

Received 23 June 2020 Accepted 12 July 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: cobalt(II); one-dimensional; zigzag; 4,4'-bipyridine; 2-hydroxybenzoate; crystal structure.

CCDC reference: 2015747

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a novel one-dimensional zigzag chain-like cobalt(II) coordination polymer constructed from 4,4'-bipyridine and 2-hydroxybenzoate ligands

Thawanrat Saelim,^{a,b} Kittipong Chainok,^b Filip Kielar^c and Nanthawat Wannarit^{a,b}*

^aDepartment of Chemistry, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, ^bThammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani 12121, Thailand, and ^cDepartment of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand. *Correspondence e-mail: nwan0110@tu.ac.th

A novel one-dimensional zigzag chain-like Co^{II} coordination polymer constructed from 4,4'-bipyridine (4,4'-bpy) and 2-hydroxybenzoate (2-OHbenz) ligands, namely, *catena*-poly[[(4,4'-bipyridine- κN)(μ -2-hydroxybenzoato- $\kappa^2 O:O')$ (2-hydroxybenzoato- $\kappa^2 O,O')$ cobalt(II)]- μ -4,4'-bipyridine- $\kappa^2 N:N'$ -[aquahemi(μ -4,4'-bipyridine- $\kappa^2 N:N'$)(2-hydroxybenzoato- κO (2-hydroxybenzoato- $\kappa^2 O:O'$)cobalt(II)], [Co₂(C₇H₅O₃)₄(C₁₀H₈N₂)_{2.5}(H₂O)]_n, has been synthesized by reacting cobalt(II) nitrate trihydrate, 4,4'-bpy and 2-hydroxybenzoic acid in a mixture of water and methanol at room temperature. There are two independent Co^{II} centers, Co1 and Co2, in the asymmetric unit, revealing a distorted octahedral geometry with chromophore types of [CoN₂O₄] and $[CoN_2O_3O']$, respectively. The Co1 ions are doubly bridged by 2-OHbenz ligands with syn-anti coordination mode, generating a dinuclear unit. The bridging 4,4'-bpy ligands connect these dinuclear units and the mononuclear Co2 chromophores, providing a one-dimensional alternating zigzag chain-like structure. In the crystal, intermolecular hydrogen bonds, $C-H\cdots\pi$ and $\pi-\pi$ stacking interactions are observed and these help to consolidate the packing. In addition, the physical properties of the title compound are reported.

1. Chemical context

The design and construction of new coordination polymers (CPs) is of current interest and attracts researchers in the fields of modern structural chemistry and materials science because of their potential applications in areas such as ionexchange, catalysis, sensors, magnetism, and non-linear optics (Dzhardimalieva & Uflyand, 2017; Loukopoulos & Kostakis, 2018; Horike et al., 2020). It is well known that the construction of CPs depends on a variety of factors such as the nature of metal ions and the organic ligands, the molar ratio of the reactants, and the reaction conditions e.g. reaction time, pH, solvents, and temperature (Kitagawa et al., 2004; Noro et al., 2009). The structure-property relationships of hybrid polymeric materials with 4,4'-bipyridine (4,4'-bipy) have been studied intensively (Biradha et al., 2006; Khrizanforova et al., 2020). This is because 4,4'-bpy is a rigid molecule that can link the metal centers to form a network with well-defined structures and also support the stability of the structures through

aromatic π - π and C-H··· π interactions (Kaes *et al.*, 2000). Furthermore, many researchers incorporate carboxylatebased ligands for the construction of CPs, giving rise to frameworks with a variety of dimensions and topologies (Gu *et al.*, 2019; Horike *et al.*, 2020). Benzoate and its derivatives have been widely used to construct the CPs because of the variety of their coordination modes, resulting in a variety of coordination geometries for the metal centers and interesting properties and applications of their CPs (Tong *et al.*, 2000; Busskamp *et al.*, 2007; Zhang *et al.*, 2007; Song *et al.*, 2009).

This work was undertaken as part of a search for new firstrow transition-metal coordination polymers constructed from 4,4'-bpy and carboxylate ligands. The Co^{II} ion and hydroxybenzoate derivatives such as 2-hydroxybenzoate (2-OHbenz), 3-hydroxybenzoate (3-OHbenz) and 4-hydroxybenzoate (4-OHbenz) have been utilized for this. As a result, a Co^{II} coordination polymer containing 4,4'-bpy and 2-OHbenz, $[Co_2(2-OHbenz)_4(4,4'-bpy)_{2.5}(H_2O)]_n$, with a novel 1D alternating zigzag chain-like structure has been successfully synthesized and characterized and its crystal structure has been determined. Herein, we report the synthesis and crystal structure and physical properties of this compound.

Figure 1

A segment of $[Co_2(2-OHbenz)_4(4,4'-bpy)_{2.5}(H_2O)]_n$ with the atomlabeling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y, -z + 1.]

Table 1

Hydrogen-bond geometry (Å, °).

Cg4, Cg7 and Cg9 are the centroids of the N4/C16–C20, C34–C39 and C48–C53 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3-H3···O1	0.85 (3)	1.77 (3)	2.553 (3)	153 (4)
O6−H8···O5	0.84(2)	1.86 (2)	2.587 (2)	145 (2)
O9−H13···O7	0.84(2)	1.79 (2)	2.568 (3)	152 (4)
O12−H18···O11	0.85(2)	1.74 (2)	2.531 (2)	154 (3)
O13−H26···O11	0.84(1)	1.82 (2)	2.625(2)	160 (2)
$O13-H27\cdots N2^{i}$	0.83(2)	2.05 (2)	2.860(3)	167 (2)
C25-H25···O8	0.93	2.55	3.143 (3)	122
C39-H39···O1	0.93	2.38	3.271 (3)	160
C5−H5···O12 ⁱⁱ	0.93	2.59	3.324 (3)	136
$C6-H6\cdots O7^{iii}$	0.93	2.48	3.300 (3)	147
$C12-H12\cdots O3^{iv}$	0.93	2.58	3.173 (3)	122
$C15-H15\cdots O6^{v}$	0.93	2.51	3.292 (3)	142
$C2-H2\cdots Cg9^{iii}$	0.93	2.95	3.833 (2)	160
$C31 - H31 \cdots Cg4^{vi}$	0.93	2.85	3.681 (4)	149
$C51 - H51 \cdots Cg7^{vii}$	0.93	2.72	3.623 (3)	165

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y - 1, z + 1; (iii) x + 1, y - 1, z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) x - 1, y, z; (vi) -x, -y + 1, -z + 1; (vii) x - 1, y + 1, z - 1.

2. Structural commentary

The asymmetric unit consists of two independent Co^{II} atoms, two and a half of 4,4'-bpy ligands, four 2-OHbenz ligands and one water molecule (Fig. 1). Both Co^{II} centers exhibit a distorted octahedral geometry with $[CoN_2O_4]$ and $[CoN_2O_3O']$ chromophores for Co1 and Co2, respectively (Fig. 2). The Co1 ion is coordinated by two N atoms from two 4,4'-bpy ligands with different monodentate and bridging coordination modes in a *trans*-configuration, and four O atoms

The coordination environments of Co^{II} centers in the title compound. The hydrogen atoms on the aromatic rings and phenol ring on 2-OHbenz ligands have been omitted for clarity. [Symmetry code: (i) -x + 1, -y, -z + 1.]

Table 2

Analysis of short ring interactions (Å).

Cg(I) and Cg(J) are the centroids of rings I and J; CgI_Perp is the perpendicular distance of Cg(I) on ring J and slippage is the distance between Cg(I) and the perpendicular projection of Cg(J) on ring I. Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, Cg7 and Cg8 are the centroids of the N1/C1–C5, N2/C6–C10, N3/C11–C15, N4/C16–C20, N5/C21–C25, C27–C32, C34–C39 and C41–C46 rings, respectively.

Cg(I)	Cg(J)	Symmetry_ $Cg(J)$	$Cg(I) \cdots Cg(J)$	CgI_Perp	CgJ_Perp	Slippage
Cg1	Cg3	-x + 1, -y, -z + 1	3.9651 (13)	3.7526 (9)	3.6199 (8)	1.618
Cg2	Cg4	-x + 1, -y, -z + 1	3.6515 (13)	3.5063 (9)	3.5546 (8)	0.836
Cg5	Cg8	-x, -y + 2, -z	4.0381 (19)	3.5840 (10)	3.5978 (13)	1.832
Cg6	Cg7	-x + 1, -y + 1, -z + 1	4.2986 (18)	4.2205 (13)	3.9319 (10)	1.737
<i>Cg</i> 6	Cg8	x, -z + 1, -z + 1	3.814 (2)	3.7674 (13)	3.7372 (14)	0.765

from carboxylate groups of one terminal chelating and two bridging 2-OHbenz ligands, while the Co2 ion is bound to two N atoms of two 4,4'-bpy linkers in a *cis*-configuration, and four O atoms from carboxylate groups of two terminally monodentate and chelating 2-OHbenz ligands, and an aqua ligand. The Co–O and Co–N bond lengths fall in the ranges 2.0408 (14)–2.348 (15) and 2.1177 (16)–2.1568 (17) Å, respectively. Two Co1 centers are doubly bridged by two bridging 2-OHbenz ligands with a *syn–anti* coordination mode to form a discrete dinuclear unit. The dinuclear units are connected to Co2 atoms by the bridging 4,4'-bpy ligands, providing a onedimensional zigzag chain-like structure along [101] (Fig. 3). The Co1…Co1ⁱ [symmetry code: (i) = -x + 1, -y, -z + 1] and Co1…Co2 distances are 4.099 (2) and 11.381 (2) Å, respectively.

Intramolecular hydrogen bonds (Table 1) comprise (i) O– H···O interactions formed by hydrogen donor atoms from the hydroxyl groups of 2-OHbenz and aqua ligands to oxygen acceptors in the carboxylate groups of the 2-OHbenz ligands and (ii) an O–H···N interaction formed by a hydrogen-atom donor of the aqua ligand to an uncoordinated nitrogen acceptor atom in the terminal 4,4'-bpy ligand. The intramolecular π - π stacking interactions involve the pyridyl rings of the 4,4'-bpy ligands, the intercentroid distances $Cg1 \cdots Cg3^{i}$ and $Cg2 \cdots Cg4^{i}$ being 3.965 (1) and 3.652 (1) Å, respectively, where Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C1– C5, N2/C6–C10, N3/C11–C15 and N4/C16–C20 rings, respectively [symmetry code: (i) -x + 1, -y, -z + 1; Fig. 4].

Figure 3

(a) View of the one-dimensional alternating zigzag chain-like structure and (b) the schematic skeleton representing the topology of the title compound

3. Supramolecular features

The extended structure of the title compound is consolidated by hydrogen bonds and π - π stacking and C-H··· π interactions. The details of these weak interactions are summarized in Tables 1 and 2. The intermolecular interactions between the adjacent 1D zigzag chains are (i) C-H···O hydrogen bonds between the benzene rings and hydroxyl groups of 2-OHbenz, (ii) π - π stacking interactions between the bridging 4,4'-bpy and the terminal chelating 2-OHbenz and also between the phenyl rings of terminal chelating 2-OHbenz ligands, (iii) C-H··· π interactions between the C-H of the terminal monodentate 2-OHbenz ligand and the pyridine ring of 4,4'-bpy ligands and (iv) C-H··· π interactions between the terminal

Figure 4

The intramolecular interactions in the title compound. The hydrogen atoms on aromatic rings have been omitted for clarity. Cg1, Cg2, Cg3 and Cg4 are the centroids of N1/C1–C5, N2/C6–C10, N3/C11–C15 and N4/C16–C20 rings, respectively. [Symmetry code: (i) -x + 1, -y, -z + 1.]

(a) Top and (b) side views of packing diagram in the (110) plane with a space-filling plot of adjacent one-dimensional zigzag chains of the title compound.

chelating 2-OHbenz ligands. A packing diagram showing adjacent 1D zigzag chains in the (110) plane is shown in Fig. 5.

4. Database survey

No transition-metal CPs related to the title compound containing a 1D alternating zigzag chain-like structure have been reported. To the best of our knowledge, some related 1D chain-like Co^{II} CPs containing 4,4'-bpy and benzoate or hydroxybenzoate derivatives have been reported with two different topologies. The 1D ladder-like structure topology has been found for two Co^{II} CPs, namely, $[Co_2(4,4'-bpy)_3-(H_2O)_2(phba)_2](NO_3)_2\cdot4H_2O$, (phba = 4-hydroxybenzoate) (MEDROC; Tong *et al.*, 2000) and $[Co_2(\mu_2-4,4'-bpy)_2(\mu_2-benz)_2(benz)_2]_n$, (benz = benzoate) (RIPSUF; Zhang *et al.*, 2007), while a normal 1D zigzag chain-like structure has been found for $[Co_2(benz)_4(4,4'-bpy)_2]_n$ (RIPSUF01; Song *et al.*, 2009).

5. Synthesis and crystallization

A solution of 4,4'-bpy (0.1562 g, 1.0 mmol) in MeOH (5 mL) was slowly added into a solution of $Co(NO_3)_2 \cdot 6H_2O$ (0.2910 g, 1.0 mmol) in a 4:1 mixture of methanol and water (10 mL). The resulting solution was stirred for 20 min. Next, a solution of 2-OHbenzH (0.1382 g, 1.0 mmol) in methanol (5 mL) was slowly added dropwise and stirred over a period of 15 min. After that, the mixture was filtered. The filtered solution was left to stand without disturbance and allowed to slowly evaporate in the air. After five days, red crystals suitable for single crystal X-ray diffraction were obtained [56.18% yield based on cobalt(II) salt]. Elemental analysis; calculated for $C_{53}H_{42}Co_2N_5O_{13}$: C 59.06, H 4.21, N 6.50%; found: C 59.14, H 3.99, N 6.41%. IR (KBr, ν/cm^{-1}): 3087*s*, 1595*s*, 1485*s*, 1460*s*, 1459*s*, 1413*m*, 1389*s*, 1359*s*, 1308*w*, 1252*m*, 1218*m*, 1143*w*, 1068*w*, 1029*w*, 871*w*, 814*s*, 749*s*, 701*w*, 671*w*, 633*w*, 530*w*.

The IR spectrum of the title compound (see Fig. S1 in the supporting information) shows a characteristic broad peak centered at 3087 cm⁻¹, which is assigned to OH stretching vibrations of the water molecule and the hydroxyl groups of 2-OHbenz. Strong and sharp peaks at 1595 and 1485 cm⁻¹ can be assigned as the asymmetric and symmetric COO⁻ stretching vibrations of the chelating 2-OHbenz ligands, respectively. Peaks in the region of 600–1000 cm⁻¹ are assigned to CH bending of the aromatic rings in the ligands (Zhu *et al.*, 2016).

The solid-state electronic spectrum of the title compound (Fig. S2) shows two broad bands in the visible region with the main peak centered about 515 nm (19.42 kK), which can be assigned to the v_3 : ${}^4T_{1g} \rightarrow {}^4T_{1g}(P)$ transition. There is a small peak as a shoulder at around 655 nm (15.27 kK), assigned to the v_2 : ${}^4T_{1g} \rightarrow {}^4A_{2g}$ transition and a broad band centered about 1095 nm (13.24 kK), which can be assigned to the v_1 : ${}^4T_{1g} \rightarrow {}^4T_{2g}$ transition. The characteristic bands of this electronic spectrum correspond to a distorted octahedral geometry for Co^{II} compounds as confirmed by the X-ray structure (Piromchom *et al.*, 2014).

Experimental details.	
Crystal data	
Chemical formula	$[Co_2(C_7H_5O_3)_4(C_{10}H_8N_2)_{2.5}(H_2O)]$
Mr	1074.77
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	10.8832 (18), 11.4742 (19), 19.905 (3)
α, β, γ (°)	74.295 (5), 89.791 (5), 88.502 (6)
$V(\dot{A}^3)$	2392.0 (7)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.77
Crystal size (mm)	$0.32 \times 0.24 \times 0.2$
Data collection	
Diffractometer	Bruker D8 Quest CMOS Photon II
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.677, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	60283, 9771, 7780
Rint	0.042
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.088, 1.05
No. of reflections	9771
No. of parameters	682
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.43, -0.30
r max/ r mm (/	

Table 3

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL* (Sheldrick, 2015*b*) and *OLEX2* (Dolomanov *et al.*, 2009).

The PXRD pattern of the title compound (Fig. S3) was used to check the phase purity of the bulk sample in the solid state. The measured PXRD pattern of the title compound closely matches the simulated pattern generated from the singlecrystal X-ray diffraction data, confirming the title compound is pure.

The TGA curve shown in (Fig. S4) demonstrates the thermal stability of the title compound up to 160° C. The first weight-loss step of 27.37% is observed from 160 to 277° C and can be attributed to the loss of coordinated water and two 2-OHbenz molecules. The next step weight-loss step of 25.7% observed from 277 to 356° C corresponds to the loss of a coordinated 2-OHbenz molecule. Finally, the weight loss of about 36.33% from 356 to 520° C can be assigned to the removal of two and half of the 4,4'-bpy ligands. The residual product is assumed to be CoO.

The solid-state photoluminescent properties of the title compound and free ligands were investigated at room temperature. As shown in Fig. S5, the emission spectra of the free ligands 4,4'-bpy and 2-OHbenzH ($\lambda_{ex} = 340$ nm) exhibit strong emission bands at 425 and 439 nm, respectively. However, no detectable emission can be observed for the title compound ($\lambda_{ex} = 340$ nm). This complete PL quenching is the result of the low energy *d*–*d* transitions in the partially filled metal ion centers found for Co^{II} compounds described above and reported elsewhere (Yang *et al.*, 2012; Zhu *et al.*, 2014).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were positioned geometrically and refined using a riding model, with C-H =0.93 Å and the $U_{iso}(H) = 1.2U_{eq}(C)$. O-bound H atoms were located in a difference electron-density map, and were refined with bond-length restraints of O-H = 0.84 (1) Å.

Acknowledgements

The authors are grateful to Faculty of Science and Technology, Thammasat University for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Faculty of Science and Technology, Thammasat University (contract No. SciGR7/ 2563 to N. Wannarit); Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA) (grant to K. Chainok, N. Wannarit).

References

- Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Busskamp, H., Deacon, G. B., Hilder, M., Junk, P. C., Kynast, U. H., Lee, W. W. & Turner, D. R. (2007). *CrystEngComm*, 9, 394–411.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Dzhardimalieva, G. I. & Uflyand, I. E. (2017). RSC Adv. 7, 42242–42288.
- Gu, J., Wen, M., Cai, Y., Shi, Z., Nesterov, D. S., Kirillova, M. V. & Kirillov, A. M. (2019). *Inorg. Chem.* 58, 5875–5885.
- Horike, S., Nagarkar, S. S., Ogawa, T. & Kitagawa, S. (2020). Angew. Chem. Int. Ed. 59, 6652–6664.
- Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553– 3590.
- Khrizanforova, V., Shekurov, R., Miluykov, V., Khrizanforov, M., Bon, V., Kaskel, S., Gubaidullin, A., Sinyashin, O. & Budnikova, Y. (2020). *Dalton Trans.* 49, 2794–2802.
- Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.
- Loukopoulos, E. & Kostakis, G. E. (2018). J. Coord. Chem. 71, 371–410.
- Noro, S.-I., Kitagawa, S., Akutagawa, T. & Nakamura, T. (2009). *Prog. Polym. Sci.* **34**, 240–279.
- Piromchom, J., Wannarit, N., Boonmak, J., Pakawatchai, C. & Youngme, S. (2014). *Inorg. Chem. Commun.* 40, 59–61.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Song, Y. J., Kwak, H., Lee, Y. M., Kim, S. H., Lee, S. H., Park, B. K., Jun, J. Y., Yu, S. M., Kim, C., Kim, S.-J. & Kim, Y. (2009). *Polyhedron*, 28, 1241–1252.
- Tong, M.-L., Chen, H.-J. & Chen, X.-M. (2000). *Inorg. Chem.* **39**, 2235–2238.
- Yang, J., Shen, L., Yang, G.-W., Li, Q.-Y., Shen, W., Jin, J.-N., Zhao, J.-J. & Dai, J. (2012). J. Solid State Chem. 186, 124–133.
- Zhang, Z.-X., Li, Y., Li, K.-C., Song, W.-D. & Li, Q.-S. (2007). Inorg. Chem. Commun. 10, 1276–1280.
- Zhu, D., Tian, H., Li, F., Xie, J., Zhang, P., Zou, J., Zhao, L., Zhang, F., Yang, G. & Li, Q. (2014). J. Inorg. Organomet. Polym. 24, 1103– 1109.
- Zhu, W.-G., Lin, C.-J., Zheng, Y.-Q. & Zhu, H.-L. (2016). *Transition Met. Chem.* **41**, 87–96.

supporting information

Acta Cryst. (2020). E76, 1302-1306 [https://doi.org/10.1107/S2056989020009482]

Crystal structure of a novel one-dimensional zigzag chain-like cobalt(II) coordination polymer constructed from 4,4'-bipyridine and 2-hydroxybenzoate ligands

Thawanrat Saelim, Kittipong Chainok, Filip Kielar and Nanthawat Wannarit

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $catena-Poly[[(4,4'-bipyridine-\kappa N)(\mu-2-hydroxybenzoato-\kappa^2O:O')(2-hydroxybenzoato-\kappa^2O,O')cobalt(II)]-\mu-4,4'-bipyridine-\kappa^2N:N'-[aquahemi(\mu-4,4'-bipyridine-\kappa^2N:N')(2-hydroxybenzoato-\kappa O)(2-hydroxybenzoato-\kappa^2O,O')cobalt(II)]$

Crystal data
[Co ₂ (C ₇ H ₅ O ₃) ₄ (C

$[Co_2(C_7H_5O_3)_4(C_{10}H_8N_2)_{2.5}(H_2O)]$
$M_r = 1074.77$
Triclinic, $P\overline{1}$
a = 10.8832 (18) Å
<i>b</i> = 11.4742 (19) Å
c = 19.905 (3) Å
$\alpha = 74.295 \ (5)^{\circ}$
$\beta = 89.791 \ (5)^{\circ}$
$\gamma = 88.502 \ (6)^{\circ}$
V = 2392.0 (7) Å ³

Data collection

Bruker D8 Quest CMOS Photon II diffractometer Radiation source: sealed x-ray tube, Mo Graphite monochromator Detector resolution: 7.39 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.677, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ Z = 2 F(000) = 1106 $D_x = 1.492 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9918 reflections $\theta = 3.1-28.2^{\circ}$ $\mu = 0.77 \text{ mm}^{-1}$ T = 296 K Block, red $0.32 \times 0.24 \times 0.2 \text{ mm}$

60283 measured reflections 9771 independent reflections 7780 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -24 \rightarrow 24$

 $wR(F^2) = 0.088$ S = 1.05 9771 reflections

682 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0419P)^2 + 0.8816P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: dual	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: mixed	$\Delta \rho_{\rm max} = 0.43 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.29$ e Å ⁻³
and constrained refinement	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Col	0.38320 (2)	0.10363 (2)	0.54244 (2)	0.02725 (7)
Co2	0.06977 (2)	0.72632 (2)	0.02018 (2)	0.03175 (8)
01	0.40605 (13)	0.25879 (14)	0.58404 (9)	0.0484 (4)
O2	0.23200 (13)	0.16721 (13)	0.59633 (8)	0.0409 (3)
O3	0.4298 (2)	0.4553 (2)	0.61905 (15)	0.0980 (9)
H3	0.443 (4)	0.398 (2)	0.6003 (19)	0.121 (14)*
O4	0.55720 (12)	0.11808 (13)	0.50300 (8)	0.0402 (3)
05	0.72507 (12)	0.03072 (12)	0.47519 (7)	0.0344 (3)
O6	0.93656 (14)	0.12657 (17)	0.47886 (11)	0.0602 (5)
H8	0.888 (2)	0.077 (2)	0.4705 (14)	0.071 (9)*
O7	-0.11751 (13)	0.67237 (13)	0.06159 (7)	0.0406 (3)
08	-0.03026 (13)	0.83546 (13)	0.07254 (8)	0.0438 (4)
O9	-0.3306 (2)	0.6158 (2)	0.11428 (13)	0.0875 (7)
H13	-0.2608 (17)	0.610 (3)	0.0971 (18)	0.106 (13)*
O10	-0.00286 (14)	0.81713 (14)	-0.07657 (7)	0.0454 (4)
011	0.10789 (16)	0.73590 (15)	-0.14789 (8)	0.0543 (4)
O12	0.08458 (17)	0.81806 (18)	-0.27880 (9)	0.0592 (5)
H18	0.107 (3)	0.775 (2)	-0.2386 (9)	0.088 (11)*
013	0.13809 (16)	0.59112 (14)	-0.02174 (8)	0.0441 (4)
H26	0.135 (3)	0.623 (2)	-0.0648 (6)	0.078 (10)*
H27	0.2003 (16)	0.549 (2)	-0.0066 (13)	0.063 (9)*
N1	0.44634 (15)	-0.01847 (15)	0.63825 (8)	0.0339 (4)
N2	0.66774 (18)	-0.43591 (18)	0.94863 (9)	0.0474 (5)
N3	0.32399 (14)	0.22088 (14)	0.44421 (8)	0.0311 (3)
N4	0.13327 (15)	0.61430 (14)	0.11989 (8)	0.0332 (4)
N5	0.22979 (15)	0.83133 (15)	0.00504 (9)	0.0357 (4)
C1	0.56246 (19)	-0.0201 (2)	0.66090 (11)	0.0418 (5)
H1	0.616518	0.035341	0.634347	0.050*
C2	0.60535 (19)	-0.0993 (2)	0.72121 (11)	0.0417 (5)
H2	0.687050	-0.097234	0.734268	0.050*
C3	0.52771 (18)	-0.18256 (17)	0.76293 (10)	0.0331 (4)
C4	0.40701 (18)	-0.18020 (19)	0.73970 (11)	0.0393 (5)
H4	0.350822	-0.233833	0.765656	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C5	0.37092 (18)	-0.09847 (19)	0.67830(11)	0.0393 (5)
Н5	0.289795	-0.098811	0.663857	0.047*
C6	0.7144 (2)	-0.3259(2)	0.92367 (11)	0.0451 (5)
H6	0.780326	-0.305313	0.947374	0.054*
C7	0.67096 (19)	-0.24166 (19)	0.86514(11)	0.0386 (5)
H7	0.707240	-0.166564	0.850264	0.046*
C8	0.57241 (18)	-0.26897(18)	0.82815 (10)	0.0342 (4)
C9	0.5219(2)	-0.3816(2)	0.85489 (11)	0.0444 (5)
H9A	0.454541	-0.403962	0.833014	0.053*
C10	0.5716 (2)	-0.4605(2)	0.91394 (12)	0.0514 (6)
H10	0.535930	-0.535569	0.930657	0.062*
C11	0 39719 (18)	0 30579 (18)	0.40608(11)	0.032
H11	0.475641	0.312109	0.422913	0.045*
C12	0.36219(18)	0.38385(18)	0.34346(11)	0.015 0.0367(5)
H12	0.416736	0.440794	0.318790	0.0307 (3)
C13	0.410750 0.24535(17)	0.37796 (17)	0.31686 (10)	0.0799 (4)
C13	0.24333(17) 0.16882(17)	0.37790(17) 0.29091(18)	0.35696 (10)	0.0299(4)
U14	0.10002 (17)	0.29091 (18)	0.33090 (10)	0.0303 (3)
C15	0.089433	0.285000	0.341720 0.41026 (10)	0.044
U15	0.21085 (17)	0.21330 (19)	0.41920 (10)	0.0300 (3)
П15 С16	0.138001	0.130190	0.443201 0.16245 (10)	0.044°
	0.20919 (19)	0.03071 (18)	0.10243 (10)	0.0370 (3)
П10 С17	0.237771	0.729240	0.148137	0.043°
	0.24722 (19)	0.57804 (18)	0.22630 (10)	0.0372(5)
HI/	0.300167	0.60/6/0	0.253975	0.045*
CI8	0.20611 (16)	0.45990 (17)	0.24934 (10)	0.0301 (4)
C19	0.12639 (18)	0.42283 (18)	0.20528 (10)	0.0345 (4)
HI9	0.095861	0.344987	0.218331	0.041*
C20	0.09266 (18)	0.50133 (18)	0.14235 (10)	0.0361 (4)
H20	0.038814	0.474499	0.113901	0.043*
C21	0.3388 (2)	0.7903 (2)	-0.01008 (16)	0.0613 (7)
H21	0.343265	0.715188	-0.019510	0.074*
C22	0.4454 (2)	0.8530 (2)	-0.01252 (17)	0.0668 (8)
H22	0.519350	0.819901	-0.023310	0.080*
C23	0.44329 (18)	0.96475 (18)	0.00095 (11)	0.0361 (4)
C24	0.32980 (19)	1.00692 (19)	0.01651 (12)	0.0419 (5)
H24	0.322945	1.081478	0.026449	0.050*
C25	0.22646 (19)	0.93955 (19)	0.01745 (12)	0.0416 (5)
H25	0.151031	0.971218	0.027200	0.050*
C26	0.29583 (18)	0.25023 (18)	0.60563 (10)	0.0342 (4)
C27	0.24654 (18)	0.33984 (19)	0.64101 (11)	0.0382 (5)
C28	0.3152 (2)	0.4384 (2)	0.64491 (15)	0.0584 (7)
C29	0.2655 (3)	0.5232 (3)	0.67603 (19)	0.0848 (10)
H29	0.309833	0.590962	0.676996	0.102*
C30	0.1514 (3)	0.5073 (3)	0.7053 (2)	0.0926 (11)
H30	0.119079	0.563885	0.726726	0.111*
C31	0.0841 (3)	0.4094 (3)	0.7035 (2)	0.0870 (11)
H31	0.006936	0.398807	0.724094	0.104*
C32	0.1313 (2)	0.3262 (2)	0.67084 (14)	0.0585 (7)

supporting information

H32	0.084907	0.260227	0.668929	0.070*
C33	0.67051 (16)	0.11563 (17)	0.49469 (9)	0.0278 (4)
C34	0.74627 (17)	0.21332 (16)	0.50758 (9)	0.0289 (4)
C35	0.87402 (18)	0.21315 (18)	0.50003 (11)	0.0368 (5)
C36	0.9411 (2)	0.3034 (2)	0.51642 (14)	0.0539 (6)
H36	1.026195	0.303308	0.511912	0.065*
C37	0.8821 (2)	0.3925 (2)	0.53918 (14)	0.0581 (7)
H37	0.927865	0.451984	0.550389	0.070*
C38	0.7565 (2)	0.3953 (2)	0.54571 (15)	0.0600 (7)
H38	0.717158	0.457127	0.560291	0.072*
C39	0.6895 (2)	0.3055 (2)	0.53040 (13)	0.0454 (5)
H39	0.604491	0.306589	0.535436	0.055*
C40	-0.11856 (18)	0.76483 (18)	0.08531 (10)	0.0351 (4)
C41	-0.2240 (2)	0.7879 (2)	0.12733 (11)	0.0417 (5)
C42	-0.3247 (2)	0.7133 (3)	0.13934 (14)	0.0596 (7)
C43	-0.4237 (3)	0.7394 (4)	0.17739 (19)	0.0996 (12)
H43	-0.491888	0.690437	0.184663	0.119*
C44	-0.4210 (4)	0.8365 (5)	0.2040 (2)	0.1126 (15)
H44	-0.487079	0.852323	0.230315	0.135*
C45	-0.3231 (4)	0.9112 (4)	0.19291 (19)	0.1003 (12)
H45	-0.322902	0.977912	0.210964	0.120*
C46	-0.2246 (3)	0.8869 (3)	0.15467 (14)	0.0654 (7)
H46	-0.157687	0.937517	0.147131	0.079*
C47	0.03259 (19)	0.81423 (19)	-0.13648 (11)	0.0389 (5)
C48	-0.01849 (19)	0.90816 (18)	-0.19807 (10)	0.0369 (5)
C49	0.0107 (2)	0.9058 (2)	-0.26616 (11)	0.0408 (5)
C50	-0.0378 (2)	0.9945 (2)	-0.32279 (12)	0.0532 (6)
H50	-0.018213	0.992567	-0.368002	0.064*
C51	-0.1141 (3)	1.0846 (2)	-0.31211 (13)	0.0557 (6)
H51	-0.146484	1.143341	-0.350112	0.067*
C52	-0.1430 (3)	1.0884 (2)	-0.24526 (13)	0.0585 (7)
H52	-0.194411	1.150024	-0.238205	0.070*
C53	-0.0959 (2)	1.0013 (2)	-0.18913 (12)	0.0492 (6)
Н53	-0.116154	1.004531	-0.144223	0.059*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.02255 (13)	0.02972 (14)	0.03064 (14)	-0.00244 (10)	-0.00050 (10)	-0.01000 (11)
Co2	0.03023 (15)	0.03340 (15)	0.03044 (14)	-0.00662 (11)	-0.00272 (11)	-0.00606 (11)
01	0.0320 (8)	0.0574 (10)	0.0669 (10)	-0.0087 (7)	0.0140 (7)	-0.0352 (8)
O2	0.0345 (8)	0.0414 (8)	0.0535 (9)	-0.0060 (6)	0.0036 (7)	-0.0236 (7)
03	0.0613 (13)	0.0969 (17)	0.171 (2)	-0.0421 (12)	0.0432 (14)	-0.0927 (18)
O4	0.0227 (7)	0.0500 (9)	0.0494 (9)	-0.0074 (6)	0.0033 (6)	-0.0153 (7)
05	0.0289 (7)	0.0325 (7)	0.0456 (8)	-0.0027 (6)	-0.0020 (6)	-0.0167 (6)
O6	0.0283 (8)	0.0663 (11)	0.1028 (15)	-0.0096 (8)	0.0154 (9)	-0.0514 (11)
07	0.0401 (8)	0.0434 (8)	0.0424 (8)	-0.0058 (6)	-0.0009 (6)	-0.0182 (7)
08	0.0373 (8)	0.0409 (8)	0.0534 (9)	-0.0087 (7)	0.0015 (7)	-0.0127 (7)

00	0.0502 (1.5)	0.100((17)	0.1071 (10)	0.0500 (10)	0 0001 (10)	0.0550 (15)
09	0.0702 (15)	0.1036 (17)	0.1071 (18)	-0.0508 (13)	0.0321 (13)	-0.0558 (15)
O10	0.0473 (9)	0.0540 (9)	0.0305 (8)	-0.0016 (7)	-0.0051 (7)	-0.0036 (7)
011	0.0608 (11)	0.0557 (10)	0.0417 (9)	0.0114 (8)	-0.0053 (8)	-0.0064 (8)
012	0.0549 (11)	0.0758 (13)	0.0468 (10)	0.0011 (9)	0.0071 (9)	-0.0164 (10)
013	0.0557 (10)	0.0367 (8)	0.0393 (9)	0.0024 (7)	-0.0089 (8)	-0.0092 (7)
N1	0.0301 (9)	0.0372 (9)	0.0343 (9)	-0.0013 (7)	-0.0024 (7)	-0.0094 (7)
N2	0.0479 (11)	0.0517 (12)	0.0379 (10)	0.0049 (9)	-0.0037 (9)	-0.0049 (9)
N3	0.0268 (8)	0.0334 (9)	0.0318 (8)	-0.0035 (7)	-0.0002(7)	-0.0064 (7)
N4	0.0327 (9)	0.0344 (9)	0.0316 (8)	-0.0037 (7)	-0.0008(7)	-0.0070 (7)
N5	0.0326 (9)	0.0345 (9)	0.0385 (9)	-0.0076 (7)	0.0018 (7)	-0.0068(7)
C1	0.0350 (11)	0.0470 (13)	0.0396 (11)	-0.0116 (9)	-0.0019 (9)	-0.0040(10)
C2	0.0302 (11)	0.0512 (13)	0.0409 (12)	-0.0069(9)	-0.0067(9)	-0.0073(10)
C3	0.0331(10)	0.0342(10)	0.0336(10)	-0.0006(8)	-0.0004(8)	-0.0118(8)
C4	0.0303(11)	0.0445(12)	0.0394(11)	-0.0076(9)	0.0015 (9)	-0.0044(9)
C5	0.0275(10)	0.0487(12)	0.0388(11)	-0.0079(9)	-0.0024(9)	-0.0067(10)
C6	0.0279(10) 0.0419(12)	0.0467(13) 0.0562(14)	0.0381(12)	0.0029(9)	-0.0024(9)	-0.0149(11)
C7	0.0382(11)	0.0302(14)	0.0386(11)	-0.0020(10)	-0.0079(10)	-0.0149(11)
C°	0.0382(11)	0.0393(11)	0.0380(11)	0.0034(9)	0.0020(9)	0.0108(9)
	0.0309(10)	0.0381(11)	0.0343(10)	0.0025(8)	0.0007(8)	-0.0113(9)
C9	0.0421(12)	0.0435(12)	0.0430(12)	-0.0082(10)	-0.0071(10)	-0.0037(10)
C10	0.0566 (15)	0.0435 (13)	0.04/4 (13)	-0.0068 (11)	-0.0021 (11)	-0.0002 (11)
CII	0.0298 (10)	0.0392 (11)	0.0411 (11)	-0.00//(8)	-0.0068 (9)	-0.00/2 (9)
C12	0.0310 (10)	0.0360 (11)	0.0396 (11)	-0.0102 (8)	-0.0012 (9)	-0.0034 (9)
C13	0.0275 (10)	0.0308 (10)	0.0324 (10)	-0.0008 (8)	0.0002 (8)	-0.0099 (8)
C14	0.0230 (9)	0.0440 (12)	0.0393 (11)	-0.0046 (8)	-0.0035 (8)	-0.0055 (9)
C15	0.0248 (10)	0.0434 (12)	0.0369 (11)	-0.0058 (8)	0.0024 (8)	-0.0023 (9)
C16	0.0434 (12)	0.0323 (11)	0.0352 (11)	-0.0083 (9)	-0.0019 (9)	-0.0053 (9)
C17	0.0386 (11)	0.0370 (11)	0.0366 (11)	-0.0077 (9)	-0.0060 (9)	-0.0105 (9)
C18	0.0257 (9)	0.0331 (10)	0.0312 (10)	-0.0001 (8)	0.0031 (8)	-0.0083 (8)
C19	0.0350 (11)	0.0317 (10)	0.0358 (10)	-0.0074 (8)	0.0002 (8)	-0.0070 (8)
C20	0.0355 (11)	0.0389 (11)	0.0339 (10)	-0.0087 (9)	-0.0038 (8)	-0.0092 (9)
C21	0.0431 (14)	0.0479 (14)	0.106 (2)	-0.0135 (11)	0.0171 (14)	-0.0420 (15)
C22	0.0359 (13)	0.0581 (16)	0.122 (2)	-0.0137 (11)	0.0255 (14)	-0.0501 (17)
C23	0.0341 (11)	0.0350 (11)	0.0393 (11)	-0.0083(8)	0.0037 (9)	-0.0094 (9)
C24	0.0360 (11)	0.0338 (11)	0.0580 (14)	-0.0054 (9)	0.0032 (10)	-0.0158 (10)
C25	0.0325 (11)	0.0388 (12)	0.0526 (13)	-0.0029(9)	0.0028 (10)	-0.0109 (10)
C26	0.0299 (10)	0.0381 (11)	0.0357 (10)	-0.0003(8)	0.0004 (8)	-0.0121(9)
C27	0.0330(11)	0.0404 (12)	0.0462 (12)	-0.0006(9)	0.0023 (9)	-0.0201(10)
C28	0.0446 (14)	0.0581(15)	0.0853(19)	-0.0104(11)	0.0096 (13)	-0.0407(14)
C29	0.078(2)	0.073(2)	0.129(3)	-0.0116(16)	0.013(2)	-0.071(2)
C30	0.078(2)	0.075(2)	0.129(3)	0.0110(10)	0.013(2)	-0.081(2)
C31	0.078(2)	0.091(2)	0.138(3)	-0.0012(17)	0.023(2)	-0.070(2)
C31	0.0305(18)	0.097(2)	0.128(3)	-0.0012(17)	0.0333(19) 0.0138(13)	-0.0363(15)
C32	0.0390(13)	0.0047(10)	0.0810(19)	0.0033(12)	0.0138(13)	0.0303(13)
C33	0.0234(10)	0.0308(10)	0.0240(9)	-0.0042(7)	-0.0008(7)	-0.0029(7)
C34	0.0272(9)	0.0293(10)	0.0502(10)	-0.0034(7)	0.0011(8)	-0.0079(8)
C35	0.0286 (10)	0.0380 (11)	0.045 / (12)	-0.00/3(8)	0.0062(9)	-0.0139(9)
036	0.0348 (12)	0.0587 (15)	0.0755 (17)	-0.0201 (11)	0.0094 (12)	-0.0292 (13)
C37	0.0599 (16)	0.0484 (14)	0.0749 (18)	-0.0248 (12)	0.0078 (13)	-0.0301 (13)
C38	0.0595 (16)	0.0454 (14)	0.087 (2)	-0.0055 (12)	0.0106 (14)	-0.0386 (14)

C39	0.0342 (11)	0.0426 (12)	0.0652 (15)	-0.0023 (9)	0.0045 (10)	-0.0242 (11)	
C40	0.0346 (11)	0.0376 (11)	0.0318 (10)	-0.0014 (9)	-0.0060 (8)	-0.0071 (9)	
C41	0.0383 (12)	0.0491 (13)	0.0380 (11)	0.0010 (10)	-0.0012 (9)	-0.0125 (10)	
C42	0.0449 (14)	0.084 (2)	0.0532 (15)	-0.0119 (13)	0.0088 (12)	-0.0232 (14)	
C43	0.0530 (19)	0.157 (4)	0.094 (3)	-0.018 (2)	0.0313 (18)	-0.042 (3)	
C44	0.087 (3)	0.166 (4)	0.095 (3)	0.029 (3)	0.030 (2)	-0.056 (3)	
C45	0.116 (3)	0.112 (3)	0.089 (3)	0.033 (3)	0.010 (2)	-0.058 (2)	
C46	0.0744 (19)	0.0665 (18)	0.0634 (17)	0.0101 (14)	-0.0003 (14)	-0.0325 (14)	
C47	0.0361 (11)	0.0408 (12)	0.0378 (12)	-0.0121 (9)	-0.0052 (9)	-0.0061 (9)	
C48	0.0381 (11)	0.0371 (11)	0.0341 (10)	-0.0133 (9)	-0.0041 (9)	-0.0057 (9)	
C49	0.0376 (11)	0.0456 (12)	0.0382 (11)	-0.0123 (9)	0.0011 (9)	-0.0088 (10)	
C50	0.0615 (16)	0.0614 (16)	0.0324 (12)	-0.0167 (13)	-0.0008 (11)	-0.0041 (11)	
C51	0.0699 (17)	0.0436 (14)	0.0453 (14)	-0.0119 (12)	-0.0150 (12)	0.0034 (11)	
C52	0.0750 (18)	0.0418 (13)	0.0565 (15)	0.0047 (12)	-0.0135 (13)	-0.0100 (12)	
C53	0.0622 (15)	0.0460 (13)	0.0398 (12)	-0.0014 (11)	-0.0079 (11)	-0.0124 (10)	

Geometric parameters (Å, °)

Co1—O1	2.1772 (15)	C14—H14	0.9300
Co1—O2	2.1769 (14)	C14—C15	1.377 (3)
Co1—O4	2.0408 (14)	С15—Н15	0.9300
Co1—O5 ⁱ	2.0686 (13)	C16—H16	0.9300
Co1—N1	2.1412 (16)	C16—C17	1.376 (3)
Co1—N3	2.1421 (16)	С17—Н17	0.9300
Со2—О7	2.2348 (15)	C17—C18	1.393 (3)
Co2—O8	2.1135 (15)	C18—C19	1.389 (3)
Co2—O10	2.0739 (14)	С19—Н19	0.9300
Co2—O13	2.0717 (16)	C19—C20	1.375 (3)
Co2—N4	2.1568 (16)	С20—Н20	0.9300
Co2—N5	2.1177 (16)	C21—H21	0.9300
Co2—C40	2.514 (2)	C21—C22	1.375 (3)
O1—C26	1.270 (2)	С22—Н22	0.9300
O2—C26	1.247 (2)	C22—C23	1.379 (3)
O3—H3	0.845 (10)	C23—C23 ⁱⁱ	1.488 (4)
O3—C28	1.346 (3)	C23—C24	1.379 (3)
O4—C33	1.244 (2)	C24—H24	0.9300
O5—C33	1.275 (2)	C24—C25	1.378 (3)
O6—H8	0.838 (10)	C25—H25	0.9300
O6—C35	1.348 (3)	C26—C27	1.484 (3)
O7—C40	1.272 (2)	C27—C28	1.391 (3)
O8—C40	1.254 (2)	C27—C32	1.380 (3)
O9—H13	0.839 (10)	C28—C29	1.386 (4)
O9—C42	1.346 (3)	С29—Н29	0.9300
O10—C47	1.261 (3)	C29—C30	1.365 (4)
O11—C47	1.266 (3)	С30—Н30	0.9300
O12—H18	0.853 (10)	C30—C31	1.366 (4)
O12—C49	1.348 (3)	С31—Н31	0.9300
O13—H26	0.837 (10)	C31—C32	1.379 (4)

supporting information

O13—H27	0.832 (10)	С32—Н32	0.9300
N1—C1	1.341 (3)	C33—C34	1.486 (3)
N1—C5	1.338 (3)	C34—C35	1.398 (3)
N2—C6	1.338 (3)	C34—C39	1.390 (3)
N2-C10	1.333 (3)	C35—C36	1.392 (3)
N3—C11	1.340 (2)	С36—Н36	0.9300
N3—C15	1.339 (2)	C36—C37	1.369 (3)
N4—C16	1.338 (3)	С37—Н37	0.9300
N4—C20	1.338 (2)	C37—C38	1.373 (4)
N5-C21	1.329 (3)	C38—H38	0.9300
N5-C25	1.330 (3)	C38—C39	1.378 (3)
С1—Н1	0.9300	C39—H39	0.9300
C1—C2	1.370 (3)	C40—C41	1.478 (3)
C2—H2	0.9300	C41—C42	1.388 (3)
$C^2 - C^3$	1 387 (3)	C41 - C46	1 386 (3)
C3—C4	1.391 (3)	C42-C43	1.387 (4)
C3—C8	1 479 (3)	C43—H43	0.9300
C4—H4	0.9300	C43-C44	1 358 (6)
C4-C5	1 375 (3)	C44—H44	0.9300
С5—Н5	0.9300	C44-C45	1 364 (6)
С6—Н6	0.9300	C45—H45	0.9300
C6-C7	1 373 (3)	C45-C46	1 379 (4)
С7—Н7	0.9300	C46—H46	0.9300
C7 - C8	1 392 (3)	C47 - C48	1.494(3)
C^{8}	1.392(3)	C48 - C49	1 398 (3)
С9—Н9А	0.9300	C48 - C53	1.390(3)
C9-C10	1 377 (3)	C49 - C50	1.392(3)
C10_H10	0.9300	C50_H50	0.9300
C11 H11	0.9300	C_{50} C_{51}	1 360 (4)
C11 - C12	1 372 (3)	C51 H51	0.9300
C12 H12	0.9300	C_{51} C_{52}	1.378(4)
C12—III2 C12—C13	0.9300	$C_{51} = C_{52}$	1.378 (4)
C12— $C13$	1.390(3)	C_{52} C_{53}	0.9300
C13 - C14	1.391(3)	$C_{52} = C_{55}$	1.372(3)
013-018	1.4/4 (3)	С55—Н55	0.9300
$O_{2} = C_{2} 1 = O_{1} 1$	50.82 (5)	C18 C17 H17	120.1
02 - 01 - 01	39.82 (3) 01.60 (6)	$C_{18} - C_{17} - H_{17}$	120.1 121.87(17)
04 - 01 - 01	91.09 (0) 151.47 (6)	$C_{1}^{} C_{18}^{} C_{13}^{} C_{13$	121.67(17) 121.51(17)
04 - 01 - 02	131.47(0) 117.07(6)	C19 - C18 - C13	121.31(17) 116.62(17)
$04 - 01 - 03^{-1}$	117.97(0)	C19 - C18 - C17	110.02 (17)
04 - 01 - N1	91.52 (0)	C18—C19—H19	120.0
04 - 01 - 01	87.10 (0) 150.20 (5)	C_{20} C_{19} C_{18} C_{20} C_{10} U_{10}	119.94 (18)
05-001-01	130.29(3)	C_{20} C_{19} H_{19}	120.0
05 - 001 - 02	90.48 (3)	N4-C20-C19	125.42 (18)
$O_{2} = C_{0} = N_{1}$	89.08 (6)	$H_{-}U_{2}U_{-}H_{2}U_{-$	118.3
$U_3 - U_0 - N_3$	89.31 (6)	C19 - C20 - H20	118.3
NI = COI = OI	91.38 (6)	$N_{2} = C_{21} = H_{21}$	118.3
N1 - Co1 - O2	90.90 (6)	N5-C21-C22	123.4 (2)
NI-CoI-N3	177.53 (6)	C22—C21—H21	118.3

N3—Co1—O1	90.61 (6)	C21—C22—H22	119.8
N3—Co1—O2	91.37 (6)	C21—C22—C23	120.4 (2)
O7—Co2—C40	30.36 (6)	C23—C22—H22	119.8
O8—Co2—O7	60.20 (5)	C22—C23—C23 ⁱⁱ	122.0 (2)
O8—Co2—N4	89.11 (6)	C22—C23—C24	115.94 (19)
08—Co2—N5	95.55 (6)	C24—C23—C23 ⁱⁱ	122.1 (2)
08—Co2—C40	29.87 (6)	C23—C24—H24	119.7
Q10—Co2—Q7	91.19 (6)	$C_{25} - C_{24} - C_{23}$	120.6 (2)
$010 - C_0 - C_0 = 0.8$	93.29 (6)	C25—C24—H24	119.7
$010 - C_0 - N_4$	173 40 (6)	N5-C25-C24	122.9(2)
$010 - C_0 - N_5$	93 17 (6)	N5-C25-H25	118 5
$010 - C_0 - C_4 0$	93 68 (6)	C24 - C25 - H25	118.5
$013 - C_0 2 - 07$	107 21 (6)	$01 - C^{26} - C^{27}$	118.92 (18)
013 - 002 = 07	167.09.(6)	$0^{2}-0^{2}-0^{1}$	110.92(10) 119.20(18)
$013 - C_0 2 - 010$	89.66.(6)	$02 - C^{26} - C^{27}$	121 87 (18)
$013 - C_0 2 - N4$	86.68 (6)	$C_{28} = C_{27} = C_{26}$	121.07(10) 120.90(19)
$013 - C_0 2 - N5$	96 83 (7)	$C_{20} = C_{27} = C_{20}$	120.90(19)
013 - 002 - 003	137 40 (7)	$C_{32} = C_{27} = C_{20}$	120.2(2) 1180(2)
$N4 C_{0}2 O_{7}$	84.66 (6)	$C_{32} = C_{27} = C_{28}$	110.9(2) 1221(2)
$N4 C_{02} C_{40}$	85.34 (6)	$O_{3} = C_{28} = C_{27}$	122.1(2) 1180(2)
$N_{1} = C_{1} = C_{1} = C_{1}$	155 58 (6)	$C_{20} = C_{20} = C_{20} = C_{20}$	110.0(2) 110.8(2)
N5 Co2 N4	135.38(0)	$C_{29} = C_{28} = C_{27}$	119.8 (2)
$N_{5} = C_{02} = C_{40}$	32.71(0) 125.28(7)	$C_{20} = C_{29} = 1129$	120.0
13-02-040	125.26(7)	C_{30} C_{29} C_{28} C_{20} C_{20} H_{20}	119.9 (3)
$C_{20} = 01 = C_{01}$	90.17 (12)	C_{20} C_{20} H_{20}	120.0
$C_{20} = 0_{2} = 0_{2}$	90.79(12)	$C_{29} = C_{30} = H_{30}$	119.0
$C_{20} = 03 = 03$	105(5)	$C_{29} = C_{30} = C_{31}$	120.9 (5)
$C_{33} = 04 = C_{01}$	105.49 (14)	C_{20} C_{21} H_{21}	119.0
$C_{33} = 03 = 03 = 03$	11/.0/(11)	$C_{30} = C_{31} = H_{31}$	120.2
$C_{35} = 06 = H8$	110(2)	$C_{30} = C_{31} = C_{32}$	119.6 (3)
C40 - 07 - C62	87.04 (12)	C32—C31—H31	120.2
C40 - 08 - C02	93.04 (12)	$C_2/-C_{32}$ -H ₃₂	119.6
C42—O9—H13	104 (3)	$C_{31} = C_{32} = C_{27}$	120.7 (2)
C47 - O10 - Co2	129.12 (15)	C31—C32—H32	119.6
C49—012—H18	105 (2)	04-033-05	121.83 (17)
Co2—O13—H26	103 (2)	04—C33—C34	120.09 (17)
Co2—O13—H27	123.7 (19)	05-033-034	118.09 (16)
H26—O13—H27	117 (3)	C35—C34—C33	122.02 (17)
Cl—Nl—Col	122.34 (13)	C39—C34—C33	119.26 (17)
C5—N1—Col	121.01 (13)	C39—C34—C35	118.67 (18)
C5—N1—C1	116.64 (17)	06—C35—C34	122.54 (18)
C10—N2—C6	115.94 (19)	06-C35-C36	117.85 (19)
C11—N3—Co1	121.43 (13)	C36—C35—C34	119.59 (19)
C15—N3—Co1	121.58 (13)	С35—С36—Н36	119.9
C15—N3—C11	116.95 (16)	C37—C36—C35	120.1 (2)
C16—N4—Co2	124.46 (13)	С37—С36—Н36	119.9
C16—N4—C20	116.83 (17)	С36—С37—Н37	119.5
C20—N4—Co2	118.69 (13)	C36—C37—C38	121.1 (2)
C21—N5—Co2	123.24 (14)	С38—С37—Н37	119.5

C21—N5—C25	116.75 (18)	С37—С38—Н38	120.4
C25—N5—Co2	119.69 (14)	C37—C38—C39	119.2 (2)
N1—C1—H1	118.4	С39—С38—Н38	120.4
N1—C1—C2	123.22 (19)	С34—С39—Н39	119.3
C2—C1—H1	118.4	C38—C39—C34	121.3 (2)
C1—C2—H2	119.8	С38—С39—Н39	119.3
C1—C2—C3	120.44 (19)	O7—C40—Co2	62.59 (11)
C3—C2—H2	119.8	Q7—C40—C41	119.59 (18)
$C_2 - C_3 - C_4$	116 31 (18)	$08-C40-Co^2$	57.09(11)
$C_2 - C_3 - C_8$	121 21 (18)	08-C40-07	119 58 (19)
C_{4} C_{3} C_{8}	121.21(10) 122.48(18)	08-C40-C41	120.83(19)
$C_{1} = C_{2} = C_{3}$	122.40 (10)	C_{41} C_{40} C_{22}	120.03(1)
$C_5 = C_4 = C_3^2$	110.01 (10)	$C_{41} = C_{40} = C_{02}$	170.31(14) 1214(2)
$C_5 = C_4 = C_5$	119.91 (19)	C42 - C41 - C40	121.4(2)
C_{3} C_{4} C_{4} C_{4}	120.0	C40 - C41 - C40	120.0(2)
NIC3C4	125.47 (18)	C40 - C41 - C42	118.0(2)
NI—C5—H5	118.3	09-042-041	121.9 (2)
C4—C5—H5	118.3	09-042-043	118.2 (3)
N2—C6—H6	118.0	C43—C42—C41	120.0 (3)
N2—C6—C7	124.0 (2)	C42—C43—H43	120.0
С7—С6—Н6	118.0	C44—C43—C42	120.0 (3)
С6—С7—Н7	120.1	C44—C43—H43	120.0
C6—C7—C8	119.8 (2)	C43—C44—H44	119.4
С8—С7—Н7	120.1	C43—C44—C45	121.1 (3)
C7—C8—C3	121.04 (18)	C45—C44—H44	119.4
C9—C8—C3	122.60 (18)	C44—C45—H45	120.3
C9—C8—C7	116.33 (19)	C44—C45—C46	119.5 (3)
С8—С9—Н9А	120.1	C46—C45—H45	120.3
C10—C9—C8	119.8 (2)	C41—C46—H46	119.6
С10—С9—Н9А	120.1	C45—C46—C41	120.8 (3)
N2—C10—C9	124.1 (2)	C45—C46—H46	119.6
N2-C10-H10	118.0	O10—C47—O11	124.1 (2)
С9—С10—Н10	118.0	O10—C47—C48	118.1 (2)
N3-C11-H11	118.4	011-C47-C48	117.77 (19)
N3-C11-C12	123 28 (18)	C49 - C48 - C47	1211(2)
C12 - C11 - H11	118.4	C_{53} C_{48} C_{47}	120.76(19)
C11 - C12 - H12	120.0	$C_{53} - C_{48} - C_{49}$	1181(2)
$C_{11} = C_{12} = C_{13}$	120.09 (18)	012-C49-C48	110.1(2) 1214(2)
$C_{12} = C_{12} = C_{13}$	120.09 (18)	012 - 049 - 048	121.4(2) 1185(2)
$C_{13} = C_{12} = C_{14}$	120.0	$C_{12} - C_{49} - C_{50}$	110.3(2)
C12 - C13 - C14	110.36(17) 121.10(17)	$C_{30} - C_{49} - C_{48}$	120.1(2)
C12 - C13 - C18	121.10(17)	C49—C50—H50	119.9
C14 - C13 - C18	122.32 (17)	C51—C50—C49	120.2 (2)
C13—C14—H14	120.1	С51—С50—Н50	119.9
C15—C14—C13	119.89 (17)	С50—С51—Н51	119.9
C15—C14—H14	120.1	C50—C51—C52	120.3 (2)
N3—C15—C14	123.20 (18)	C52—C51—H51	119.9
N3—C15—H15	118.4	C51—C52—H52	120.0
C14—C15—H15	118.4	C53—C52—C51	120.0 (2)
N4C16H16	118.3	С53—С52—Н52	120.0

123.43 (18)	С48—С53—Н53	119.3
118.3	C52—C53—C48	121.3 (2)
120.1	С52—С53—Н53	119.3
119.76 (18)		
1.3 (2)	C11—N3—C15—C14	1.1 (3)
-178.48 (17)	C11—C12—C13—C14	0.4 (3)
-1.3 (2)	C11—C12—C13—C18	-179.31 (19)
178.48 (18)	C12-C13-C14-C15	-0.5 (3)
98.2 (6)	C12-C13-C18-C17	-33.3 (3)
-81.8 (6)	C12-C13-C18-C19	146.4 (2)
0.1 (2)	C13—C14—C15—N3	-0.2 (3)
-179.90 (12)	C13-C18-C19-C20	-179.36 (18)
-178.47 (17)	C14—C13—C18—C17	147.0 (2)
178.93 (16)	C14-C13-C18-C19	-33.2 (3)
-178.99 (16)	C15—N3—C11—C12	-1.2 (3)
178.79 (16)	C16—N4—C20—C19	-0.9 (3)
3.61 (18)	C16—C17—C18—C13	179.20 (18)
-176.61 (17)	C16—C17—C18—C19	-0.6 (3)
-3.81 (19)	C17—C18—C19—C20	0.4 (3)
176.41 (16)	C18—C13—C14—C15	179.13 (19)
13.9 (3)	C18-C19-C20-N4	0.4 (3)
-166.89 (13)	C20-N4-C16-C17	0.8 (3)
179.12 (15)	C21—N5—C25—C24	-1.3 (3)
-179.40 (16)	C21—C22—C23—C23 ⁱⁱ	179.8 (3)
-172.7 (2)	C21—C22—C23—C24	0.0 (4)
172.38 (17)	C22—C23—C24—C25	-0.6 (3)
6.0 (3)	C23 ⁱⁱ —C23—C24—C25	179.7 (2)
-173.9 (2)	C23—C24—C25—N5	1.3 (4)
-173.8 (2)	C25—N5—C21—C22	0.8 (4)
6.4 (3)	C26—C27—C28—O3	-2.1 (4)
-177.5 (3)	C26—C27—C28—C29	177.7 (3)
178.91 (18)	C26—C27—C32—C31	-179.6 (3)
1.4 (3)	C27—C28—C29—C30	2.7 (5)
-1.0 (3)	C28—C27—C32—C31	0.6 (4)
-178.55 (18)	C28—C29—C30—C31	-1.0 (6)
-179.0 (2)	C29—C30—C31—C32	-0.9 (6)
-2.6(3)	C30—C31—C32—C27	1.1 (5)
178.6 (2)	C32—C27—C28—O3	177.8 (3)
177.2 (2)	C32—C27—C28—C29	-2.5 (4)
-1.7 (3)	C33—C34—C35—O6	1.8 (3)
179.5 (4)	C33—C34—C35—C36	-176.5 (2)
-175.88 (19)	C33—C34—C39—C38	177.4 (2)
4.6 (3)	C34—C35—C36—C37	-0.6 (4)
3.4 (3)	C35—C34—C39—C38	-0.2 (3)
-176.1 (2)	C35—C36—C37—C38	-0.6 (4)
179.4 (2)	C36—C37—C38—C39	1.3 (4)
-0.8 (3)	C37—C38—C39—C34	-0.9 (4)
	123.43 (18) 118.3 120.1 119.76 (18) 1.3 (2) -178.48 (17) -1.3 (2) 178.48 (18) 98.2 (6) -81.8 (6) 0.1 (2) -179.90 (12) -178.47 (17) 178.93 (16) -178.99 (16) 3.61 (18) -176.61 (17) -3.81 (19) 176.41 (16) 13.9 (3) -166.89 (13) 179.12 (15) -179.40 (16) -172.7 (2) 172.38 (17) 6.0 (3) -173.9 (2) -173.8 (2) 6.4 (3) -177.5 (3) 178.91 (18) 1.4 (3) -179.0 (2) -2.6 (3) 178.6 (2) 177.2 (2) -1.7 (3) 179.5 (4) -176.1 (2) 179.4 (2) -0.8 (3)	123.43 (18) C48—C53—H53 118.3 C52—C53—C48 120.1 C52—C53—H53 119.76 (18) 1.3 (2) C11—N3—C15—C14 -1.78.48 (17) C11—C12—C13—C14 -1.3 (2) C11—C12—C13—C14 1.78.48 (18) C12—C13—C14—C15 98.2 (6) C12—C13—C18—C17 ~81.8 (6) C12—C13—C18—C19 0.1 (2) C13—C14—C15—N3 ~179.90 (12) C13—C14—C13—C18—C19 ~178.93 (16) C14—C13—C18—C19 ~178.93 (16) C16—N4—C20—C19 3.61 (18) C16—C17—C18—C13 ~176.61 (17) C16—C17—C18—C19 ~178.93 (16) C18—C13—C14—C15 13.9 (3) C18—C19—C20 76.41 (16) C18—C13—C14—C15 13.9 (3) C18—C19—C20 717.41 C14—C13 ~179.12 (15) C21—N5—C25—C24 ~179.40 (16) C21—C22—C23—C24—C25 ~173.9 (2) C23—C24—C25 ~173.9 (2) C23—C24—C25 ~173.9 (2) C23—C24—C25 ~173.9 (2) C23—C24—C25 ~173.8 (2)

C3-C4-C3-N1-0.1 (3)C40-C41-C42-09179.9 (3)C3-C8-C9-C10176.7 (2)C46-C41-C42-C430.7 (4)C4-C3-C8-C7-153.5 (2)C47-C48-C49-0120.8 (3)C4-C3-C8-C928.2 (3)C47-C48-C49-C50-179.83 (19)C5-N1-C1-C20.8 (3)C47-C48-C53-C52179.7 (2)C6-N2-C10-C91.4 (4)C48-C49-C50-C510.1 (3)C6-C7-C8-C3-176.81 (19)C49-C48-C53-C520.2 (3)C6-C7-C8-C91.6 (3)C49-C50-C51-C520.3 (4)C7-C8-C9-C10-1.6 (3)C50-C51-C52-C53-0.4 (4)C8-C3-C4-C5-179.44 (19)C51-C52-C53-C480.2 (4)	N2-C6-C7-C8 $N3-C11-C12-C13$ $N4-C16-C17-C18$ $N5-C21-C22-C23$ $C1-N1-C5-C4$ $C1-C2-C3-C4$ $C1-C2-C3-C4$ $C1-C2-C3-C8$ $C2-C3-C4-C5$ $C2-C3-C8-C7$ $C2-C3-C8-C9$ $C3-C4-C5-N1$	$\begin{array}{c} 0.0 (3) \\ 0.6 (3) \\ 0.0 (3) \\ -0.1 (5) \\ -0.4 (3) \\ 0.2 (3) \\ 179.9 (2) \\ 0.2 (3) \\ 26.8 (3) \\ -151.4 (2) \\ -0.1 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.3 (2) $1.0 (3)$ $1.0 (4)$ $-178.2 (3)$ $178.8 (3)$ $-1.3 (5)$ $-0.1 (4)$ $1.3 (7)$ $-0.8 (7)$ $0.2 (5)$ $170.0 (2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-N1-C5-C4 $C1-C2-C3-C4$ $C1-C2-C3-C4$ $C2-C3-C4-C5$ $C2-C3-C8-C9$ $C3-C4-C5-N1$ $C3-C8-C9-C10$ $C4-C3-C8-C9$ $C5-N1-C1-C2$ $C6-N2-C10-C9$ $C6-C7-C8-C3$ $C6-C7-C8-C3$ $C6-C7-C8-C9$ $C10-C9$ $C8-C3-C4-C5$ $C8-C9-C10-N2$ $C10-N2-C10-N2$	$\begin{array}{c} -0.4 (3) \\ 0.2 (3) \\ 179.9 (2) \\ 0.2 (3) \\ 26.8 (3) \\ -151.4 (2) \\ -0.1 (3) \\ 176.7 (2) \\ -153.5 (2) \\ 28.2 (3) \\ 0.8 (3) \\ 1.4 (4) \\ -176.81 (19) \\ 1.6 (3) \\ -179.44 (19) \\ 0.1 (4) \\ 1.5 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.8 (3) -1.3 (5) -0.1 (4) 1.3 (7) -0.8 (7) 0.2 (5) 179.9 (3) 0.7 (4) 0.8 (3) -179.83 (19) 179.7 (2) 0.1 (3) 0.2 (3) 0.3 (4) -0.4 (4) 0.2 (4) -179.7 (2) 0.3 (2)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+2, -z.

Hydrogen-bond geometry (Å, °)

Cg4, Cg7 and Cg9 are the centroids of the N4/C16–C20, C34–C39 and C48–C53 rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O1	0.85 (3)	1.77 (3)	2.553 (3)	153 (4)
O6—H8…O5	0.84 (2)	1.86 (2)	2.587 (2)	145 (2)
O9—H13…O7	0.84 (2)	1.79 (2)	2.568 (3)	152 (4)
O12—H18…O11	0.85 (2)	1.74 (2)	2.531 (2)	154 (3)
O13—H26…O11	0.84 (1)	1.82 (2)	2.625 (2)	160 (2)
O13—H27…N2 ⁱ	0.83 (2)	2.05 (2)	2.860 (3)	167 (2)
C25—H25…O8	0.93	2.55	3.143 (3)	122
С39—Н39…О1	0.93	2.38	3.271 (3)	160
C5—H5…O12 ⁱⁱⁱ	0.93	2.59	3.324 (3)	136
C6—H6····O7 ^{iv}	0.93	2.48	3.300 (3)	147
C12—H12···O3 ^v	0.93	2.58	3.173 (3)	122
C15—H15…O6 ^{vi}	0.93	2.51	3.292 (3)	142
C2—H2···Cg9 ^{iv}	0.93	2.95	3.833 (2)	160
C31—H31··· <i>Cg</i> 4 ^{vii}	0.93	2.85	3.681 (4)	149
C51—H51····Cg7 ^{viii}	0.93	2.72	3.623 (3)	165

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (iii) *x*, *y*-1, *z*+1; (iv) *x*+1, *y*-1, *z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*-1, *y*+1, *z*-1.