Crystal structure and Hirshfeld surface analysis of (*E*)-4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-N,N-dimethylaniline

Kadriye Özkaraca,^a Mehmet Akkurt,^b Namiq Q. Shikhaliyev,^c Ulviyya F. Askerova,^c Gulnar T. Suleymanova,^c Gunay Z. Mammadova^c and Daniel M. Shadrack^{d,e*}

^aInstitute of Natural and Applied Science, Ercives University, 38039 Kayseri, Turkey, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cOrganic Chemistry Department, Baku State University, Z. Khalilov str. 23, AZ, 1148 Baku, Azerbaijan, ^dDepartment of Health & Biomedical Sciences, School of Life Science and Bioengineering, The Nelson Mandela Africa Institute of Science and Technology, PO Box 447, Arusha, Tanzania, and ^eDepartment of Chemistry, St. John's University of Tanzania, PO Box 47, Dodoma, Tanzania. *Correspondence e-mail: dmssjut@gmail.com

In the title compound, $C_{18}H_{19}Cl_2N_3$, the planes of the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl...Cl contacts [3.3763 (9) Å]. A Hirshfeld surface analysis indicates that the most important contact percentages for the different types of interactions are $H \cdots H$ (43.9%), $C \cdots H/H \cdots C l$ (22.9%), $C \cdots H/H \cdots C$ (20.8%) and N···H/H···N (8.0%).

1. Chemical context

Aromatic azo compounds provide ubiquitous motifs in organic chemistry and are widely used as organic dyes, indicators, pigments, food additives, ligands, radical reaction initiators, therapeutic agents, etc. (Maharramov et al., 2010; Mahmudov et al., 2013). On the other hand, the study of both inter- and intramolecular non-covalent interactions in azo compounds is important for our understanding of the factors governing the assembly of the molecules into supramolecular systems (see, for example, Mahmudov et al., 2015; Shixaliyev et al., 2014). When compared to well-explored hydrogenbonding and π -interactions (see, for example, Akbari *et al.*, 2017; Mahmoudi et al., 2018), the exploration of new intermolecular interactions such as halogen, chalcogen, pnictogen, tetrel and triel bonds is in progress. Thus, decorating the structure of azo compounds with tailored functionalities (halogen, chalcogen and tetrel bond-donor centres) can be an important strategy to control and tune their functional properties such as their analytical and solvatochromic behaviour (Mahmudov et al., 2010; Mahmudov & Pombeiro, 2016).

In order to continue our work in this direction, we now describe the synthesis and structure of the title compound, C₁₈H₁₉Cl₂N₃ (I) and its Hirshfeld surface analysis.

ĊН

CHa

https://doi.org/10.1107/S2056989020009202

1251

Received 7 May 2020 Accepted 6 July 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; Cl···Cl halogen bonds; Hirshfeld surface analysis.

CCDC reference: 2014419

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

Figure 1

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

2. Structural commentary

The title compound has a non-planar molecular conformation (Fig. 1); the dihedral angle between the planes of the C1-C6 and C8–C13 aromatic rings is 77.07 (10)°. The amine N atom as well as the directly adjacent arene C atom are displaced out of the plane of the other five aromatic C atoms: the deviations are -0.009 (2) for C11 and -0.065 (2) Å for N3. Some key torsion angles describing the molecular conformation C6-C1-N1-N2 $[-0.5 (3)^{\circ}], C1-N1-N2-C7$ are $[-178.40 (15)^{\circ}], N1-N2-C7-C8 [-6.1 (3)^{\circ}], N1-N2-$ C7-C16 [-173.27 (17)°], N2-C7-C8-C13 [-72.1 (3)°], N2-C7-C16-Cl1 $[-0.9 (3)^{\circ}],$ N2-C7-C16-Cl2 $[179.97 (14)^{\circ}]$ and C8-C7-C16-Cl2 $[-0.6 (3)^{\circ}]$. All of the C=C, N=N, C-Cl bond lengths in (I) are similar to those in the related azocompounds reported in the Database survey.

3. Supramolecular features

In the crystal, molecules of (I) are linked into inversion dimers *via* short halogen \cdots halogen contacts [Cl1 \cdots Cl1ⁱ = 3.3763 (9) Å Cl6-Cl1 \cdots Cl1ⁱ = 141.47 (7)°; symmetry code: (i) = 2 - x, 1 - y, 2 - z] compared to the van der Waals radius sum of 3.50 Å. No other directional contacts could be identi-

Figure 2 Crystal packing for (I) viewed along the *a*-axis direction.

Percentage contributions of interato for (I).	omic contacts to the Hirshfeld surface
Contact	Percentage contribution

	e
H···H	43.9
$Cl \cdot \cdot \cdot H/H \cdot \cdot \cdot Cl$	22.9
$C \cdot \cdot \cdot H/H \cdot \cdot \cdot C$	20.8
$N \cdot \cdot \cdot H/H \cdot \cdot \cdot N$	8.0
$Cl \cdot \cdot \cdot C/C \cdot \cdot \cdot Cl$	2.3
Cl···Cl	1.4
$N \cdots C/C \cdots N$	0.3
$\mathbf{C} \cdots \mathbf{C}$	0.3

fied and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. The packing for (I) is shown in Fig. 2.

4. Hirshfeld surface analysis

Table 1

The Hirshfeld surface (McKinnon *et al.*, 2007) for (I) and its associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002) were calculated using *CrystalExplorer17* (Turner *et al.*, 2017). Red, white and blue regions visible on the d_{norm} surface indicate contacts with distances shorter, longer and approximately equal to the van der Waals radii: the surface for (I) (Fig. 3) is almost featureless, indicating a lack of directional interactions.

The overall two-dimensional fingerprint plot (Fig. 4a) and those delineated into $H \cdots H$, $Cl \cdots H/H \cdots Cl$ and $C \cdots H/H \cdots C$ contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 4b-d, respectively and percentage contributions to the Hirshfeld surface are given in Table 1. The most important interaction is $H \cdots H$, contributing 43.9% to the overall surface, which is reflected in Fig. 4b as widely scattered points of high density due to the large hydrogen content of the molecule, with the tip at $d_e = d_i = 1.15$ Å. The reciprocal $Cl \cdots H/H \cdots Cl$ interactions appear as two symmetrical broad wings with $d_e + d_i \simeq 3.05$ Å and contribute 22.9% to the Hirshfeld surface (Fig. 4c). The pair of characteristic wings in the fingerprint plot delineated

Figure 3 A view of the three-dimensional Hirshfeld surface for (I) plotted over d_{norm} in the range -0.07 to 1.33 a.u.

Figure 4

A view of the two-dimensional fingerprint plots for (I) showing (a) all interactions, and separated into (b) $H \cdots H$, (c) $CI \cdots H/H \cdots CI$ and (d) $C \cdots H/H \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

into C···H/H···C contacts (Fig. 4*d*; 20.8% contribution to the Hirshfeld surface), have the tips at $d_e + d_i \simeq 2.80$ Å. The remaining contributions from the other different interatomic contacts to the Hirshfeld surfaces are listed in Table 1. The small contribution of the other weak intermolecular N···H/H···N, Cl···C/C···Cl, Cl···Cl, N···C/C···N and C···C contacts suggest a negligible effect on the packing. The dominance of H-atom contacts suggest that van der Waals interactions play the major role in establishing the crystal packing for (I) (Hathwar *et al.*, 2015).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom *et al.*, 2016) the (*E*)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 25 hits. Six compounds are closely related to the title compound, *viz*. 1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (CSD refcode HONBOE; Akkurt *et al.*, 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4nitrophenyl)ethenyl]diazene (HONBUK; Akkurt *et al.*, 2019), 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (HODQAV; Shikhaliyev *et al.*, 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu *et al.*, 2019), 1,1-[methylenebis(4,1phenylene)]bis[(2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shikhaliyev *et al.*, 2018) and 1,1-[methyl-

research communications

enebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl) ethenyl]diazene} (LEQXOX; Shikhaliyev *et al.*, 2018).

In the crystals of HONBOE and HONBUK, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak $X \cdots Cl$ contacts (X = Br for HONBOE and Cl for HONBUK), $C-H \cdots Cl$ and $C-Cl\cdots\pi$ interactions into sheets parallel to the *ab* plane. Additional van der Waals interactions consolidate the threedimensional packing. In the crystal of HODOAV, the planes of the benzene rings make a dihedral angle of $56.13 (13)^{\circ}$. Molecules are stacked in columns along the a-axis direction via weak C-H···Cl hydrogen bonds and face-to-face π - π stacking interactions. The crystal packing is further consolidated by short Cl···Cl contacts. In XIZREG, the benzene rings form a dihedral angle of 63.29 (8)°. Molecules are linked by C-H···O hydrogen bonds into zigzag chains running along the *c*-axis direction. The crystal packing also features $C-CI\cdots\pi$, $C-F\cdots\pi$ and $N-O\cdots\pi$ interactions. In the crystals of LEQXIR and LEQXOX, the dihedral angles between the aromatic rings are 56.18(12) and $60.31(14)^{\circ}$, respectively. In LEQXIR, $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds and short Cl···O contacts occur and in LEQXOX C- $H \cdots N$ and short $Cl \cdots Cl$ contacts are observed.

6. Synthesis and crystallization

A 20 ml screw-neck vial was charged with DMSO (10 ml), (Z)-4-{[2-(3,5-dimethylphenyl)hydrazineylidene]methyl}-N,N-dimethylaniline (267 mg, 1.00 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.50 mmol), CuCl (2 mg, 0.02 mmol) and CCl₄ (20 mmol, 10 equiv). After 1-3 h (until TLC analysis showed complete consumption of the corresponding Schiff base) the reaction mixture was poured into $\sim 0.01 \text{ M}$ solution of HCl (100 ml, pH = 2-3) and extracted with dichloromethane $(3 \times 20 \text{ ml})$. The combined organic phase was washed with water $(3 \times 50 \text{ ml})$, brine (30 ml), dried over anhydrous Na₂SO₄ and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3:1-1:1) to form a red solid in 85% yield (m.p. 429 K). Orange plates of (I) were obtained by the slow evaporation of an ethanol solution. Analysis calculated for C₁₈H₁₉Cl₂N₃: C 62.08, H 5.50, N 12.07; found: C 62.01, H 5.48, N 12.03%. ¹H NMR (300 MHz, CDCl₃) δ 2.38 (6H, ArMe₂), 3.05 (6H, NMe₂), 6.88-7.43 (7H, Ar). ¹³C NMR (75MHz, CDCl₃) & 155.57, 153.15, 151.94, 147.03, 142.69, 138.64, 137.97, 133.14, 131.20, 127.08, 121.02, 21.20. ESI-MS: m/z: 349.18 $[M+H]^+$.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in idealized locations and refined using a riding model with C-H = 0.93-0.96 Å. The constraint $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$ was applied in all cases.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{19}Cl_2N_3$
$M_{ m r}$	348.26
Crystal system, space group	Triclinic, P1
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.1035 (4), 9.1965 (5), 12.3665 (7)
α, β, γ (°)	102.421 (2), 95.880 (2), 91.105 (2)
$V(Å^3)$	894.48 (8)
Ζ	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.37
Crystal size (mm)	$0.28 \times 0.22 \times 0.18$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Krause et al. 2015)
T _{min} , T _{mm}	0.897. 0.924
No. of measured, independent and	13675, 3339, 2786
observed $[I > 2\sigma(I)]$ reflections	· · · · , · · · , · · · ·
R _{int}	0.039
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.611
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.125, 1.03
No. of reflections	3339
No. of parameters	212
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$	0.30, -0.21

Computer programs: APEX3 and SAINT (Bruker, 2007), SHELXS (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Funding information

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF– BGM-4-RFTF-1/2017–21/13/4) and RFBR grant No. 18–53–06006.

References

- Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). *Dalton Trans.* 46, 14888–14896.
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204.

	Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T.,
	Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.
-	Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison,
	Wisconsin, USA.
	Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
	Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
	Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H.,
	Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015), <i>IUCrJ</i> . 2 , 563–574.
	Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015), J.
	Appl. Cryst. 48, 3–10.
	Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). <i>Dyes Pigments</i> , 85, 1–6.
	Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V.,
	White, J., Stilinović, V., Doert, T. & Frontera, A. (2018).
	CrystEngComm, 20, 2812–2821.
	 Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). <i>Dalton Trans.</i> 44, 5602–5610.
	Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord Chem Rev. 257, 1244–1281.
	Mahmudov K. T. Maharramov A. M. Aliveva R. A. Alivev I. A.
	Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923- 2938
	Mahmudov, K. T. & Pombeiro, A. J. L. (2016). <i>Chem. Eur. J.</i> 22, 16356–16398.
	McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem.
), d	<i>Commun.</i> pp. 3814–3816.
u	Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
	Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
	Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150,
ı	377–381.
).	Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–
-	469.

- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). *New J. Chem.* 38, 4807–4815.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.

supporting information

Acta Cryst. (2020). E76, 1251-1254 [https://doi.org/10.1107/S2056989020009202]

Crystal structure and Hirshfeld surface analysis of (*E*)-4-{2,2-dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl}-*N*,*N*-dimethylaniline

Kadriye Özkaraca, Mehmet Akkurt, Namiq Q. Shikhaliyev, Ulviyya F. Askerova, Gulnar T. Suleymanova, Gunay Z. Mammadova and Daniel M. Shadrack

Computing details

Data collection: *APEX3* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2016/6* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2020).

 $(E)-4-\{2,2-Dichloro-1-[(3,5-dimethylphenyl)diazenyl]ethenyl\}-N, N-dimethylaniline$

Crystal data $C_{18}H_{19}Cl_2N_3$ $M_r = 348.26$ Triclinic, $P\overline{1}$ a = 8.1035 (4) Å b = 9.1965 (5) Å c = 12.3665 (7) Å a = 102.421 (2)° $\beta = 95.880$ (2)° $\gamma = 91.105$ (2)° V = 894.48 (8) Å³

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.897, T_{\max} = 0.924$ 13675 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.125$ S = 1.033339 reflections 212 parameters 0 restraints Z = 2 F(000) = 364 $D_x = 1.293 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7784 reflections $\theta = 2.3-25.7^{\circ}$ $\mu = 0.37 \text{ mm}^{-1}$ T = 296 KPlate, orange $0.28 \times 0.22 \times 0.18 \text{ mm}$

3339 independent reflections 2786 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 25.8^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -10 \rightarrow 11$ $l = -15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0539P)^2 + 0.3599P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

$$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$$

$\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$ Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4932 (2)	0.5319 (2)	0.78212 (16)	0.0507 (4)	
C2	0.3377 (3)	0.5251 (2)	0.72287 (17)	0.0572 (5)	
H2A	0.313279	0.592879	0.678105	0.069*	
C3	0.2180 (2)	0.4186 (2)	0.72940 (19)	0.0586 (5)	
C4	0.2585 (2)	0.3198 (2)	0.79718 (18)	0.0578 (5)	
H4A	0.179261	0.247628	0.801995	0.069*	
C5	0.4136 (2)	0.3245 (2)	0.85843 (16)	0.0528 (4)	
C6	0.5313 (2)	0.4323 (2)	0.85097 (16)	0.0515 (4)	
H6A	0.635267	0.438287	0.891630	0.062*	
C7	0.8563 (2)	0.7644 (2)	0.81327 (15)	0.0486 (4)	
C8	0.8188 (2)	0.8616(2)	0.73299 (15)	0.0470 (4)	
C9	0.7799 (3)	1.0079 (2)	0.76813 (17)	0.0624 (5)	
H9A	0.780539	1.047283	0.844019	0.075*	
C10	0.7401 (3)	1.0978 (2)	0.69421 (18)	0.0663 (6)	
H10A	0.713687	1.195886	0.721428	0.080*	
C11	0.7385 (2)	1.0455 (2)	0.58013 (16)	0.0530 (4)	
C12	0.7818 (4)	0.8986 (3)	0.54516 (18)	0.0731 (7)	
H12A	0.785747	0.859575	0.469609	0.088*	
C13	0.8188 (3)	0.8099 (2)	0.61981 (18)	0.0705 (6)	
H13A	0.844835	0.711493	0.593078	0.085*	
C14	0.0476 (3)	0.4121 (3)	0.6668 (3)	0.0815 (7)	
H14A	0.015539	0.310513	0.631791	0.122*	
H14B	0.049299	0.470111	0.610925	0.122*	
H14C	-0.030567	0.451581	0.717658	0.122*	
C15	0.4523 (3)	0.2146 (3)	0.9306 (2)	0.0681 (6)	
H15A	0.553126	0.246587	0.978497	0.102*	
H15B	0.465759	0.118284	0.884317	0.102*	
H15C	0.362933	0.208661	0.974908	0.102*	
C16	0.9971 (2)	0.7786 (2)	0.88186 (16)	0.0520 (4)	
C17	0.6238 (4)	1.2751 (3)	0.5403 (2)	0.0806 (7)	
H17A	0.556425	1.271764	0.599308	0.121*	
H17B	0.556809	1.299516	0.478616	0.121*	
H17C	0.711966	1.349476	0.566573	0.121*	
C18	0.6996 (5)	1.0776 (3)	0.3882 (2)	0.0944 (9)	
H18A	0.639013	0.983527	0.364268	0.142*	
H18B	0.813161	1.065188	0.373532	0.142*	
H18C	0.651020	1.147779	0.348239	0.142*	
Cl1	1.04137 (8)	0.67088 (7)	0.97728 (5)	0.0734 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

Cl2	1.15092 (7)	0.90973 (7)	0.88372 (5)	0.0707 (2)
N1	0.6056 (2)	0.64606 (18)	0.76759 (14)	0.0552 (4)
N2	0.7438 (2)	0.64937 (17)	0.82395 (13)	0.0523 (4)
N3	0.6932 (3)	1.1321 (2)	0.50518 (15)	0.0745 (6)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0541 (10)	0.0443 (9)	0.0535 (10)	-0.0068 (8)	0.0080 (8)	0.0098 (8)
C2	0.0576 (11)	0.0520 (11)	0.0617 (12)	0.0014 (8)	0.0037 (9)	0.0127 (9)
C3	0.0487 (10)	0.0522 (11)	0.0701 (12)	-0.0004 (8)	0.0069 (9)	0.0031 (9)
C4	0.0515 (11)	0.0497 (11)	0.0695 (13)	-0.0095 (8)	0.0145 (9)	0.0044 (9)
C5	0.0587 (11)	0.0445 (10)	0.0555 (11)	-0.0058 (8)	0.0135 (9)	0.0085 (8)
C6	0.0522 (10)	0.0489 (10)	0.0524 (10)	-0.0075 (8)	0.0047 (8)	0.0104 (8)
C7	0.0573 (10)	0.0433 (9)	0.0470 (9)	-0.0069 (8)	0.0098 (8)	0.0127 (7)
C8	0.0526 (10)	0.0438 (9)	0.0462 (9)	-0.0061 (7)	0.0053 (7)	0.0139 (7)
C9	0.0852 (15)	0.0571 (12)	0.0450 (10)	0.0091 (10)	0.0075 (10)	0.0105 (9)
C10	0.0933 (16)	0.0507 (11)	0.0555 (11)	0.0152 (11)	0.0078 (11)	0.0116 (9)
C11	0.0605 (11)	0.0506 (10)	0.0509 (10)	0.0002 (8)	0.0071 (8)	0.0173 (8)
C12	0.116 (2)	0.0619 (13)	0.0454 (11)	0.0188 (13)	0.0177 (11)	0.0156 (9)
C13	0.1110 (19)	0.0516 (11)	0.0516 (11)	0.0172 (12)	0.0162 (11)	0.0124 (9)
C14	0.0548 (13)	0.0765 (16)	0.107 (2)	0.0020 (11)	-0.0048 (12)	0.0125 (14)
C15	0.0748 (14)	0.0611 (13)	0.0729 (14)	-0.0112 (10)	0.0133 (11)	0.0237 (11)
C16	0.0617 (11)	0.0470 (10)	0.0501 (10)	-0.0114 (8)	0.0049 (8)	0.0187 (8)
C17	0.0918 (18)	0.0726 (15)	0.0815 (16)	0.0185 (13)	-0.0053 (13)	0.0312 (13)
C18	0.147 (3)	0.0867 (18)	0.0594 (14)	0.0169 (18)	0.0137 (15)	0.0345 (13)
Cl1	0.0839 (4)	0.0724 (4)	0.0705 (4)	-0.0174 (3)	-0.0110 (3)	0.0408 (3)
Cl2	0.0679 (4)	0.0737 (4)	0.0743 (4)	-0.0273 (3)	-0.0064 (3)	0.0340 (3)
N1	0.0584 (10)	0.0498 (9)	0.0589 (9)	-0.0091 (7)	0.0039 (8)	0.0170 (7)
N2	0.0568 (9)	0.0478 (8)	0.0543 (9)	-0.0093 (7)	0.0075 (7)	0.0161 (7)
N3	0.1083 (16)	0.0659 (11)	0.0564 (10)	0.0201 (11)	0.0110 (10)	0.0269 (9)

Geometric parameters (Å, °)

C1—C2	1.384 (3)	C11—C12	1.391 (3)
C1—C6	1.397 (3)	C12—C13	1.373 (3)
C1—N1	1.429 (2)	C12—H12A	0.9300
С2—С3	1.385 (3)	C13—H13A	0.9300
C2—H2A	0.9300	C14—H14A	0.9600
C3—C4	1.385 (3)	C14—H14B	0.9600
C3—C14	1.506 (3)	C14—H14C	0.9600
C4—C5	1.394 (3)	C15—H15A	0.9600
C4—H4A	0.9300	C15—H15B	0.9600
С5—С6	1.387 (3)	C15—H15C	0.9600
C5—C15	1.503 (3)	C16—Cl1	1.7123 (19)
С6—Н6А	0.9300	C16—Cl2	1.7129 (18)
C7—C16	1.336 (3)	C17—N3	1.438 (3)
C7—N2	1.420 (2)	C17—H17A	0.9600

supporting information

С7—С8	1.485 (2)	С17—Н17В	0.9600
C8—C9	1.375 (3)	С17—Н17С	0.9600
C8—C13	1.378 (3)	C18—N3	1.433 (3)
C9—C10	1.378 (3)	C18—H18A	0.9600
С9—Н9А	0.9300	C18—H18B	0.9600
C10—C11	1.388 (3)	C18—H18C	0.9600
С10—Н10А	0.9300	N1—N2	1.254 (2)
C11—N3	1.374 (3)		1.20 (2)
C2—C1—C6	120.38 (17)	C12—C13—C8	122.3 (2)
C2—C1—N1	115.34 (17)	C12—C13—H13A	118.9
C6—C1—N1	124.28 (17)	C8—C13—H13A	118.9
C1—C2—C3	120.85 (19)	C3—C14—H14A	109.5
C1—C2—H2A	119.6	C3—C14—H14B	109.5
C3—C2—H2A	119.6	H14A—C14—H14B	109.5
C4—C3—C2	118.00 (19)	C3—C14—H14C	109.5
C4—C3—C14	120.8 (2)	H14A—C14—H14C	109.5
C2—C3—C14	121.2 (2)	H14B—C14—H14C	109.5
C3—C4—C5	122.48 (18)	С5—С15—Н15А	109.5
C3—C4—H4A	118.8	C5—C15—H15B	109.5
C5—C4—H4A	118.8	H15A—C15—H15B	109.5
C6—C5—C4	118.55 (18)	С5—С15—Н15С	109.5
C6—C5—C15	120.77 (19)	H15A—C15—H15C	109.5
C4—C5—C15	120.67 (18)	H15B—C15—H15C	109.5
C5—C6—C1	119.72 (18)	C7—C16—Cl1	124.05 (14)
С5—С6—Н6А	120.1	C7—C16—Cl2	122.70 (14)
С1—С6—Н6А	120.1	Cl1—C16—Cl2	113.24 (11)
C16—C7—N2	114.49 (16)	N3—C17—H17A	109.5
C16—C7—C8	123.12 (16)	N3—C17—H17B	109.5
N2—C7—C8	122.39 (16)	H17A—C17—H17B	109.5
C9—C8—C13	116.53 (18)	N3—C17—H17C	109.5
C9—C8—C7	121.42 (17)	H17A—C17—H17C	109.5
C13—C8—C7	122.04 (17)	H17B—C17—H17C	109.5
C8—C9—C10	121.94 (18)	N3—C18—H18A	109.5
С8—С9—Н9А	119.0	N3—C18—H18B	109.5
С10—С9—Н9А	119.0	H18A—C18—H18B	109.5
C9—C10—C11	121.60 (19)	N3—C18—H18C	109.5
C9—C10—H10A	119.2	H18A—C18—H18C	109.5
C11—C10—H10A	119.2	H18B—C18—H18C	109.5
N3—C11—C10	122.27 (19)	N2—N1—C1	113.12 (16)
N3—C11—C12	121.46 (18)	N1—N2—C7	114.22 (16)
C10-C11-C12	116.26 (18)	C11—N3—C18	121.15 (19)
C13—C12—C11	121.38 (19)	C11—N3—C17	121.07 (19)
C13—C12—H12A	119.3	C18—N3—C17	117.6 (2)
C11—C12—H12A	119.3		
C6—C1—C2—C3	-0.9 (3)	C9—C10—C11—C12	-1.0 (4)
N1—C1—C2—C3	179.58 (18)	N3—C11—C12—C13	-176.6 (2)

C1—C2—C3—C4	0.2 (3)	C10-C11-C12-C13	1.9 (4)
C1—C2—C3—C14	178.9 (2)	C11—C12—C13—C8	-1.4 (4)
C2—C3—C4—C5	0.2 (3)	C9—C8—C13—C12	-0.2 (4)
C14—C3—C4—C5	-178.5 (2)	C7—C8—C13—C12	179.0 (2)
C3—C4—C5—C6	0.0 (3)	N2-C7-C16-Cl1	-0.9 (3)
C3—C4—C5—C15	-179.74 (19)	C8—C7—C16—C11	178.48 (14)
C4—C5—C6—C1	-0.6 (3)	N2-C7-C16-Cl2	179.97 (14)
C15—C5—C6—C1	179.08 (18)	C8—C7—C16—Cl2	-0.6 (3)
C2-C1-C6-C5	1.1 (3)	C2-C1-N1-N2	179.06 (17)
N1—C1—C6—C5	-179.40 (17)	C6-C1-N1-N2	-0.5 (3)
C16—C7—C8—C9	-72.4 (3)	C1—N1—N2—C7	-178.40 (15)
N2—C7—C8—C9	107.0 (2)	C16—C7—N2—N1	-173.27 (17)
C16—C7—C8—C13	108.5 (3)	C8—C7—N2—N1	-6.1 (3)
N2-C7-C8-C13	-72.1 (3)	C10-C11-N3-C18	177.2 (3)
C13—C8—C9—C10	1.1 (3)	C12-C11-N3-C18	-4.4 (4)
C7—C8—C9—C10	-178.0 (2)	C10-C11-N3-C17	-8.3 (4)
C8—C9—C10—C11	-0.5 (4)	C12—C11—N3—C17	170.1 (3)
C9—C10—C11—N3	177.5 (2)		