, γ (°)	101.111 (7), 92.087 (7), 113.161 (8)
$V(Å^3)$	986.23 (17)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.36
Crystal size (mm)	$0.40 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.710, 0.965
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	9484, 4475, 3536
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.119, 1.07
No. of reflections	4475
No. of parameters	288
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.43, -0.22

Computer programs: *RAPID-AUTO* (Rigaku, 2006), *SIR92* (Altomare *et al.*, 1993), *SHELXL2014*/7 (Sheldrick, 2015), *PLATON* (Spek, 2020) and *CrystalStructure* (Rigaku, 2016).

0.72 mmol) and ethanol (6 mL) were placed in a 15 mL capped pressure tube. It was heated at 353 K for 96 h. The generated pale-white precipitate was filtered to give a pale-white solid (806 mg, 1.80 mmol; yield 72%). Single crystals of title compound suitable for X-ray diffraction were grown by slow evaporation of a solution in CHCl₃/*n*-hexane (2:1, *v*/*v*) at ambient temperature. ¹H NMR (CDCl₃, 600 MHz) δ = 6.63 (*s*, 1H), 7.21 (*ddd*, 1H, *J* = 7.8, 4.8, 1.8 Hz), 7.33 (*d*, 1H, *J* = 7.8, 1.8 Hz), 7.52 (*s*, 2H), 7.52 (*dd*, 2H, *J* = 8.4, 1.2 Hz), 8.64 (*d*, 1H, *J* = 4.8 Hz), 8.81 (*dd*, 2H, *J* = 4.2, 1.2 Hz), 8.84 (*br*, 2H).

6. Refinement

Table 0

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydroxy H atoms were located in a difference-Fourier map and freely refined. C-bound H atoms were placed in geometrically calculated positions (C-H = 0.95-1.00 Å) and refined as part of a riding model with U_{iso} (H) = $1.2U_{eq}$ (C). One outlier (11) was omitted from the refinement.

Funding information

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).

References

- Albrecht, M., Blau, O., Witt, K., Wegelius, E., Nissinen, M., Risssanen, K. & Fröhlich, R. (1999). *Synthesis*, pp. 1819–1829.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Gao, X., Xu, W., Wu, C.-L., Zhu, X.-M., Ou, Y.-C. & Wu, J.-Z. (2018). Chin. J. Inorg. Chem. 34, 1768–1774.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ozawa, T. & Shibuya, K. (1963a). Yakugaku Zasshi, 83, 498-502.
- Ozawa, T. & Shibuya, K. (1963b). Chem. Abstr. 59, 7481.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Wu, M.-M., Wang, J.-Y., Sun, R., Zhao, C., Zhao, J.-P., Che, G.-B. & Liu, F.-C. (2017). Inorg. Chem. 56, 9555–9562.
- Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Luduena, R. F., Banerjee, A., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1987). J. Med. Chem. 30, 1897–1900.
- Yamato, M., Hashigaki, K., Yasumoto, Y., Sakai, J., Tsukagoshi, S., Tashiro, T. & Tsuruo, T. (1986). *Chem. Pharm. Bull.* 34, 3496– 3498.
- Zhang, X.-M., Li, J.-Q., Liu, S.-J., Luo, M.-B., Xu, W.-Y. & Luo, F. (2014). CrystEngComm, 16, 2570–2573.
- Zhu, Y., Luo, F., Song, Y.-M., Feng, X.-F., Luo, M.-B., Liao, Z.-W., Sun, G.-M., Tian, X.-Z. & Yuan, Z.-J. (2012). *Cryst. Growth Des.* **12**, 2158–2161.

supporting information

Acta Cryst. (2020). E76, 1271-1274 [https://doi.org/10.1107/S2056989020009317]

Crystal structure of 7,7'-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol)

Yukiyasu Kashiwagi, Koji Kubono and Toshiyuki Tamai

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2016).

Z = 2

F(000) = 460.00

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 0.36 \text{ mm}^{-1}$

Chunk, colorless

 $0.40 \times 0.15 \times 0.10 \text{ mm}$

T = 173 K

 $D_{\rm x} = 1.510 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 7587 reflections

7,7'-[(pyridin-2-yl)methylene]bis(5-chloroquinolin-8-ol)

Crystal data

 $C_{24}H_{15}Cl_2N_3O_2$ $M_r = 448.31$ Triclinic, *P*1 a = 8.7077 (8) Å b = 10.4281 (10) Å c = 12.1329 (11) Å $a = 101.111 (7)^{\circ}$ $\beta = 92.087 (7)^{\circ}$ $\gamma = 113.161 (8)^{\circ}$ $V = 986.23 (17) Å^{3}$

Data collection

Rigaku R-AXIS RAPID	4475 independent reflections
diffractometer	3536 reflections with $F^2 > 2.0\sigma(F^2)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.027$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 13$
$T_{\min} = 0.710, \ T_{\max} = 0.965$	$l = -15 \rightarrow 15$
9484 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.119$ S = 1.074475 reflections 288 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.572P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.43$ e Å⁻³ $\Delta\rho_{min} = -0.22$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.19486 (7)	0.99797 (7)	0.42458 (5)	0.03826 (17)	
Cl2	0.17365 (8)	0.39091 (6)	0.56639 (5)	0.03966 (17)	
O3	0.44767 (19)	1.04439 (17)	0.89332 (12)	0.0268 (3)	
O4	0.1923 (2)	0.75295 (16)	1.00827 (13)	0.0305 (3)	
N5	0.6459 (2)	1.23152 (19)	0.77548 (15)	0.0269 (4)	
N6	0.2352 (3)	0.5120 (2)	1.00448 (15)	0.0328 (4)	
N7	-0.1639 (2)	0.6963 (2)	0.71721 (16)	0.0306 (4)	
C8	0.3918 (2)	1.0343 (2)	0.78420 (16)	0.0216 (4)	
C9	0.4946 (2)	1.1297 (2)	0.72083 (16)	0.0220 (4)	
C10	0.7377 (3)	1.3256 (2)	0.7197 (2)	0.0340 (5)	
H10	0.8414	1.3988	0.7577	0.041*	
C11	0.6909 (3)	1.3234 (3)	0.6073 (2)	0.0367 (5)	
H11	0.7630	1.3927	0.5706	0.044*	
C12	0.5418 (3)	1.2218 (2)	0.55110 (19)	0.0322 (5)	
H12	0.5093	1.2188	0.4747	0.039*	
C13	0.4351 (3)	1.1202 (2)	0.60802 (17)	0.0246 (4)	
C14	0.2728 (3)	1.0141 (2)	0.56284 (17)	0.0260 (4)	
C15	0.1743 (3)	0.9261 (2)	0.62662 (17)	0.0257 (4)	
H15	0.0646	0.8576	0.5945	0.031*	
C16	0.2326 (2)	0.9353 (2)	0.73891 (16)	0.0217 (4)	
C17	0.1239 (2)	0.8422 (2)	0.81349 (17)	0.0218 (4)	
H17	0.1639	0.8989	0.8932	0.026*	
C18	0.1510(2)	0.7059 (2)	0.80759 (16)	0.0207 (4)	
C19	0.1464 (2)	0.6152 (2)	0.70280 (17)	0.0235 (4)	
H19	0.1239	0.6396	0.6343	0.028*	
C20	0.1734 (3)	0.4941 (2)	0.69780 (17)	0.0261 (4)	
C21	0.2042 (3)	0.4507 (2)	0.79740 (18)	0.0263 (4)	
C22	0.2328 (3)	0.3278 (3)	0.8022 (2)	0.0369 (5)	
H22	0.2312	0.2638	0.7344	0.044*	
C23	0.2627 (4)	0.3015 (3)	0.9047 (2)	0.0436 (6)	
H23	0.2833	0.2196	0.9091	0.052*	
C24	0.2627 (3)	0.3965 (3)	1.0039 (2)	0.0401 (6)	
H24	0.2839	0.3763	1.0746	0.048*	
C25	0.2070 (2)	0.5402 (2)	0.90232 (17)	0.0243 (4)	
C26	0.1822 (2)	0.6680 (2)	0.90558 (17)	0.0231 (4)	
C27	-0.0611 (2)	0.8146 (2)	0.79228 (16)	0.0227 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C28	-0.1171 (3)	0.9116 (2)	0.8521 (2)	0.0342 (5)	
H28	-0.0398	0.9966	0.9023	0.041*	
C29	-0.2853 (3)	0.8838 (3)	0.8384 (2)	0.0414 (6)	
H29	-0.3263	0.9482	0.8799	0.050*	
C30	-0.3934 (3)	0.7608 (3)	0.7633 (2)	0.0390 (6)	
H30	-0.5106	0.7378	0.7530	0.047*	
C31	-0.3284 (3)	0.6725 (3)	0.7037 (2)	0.0356 (5)	
H31	-0.4031	0.5899	0.6498	0.043*	
H3	0.541 (3)	1.112 (3)	0.909 (2)	0.030 (7)*	
H4	0.214 (4)	0.718 (3)	1.060 (3)	0.052 (9)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C11	0.0417 (3)	0.0466 (3)	0.0227 (3)	0.0125 (3)	-0.0028 (2)	0.0125 (2)
Cl2	0.0575 (4)	0.0339 (3)	0.0246 (3)	0.0183 (3)	0.0078 (2)	0.0000 (2)
03	0.0222 (8)	0.0304 (8)	0.0230 (7)	0.0050 (7)	-0.0010 (6)	0.0086 (6)
O4	0.0446 (9)	0.0283 (8)	0.0195 (7)	0.0161 (7)	0.0020 (6)	0.0051 (6)
N5	0.0237 (9)	0.0269 (9)	0.0270 (9)	0.0066 (7)	0.0032 (7)	0.0071 (7)
N6	0.0452 (11)	0.0309 (10)	0.0254 (9)	0.0176 (9)	0.0036 (8)	0.0088 (8)
N7	0.0249 (9)	0.0330 (10)	0.0300 (10)	0.0097 (8)	0.0007 (7)	0.0033 (8)
C8	0.0229 (10)	0.0233 (9)	0.0208 (9)	0.0112 (8)	0.0030 (7)	0.0058 (8)
C9	0.0225 (9)	0.0219 (9)	0.0226 (10)	0.0102 (8)	0.0043 (7)	0.0049 (8)
C10	0.0273 (11)	0.0328 (12)	0.0346 (12)	0.0032 (10)	0.0044 (9)	0.0107 (10)
C11	0.0352 (12)	0.0351 (12)	0.0362 (13)	0.0058 (10)	0.0110 (10)	0.0176 (10)
C12	0.0395 (13)	0.0355 (12)	0.0244 (11)	0.0150 (10)	0.0086 (9)	0.0130 (9)
C13	0.0269 (10)	0.0250 (10)	0.0238 (10)	0.0117 (9)	0.0059 (8)	0.0070 (8)
C14	0.0312 (11)	0.0284 (10)	0.0196 (10)	0.0136 (9)	0.0007 (8)	0.0054 (8)
C15	0.0247 (10)	0.0246 (10)	0.0245 (10)	0.0072 (8)	-0.0002 (8)	0.0046 (8)
C16	0.0229 (10)	0.0206 (9)	0.0232 (10)	0.0091 (8)	0.0036 (7)	0.0075 (8)
C17	0.0198 (9)	0.0225 (9)	0.0215 (9)	0.0063 (8)	0.0020 (7)	0.0063 (7)
C18	0.0164 (9)	0.0209 (9)	0.0231 (10)	0.0051 (8)	0.0028 (7)	0.0064 (8)
C19	0.0203 (9)	0.0259 (10)	0.0208 (9)	0.0045 (8)	0.0034 (7)	0.0077 (8)
C20	0.0256 (10)	0.0268 (10)	0.0208 (10)	0.0071 (9)	0.0040 (8)	0.0018 (8)
C21	0.0254 (10)	0.0245 (10)	0.0280 (11)	0.0084 (8)	0.0053 (8)	0.0067 (8)
C22	0.0492 (14)	0.0313 (11)	0.0344 (12)	0.0212 (11)	0.0090 (10)	0.0058 (10)
C23	0.0650 (17)	0.0361 (13)	0.0433 (14)	0.0318 (13)	0.0115 (12)	0.0145 (11)
C24	0.0578 (16)	0.0375 (13)	0.0341 (13)	0.0254 (12)	0.0057 (11)	0.0154 (11)
C25	0.0235 (10)	0.0244 (10)	0.0249 (10)	0.0084 (8)	0.0030 (8)	0.0083 (8)
C26	0.0222 (10)	0.0223 (9)	0.0214 (9)	0.0061 (8)	0.0027 (7)	0.0036 (8)
C27	0.0210 (9)	0.0251 (10)	0.0229 (10)	0.0086 (8)	0.0035 (7)	0.0095 (8)
C28	0.0341 (12)	0.0300 (11)	0.0366 (13)	0.0137 (10)	0.0016 (9)	0.0025 (9)
C29	0.0428 (14)	0.0507 (15)	0.0446 (14)	0.0324 (12)	0.0123 (11)	0.0122 (12)
C30	0.0205 (11)	0.0566 (15)	0.0473 (14)	0.0167 (11)	0.0079 (9)	0.0257 (12)
C31	0.0244 (11)	0.0373 (12)	0.0388 (13)	0.0067 (10)	-0.0035 (9)	0.0086 (10)

Geometric parameters (Å, °)

Cl1—C14	1.738 (2)	C16—C17	1.528 (3)
Cl2—C20	1.744 (2)	C17—C18	1.519 (3)
O3—C8	1.364 (2)	C17—C27	1.524 (3)
O3—H3	0.82 (3)	C17—H17	1.0000
O4—C26	1.360 (2)	C18—C26	1.373 (3)
O4—H4	0.84 (3)	C18—C19	1.420 (3)
N5—C10	1.319 (3)	C19—C20	1.364 (3)
N5—C9	1.366 (3)	C19—H19	0.9500
N6-C24	1.316 (3)	C20—C21	1.421 (3)
N6—C25	1.363 (3)	C21—C22	1.410 (3)
N7—C27	1.338 (3)	C21—C25	1.419 (3)
N7—C31	1.352 (3)	C22—C23	1.362 (3)
C8—C16	1.374 (3)	C22—H22	0.9500
C8—C9	1.423 (3)	C23—C24	1.403 (4)
C9—C13	1.417 (3)	С23—Н23	0.9500
C10—C11	1.402 (3)	C24—H24	0.9500
C10—H10	0.9500	C25—C26	1.425 (3)
C11—C12	1.360 (3)	C27—C28	1.385 (3)
C11—H11	0.9500	C28—C29	1.373 (3)
C12—C13	1.420 (3)	C28—H28	0.9500
C12—H12	0.9500	C29—C30	1.378 (4)
C13—C14	1.415 (3)	С29—Н29	0.9500
C14—C15	1.371 (3)	C30—C31	1.369 (4)
C15—C16	1.409 (3)	C30—H30	0.9500
C15—H15	0.9500	C31—H31	0.9500
С8—О3—Н3	106.4 (17)	C19—C18—C17	121.94 (17)
C26—O4—H4	110 (2)	C20—C19—C18	121.80 (18)
C10—N5—C9	117.43 (18)	С20—С19—Н19	119.1
C24—N6—C25	117.4 (2)	C18—C19—H19	119.1
C27—N7—C31	117.0 (2)	C19—C20—C21	121.58 (19)
O3—C8—C16	118.84 (17)	C19—C20—Cl2	119.47 (16)
O3—C8—C9	120.08 (17)	C21—C20—Cl2	118.94 (16)
C16—C8—C9	121.02 (18)	C22—C21—C25	116.8 (2)
N5—C9—C13	123.10 (17)	C22—C21—C20	126.4 (2)
N5—C9—C8	116.96 (17)	C25—C21—C20	116.81 (19)
C13—C9—C8	119.88 (17)	C23—C22—C21	119.5 (2)
N5—C10—C11	123.6 (2)	C23—C22—H22	120.3
N5—C10—H10	118.2	C21—C22—H22	120.3
C11—C10—H10	118.2	C22—C23—C24	119.4 (2)
C12—C11—C10	119.7 (2)	С22—С23—Н23	120.3
C12—C11—H11	120.1	C24—C23—H23	120.3
C10-C11-H11	120.1	N6—C24—C23	123.7 (2)
C11—C12—C13	119.2 (2)	N6—C24—H24	118.1
C11—C12—H12	120.4	C23—C24—H24	118.1
C13—C12—H12	120.4	N6—C25—C21	123.20 (19)

C14—C13—C9	117.62 (17)	N6-C25-C26	116.15 (19)
C14—C13—C12	125.45 (19)	C21—C25—C26	120.64 (18)
C9—C13—C12	116.90 (19)	O4—C26—C18	120.59 (18)
C15—C14—C13	121.40 (19)	O4—C26—C25	118.42 (18)
C15—C14—Cl1	119.35 (16)	C18—C26—C25	120.99 (18)
C13—C14—C11	119 23 (15)	N7—C27—C28	122.48 (19)
C14-C15-C16	121 20 (18)	N7—C27—C17	118 58 (18)
C_{14} C_{15} H_{15}	119.4	$C_{28} - C_{27} - C_{17}$	118.94 (18)
C16-C15-H15	119.1	C_{29} C_{28} C_{27}	110.5 (10)
C_{8} C_{16} C_{15}	119.1	C_{29} C_{28} H_{28}	120.3
C_{8} C_{16} C_{17}	118.63(17)	$C_{27} C_{28} H_{28}$	120.3
$C_{15} = C_{16} = C_{17}$	110.07(17) 122.48(17)	$C_{27} - C_{20} - 1120$	120.3 118 7 (2)
C19 - C17 - C27	122.46(17)	$C_{28} = C_{29} = C_{30}$	110.7 (2)
C18 - C17 - C27	112.94 (10)	С28—С29—Н29	120.7
C18 - C17 - C10	112.21(10)	С30—С29—Н29	120.7
$C_2/-C_1/-C_{10}$	112.64 (16)	$C_{31} = C_{30} = C_{29}$	118.7 (2)
	106.1	C31 - C30 - H30	120.6
C27—C17—H17	106.1	C29—C30—H30	120.6
С16—С17—Н17	106.1	N7—C31—C30	123.6 (2)
C26—C18—C19	118.16 (18)	N7—C31—H31	118.2
C26—C18—C17	119.90 (17)	C30—C31—H31	118.2
C10—N5—C9—C13	1.1 (3)	C18—C19—C20—C21	1.3 (3)
C10—N5—C9—C8	-176.2 (2)	C18—C19—C20—Cl2	-177.68 (15)
O3—C8—C9—N5	-1.8 (3)	C19—C20—C21—C22	179.7 (2)
C16—C8—C9—N5	175.27 (19)	Cl2—C20—C21—C22	-1.3 (3)
O3—C8—C9—C13	-179.15 (18)	C19—C20—C21—C25	-0.6(3)
C16—C8—C9—C13	-2.0 (3)	Cl2—C20—C21—C25	178.43 (15)
C9—N5—C10—C11	-2.1(3)	C25—C21—C22—C23	-0.6 (3)
N5—C10—C11—C12	1.3 (4)	C20—C21—C22—C23	179.2 (2)
C10-C11-C12-C13	0.6 (4)	C21—C22—C23—C24	0.7 (4)
N5—C9—C13—C14	-177.04 (19)	C25—N6—C24—C23	-0.7(4)
C8—C9—C13—C14	0.1 (3)	C22—C23—C24—N6	0.0 (4)
N5-C9-C13-C12	0.7 (3)	C24 - N6 - C25 - C21	0.7(3)
C8-C9-C13-C12	177.9 (2)	C_{24} N6 C_{25} C_{26}	-178.3(2)
$C_{11} - C_{12} - C_{13} - C_{14}$	176.0 (2)	C_{22} C_{21} C_{25} N_{6}	-0.1(3)
$C_{11} - C_{12} - C_{13} - C_{9}$	-1.5(3)	C_{20} C_{21} C_{25} N_{6}	-179.89(19)
C9-C13-C14-C15	17(3)	$C_{22} = C_{21} = C_{25} = C_{26}$	178 89 (19)
C_{12} C_{13} C_{14} C_{15}	-175.8(2)	C_{20} C_{21} C_{25} C_{26}	-0.9(3)
C9-C13-C14-C11	-179.77(16)	C19 - C18 - C26 - O4	$178\ 27\ (17)$
C_{12} C_{13} C_{14} C_{11}	27(3)	C17 - C18 - C26 - O4	-12(3)
C_{13} C_{14} C_{15} C_{16}	-1.7(3)	C19 - C18 - C26 - C25	-0.9(3)
C11-C14-C15-C16	179.83 (16)	C17 - C18 - C26 - C25	179 60 (17)
03-C8-C16-C15	179 29 (18)	N6-C25-C26-O4	15(3)
C9-C8-C16-C15	21(3)	$C_{21} - C_{25} - C_{26} - O_{4}$	-17755(18)
03-C8-C16-C17	10(3)	N6-C25-C26-C18	-170.20(18)
C9-C8-C16-C17	-17617(18)	$C_{21} - C_{25} - C_{26} - C_{18}$	16(3)
C_{14} C_{15} C_{16} C_{8}	-0.3(3)	$C_{21} = C_{20} = C_{10}$ $C_{31} = N_{7} = C_{27} = C_{28}$	-17(3)
C14 - C15 - C16 - C17	177.9(2)	C_{31} N7 C_{27} C_{17}	177 57 (18)
017 - 010 - 010 - 017	111.7 (4)	-11 - 02 - 01 - 01 - 01 - 01 - 01 - 01 -	1//.3/(10)

supporting information

C8—C16—C17—C18	-88.6 (2)	C18—C17—C27—N7	-35.5 (2)
C15—C16—C17—C18	93.1 (2)	C16—C17—C27—N7	92.9 (2)
C8—C16—C17—C27	142.58 (19)	C18—C17—C27—C28	143.83 (19)
C15—C16—C17—C27	-35.7 (3)	C16—C17—C27—C28	-87.8 (2)
C27—C17—C18—C26	-101.2 (2)	N7—C27—C28—C29	2.8 (3)
C16—C17—C18—C26	130.17 (19)	C17—C27—C28—C29	-176.4 (2)
C27—C17—C18—C19	79.3 (2)	C27—C28—C29—C30	-1.3 (4)
C16—C17—C18—C19	-49.3 (2)	C28—C29—C30—C31	-1.2 (4)
C26—C18—C19—C20	-0.6 (3)	C27—N7—C31—C30	-1.0 (3)
C17—C18—C19—C20	178.93 (18)	C29—C30—C31—N7	2.5 (4)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C18–C21/C25/C26, C8/C9/C13–C16 and N7/C27–C31 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
O3—H3…N5	0.82 (2)	2.23 (3)	2.727 (2)	119 (2)
O3—H3…O4 ⁱ	0.83 (3)	2.26 (3)	3.044 (2)	159 (2)
$O4$ — $H4$ ··· $N5^{i}$	0.84 (4)	2.16 (3)	2.878 (3)	144 (2)
O4—H4…N6	0.84 (4)	2.20 (4)	2.674 (3)	115 (3)
C29—H29····O3 ⁱⁱ	0.95	2.53	3.377 (3)	148
C10—H10···· <i>Cg</i> 1 ⁱⁱⁱ	0.95	2.75	3.659 (3)	161
C22—H22··· <i>Cg</i> 2 ^{iv}	0.95	2.92	3.667 (3)	136
C24—H24···· $Cg3^{v}$	0.95	2.65	3.528 (3)	153
C30—H30··· <i>Cg</i> 1 ⁱⁱ	0.95	2.73	3.562 (3)	147

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*+1, *z*; (iv) *x*, *y*-1, *z*; (v) -*x*, -*y*+1, -*z*+2.