

Received 29 May 2020 Accepted 16 June 2020

Edited by M. Zeller, Purdue University, USA

Keywords: lanthanide; caesium; cyclopentadienide; oligomer; crystal structure.

CCDC reference: 2010185

Supporting information: this article has supporting information at journals.iucr.org/e

Daniel N. Huh, Joseph W. Ziller and William J. Evans*

Department of Chemistry, University of California, Irvine, California, 92697, USA. *Correspondence e-mail: wevans@uci.edu

The green compound poly[(tetrahydrofuran)tris[μ - η^5 : η^5 -1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)], [CsYb(C₈H₁₃Si)₃(C₄H₈O)]_n or [(THF)Cs(μ - η^5 : η^5 -Cp')₃Yb^{II}]_n was synthesized by reduction of a red THF solution of (C₅H₄SiMe₃)₃Yb^{III} with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexagons with alternating Cs^I and Yb^{II} ions at the vertices and cyclopentadienyl groups bridging each edge. This, based off the six-electron cyclopentadienyl rings occupying three coordination positions, gives a formally nine-coordinate tris(cyclopentadienyl) coordination environment to Yb and the Cs is tencoordinate due to the three cyclopentadienyl rings and a coordinated molecule of THF. The complex comprises layers of Cs₃Yb₃ hexagons with THF ligands and Me₃Si groups in between the layers. The Yb–C metrical parameters are consistent with a 4f⁴⁴ Yb^{II} electron configuration.

1. Chemical context

The new +2 oxidation states for the rare-earth metals Y, La, Ce, Pr, Gd, Tb, Ho, Er, and Lu were recently discovered by reduction of $Cp_3^x Ln$ ($Cp^x = C_5H_4SiMe_3$, $C_5H_3(SiMe_3)_2$; Ln =rare-earth metal) using alkali metal reductants Li, Na, K, and KC₈ (Fig. 1) (Hitchcock et al., 2008; MacDonald et al., 2013; Fieser et al., 2015; Evans, 2016; Palumbo et al., 2018). In each of these cases, 2.2.2-cryptand was added in these reactions to encapsulate the alkali metal. It was thought that chelating agents were necessary to sequester the alkali metal to prevent interactions with cyclopentadienide ligands and subsequent ligand dissociation leading to product decomposition. This idea was challenged by examining reduction reactions of $Cp_3''M$ ($Cp'' = C_5H_3(SiMe_3)_2$; M = La, Ce, U) with Li and Cs in the absence of chelating agents (Huh et al., 2018). The reaction resulted in the isolation of the first chelate-free synthesis of La^{II} , Ce^{II} , and U^{II} complexes. The $[Li(THF)_4]^{1+}$ cation of the

R = H, Ln = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu R = SiMe₃, Ln = La, Ce, Pr, and Nd M = Li. Na. K. KC₀

research communications

Li salts in these chelate-free M^{II} complexes were wellseparated from the $(\text{Cp''}_3M)^{1-}$ anion. However, the Cs reductions yielded polymeric complexes of general formula $[\text{Cp''}M(\mu\text{-Cp''})_2\text{Cs}(\text{THF})_2]_n$ where the Cs cation has coordinated THF and cyclopentadienide ligands. Attempts to extend this chemistry to smaller rare-earth metals by reduction of Cp'_3Ln ($\text{Cp'} = \text{C}_5\text{H}_4\text{SiMe}_3$; Ln = Y, Tb, Dy) showed evidence of Ln^{II} in solution; however, the reduction products were highly unstable and decomposed even at 238 K.

In this study, we were interested in examining the reduction of Cp'₃Yb^{III} with Cs metal. Unlike Y^{II}, Tb^{II}, and Dy^{II} ions, Yb^{II} complexes are more easily obtainable, as reflected by their less negative reduction potentials (Morss, 1976). A crystal containing the oligomeric compound; [(THF)Cs(μ - $\eta^5:\eta^5$ -Cp')₃Yb]_n, **1** (Cp' = C₅H₄SiMe₃) was isolated by reduction of the Cp'₃Yb^{III} complex (Fieser *et al.*, 2015) in THF using Cs metal (Figs. 2 and 3).

2. Structural commentary

All three Cp' rings remain coordinated to the Yb metal center after reduction and are coordinated in a trigonal-planar fashion. The Yb atom is within 0.107 Å of the plane of the three ring centroids. Each ring bridges Yb to Cs, which also is surrounded by three cyclopentadienyl ligands as well as a coordinated molecule of THF. The three ring centroids and the oxygen of THF are arranged in a pseudo-tetrahedral geometry around Cs with a calculated four-coordinate Cs τ'_4 value of 0.76 ($\tau'_4 = 1$ for tetrahedral; $\tau'_4 = 0$ for square planar; Rosiak *et al.*, 2018). The Cs metal center has a pseudo-tetrahedral geometry with Cp'(centroid)...Cs...Cp'(centroid) angles of 109.0, 114.3, and 121.4° and Cp'(centroid)...

Figure 2

Synthesis of $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb^{II}]_n$, **1**, by caesium metal reduction of the Cp'₃Yb^{III} precursor.

Table 1

Selected bond distances and angles for $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb]_n$, **1**.

Centroid1, centroid2, and centroid3 are the centroids of the Cp rings connected to Si1, Si2, and Si3, respectively.

Yb1···centroid1	2.510 (1)
Yb1···centroid2	2.513 (2)
Yb1···centroid3	2.504 (1)
Cs1···centroid1	3.197 (1)
Cs1···centroid2	3.268 (2)
Cs1···centroid3	3.159 (1)
Cs1-O1	3.095 (3)
centroid1-Yb1···centroid2	120.1
centroid1-Yb1centroid3	116.6
centroid2-Yb1centroid3	122.8
$centroid1-Cs1\cdots centroid2$	121.4
centroid1-Cs1···centroid3	109.0
centroid2-Cs1···centroid3	114.3
Yb1···centroid1···Cs1	175.3
Yb1···centroid2···Cs1	172.3
Yb1···centroid3···Cs1	176.7
centroid1Cs1O1	88.8
$centroid2 \cdots Cs1 \cdots O1$	94.1
centroid3···Cs1···O1	127.8

Table 2

Bond distance (Å) ranges for Yb···Cp'(centroid) and bond angle (°) ranges for Cp'(centroid)···Yb···Cp'(centroid) in Cp'₃Yb (Fieser *et al.*, 2015), [K(crypt)][Cp'₃Yb] (Fieser *et al.*, 2015), and [(THF)Cs(μ - η ⁵: η ⁵-Cp')₃Yb]_n.

	Cp' ₃ Yb	[K(crypt)][Cp ₃ 'Yb]	1
$Yb \cdots Cp'$ (centroid) $Cs \cdots Cp'$ (centroid)	2.363-2.368	2.503-2.513	2.504 (1)–2.513 (2) 3.159 (1)–3.268 (2)
$Cp' \cdots Yb \cdots Cp'$ $Cp' \cdots Cs \cdots Cp'$	118.85-120.55	118.10–122.93	116.64–122.76 109.0–121.4

The bond distances and angles in **1** are summarized in Table 1. The range of 2.504 (1)–2.513 (2) Å Cp'(centroid) \cdots Yb bond distances in **1** is the same as that in the complex [K(crypt)][Cp'₃Yb^{II}] (crypt = 2.2.2-cryptand), which was

Figure 3

ORTEP representation of an asymmetric unit of $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb]_n$, **1**, with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms were omitted for clarity.

Figure 4

CHEMDRAW (Mills, 2006) representation of $[K(2.2.2\text{-cryp-tand})][Cp'_3Yb^{II}]$ (left) and $[(THF)Cs(\mu-\eta^5:\eta^5\text{-}Cp')_3Yb^{II}]_n$, **1**, (right).

fully characterized as a $4f^{14}$ Yb^{II} complex, Table 2 and Fig. 4. In Cp₃Ln reduction chemistry, the difference in $Ln \cdots$ Cp(centroid) distances between the Ln^{III} and Ln^{II} complexes provides important information on the electronic configuration of the lanthanide ion (Evans, 2016). Differences in $Ln \cdots$ Cp(centroid) distances for reduction of $4f^n Ln^{III}$ ions to $4f^{n+1} Ln^{II}$ ions range from 0.1 to 0.2 Å (Fieser *et al.*, 2015). In this study, the difference of 0.14 Å in the $Ln \cdots$ Cp(centroid) distance is characteristic of a $4f^{13}$ Yb^{III} reduction to a $4f^{14}$ Yb^{II} ion. In contrast, Ln^{II} ions with $4f^{n}5d^{1}$ configurations where the additional electron populates a *d*-orbital instead of the an *f*-orbital have differences of only 0.02–0.05 Å (Evans, 2016).

3. Supramolecular features

In **1**, all of the cyclopentadienyl ligands are bridging. The threefold symmetry of three bridging Cp' ligands on each metal generates a hexagonal pattern as shown in Fig. 5. The

Figure 5

Top view of the extended structure of $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb]_n$, **1**, with the SiMe₃ substituent of the C₅H₄SiMe₃ group and the THF attached to Cs removed for clarity.

Yb...Cp'(centroid)...Cs angles are 172.5–176.7° such that each side of the hexagon is nearly linear. The 112.4–117.3° Yb...Cs...Yb angles are smaller than the 120.8–125.6° Cs...Yb...Cs angles, which makes the hexagon slightly irregular. This could be of interest to quantum scientists trying to make thin-film layers of magnetic materials since the hexagonal pattern could lead to spin frustration with a paramagnetic lanthanide.

The side view of these layers in Fig. 6 shows how the space in between them is filled with THF and Me₃Si substituent groups. The 116.6–122.8° Cp'(centroid) \cdots Yb \cdots Cp'(centroid) and 109.0–121.4° Cp'(centroid) \cdots Cs \cdots Cp'(centroid) angles generate the undulation of the hexagons shown in Fig. 6.

4. Database survey

The 3.159 (1), 3.197 (1), and 3.268 (2) Å Cs...Cp'(centroid) distances in 1 are shorter than the 3.278 and 3.435 Å $Cs \cdot \cdot \cdot Cp''$ (centroid) distances in $[(THF)_2Cs][(\mu-\eta^5:\eta^5 Cp'')_2 U^{II}(\eta^5 - Cp'')]_n$ (Huh et al., 2018), the 3.396 Å $Cs \cdot \cdot \cdot C_5 H_5$ (centroid) distances in $\{[(Me_3Si)_2NCs]_2$ $[(C_5H_5)_2Fe)] 0.5 \cdot (C_6H_5Me)_n$, (Morris *et al.*, 2007) and the 3.337 Å Cs···C₅Me₅(centroid) distances in $[(THF)_2Cs(\mu_3 -$ O)₃{ $[Ti(C_5Me_5)]_3$ -(μ_3 -CCH₂)}] (González-del Moral *et al.*, 2005). The 3.095 (3) Å Cs-O(THF) bond distance is consistent with the Cs-O(THF) distances of 3.081 (7) to 3.119 (8) Å in $[(THF)_2Cs][(\mu-\eta^5:\eta^5-Cp'')_2U^{II}(\eta^5-Cp'')]_n$ (Huh et al., 2018) and 3.034 (9)–3.06 (1) Å in $[(THF)_2Cs(\mu_3-$ O)₃{ $[Ti(C_5Me_5)]_3(\mu_3$ -CCH₂)}] (González-del Moral *et al.*, 2005).

The extended structure of **1** differs from that of the $[(THF)_2Cs][(\mu-\eta^5:\eta^5-Cp'')_2M^{II}(\eta^5-Cp'')]_n$, complexes (M = La, U), which comprise zigzag chains of $-M-(\mu-Cp'')-Cs-(\mu-Cp'')$ repeat units with a terminal Cp'' attached to M and two terminal THF ligands attached to Cs (Huh *et al.*, 2018). These were obtained by reduction of Cp''_3M^{III} compounds with Cs in THF. In those structures, La and U have a trigonal–planar tris(cyclopentadienyl) coordination like Yb in **1**, but the Cs is

Figure 6 Side view of the extended structure of $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb]_n$, **1**. Magenta, Yb; brown, Cs; green, Si; red, O. coordinated by only two cyclopentadienyl ligands to give a bent metallocene $Cp_2''Cs(THF)_2$ sub-structure with these larger rings.

A survey of the Cambridge Structural Database (CSD, version 5.41, March 2020; Groom et al., 2016) also revealed four oligometric complexes containing $Yb-Cp^x$ moieties with various types of cyclopentadienyl rings (Cp^x): $[Na(\mu - \eta^5: \eta^5 - \eta^5)]$ $C_5H_5)_3Yb^{II}]_n$ (Apostolidis *et al.*, 1997), [Na(μ - η^5 : η^5 - $Cp''_{2}Yb^{II}_{2}(\mu-\eta^{5}:\eta^{5}-Cp'')_{2}]_{n}$ (Voskoboynikov *et al.*, 1997), $[(C_5Me_5)Yb(\mu-I)(\mu-\eta^5:\eta^5-C_5Me_5)Yb(C_5Me_5)]_n$ (Evans *et al.*, 2006) and $[Yb(\mu - \eta^5: \eta^5 - C_5H_5)(Ph_2Pz)(THF)]_n$ $(Ph_2Pz = 3,5$ diphenylpyrazolate) (Ali et al., 2018). The [Na(μ - η^5 : η^5 - C_5H_5 ₃Yb^{II}]_n (Apostolidis *et al.*, 1997) complex adopts a hexagonal net extended structure similar to that in 1 except the alkali metal does not have a coordinated solvent. The structure of $[Na(\mu - \eta^5: \eta^5 - Cp'^{Bu})_3 Sm^{II}]$ is similar (Bel'sky *et al.*, 1990). Three oligomeric complexes containing Cs-cyclopentadienyl moieties have previously been reported: $[(THF)_2Cs][(\mu - \eta^5: \eta^5 - Cp'')_2U^{II}(\eta^5 - Cp'')]_n$ (Huh et al., 2018), $\{[(Me_3Si)_2NCs]_2[(C_5H_5)_2Fe)] \cdot 0.5(C_6H_5Me)\}_n$ (Morris *et al.*, 2007) and $[(THF)_2Cs(\mu_3-O)_3\{[Ti(C_5Me_5)]_3(\mu_3-CCH_2)\}]$ (González-del Moral et al., 2005). An oligomeric, base-free Li-Cp' compound was also previously reported in the literature, $[(\mu - \eta^5: \eta^5 - Cp')Li]_n$ (Evans *et al.*, 1992).

5. Synthesis and crystallization

In an argon-filled glovebox, addition of a red solution of Cp'₃Yb (50 mg, 0.085 mmol) in THF (2 mL) to excess Cs as a smear produced a green solution. This was stirred for 15 min at room temperature and then layered at the bottom of a vial below an Et₂O (10 mL) layer for crystallization at -35° C. After 1 d, X-ray quality dark-green crystals of [(THF)Cs(μ - $\eta^5:\eta^5$ -Cp')₃Yb^{II}]_n were isolated. A small number of crystals were obtained and used for crystallographic analysis. Too little sample was available for other characterization.

6. Refinement

Crystal data and structure refinement for $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb^{II}]_n$, **1** are summarized in Table 3. Hydrogen atoms were included using a riding model with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ for CH₂ and aromatic hydrogens and $1.5U_{eq}(C)$ for CH₃ hydrogens with C–H distances of 0.99 (CH₂), 0.95 (aromatic), and 0.98 Å (CH₃).

Acknowledgements

WJE would like to acknowledge the National Science Foundation for continued support.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1855328 to William J. Evans).

Table	3	
Experi	mental	details.

Crystal data	
Chemical formula	$[CsYb(C_8H_{13}Si)_3(C_4H_8O)]$
M _r	789.87
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	88
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.4401 (4), 16.8718 (8), 21.0246 (10)
β (°)	92.0668 (6)
$V(Å^3)$	3346.4 (3)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	3.99
Crystal size (mm)	$0.15 \times 0.09 \times 0.08$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.374, 0.432
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	40586, 8223, 6580
R _{int}	0.055
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.056, 1.02
No. of reflections	8223
No. of parameters	316
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.14, -0.62

Computer programs: *APEX2* (Bruker, 2014), *SAINT* (Bruker, 2013), *SHELXT2014/4* (Sheldrick, 2015*a*), *SHELXL2014/7* (Sheldrick, 2015*b*) and *SHELXTL* (Sheldrick, 2008).

References

- Ali, S. H., Deacon, G. B., Junk, P. C., Hamidi, S., Wiecko, M. & Wang, J. (2018). Chem. Eur. J. 24, 230–242.
- Apostolidis, C. B., Deacon, G., Dornberger, E. T., Edelmann, F., Kanellakopulos, B., MacKinnon, P. & Stalke, D. (1997). *Chem. Commun.* pp. 1047–1048.
- Bel'sky, V. K., Gunko, Y. K., Bulychev, B. M., Sizov, A. I. & Soloveichik, G. L. (1990). J. Organomet. Chem. 390, 35–44.
- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Evans, W. J. (2016). Organometallics, 35, 3088-3100.
- Evans, W. J., Boyle, T. J. & Ziller, J. W. (1992). Organometallics, 11, 3903–3907.
- Evans, W. J., Champagne, T. M., Davis, B. L., Allen, N. T., Nyce, G. W., Johnston, M. A., Lin, Y.-C., Khvostov, A. & Ziller, J. W. (2006). J. Coord. Chem. 59, 1069–1087.
- Fieser, M. E., MacDonald, M. R., Krull, B. T., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2015). J. Am. Chem. Soc. 137, 369– 382.
- González-del Moral, O., Martín, A., Mena, M., Morales-Varela, M. del C. & Santamaría, C. (2005). *Chem. Commun.* pp. 3682– 3684.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. (2008). Angew. Chem. Int. Ed. 47, 1488–1491.
- Huh, D. N., Ziller, J. W. & Evans, W. J. (2018). *Inorg. Chem.* 57, 11809–11814.

MacDonald, M. R., Bates, J. E., Ziller, J. W., Furche, F. & Evans, W. J. (2013). *J. Am. Chem. Soc.* **135**, 9857–9868.

Mills, N. (2006). J. Am. Chem. Soc. 128, 13649-13650.

- Morris, J. J., Noll, B. C., Honeyman, G. W., O'Hara, C. T., Kennedy, A. R., Mulvey, R. E. & Henderson, K. W. (2007). *Chem. Eur. J.* 13, 4418–4432.
- Morss, L. R. (1976). Chem. Rev. 76, 827-841.
- Palumbo, C. T., Darago, L. E., Windorff, C. J., Ziller, J. W. & Evans, W. J. (2018). Organometallics, 37, 900–905.
- Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Voskoboynikov, A. Z., Argarkov, A. Y., Shestakova, A. K., Beletskaya, I. P., Kuz'mina, L. O. & Howard, J. A. K. (1997). J. Organomet. Chem. 544, 65–68.

Acta Cryst. (2020). E76, 1131-1135 [https://doi.org/10.1107/S2056989020008051]

Crystal structure of the $[(THF)Cs(\mu-\eta^5:\eta^5-Cp')_3Yb]_n$ oligomer

Daniel N. Huh, Joseph W. Ziller and William J. Evans

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[(tetrahydrofuran)tris[μ - η ⁵: η ⁵-1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)]

Crystal data

$[CsYb(C_8H_{13}Si)_3(C_4H_8O)]$
$M_r = 789.87$
Monoclinic, $P2_1/n$
a = 9.4401 (4) Å
<i>b</i> = 16.8718 (8) Å
c = 21.0246 (10) Å
$\beta = 92.0668 \ (6)^{\circ}$
V = 3346.4 (3) Å ³
Z = 4

Data collection

Bruker SMART APEXII CCD	8223 independent
diffractometer	6580 reflections w
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.055$
φ and ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} =$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2014)	$k = -22 \rightarrow 22$
$T_{\min} = 0.374, \ T_{\max} = 0.432$	$l = -27 \rightarrow 27$
40586 measured reflections	

Refinement

Refinement on F² Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.056$ S = 1.028223 reflections 316 parameters 0 restraints Primary atom site location: structure-invariant direct methods

F(000) = 1560 $D_{\rm x} = 1.568 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9869 reflections $\theta = 2.3 - 28.5^{\circ}$ $\mu = 3.99 \text{ mm}^{-1}$ T = 88 KPrism, green $0.15 \times 0.09 \times 0.08 \text{ mm}$

reflections with $I > 2\sigma(I)$ = 1.6°

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0229P)^2 + 0.1327P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.14 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.62 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A green crystal of approximate dimensions 0.079 x 0.086 x 0.148 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/n that was later determined to be correct.

The structure was solved by dual space methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The structure is polymeric.

Least-squares analysis yielded wR2 = 0.0562 and Goof = 1.017 for 316 variables refined against 8223 data (0.75 Å), R1 = 0.0315 for those 6580 data with I > 2.0sigma(I).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Yb1	0.48657 (2)	0.44122 (2)	0.25290 (2)	0.01341 (4)
Cs1	0.99437 (2)	0.27157 (2)	0.31696 (2)	0.01493 (5)
Si1	0.69834 (10)	0.29048 (6)	0.15029 (5)	0.0184 (2)
Si2	0.23952 (11)	0.57037 (6)	0.11663 (5)	0.0204 (2)
Si3	0.25791 (10)	0.45182 (6)	0.40988 (5)	0.0187 (2)
O1	0.8795 (3)	0.24593 (16)	0.45145 (12)	0.0285 (6)
C1	0.7108 (3)	0.33895 (19)	0.22942 (16)	0.0161 (7)
C2	0.6551 (3)	0.3115 (2)	0.28743 (17)	0.0174 (8)
H2A	0.6070	0.2626	0.2929	0.021*
C3	0.6826 (3)	0.3680 (2)	0.33517 (17)	0.0196 (8)
H3A	0.6554	0.3643	0.3781	0.024*
C4	0.7575 (4)	0.4310 (2)	0.30831 (17)	0.0194 (8)
H4A	0.7902	0.4774	0.3298	0.023*
C5	0.7751 (3)	0.4129 (2)	0.24430 (17)	0.0184 (8)
H5A	0.8231	0.4453	0.2150	0.022*
C6	0.6270 (4)	0.1878 (2)	0.15741 (18)	0.0257 (9)
H6A	0.6848	0.1582	0.1890	0.039*
H6B	0.6299	0.1611	0.1161	0.039*
H6C	0.5288	0.1902	0.1709	0.039*
C7	0.5764 (4)	0.3487 (2)	0.09635 (17)	0.0276 (9)
H7A	0.6159	0.4017	0.0900	0.041*
H7B	0.4836	0.3533	0.1155	0.041*
H7C	0.5656	0.3216	0.0552	0.041*
C8	0.8767 (4)	0.2878 (2)	0.11484 (18)	0.0263 (9)
H8A	0.9435	0.2601	0.1438	0.039*
H8B	0.9099	0.3421	0.1081	0.039*
H8C	0.8702	0.2599	0.0740	0.039*
C9	0.3846 (3)	0.57009 (19)	0.17806 (16)	0.0162 (7)
C10	0.5320 (4)	0.56244 (19)	0.16482 (17)	0.0173 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10A	0.5679	0.5462	0.1253	0.021*
C11	0.6148 (4)	0.58254 (19)	0.21886 (17)	0.0171 (8)
H11A	0.7154	0.5833	0.2220	0.021*
C12	0.5224 (4)	0.60152 (19)	0.26788 (17)	0.0190 (8)
H12A	0.5497	0.6163	0.3102	0.023*
C13	0.3823 (4)	0.59465 (19)	0.24280 (16)	0.0180 (8)
H13A	0.2992	0.6048	0.2656	0.022*
C14	0.2553 (5)	0.4858 (2)	0.0598 (2)	0.0380 (11)
H14A	0.2394	0.4358	0.0822	0.057*
H14B	0.3503	0.4856	0.0425	0.057*
H14C	0.1843	0.4916	0.0249	0.057*
C15	0.0612 (4)	0.5700 (3)	0.1518 (2)	0.0379 (11)
H15A	0.0433	0.5178	0.1705	0.057*
H15B	-0.0113	0.5811	0.1185	0.057*
H15C	0.0577	0.6107	0.1849	0.057*
C16	0.2543(4)	0.6620 (2)	0.06760 (17)	0.0230 (8)
H16A	0.3509	0.6665	0.0524	0.034*
H16R	0.2329	0.7085	0.0936	0.034*
H16C	0.1869	0.6593	0.0311	0.034*
C17	0.2651(3)	0.4025(2)	0.33118 (16)	0.00151(7)
C18	0.2051(3) 0.1959(3)	0.1023(2) 0.42821(19)	0.27347(17)	0.0151(7) 0.0169(7)
H18A	0 1408	0.4751	0.2686	0.020*
C19	0.2216(3)	0.3741(2)	0.2000	0.020 0.0187(8)
H19A	0.1879	0.3780	0.1823	0.022*
C20	0.3061 (4)	0.3700 0.3127(2)	0.1023 0.25131 (17)	0.022
H20A	0.3395	0.2678	0.2291	0.025*
C21	0.3320 (3)	0.2070 0.3300 (2)	0.2291 0.31617 (17)	0.025 0.0173(8)
H21A	0.3320 (5)	0.3300 (2)	0.3453	0.021*
C22	0.3358	0.2781 0.3775(2)	0.47533 (18)	0.021 0.0346(10)
С22 H22A	0.2748 (3)	0.3400	0.4718	0.052*
H22R	0.1750	0.3400	0.5165	0.052*
H22D	0.2732	0.4047	0.3103	0.052*
C23	0.3044 0.4026(4)	0.3487 0.5264 (2)	0.4721 0.42253(18)	0.032°
U23	0.4020 (4)	0.5204 (2)	0.42255 (18)	0.0280 (9)
H23R	0.3884	0.5702	0.3923	0.042*
H23D	0.4944	0.5460	0.4661	0.042*
C24	0.4008 0.0843 (4)	0.5409	0.4001 0.4147(2)	0.042°
U24	0.0843 (4)	0.3039 (3)	0.4147(2) 0.4106	0.0599 (11)
H24A	0.00718	0.4032	0.4100	0.060*
H24D	0.0798	0.5300	0.3803	0.060*
C25	0.0798 0.8427 (4)	0.3303	0.4333	0.000°
U25 U25 A	0.8427 (4)	0.3003 (2)	0.30039 (19)	0.0300 (9)
п23А Ц25Д	0.0093	0.3312	0.4620	0.037*
П23D С26	0.9233	0.3108 0.2602 (2)	0.5290	0.037°
U20 U26A	0.7240 (4)	0.2005 (2)	0.33029 (19)	0.0338 (10)
п20A 1126D	0.7034	0.2240	0.5700	0.041^{*}
п20В С27	0.0013	0.2998	0.3333	0.041°
U27	0.0489 (4)	0.2145 (2)	0.4855 (2)	0.0315 (10)
н2/А	0.3939	0.1690	0.5005	0.038*

H27B	0.5827	0.2489	0.4585	0.038*	
C28	0.7700 (4)	0.1873 (2)	0.44422 (18)	0.0278 (9)	
H28A	0.8052	0.1351	0.4593	0.033*	
H28B	0.7388	0.1823	0.3989	0.033*	

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Yb1	0.01020 (7)	0.01233 (7)	0.01766 (8)	-0.00136 (6)	-0.00014 (6)	0.00251 (6)
Cs1	0.01034 (10)	0.01249 (10)	0.02208 (12)	-0.00018 (8)	0.00232 (8)	0.00028 (9)
Si1	0.0150 (5)	0.0213 (5)	0.0190 (5)	0.0031 (4)	0.0009 (4)	-0.0011 (4)
Si2	0.0214 (5)	0.0157 (5)	0.0236 (6)	-0.0009(4)	-0.0052 (4)	0.0028 (4)
Si3	0.0177 (5)	0.0192 (5)	0.0191 (5)	-0.0009(4)	0.0012 (4)	-0.0017 (4)
01	0.0207 (14)	0.0355 (16)	0.0295 (16)	-0.0014 (12)	0.0062 (12)	-0.0009 (13)
C1	0.0112 (16)	0.0161 (17)	0.0209 (19)	0.0018 (14)	0.0018 (14)	0.0027 (15)
C2	0.0130 (17)	0.0140 (17)	0.025 (2)	0.0030 (14)	0.0021 (15)	0.0029 (15)
C3	0.0184 (18)	0.024 (2)	0.0162 (19)	0.0082 (15)	0.0003 (15)	0.0016 (15)
C4	0.0151 (17)	0.0177 (19)	0.025 (2)	0.0022 (14)	-0.0071 (15)	-0.0016 (16)
C5	0.0083 (16)	0.0175 (18)	0.030(2)	-0.0002 (13)	0.0033 (15)	0.0049 (16)
C6	0.027 (2)	0.023 (2)	0.027 (2)	0.0011 (16)	-0.0006 (17)	-0.0044 (17)
C7	0.029 (2)	0.033 (2)	0.021 (2)	0.0055 (18)	-0.0059 (17)	0.0013 (17)
C8	0.023 (2)	0.031 (2)	0.024 (2)	0.0038 (17)	0.0045 (17)	-0.0018 (17)
C9	0.0162 (17)	0.0111 (17)	0.0212 (19)	0.0006 (13)	0.0003 (14)	0.0012 (14)
C10	0.0208 (18)	0.0103 (16)	0.0210 (19)	0.0006 (14)	0.0037 (15)	0.0040 (15)
C11	0.0133 (17)	0.0139 (17)	0.024 (2)	-0.0047 (13)	-0.0014 (15)	0.0047 (15)
C12	0.0241 (19)	0.0118 (17)	0.021 (2)	-0.0067 (15)	-0.0054 (15)	0.0020 (15)
C13	0.0208 (18)	0.0118 (17)	0.022 (2)	-0.0011 (14)	0.0012 (15)	0.0009 (15)
C14	0.056 (3)	0.020 (2)	0.037 (3)	0.004 (2)	-0.023 (2)	-0.0014 (19)
C15	0.022 (2)	0.049 (3)	0.043 (3)	0.0003 (19)	-0.0048 (19)	0.024 (2)
C16	0.028 (2)	0.0204 (19)	0.021 (2)	0.0025 (16)	-0.0007 (16)	0.0022 (16)
C17	0.0097 (16)	0.0196 (18)	0.0162 (19)	-0.0037 (14)	0.0024 (14)	0.0003 (15)
C18	0.0099 (16)	0.0156 (18)	0.025 (2)	-0.0029 (13)	0.0026 (14)	0.0024 (15)
C19	0.0129 (17)	0.028 (2)	0.0149 (19)	-0.0086 (15)	-0.0025 (14)	0.0029 (15)
C20	0.0165 (18)	0.0192 (19)	0.027 (2)	-0.0062 (15)	0.0096 (16)	-0.0061 (16)
C21	0.0124 (17)	0.0176 (18)	0.022 (2)	-0.0025 (14)	0.0044 (14)	0.0051 (15)
C22	0.056 (3)	0.026 (2)	0.023 (2)	-0.009(2)	0.006 (2)	-0.0032 (18)
C23	0.031 (2)	0.029 (2)	0.024 (2)	-0.0056 (18)	0.0015 (18)	-0.0038 (17)
C24	0.028 (2)	0.044 (3)	0.048 (3)	0.008 (2)	0.002 (2)	-0.020 (2)
C25	0.034 (2)	0.030 (2)	0.028 (2)	-0.0032 (18)	-0.0060 (19)	0.0018 (18)
C26	0.042 (3)	0.032 (2)	0.028 (2)	0.006 (2)	0.012 (2)	-0.0031 (19)
C27	0.024 (2)	0.026 (2)	0.044 (3)	0.0008 (17)	0.0085 (19)	0.0089 (19)
C28	0.033 (2)	0.025 (2)	0.026 (2)	-0.0010 (17)	0.0071 (18)	0.0006 (17)

Geometric parameters (Å, °)

Yb1—Cnt1	2.510	С7—Н7В	0.9800
Yb1—Cnt2	2.513	С7—Н7С	0.9800
Yb1—Cnt3	2.504	C8—H8A	0.9800

Cs1—Cnt1	3 197	C8—H8B	0 9800
Cs1—Cnt2	3 268	C8—H8C	0.9800
Cs1—Cnt3	3 1 5 9	C9-C13	1 424 (5)
Yh1-C12	2 742 (3)	C9-C10	1434(5)
Yb1-C21	2 750 (3)	$C9-Cs1^{iii}$	3 587 (3)
Yb1-C20	2,757 (3)	C10-C11	1 398 (5)
Vb1	2.775 (3)	$C10 Cs1^{iii}$	3 559 (3)
Vb1 C3	2.775(3)		0.9500
Vb1 C4	2.777(3)	C_{11} C_{12}	1.410(5)
Vb1 C5	2.778(3)	$C_{11} = C_{12}$	1.410(3)
Vb1 C11	2.770(3)	C_{11} H_{11A}	0.0500
Vb1 C17	2.775(3)	C12 $C13$	1 411 (5)
Vb1 C2	2.785(3)	$C_{12} = C_{13}$	1.411(3)
$\frac{101-02}{100}$	2.787(3)	C_{12} H_{12A}	3.379(3)
101-C19	2.787(3)	C12— $H12AC12 C_{2}1ii$	0.9300
YDI-CI	2.788(3)	C12_U12A	5.457 (5) 0.0500
	2.802 (3)	CI3—HI3A	0.9500
	2.802 (3)	CI4—HI4A	0.9800
Y61—C9	2.832 (3)	C14—H14B	0.9800
Cs1—01	3.095 (3)	CI4—HI4C	0.9800
Cs1—C2	3.309 (3)	CI5—HI5A	0.9800
$Cs1-C21^{1}$	3.337 (3)	C15—H15B	0.9800
$Cs1-C20^{i}$	3.367 (3)	C15—H15C	0.9800
$Cs1-C12^n$	3.379 (3)	$C16$ — $Cs1^{m}$	3.810 (4)
$Cs1-C17^{i}$	3.383 (3)	C16—H16A	0.9800
Cs1—C1	3.390 (3)	C16—H16B	0.9800
Cs1—C3	3.396 (3)	C16—H16C	0.9800
$Cs1-C18^{i}$	3.401 (3)	C17—C21	1.417 (5)
$Cs1-C19^i$	3.407 (3)	C17—C18	1.425 (5)
Cs1—C11 ⁱⁱ	3.427 (3)	C17—Cs1 ^{iv}	3.383 (3)
Cs1—C13 ⁱⁱ	3.457 (3)	C18—C19	1.390 (5)
Cs1—C5	3.475 (3)	C18—Cs1 ^{iv}	3.401 (3)
Cs1—C4	3.499 (3)	C18—H18A	0.9500
Cs1—C10 ⁱⁱ	3.559 (3)	C19—C20	1.406 (5)
Cs1—C9 ⁱⁱ	3.587 (3)	C19—Cs1 ^{iv}	3.407 (3)
Si1—C1	1.854 (4)	C19—H19A	0.9500
Si1—C8	1.866 (4)	C20—C21	1.407 (5)
Si1—C7	1.866 (4)	C20—Cs1 ^{iv}	3.367 (3)
Si1—C6	1.867 (4)	C20—H20A	0.9500
Si2—C9	1.848 (4)	C21—Cs1 ^{iv}	3.337 (3)
Si2—C15	1.863 (4)	C21—H21A	0.9500
Si2—C16	1.867 (3)	C22—H22A	0.9800
Si2	1.871 (4)	C22—H22B	0.9800
Si3—C17	1.856 (3)	C22—H22C	0.9800
Si3—C22	1.864 (4)	C23—H23A	0.9800
Si3—C24	1.865 (4)	C23—H23B	0.9800
Si3—C23	1.869 (4)	C23—H23C	0.9800
O1—C25	1.434 (5)	C24—H24A	0.9800
O1—C28	1.435 (4)	C24—H24B	0.9800

C1—C5	1.418 (5)	C24—H24C	0.9800
C1—C2	1.423 (5)	C25—C26	1.522 (5)
C2—C3	1.402 (5)	С25—Н25А	0.9900
C2—H2A	0.9500	С25—Н25В	0.9900
C3—C4	1.407 (5)	C26—C27	1.511 (6)
С3—НЗА	0.9500	С26—Н26А	0.9900
C4—C5	1.396 (5)	C26—H26B	0.9900
C4—H4A	0.9500	C27—C28	1.507 (5)
C5—H5A	0.9500	C27—H27A	0.9900
C6—H6A	0.9800	C27—H27B	0.9900
C6—H6B	0.9800	C28—H28A	0.9900
C6—H6C	0.9800	C28—H28B	0.9900
C7 $H7A$	0.9800	020 11200	0.9900
C/-II/A	0.9800		
Cnt1—Yb1—Cnt2	120.1	C15—Si2—C14	110.1 (2)
Cnt1—Yb1—Cnt3	116.6	C16—Si2—C14	105.67 (18)
Cnt2—Yb1—Cnt3	122.8	C17—Si3—C22	110.60 (16)
Cnt1—Cs1—O1	88.8	C17—Si3—C24	108.68 (17)
Cnt2— $Cs1$ — $O1$	94.1	C_{22} Si3 $-C_{24}$	109.2 (2)
Cnt3-Cs1-O1	127.8	C17 = Si3 = C23	112.26(16)
Cnt1—Cs1—Cnt3	109.0	$C_{22} = S_{13} = C_{23}$	107 77 (19)
Cnt1—Cs1—Cnt2	121.4	C_{24} Si3 C_{23}	107.77(19)
Cnt2— $Cs1$ — $Cnt2$	114.3	$C_{25} = 01 = C_{28}$	100.52(1)
Vh1_Cnt1_Cs1	175.3	$C_{25} = 01 - C_{51}$	1322(2)
Vb1 Cnt2 Cs1	172.5	$C_{23} = 01 = C_{31}$	105.9(2)
Vb1 Cnt3 Cs1	176.7	$C_{20} = 01 = C_{31}$	105.9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170.7 122.07(10)	$C_{5} = C_{1} = C_{2}$	105.4(3)
$C_{12} = 101 = C_{21}$	133.07(10) 148.28(10)	$C_2 = C_1 = S_{11}$	120.8(3)
$C_{12} = 101 = C_{20}$	146.26(10)	$C_2 = C_1 = S_1$	127.7(3)
$C_{21} = F_{01} = C_{20}$	29.02(10)	C_{2} C_{1} V_{1}	74.82 (18)
C12 - YD1 - C13	29.03 (10)	$C_2 = C_1 = Y_{D1}$	/5.10(18)
C_2I —YbI—C13	118./3 (10)		114.08 (15)
C20—Yb1—C13	121.02 (10)	C5—C1—Cs1	81.47 (19)
C12—Yb1—C3	106.89 (10)	C2—C1—Cs1	74.58 (18)
C21—Yb1—C3	75.43 (10)	Sil—Cl—Csl	111.25 (13)
C20—Yb1—C3	93.17 (11)	Yb1—C1—Cs1	134.51 (12)
C13—Yb1—C3	133.57 (10)	C3—C2—C1	109.1 (3)
C12—Yb1—C4	84.54 (10)	C3—C2—Yb1	75.02 (19)
C21—Yb1—C4	104.58 (10)	C1—C2—Yb1	75.27 (19)
C20—Yb1—C4	121.05 (10)	C3—C2—Cs1	81.44 (19)
C13—Yb1—C4	114.11 (10)	C1—C2—Cs1	80.94 (19)
C3—Yb1—C4	29.34 (10)	Yb1—C2—Cs1	138.44 (12)
C12—Yb1—C5	93.42 (10)	C3—C2—H2A	125.4
C21—Yb1—C5	116.94 (10)	C1—C2—H2A	125.4
C20—Yb1—C5	118.11 (10)	Yb1—C2—H2A	116.2
C13—Yb1—C5	120.08 (10)	Cs1—C2—H2A	105.3
C3—Yb1—C5	48.02 (10)	C2—C3—C4	108.0 (3)
C4—Yb1—C5	29.10 (10)	C2—C3—Yb1	75.79 (19)
C12—Yb1—C11	29.58 (10)	C4—C3—Yb1	75.34 (19)

C21—Yb1—C11	162.49 (10)	C2—C3—Cs1	74.48 (18)
C20—Yb1—C11	161.12 (11)	C4—C3—Cs1	82.34 (19)
C13—Yb1—C11	48.43 (10)	Yb1—C3—Cs1	134.71 (12)
C3—Yb1—C11	104.80 (10)	С2—С3—НЗА	126.0
C4—Yb1—C11	76.00 (10)	С4—С3—Н3А	126.0
C5—Yb1—C11	72.15 (10)	Yb1—C3—H3A	115.1
C12—Yb1—C17	104.81 (10)	Cs1—C3—H3A	110.0
C21—Yb1—C17	29.67 (9)	C5—C4—C3	107.5 (3)
C_{20} Yb1 $-C_{17}$	49.15 (10)	C5-C4-Yb1	75.45 (19)
C13 - Yb1 - C17	89.55 (10)	C3-C4-Yb1	75.31 (19)
C_{3} —Yb1—C17	91 45 (10)	C5-C4-Cs1	77 52 (19)
C4—Yb1—C17	115 93 (10)	$C_3 - C_4 - C_{s_1}$	74 17 (18)
C5-Yb1-C17	139 21 (10)	Yb1-C4-Cs1	130.28(12)
C_{11} V_{1} C_{17}	139.21(10) 134.15(10)	C_{5} C_{4} H_{4A}	126.3
C12— $Yb1$ — $C2$	132 66 (10)	$C_3 - C_4 - H_4 A$	126.3
$C_{12} = 101 - C_{2}$	69 27 (10)	Vb1-C4-H4A	115.3
$C_{21} = 101 = C_{2}$	74.47(10)	$C_{s1} = C_4 = H_{4A}$	113.5
$C_{20} = 101 = C_{2}$	161.85(10)	C_{4} C_{5} C_{1}	114.4
$C_{13} = 101 = C_{2}$	101.83(10) 20.18(10)	C4 = C5 = C1	109.9(3)
$C_{3} = 101 = C_{2}$	29.10 (10)	C4 - C5 - 101	75.44(19)
C4 - 101 - C2	46.21 (10)	$C1 = C5 = C_{1}$	75.00 (18)
$C_3 = 101 = C_2$	47.95 (10)	C4 - C3 - Cs1	79.4 (2)
C17 = Yb1 = C2	119.41(10)	CI = CS = CSI	74.75 (19)
C17 - YB1 - C2	95.49 (10)	YDI - CS - CSI	131.24 (12)
C12—Yb1—C19	122.04 (10)	C4—C5—H5A	125.0
C21—Yb1—C19	48.35 (10)	CI-CS-HSA	125.0
C20—Yb1—C19	29.37 (10)	YbI—C5—H5A	115.8
C13—Yb1—C19	92.85 (10)	Cs1—C5—H5A	112.9
C3—Yb1—C19	121.44 (10)	S11—C6—H6A	109.5
C4—Yb1—C19	150.23 (10)	Si1—C6—H6B	109.5
C5—Yb1—C19	142.33 (10)	H6A—C6—H6B	109.5
C11—Yb1—C19	133.69 (10)	Si1—C6—H6C	109.5
C17—Yb1—C19	48.72 (10)	H6A—C6—H6C	109.5
C2—Yb1—C19	103.58 (10)	H6B—C6—H6C	109.5
C12—Yb1—C1	122.63 (10)	Si1—C7—H7A	109.5
C21—Yb1—C1	94.75 (10)	Si1—C7—H7B	109.5
C20—Yb1—C1	89.08 (10)	H7A—C7—H7B	109.5
C13—Yb1—C1	146.41 (10)	Si1—C7—H7C	109.5
C3—Yb1—C1	48.85 (10)	H7A—C7—H7C	109.5
C4—Yb1—C1	48.90 (10)	H7B—C7—H7C	109.5
C5—Yb1—C1	29.52 (9)	Si1—C8—H8A	109.5
C11—Yb1—C1	98.33 (10)	Si1—C8—H8B	109.5
C17—Yb1—C1	123.39 (10)	H8A—C8—H8B	109.5
C2—Yb1—C1	29.57 (9)	Si1—C8—H8C	109.5
C19—Yb1—C1	113.15 (10)	H8A—C8—H8C	109.5
C12—Yb1—C18	100.20 (10)	H8B—C8—H8C	109.5
C21—Yb1—C18	48.09 (10)	C13—C9—C10	105.1 (3)
C20—Yb1—C18	48.09 (10)	C13—C9—Si2	129.1 (3)
C13—Yb1—C18	74.83 (10)	C10—C9—Si2	124.3 (3)

C3—Yb1—C18	120.22 (10)	C13—C9—Yb1	73.08 (19)
C4—Yb1—C18	145.35 (10)	C10—C9—Yb1	74.11 (18)
C5—Yb1—C18	164.74 (10)	Si2—C9—Yb1	128.22 (15)
C11—Yb1—C18	123.02 (10)	C13—C9—Cs1 ⁱⁱⁱ	73.26 (18)
C17—Yb1—C18	29.55 (9)	C10—C9—Cs1 ⁱⁱⁱ	77.33 (18)
C2—Yb1—C18	116.83 (10)	Si2—C9—Cs1 ⁱⁱⁱ	104.19 (12)
C19—Yb1—C18	28.80 (10)	Yb1—C9—Cs1 ⁱⁱⁱ	127.59 (11)
C1—Yb1—C18	137.11 (10)	C11—C10—C9	109.8 (3)
C12—Yb1—C10	48.31 (10)	C11—C10—Yb1	74.58 (19)
C21—Yb1—C10	156.10 (10)	C9—C10—Yb1	76.40 (19)
C20—Yb1—C10	132.46 (11)	C11—C10—Cs1 ⁱⁱⁱ	73.21 (18)
C13—Yb1—C10	48.00 (10)	C9—C10—Cs1 ⁱⁱⁱ	79.51 (18)
C3—Yb1—C10	128.46 (10)	Yb1—C10—Cs1 ⁱⁱⁱ	129.76 (12)
C4—Yb1—C10	99.32 (10)	C11—C10—H10A	125.1
C5—Yb1—C10	84.76 (10)	C9—C10—H10A	125.1
C11—Yb1—C10	29.00 (10)	Yb1—C10—H10A	115.8
C17—Yb1—C10	134.24 (10)	Cs1 ⁱⁱⁱ —C10—H10A	114.2
C2—Yb1—C10	130.23 (10)	C10-C11-C12	107.9 (3)
C19—Yb1—C10	108.45 (10)	C10—C11—Yb1	76.42 (18)
C1—Yb1—C10	101.51 (10)	C12—C11—Yb1	73.76 (18)
C18—Yb1—C10	109.46 (10)	C10—C11—Cs1 ⁱⁱⁱ	83.81 (19)
C12—Yb1—C9	49.06 (10)	C12—C11—Cs1 ⁱⁱⁱ	76.14 (19)
C21—Yb1—C9	128.10 (10)	Yb1—C11—Cs1 ⁱⁱⁱ	136.45 (12)
C20—Yb1—C9	113.55 (10)	C10—C11—H11A	126.1
C13—Yb1—C9	29.39 (9)	C12—C11—H11A	126.1
C3—Yb1—C9	153.27 (10)	Yb1—C11—H11A	115.9
C4—Yb1—C9	124.75 (10)	Cs1 ⁱⁱⁱ —C11—H11A	107.2
C5—Yb1—C9	114.22 (10)	C11—C12—C13	107.7 (3)
C11—Yb1—C9	48.76 (10)	C11—C12—Yb1	76.66 (19)
C17—Yb1—C9	105.13 (10)	C13—C12—Yb1	76.46 (19)
C2—Yb1—C9	158.00 (10)	C11—C12—Cs1 ⁱⁱⁱ	79.95 (19)
C19—Yb1—C9	84.94 (10)	C13—C12—Cs1 ⁱⁱⁱ	81.20 (19)
C1—Yb1—C9	128.44 (10)	Yb1—C12—Cs1 ⁱⁱⁱ	140.67 (13)
C18—Yb1—C9	80.25 (10)	C11—C12—H12A	126.1
C10—Yb1—C9	29.49 (9)	C13—C12—H12A	126.1
O1—Cs1—C2	80.28 (8)	Yb1—C12—H12A	113.2
$O1$ — $Cs1$ — $C21^i$	114.33 (8)	Cs1 ⁱⁱⁱ —C12—H12A	106.1
$C2$ — $Cs1$ — $C21^i$	148.98 (8)	C12—C13—C9	109.6 (3)
$01-Cs1-C20^{i}$	138.03 (8)	C12—C13—Yb1	73.92 (19)
$C2-Cs1-C20^{i}$	137.32 (9)	C9—C13—Yb1	77.53 (19)
$C21^{i}$ — $Cs1$ — $C20^{i}$	24.23 (8)	C12—C13—Cs1 ⁱⁱⁱ	75.02 (18)
$01-Cs1-C12^{ii}$	110.63 (8)	$C9-C13-Cs1^{iii}$	83.51 (19)
$C2-Cs1-C12^{ii}$	92.69 (8)	$Yb1 - C13 - Cs1^{iii}$	135.26 (12)
$C21^{i}$ $Cs1$ $C12^{ii}$	105.96 (8)	C12—C13—H13A	125.2
$C20^{i}$ — $Cs1$ — $C12^{ii}$	89.07 (8)	С9—С13—Н13А	125.2
$O1$ — $Cs1$ — $C17^i$	107.40 (7)	Yb1—C13—H13A	115.3
$C2$ — $Cs1$ — $C17^i$	127.34 (8)	Cs1 ⁱⁱⁱ —C13—H13A	108.8
$C21^{i}$ $Cs1$ $C17^{i}$	24 34 (8)	Si2—C14—H14A	109 5
021 001 017	= (0)		

$C20^{i}$ — $Cs1$ — $C17^{i}$	39.93 (8)	Si2—C14—H14B	109.5
$C12^{ii}$ — $Cs1$ — $C17^{i}$	128.47 (8)	H14A—C14—H14B	109.5
O1—Cs1—C1	104.30 (7)	Si2—C14—H14C	109.5
C2—Cs1—C1	24.49 (8)	H14A—C14—H14C	109.5
C21 ⁱ —Cs1—C1	129.35 (8)	H14B—C14—H14C	109.5
C20 ⁱ —Cs1—C1	113.14 (8)	Si2—C15—H15A	109.5
C12 ⁱⁱ —Cs1—C1	88.68 (8)	Si2—C15—H15B	109.5
C17 ⁱ —Cs1—C1	114.09 (8)	H15A—C15—H15B	109.5
O1—Cs1—C3	68.30 (8)	Si2—C15—H15C	109.5
C2—Cs1—C3	24.09 (8)	H15A—C15—H15C	109.5
$C21^{i}$ —Cs1—C3	133.69 (8)	H15B—C15—H15C	109.5
C20 ⁱ —Cs1—C3	136.14 (9)	Si2—C16—Cs1 ⁱⁱⁱ	96.16 (13)
C12 ⁱⁱ —Cs1—C3	116.22 (8)	Si2—C16—H16A	109.5
C17 ⁱ —Cs1—C3	109.40 (8)	Cs1 ⁱⁱⁱ —C16—H16A	66.8
C1—Cs1—C3	39.65 (8)	Si2—C16—H16B	109.5
O1—Cs1—C18 ⁱ	124.90 (8)	Cs1 ⁱⁱⁱ —C16—H16B	52.7
$C2-Cs1-C18^{i}$	109.78 (8)	H16A—C16—H16B	109.5
$C21^{i}$ — $C81$ — $C18^{i}$	39.23 (8)	Si2—C16—H16C	109.5
$C_{20^{i}}$ C s_{1} C s_{1} C s_{1}	39.10 (8)	C_{s1}^{iii} —C16—H16C	153.3
$C12^{ii}$ — $Cs1$ — $C18^{i}$	122.27 (8)	H16A—C16—H16C	109.5
$C17^{i}$ — $Cs1$ — $C18^{i}$	24.24 (8)	H16B—C16—H16C	109.5
$C1-Cs1-C18^{i}$	91.83 (8)	C_{21} — C_{17} — C_{18}	105.5 (3)
$C_3 - C_{81} - C_{18^i}$	98.84 (8)	C21—C17—Si3	128.0 (3)
$01-Cs1-C19^{i}$	146.73 (8)	C18—C17—Si3	126.4 (3)
$C2-Cs1-C19^{i}$	114.55 (8)	C21—C17—Yb1	73.79 (18)
$C21^{i}$ — $Cs1$ — $C19^{i}$	39.29 (8)	C18—C17—Yb1	75.89 (18)
$C20^{i}$ — $Cs1$ — $C19^{i}$	23.95 (8)	Si3—C17—Yb1	118.31 (14)
C12 ⁱⁱ —Cs1—C19 ⁱ	98.71 (9)	C21—C17—Cs1 ^{iv}	75.99 (18)
$C17^{i}$ — $Cs1$ — $C19^{i}$	39.57 (8)	C18—C17—Cs1 ^{iv}	78.58 (18)
C1—Cs1—C19 ⁱ	91.36 (8)	Si3—C17—Cs1 ^{iv}	108.65 (13)
C3—Cs1—C19 ⁱ	112.73 (8)	Yb1—C17—Cs1 ^{iv}	132.98 (11)
$C18^{i}$ — $Cs1$ — $C19^{i}$	23.56 (8)	C19—C18—C17	109.5 (3)
O1—Cs1—C11 ⁱⁱ	87.61 (8)	C19—C18—Yb1	75.02 (19)
C2—Cs1—C11 ⁱⁱ	82.35 (8)	C17—C18—Yb1	74.57 (18)
$C21^{i}$ — $Cs1$ — $C11^{ii}$	123.61 (8)	C19—C18—Cs1 ^{iv}	78.45 (19)
C20 ⁱ —Cs1—C11 ⁱⁱ	111.22 (8)	C17—C18—Cs1 ^{iv}	77.18 (18)
C12 ⁱⁱ —Cs1—C11 ⁱⁱ	23.90 (8)	Yb1—C18—Cs1 ^{iv}	131.52 (11)
$C17^{i}$ — $Cs1$ — $C11^{ii}$	147.92 (8)	C19—C18—H18A	125.3
C1—Cs1—C11 ⁱⁱ	88.14 (8)	C17—C18—H18A	125.3
C3—Cs1—C11 ⁱⁱ	102.45 (8)	Yb1—C18—H18A	117.0
$C18^{i}$ — $Cs1$ — $C11^{ii}$	146.18 (8)	Cs1 ^{iv} —C18—H18A	111.4
$C19^{i}$ — $Cs1$ — $C11^{ii}$	122.61 (8)	C18—C19—C20	108.2 (3)
$01 - C_{81} - C_{13^{ii}}$	110.19 (8)	C18—C19—Yb1	76.18 (19)
$C2-Cs1-C13^{ii}$	116.34 (8)	C20—C19—Yb1	74.12 (19)
$C21^{i}$ — $Cs1$ — $C13^{ii}$	85.36 (8)	C18—C19—Cs1 ^{iv}	77.99 (19)
$C20^{i}$ — $Cs1$ — $C13^{ii}$	73.64 (8)	$C20-C19-Cs1^{iv}$	76.46 (19)
$C12^{ii}$ — $Cs1$ — $C13^{ii}$	23.79 (8)	Yb1—C19—Cs1 ^{iv}	131.87 (12)
$C17^{i}$ $C13^{i}$ $C13^{i}$	109 44 (8)	C18—C19—H19A	125.07 (12)
017 - 031 - 013	10) דד.(0)		145.7

$C1$ — $Cs1$ — $C13^{ii}$	111.22 (8)	С20—С19—Н19А	125.9
C3—Cs1—C13 ⁱⁱ	139.38 (8)	Yb1—C19—H19A	115.9
$C18^{i}$ — $Cs1$ — $C13^{ii}$	111.98 (8)	Cs1 ^{iv} —C19—H19A	112.2
C19 ⁱ —Cs1—C13 ⁱⁱ	90.34 (8)	C19—C20—C21	107.4 (3)
C11 ⁱⁱ —Cs1—C13 ⁱⁱ	38.65 (8)	C19—C20—Yb1	76.50 (19)
O1—Cs1—C5	105.94 (7)	C21—C20—Yb1	74.91 (19)
C2—Cs1—C5	38.83 (8)	C19—C20—Cs1 ^{iv}	79.59 (19)
$C21^{i}$ —Cs1—C5	110.42 (8)	C_{21} — C_{20} — C_{81}^{iv}	76.66 (18)
$C20^{i}$ —Cs1—C5	101.17 (8)	Yb1—C20—Cs1 iv	134.91 (12)
$C_{12}^{ii} - C_{51} - C_{5}^{ii}$	109 56 (8)	C19-C20-H20A	126.3
$C17^{i}$ Cs1 C5	91 53 (8)	C_{21} C_{20} H_{20A}	126.3
C1 $Cs1$ $C5$	23.80 (8)	$V_{\rm b1}$ C20 H20A	120.5
$C_1 = C_{s1} = C_5$	23.80(8)	C_{a1iv} C20 H20A	114.7
C_{3}	50.50(0)	$C_{20} = C_{20} = H_{20} = H_{20}$	110.3
C10 - Cs1 - Cs	71.25 (8)	$C_{20} = C_{21} = C_{17}$	109.5 (5)
C19 - Cs - Cs	111.07(0)	C_{20} C_{21} Yb1	75.48 (19)
	111.87 (8)		/6.54 (18)
$C13^{n}$ — $Cs1$ — $C5$	129.48 (8)	C20-C21-Cs1	79.11 (19)
O1—Cs1—C4	84.87 (8)	$C17-C21-Cs1^{iv}$	79.67 (18)
C2—Cs1—C4	38.88 (8)	Yb1—C21—Cs1 ^{iv}	136.70 (12)
$C21^{i}$ — $Cs1$ — $C4$	112.41 (8)	C20—C21—H21A	125.3
C20 ⁱ —Cs1—C4	112.73 (8)	C17—C21—H21A	125.3
$C12^{ii}$ — $Cs1$ — $C4$	127.43 (8)	Yb1—C21—H21A	114.7
$C17^{i}$ — $Cs1$ — $C4$	88.95 (8)	Cs1 ^{iv} —C21—H21A	108.6
C1—Cs1—C4	39.03 (8)	Si3—C22—H22A	109.5
C3—Cs1—C4	23.49 (8)	Si3—C22—H22B	109.5
C18 ⁱ —Cs1—C4	75.59 (8)	H22A—C22—H22B	109.5
C19 ⁱ —Cs1—C4	89.67 (8)	Si3—C22—H22C	109.5
C11 ⁱⁱ —Cs1—C4	121.18 (8)	H22A—C22—H22C	109.5
$C13^{ii}$ — $Cs1$ — $C4$	150.24 (8)	H22B—C22—H22C	109.5
C5—Cs1—C4	23.09 (8)	Si3—C23—H23A	109.5
$01-Cs1-C10^{ii}$	74 63 (7)	Si3—C23—H23B	109.5
C_{2} C_{1} C_{1	98 69 (8)	$H_{23}A = C_{23} = H_{23}B$	109.5
C_{21}^{i} C_{31}^{i} C_{10}^{ii}	111 34 (8)	Si3_C23_H23C	109.5
C_{20}^{i} Cs1 C10 ⁱⁱ	108 30 (8)	$H_{23A} = C_{23} = H_{23C}$	109.5
$C_{20} = C_{51} = C_{10}$	100.30 (0) 38 08 (8)	$H_{23}R = C_{23} = H_{23}C$	109.5
$C_{12} = C_{11} = C_{10}$	122 00 (8)	1125D - C25 - 1125C	109.5
$C_1 = C_1 $	133.90(6) 100.52(8)	Si3 - C24 - H24A Si2 - C24 - H24D	109.5
$C_1 = C_1 $	109.32(8)	SI3 - C24 - H24D	109.5
$C_3 = C_1 $	115.49 (8)	$H_24A - C_24 - H_24B$	109.5
$C18^{}CS1^{}C10^{}$	147.28 (8)	S13-C24-H24C	109.5
$C19^{}Cs1^{}C10^{}$	127.76 (8)	H24A—C24—H24C	109.5
$C11^n$ — $Cs1$ — $C10^n$	22.98 (8)	H24B—C24—H24C	109.5
$C13^{n}$ — $Cs1$ — $C10^{n}$	37.70 (8)	01-C25-C26	105.8 (3)
$C5-Cs1-C10^{n}$	133.23 (8)	O1—C25—H25A	110.6
C4—Cs1—C10 ⁱⁱ	136.14 (8)	C26—C25—H25A	110.6
$O1$ — $Cs1$ — $C9^{ii}$	87.86 (7)	O1—C25—H25B	110.6
C2—Cs1—C9 ⁱⁱ	120.23 (8)	C26—C25—H25B	110.6
C21 ⁱ —Cs1—C9 ⁱⁱ	88.67 (8)	H25A—C25—H25B	108.7
C20 ⁱ —Cs1—C9 ⁱⁱ	85.71 (8)	C27—C26—C25	101.6 (3)

C12 ⁱⁱ —Cs1—C9 ⁱⁱ	38.69 (8)	C27—C26—H26A	111.5
C17 ⁱ —Cs1—C9 ⁱⁱ	112.18 (8)	C25—C26—H26A	111.5
C1—Cs1—C9 ⁱⁱ	125.32 (8)	С27—С26—Н26В	111.5
C3—Cs1—C9 ⁱⁱ	136.64 (8)	С25—С26—Н26В	111.5
C18 ⁱ —Cs1—C9 ⁱⁱ	124.31 (8)	H26A—C26—H26B	109.3
C19 ⁱ —Cs1—C9 ⁱⁱ	106.95 (8)	C28—C27—C26	102.1 (3)
C11 ⁱⁱ —Cs1—C9 ⁱⁱ	38.49 (8)	С28—С27—Н27А	111.3
C13 ⁱⁱ —Cs1—C9 ⁱⁱ	23.23 (8)	С26—С27—Н27А	111.3
C5—Cs1—C9 ⁱⁱ	147.92 (8)	С28—С27—Н27В	111.3
C4—Cs1—C9 ⁱⁱ	158.85 (8)	С26—С27—Н27В	111.3
C10 ⁱⁱ —Cs1—C9 ⁱⁱ	23.16 (7)	H27A—C27—H27B	109.2
C1—Si1—C8	109.90 (16)	O1—C28—C27	106.8 (3)
C1—Si1—C7	109.33 (16)	O1—C28—Cs1	52.50 (16)
C8—Si1—C7	108.40 (17)	C27—C28—Cs1	137.3 (2)
C1—Si1—C6	110.42 (16)	O1—C28—H28A	110.4
C8—Si1—C6	110.06 (17)	C27—C28—H28A	110.4
C7—Si1—C6	108.70 (18)	Cs1—C28—H28A	112.0
C9—Si2—C15	112.34 (18)	O1—C28—H28B	110.4
C9—Si2—C16	108.64 (16)	C27—C28—H28B	110.4
C15—Si2—C16	107.99 (17)	Cs1—C28—H28B	60.1
C9—Si2—C14	111.75 (17)	H28A—C28—H28B	108.6

Symmetry codes: (i) x+1, y, z; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2; (iv) x-1, y, z.