

ISSN 2056-9890

Received 28 May 2020 Accepted 23 June 2020

Edited by M. Zeller, Purdue University, USA

Keywords: 3-ferrocenylphthalide; 2-(ferrocenylcarbonyl)benzoic acid; Zn reduction; crystal structure; 2-carboxybenzylferrocene; redetermination.

CCDC references: 2011817; 2011818

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structures of 2-(ferrocenylcarbonyl)benzoic acid and 3-ferrocenylphthalide

Uttam R. Pokharel,^a* Jonathan T. Bergeron^a and Frank R. Fronczek^b

^aDepartment of Chemistry & Physical Sciences, Nicholls State University, Thibodaux, Louisiana 70301, USA, and ^bDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA. *Correspondence e-mail: uttam.pokharel@nicholls.edu

The title compounds, 2-(ferrocenylcarbonyl)benzoic acid, $[Fe(C_5H_5)(C_{13}H_9O_3)]$, **1**, and 3-ferrocenylphthalide [systematic name: 3-ferrocenyl-2-benzofuran-1(3*H*)-one], $[Fe(C_5H_5)(C_{13}H_9O_2)]$, **2**, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The crystal structure of compound **1** was solved recently at room temperature [Qin, Y. (2019). *CSD Communication* (CCDC deposition number 1912662). CCDC, Cambridge, England]. Here we report a redetermination of its crystal structure at 90 K with improved precision by a factor of about three. The molecular structures of both compounds exhibit a typical sandwich structure. In the crystal packing of compound **1**, each molecule engages in intermolecular hydrogen bonding, forming a centrosymmetric dimer with graph-set notation R_2^2 (8) and an O···O distance of 2.6073 (15) Å. There are weak C–H···O and C–H··· π interactions in the crystal packing of compound **2**. The phthalide moiety in **2** is oriented roughly perpendicular to the ferrocene backbone, with a dihedral angle of 77.4 (2)°.

1. Chemical context

Our research group has been interested in developing methodologies to synthesize metallocene-fused quinones as synthetic precursors of π -extended metallocenes. These are of interest because an integration of the redox-active metal center with the polycyclic aromatic hydrocarbons could alter their properties for organic semiconducting applications (Anthony, 2006). Previously, we synthesized metallocenefused quinones via the double Friedel-Crafts acylation reaction between 1',2',3',4',5'-pentamethylruthenocene-1,2-diacyl chloride with organic aromatics (Pokharel et al., 2011). Later, we realized that switching the functionality of two reaction partners allows us to obtain quinones in a much simpler synthetic scheme. Ferrocene being a close analog of ruthenocene, we decided to pursue the synthesis of ferrocene-fused quinones (Nesmeyanov et al., 1966; Pokharel, 2012), starting from ferrocene itself as the aromatic reagent. As the first step of this synthetic route, we prepared 2-ferrocenylcarbonyl benzoic acid, 1, following a previously reported procedure (Shen et al., 2012; Xu et al., 2017). The published procedure uses dichloromethane as the reaction solvent. However, using this solvent, we obtained consistently low reaction yields. On switching to dichloroethane from dichloromethane, the yield of the reaction was improved from 13% to a more satisfactory 51% even at room temperature, possibly due to higher solubility of the reaction mixture. The crystal structure of the

complex has been reported at room temperature (Qin, 2019). Our redetermination of its crystal structure at 90 K has improved the precision by a factor of about three.

With an easy route towards 2-ferrocenylcarbonyl benzoic acid, 1, at hand, we investigated the reduction of its keto group to methylene using a large excess of zinc powder (ca 48 equivalents) with aqueous sodium hydroxide as the solvent (Lee & Harvey, 1986). Under these reaction conditions, we were able to reduce complex 1 to 2-carboxybenzylferrocene in 89% yield (Pokharel, 2012). Following this successful transformation, we investigated the reaction outcome in the presence of a smaller amount (5 equivalents) of Zn. Under these reaction conditions, the reaction mixture changed color from red to light orange. However, on acidification, the reaction yielded the title compound 2 in a 77% yield. We assume that the limited amount of zinc leads to incomplete reduction of the ketone to a secondary alcohol. $\mathbf{1}'$ (Fig. 1). similar to the reduction of aryl ketones reported by Zhang and co-workers (Zhang et al., 2007). Upon acidification during reaction workup, alcohol 1' undergoes solvolysis to give the carbocation, which is electronically stabilized by the ferrocenyl group (Goodman et al., 2019). The nucleophilic attack of the carboxylic O atom leads to the formation of the cyclic lactone, 2. Although the title compound 2 was reported long ago as a major product from the reaction of 3,3'-diferrocenyl-3,3'-diphthalide with KOH (Nesmeyanov et al., 1961) and as a byproduct from the polycondensation reaction of ferrocene with o-carboxybenzaldehyde (Neuse & Koda, 1966), to our knowledge, this is the first report of the conversion of keto carboxylic acid, 1, to cyclic lactone 2 in a reasonably high yield. Here we report the synthesis, spectroscopic characterization, and single-crystal X-ray analysis of the title compounds 1 and 2.

2. Structural commentary

A view of the molecular structures of the title compounds 1 and 2, with their atom labeling, is shown in Fig. 2. The ferrocenvl moieties adopt typical sandwich structures with Fe-C distances in the range 2.0287 (17)–2.0498 (15) Å in compound 1 and of 2.032 (2)–2.055 (2) Å in 2. In both structures, the Fe – C bond lengths towards the substituted carbon are shorter [Fe-C1 2.031 (1) Å in 1; 2.032 (2) Å in 2] than the remaining Fe-C bond lengths, similar to literature reports (Pérez et al., 2015; Wu et al., 2011). The C–C distances within the Cp rings fall in the range 1.412 (2)-1.429 (2) Å in compound 1 and 1.414 (3)–1.431 (3) Å in 2. Similar to its carboxylate salts (Li et al., 2003; Li, Li et al., 2008; Li, Liu et al., 2008; Xu et al., 2016), the two Cp rings of the ferrocene residue in complex 1 are close to an eclipsed conformation (mean of five C - Cg - Cg -C torsion angles = 12.68° ; Cg is the centroid of the respective cyclopentadienyl ring). The analogous angle in complex 2 is 3.31°. The Cp rings are essentially parallel in both complexes, making a dihedral angle of 2.45 $(12)^{\circ}$ in compound 1 and 1.14 (10)° in 2. The Fe \cdots Cg distances in both compounds are in a similar range [substituted and unsubstituted Cp in 1: 1.6436 (7) and 1.6458 (7) Å; 2: 1.6455 (10) and 1.6510 (10) Å, respectively]. The Cg-Fe-Cg angle in both structures is ca178°. The carbonyl carbon, C11 in compound 1 bends toward the iron center with a distance of 0.163 (3) from the leastsquares plane of the substituted Cp while the corresponding C11 atom in compound 2 bends slightly outward with a distance of 0.117 (4) Å from the plane of Cp. Similar bending can be seen in the N-imidazolyl derivative of compound 2 (Simenel et al., 2008). The carbonyl carbon in compound 1 lies roughly in the same plane as the substituted Cp with a torsional angle C2-C1-C11-O1 of 2.9 (2)°. The phenyl ring in compound 1 is twisted away from the plane of the carbonyl (C=O) plane with a torsional angle O1-C11-C12-C13 of -112.41 (16)°. The aromatic ring of the phthalide moiety in compound 2 bends away from ferrocene and orients roughly perpendicular to the ferrocene backbone. The nine-atom phthalide plane of compound 2 inclines with the substituted Cp at a dihedral angle of $77.31 (7)^{\circ}$. This molecule contains a single asymmetric center at the C11 position in this racemic structure.

Figure 1

The synthetic scheme to the formation of unexpected title compound $\mathbf{2}$ from the title compound $\mathbf{1}$ with proposed intermediate.

Figure 2

Molecular structure of the title compounds 1 and 2 showing the atomnumbering schemes. Displacement ellipsoids are drawn at the 50% probability level.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H3O\cdots O2^i$	0.82 (2)	1.79 (2)	2.6073 (15)	174 (2)

Symmetry code: (i) -x, -y, -z + 1.

3. Supramolecular features

The molecules in compound 1 are associated via classical hydrogen-bonding interactions between the carboxylic OH group of one molecule with the carbonyl oxygen of an adjacent molecule. The carboxylic acid groups are related via a crystallographic inversion center to form hydrogen bonds $[O3-H3O\cdots O2^{i}]$ [symmetry code: (i) -x, -y, 1-z] with an R_2^2 (8) dimer (Etter *et al.*, 1990) motif (Table 1 and Fig. 3). This centrosymmetric pairwise hydrogen-bonding dimer formation results in short hydrogen-bond distances of 2.6073 (15). In the crystal packing of title compound 2 (Fig. 4), the unsubstituted Cp orients towards the substituted Cp of a molecule at x, 1 - y, $z - \frac{1}{2}$ with a $Cg \cdots Cg$ separation of 3.929 (1) Å. There is a weak hydrogen-bonding interaction between the carbonyl oxygen O2 of the phthalide ring, and hydrogen H6 of the unsubstituted Cp with an H6···O2 (x, 2 - y, $z - \frac{1}{2}$) distance of 2.58 Å (Table 2). The phthalide moieties in the two molecules are oriented at an angle of 73.49° and exhibit a weak C- $H \cdots \pi$ interaction as evidenced by the distance of 3.044 Å between H16 and the centroid of the aromatic ring of a phthalide moiety at $\frac{3}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$.

4. Database survey

The structure of title compound **1** (CSD refcode JOJGOH) at room temperature has been recently reported as a CSD Communication (Qin, 2019) but no details of the molecular or crystal structure were provided. Various salts of this carboxylic acid: sodium (LULSAN; Li, Liu *et al.*, 2008), magnesium (ADULUJ; Xu *et al.*, 2016), barium (ECIVIY; Xu *et al.*, 2017),

Figure 3

The hydrogen-bonded dimer of title compound **1**. Unlabeled atoms are related to their labeled counterparts by a crystallographic inversion center [Symmetry code: (i) -x, -y, 1 - z]. Displacement ellipsoids are drawn at the 50% probability level.

Table 2 Hydrogen-bond	l geometry (Å	, °) for 2 .		
D_H4	<i>D_</i> Н	$H_{\cdots}A$	D A	<i>D_</i> Н.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots O2^{i}$	1.00	2.58	3.470 (3)	148

Symmetry code: (i) $x, -y + 2, z - \frac{1}{2}$.

zinc (CIXNED; Li, Li *et al.*, 2008), cadmium (IKAZID), zinc (IKAZEZ), and lead(II) (IKAZOJ) (Li *et al.*, 2003) have been reported. The structure of a compound analogous to the title compound **2** but with an *N*-imidazolyl group at C11 has also been reported (VIYTIH; Simenel *et al.*, 2008). That structure has a disorder of the ferrocenyl substituent involving both eclipsed and staggered conformations.

5. Synthesis and crystallization

2-Ferrocenylcarbonyl benzoic acid (1). To a stirred solution of phthalic anhydride (16.00 g, 0.108 mol) and AlCl₃ (14.4 g, 0.108 mol) in dichloroethane (60 mL), ferrocene (10.00 g, 0.053 mol) in dichloroethane (65 mL) was added dropwise. The reaction mixture was stirred for 2 h at room temperature, and the mixture poured into ice-cold water (400 mL). The product was extracted with dichloromethane $(2 \times 250 \text{ mL})$. The organic phase was collected and again extracted with 2 M NaOH (3 \times 100 mL). The combined aqueous phase was acidified with conc. HCl until the pH dropped into the 2-3 range. The precipitate was filtered off, washed with water (200 mL), and dried under vacuum to give 1 (9.20 g, 51%) as a red-brown crystalline solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M.p. 457-459 K [Lit. 459 K (Nesmeyanov et al., 1961)]. IR (ATR, cm⁻¹): 1652 (C=O), 1688 (C=O), 2600-3200 (OH). ¹H NMR (400 MHz, acetone- d_6 , ppm): δ 4.22 (s, 5H, Cp) 4.53 (br, 4H, Cp), 7.62–7.66 (m, 1H, Ar), 7.72–7.79 (m, 2H, Ar), 7.98 (*dd*, 1H, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 0.8$ Hz, Ar). ${}^{13}C$ NMR (100 MHz, acetone-d₆, ppm): δ 70.7, 70.8, 72.9, 81.4 (Cp), 128.9, 130.3, 130.6, 130.7, 133.0, 143.8 (Ar), 167.7 (COOH), 200.1 (CO).

3-Ferrocenylphthalide (2). In a 250 mL Schlenk flask, zinc powder (5.0 g, 0.076 mol) was activated by stirring it in a solution of CuSO₄ (0.17 g, 0.0011 mol) in DI water (15 mL) for

Figure 4

The crystal packing of title compound 2, viewed along the *b* axis. Displacement ellipsoids are drawn at the 50% probability level.

research communications

Table 3 Experimental details.

	1	2
Crystal data		
Chemical formula	$[Fe(C_5H_5)(C_{13}H_9O_3)]$	$[Fe(C_5H_5)(C_{13}H_9O_2)]$
$M_{\rm r}$	334.14	318.14
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, C2/c
Temperature (K)	110	110
a, b, c (Å)	17.1332 (13), 7.4478 (5), 11.0345 (8)	35.4613 (11), 5.6873 (2), 13.1523 (4)
β (°)	105.758 (4)	100.2019 (16)
$V(\dot{A}^3)$	1355.13 (17)	2610.61 (15)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.12	1.16
Crystal size (mm)	$0.25 \times 0.12 \times 0.05$	$0.42 \times 0.38 \times 0.03$
Data collection		
Diffractometer	Bruker Kappa APEXII DUO CCD	Bruker Kappa APEXII DUO CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.891, 0.946	0.826, 0.966
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25434, 4737, 3834	18463, 4536, 3996
R _{int}	0.037	0.028
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.748	0.748
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.082, 1.04	0.047, 0.116, 1.18
No. of reflections	4737	4536
No. of parameters	202	190
No. of restraints	1	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.55, -0.28	0.91, -0.49

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), Mercury (Macrae et al., 2020) and publcIF (Westrip, 2010).

10 minutes. The solution was decanted, and the residue was washed with water (50 mL). To the activated zinc, keto-acid 1 (5.0 g, 0.015 mol) in NaOH solution (4.80 g in 30 mL of water) was added. The reaction mixture was allowed to reflux for 5 h, and then cooled to room temperature. The reaction mixture was filtered, and the filtrate acidified with conc. HCl. The resulting precipitate was collected, washed with water, and dried to give a viscous mass. The crude product was redissolved in dichloromethane (100 mL) and the acidic impurities extracted with 1 M NaOH (2×10 mL). The organic layer was collected, dried with anhydrous MgSO₄, filtered, and the filtrate evaporated to dryness to give the title compound 2 (3.65 g, 77%) as a pale-yellow solid. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature, of a solution in a mixture of hexane and diethyl ether. M. p: 410-411 K. IR (ATR, cm⁻¹): 1760 (s); 1286 (s); 1068 (s). ¹H NMR (400 MHz; acetone- d_6 ; ppm): δ 4.14 (*br*, 1H, Cp), 4.20 (*s*, 5H, Cp), 4.21 (*m*, 1H, Cp), 4.25 (br, 1H, Cp), 4.30 (br, 1H, Cp), 6.44 (s, 1H, CH), 7.63 (br, 1H, Ar), 7.78–7.84 (*m*, 3H, Ar). ¹³C NMR (100 MHz, acetone d_6 , ppm): δ 66.7, 66.9, 68.2, 68.9, 79.6, 85.2, 123.4, 125.0, 126.1, 129.4, 134.1, 149.5, 169.5.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in

difference maps and then treated as riding in geometrically idealized positions with C–H distances of 1.00 Å (0.95 Å phenyl) and with $U_{iso}(H) = 1.2U_{eq}$ for the attached C atom. The coordinates of the OH hydrogen atom in **1** were refined with the O–H distance restrained to 0.88 (2) Å, and its U_{iso} value was assigned as $1.5U_{eq}$ of the O atom.

Acknowledgements

UP and JB gratefully acknowledge the Department of Chemistry, Louisiana State University for providing access to single-crystal X-ray analysis of the reported compounds without any charge.

Funding information

This research was supported by a grant from the Louisiana Board of Regents, Contract No. LEQSF (2017-18)-RD-A-28.

References

- Anthony, J. E. (2006). Chem. Rev. 106, 5028-5048.
- Bruker (2016). *APEX2* and *SAINT*, Bruker AXS Inc., Madison, Wisconsin, USA.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Goodman, H., Mei, L. & Gianetti, T. L. (2019). *Front. Chem.* **7**, article 365. https://doi.org/10.3389/fchem.2019.00365
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Lee, H. & Harvey, R. G. (1986). J. Org. Chem. 51, 3502-3507.

- Li, G., Hou, H., Li, L., Meng, X., Fan, Y. & Zhu, Y. (2003). *Inorg. Chem.* **42**, 4995–5004.
- Li, G., Li, Z. F., Wu, J. X., Yue, C. & Hou, H. W. (2008). J. Coord. Chem. 61, 464–471.
- Li, Z., Liu, S., Wu, J. & Li, G. (2008). Huaxue Yanjiu, 19, 51-54.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1961). Dokl. Akad. Nauk SSSR, 138, 390–392.
- Nesmeyanov, A. N., Vilchevskaya, V. D. & Kochetkova, N. S. (1966). *Izv. Akad. Nauk SSSR, Ser. Khim.* pp. 938–940.
- Neuse, E. W. & Koda, K. (1966). J. Polym. Sci. A-1 Polym. Chem. 4, 2145–2160.
- Pérez, W. I., Rheingold, A. L. & Meléndez, E. (2015). *Acta Cryst.* E71, 536–539.
- Pokharel, U. R. (2012). Organometallic Heterocycles and Acene-Quinone Complexes of Ruthenium, Iron and Manganese. PhD dissertation, University of Kentucky.

- Pokharel, U. R., Selegue, J. P. & Parkin, S. (2011). *Organometallics*, **30**, 3254–3256.
- Qin, Y. (2019). CSD Communication (CCDC deposition number 1912662). CCDC, Cambridge, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shen, J., Jiang, M. W., Li, Y. K., Guo, C., Qiu, X. Y. & Wang, C. Q. (2012). Colloid Polym. Sci. 290, 1193–1200.
- Simenel, A. A., Samarina, S. V., Snegur, L. V., Starikova, Z. A., Ostrovskaya, L. A., Bluchterova, N. V. & Fomina, M. M. (2008). *Appl. Organomet. Chem.* 22, 276–280.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, X.-X., Zhu, X., Ma, Q.-J., Ng, S. W. & Tiekink, E. R. T. (2011). *Acta Cryst.* E67, m1875.
- Xu, X., Hu, F. & Shuai, Q. (2017). New J. Chem. 41, 13319-13326.
- Xu, X., Lu, Y., Hu, F., Xu, L. & Shuai, Q. (2016). J. Coord. Chem. 69, 3294–3302.
- Zhang, C. Z., Yang, H., Wu, D. L. & Lu, G. Y. (2007). *Chin. J. Chem.* **25**, 653–660.

Acta Cryst. (2020). E76, 1163-1167 [https://doi.org/10.1107/S2056989020008452]

Synthesis and crystal structures of 2-(ferrocenylcarbonyl)benzoic acid and 3ferrocenylphthalide

Uttam R. Pokharel, Jonathan T. Bergeron and Frank R. Fronczek

Computing details

Crystal data

For both structures, data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-(Ferrocenylcarbonyl)benzoic acid (1)

$[Fe(C_{5}H_{5})(C_{13}H_{9}O_{3})]$	F(000) = 688
$M_{r} = 334.14$	$D_x = 1.638 \text{ Mg m}^{-3}$
Monoclinic, $P2_{1}/c$	Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}
a = 17.1332 (13) Å	Cell parameters from 7843 reflections
b = 7.4478 (5) Å	$\theta = 2.5-32.0^{\circ}$
c = 11.0345 (8) Å	$\mu = 1.12 \text{ mm}^{-1}$
$\beta = 105.758 (4)^{\circ}$	T = 110 K
$V = 1355.13 (17) Å^{3}$	Plate, yellow-orange
Z = 4	$0.25 \times 0.12 \times 0.05 \text{ mm}$
Data collection	
Bruker Kappa APEXII DUO CCD	25434 measured reflections
diffractometer	4737 independent reflections
Radiation source: fine-focus sealed tube	3834 reflections with $I > 2\sigma(I)$
TRIUMPH curved graphite monochromator	$R_{int} = 0.037$
φ and ω scans	$\theta_{max} = 32.1^{\circ}, \theta_{min} = 1.2^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 25$
(SADABS; Krause <i>et al.</i> , 2015)	$k = -11 \rightarrow 11$
$T_{min} = 0.891, T_{max} = 0.946$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: mixed
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent
S = 1.04	and constrained refinement
4737 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0391P)^2 + 0.6785P]$
202 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.55$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.28$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.35842 (2)	0.21980 (3)	0.79339 (2)	0.01110 (6)
01	0.16447 (6)	0.39240 (15)	0.82421 (10)	0.0166 (2)
O2	0.07156 (6)	0.12073 (14)	0.59281 (9)	0.0148 (2)
O3	0.00212 (6)	0.18223 (15)	0.39475 (10)	0.0156 (2)
H3O	-0.0206 (12)	0.089 (2)	0.4037 (19)	0.023*
C1	0.23630 (8)	0.18631 (19)	0.73350 (13)	0.0112 (2)
C2	0.26963 (8)	0.0784 (2)	0.84282 (13)	0.0139 (3)
H2	0.2556	0.0867	0.9249	0.017*
C3	0.32643 (8)	-0.0411 (2)	0.81410 (14)	0.0162 (3)
H3A	0.3600	-0.1311	0.8730	0.019*
C4	0.32878 (8)	-0.0089(2)	0.68811 (14)	0.0155 (3)
H4	0.3640	-0.0727	0.6431	0.019*
C5	0.27296 (8)	0.1310 (2)	0.63776 (13)	0.0133 (3)
H5	0.2618	0.1824	0.5510	0.016*
C6	0.37747 (9)	0.4747 (2)	0.85968 (17)	0.0226 (3)
H6	0.3348	0.5605	0.8700	0.027*
C7	0.42094 (9)	0.3531 (2)	0.95154 (15)	0.0201 (3)
H7	0.4140	0.3368	1.0380	0.024*
C8	0.47552 (9)	0.2566 (2)	0.89958 (15)	0.0194 (3)
H8	0.5135	0.1600	0.9429	0.023*
C9	0.46628 (9)	0.3191 (2)	0.77533 (16)	0.0232 (3)
H9	0.4966	0.2752	0.7155	0.028*
C10	0.40535 (10)	0.4548 (2)	0.75049 (17)	0.0252 (4)
H10	0.3856	0.5238	0.6702	0.030*
C11	0.18211 (8)	0.3415 (2)	0.73014 (13)	0.0113 (2)
C12	0.15537 (7)	0.45069 (19)	0.61065 (12)	0.0105 (2)
C13	0.09795 (7)	0.39345 (19)	0.50127 (13)	0.0109 (2)
C14	0.07597 (8)	0.5053 (2)	0.39646 (13)	0.0127 (3)
H14	0.0369	0.4658	0.3226	0.015*
C15	0.11056 (8)	0.6736 (2)	0.39890 (13)	0.0143 (3)
H15	0.0959	0.7489	0.3267	0.017*
C16	0.16672 (8)	0.7316 (2)	0.50722 (14)	0.0153 (3)
H16	0.1905	0.8472	0.5096	0.018*
C17	0.18832 (8)	0.6210 (2)	0.61246 (13)	0.0141 (3)
H17	0.2263	0.6628	0.6868	0.017*
C18	0.05658 (7)	0.2189 (2)	0.50034 (13)	0.0113 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U ¹¹	U ²²	<i>U</i> ³³	U^{12}	U ¹³	U ²³
Fe1	0.00902 (9)	0.01024 (10)	0.01257 (10)	-0.00193 (7)	0.00041 (6)	-0.00021 (7)
O1	0.0193 (5)	0.0185 (5)	0.0126 (5)	0.0008 (4)	0.0055 (4)	-0.0015 (4)
O2	0.0141 (4)	0.0142 (5)	0.0132 (5)	-0.0044 (4)	-0.0012 (3)	0.0016 (4)
O3	0.0164 (4)	0.0157 (5)	0.0118 (5)	-0.0078 (4)	-0.0012 (4)	0.0005 (4)
C1	0.0097 (5)	0.0104 (6)	0.0120 (6)	-0.0019 (4)	0.0003 (4)	0.0001 (5)
C2	0.0131 (5)	0.0125 (7)	0.0145 (6)	-0.0031 (5)	0.0009 (5)	0.0014 (5)
C3	0.0149 (6)	0.0106 (7)	0.0203 (7)	-0.0011 (5)	0.0000 (5)	0.0023 (5)
C4	0.0142 (6)	0.0124 (7)	0.0181 (7)	-0.0002 (5)	0.0013 (5)	-0.0035 (5)
C5	0.0124 (5)	0.0130 (7)	0.0126 (6)	-0.0007 (5)	0.0002 (5)	-0.0009 (5)
C6	0.0170 (6)	0.0136 (7)	0.0336 (9)	-0.0042 (5)	0.0005 (6)	-0.0048 (6)
C7	0.0157 (6)	0.0235 (8)	0.0184 (7)	-0.0054 (6)	0.0003 (5)	-0.0070 (6)
C8	0.0109 (5)	0.0215 (8)	0.0222 (7)	-0.0019 (5)	-0.0018 (5)	-0.0032 (6)
C9	0.0142 (6)	0.0303 (9)	0.0252 (8)	-0.0091 (6)	0.0053 (6)	-0.0026 (7)
C10	0.0218 (7)	0.0196 (8)	0.0302 (9)	-0.0108 (6)	0.0002 (6)	0.0072 (7)
C11	0.0094 (5)	0.0114 (6)	0.0122 (6)	-0.0033 (4)	0.0013 (4)	-0.0011 (5)
C12	0.0093 (5)	0.0106 (6)	0.0113 (6)	0.0007 (4)	0.0022 (4)	-0.0004 (5)
C13	0.0095 (5)	0.0108 (6)	0.0122 (6)	-0.0006 (4)	0.0025 (4)	-0.0012 (5)
C14	0.0124 (5)	0.0143 (7)	0.0105 (6)	-0.0003 (5)	0.0013 (4)	-0.0004 (5)
C15	0.0146 (6)	0.0136 (7)	0.0140 (6)	0.0006 (5)	0.0027 (5)	0.0030 (5)
C16	0.0160 (6)	0.0106 (6)	0.0180 (7)	-0.0016 (5)	0.0024 (5)	0.0013 (5)
C17	0.0150 (6)	0.0119 (7)	0.0133 (6)	-0.0014 (5)	0.0002 (5)	-0.0016 (5)
C18	0.0091 (5)	0.0127 (6)	0.0118 (6)	-0.0015 (5)	0.0022 (4)	-0.0022 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Fel—C6	2.0287 (17)	С5—Н5	1.0000
Fe1—C1	2.0311 (13)	C6—C7	1.412 (2)
Fe1—C10	2.0351 (16)	C6—C10	1.419 (3)
Fe1—C7	2.0403 (15)	С6—Н6	1.0000
Fe1—C5	2.0409 (13)	C7—C8	1.418 (2)
Fe1—C2	2.0424 (14)	С7—Н7	1.0000
Fe1—C4	2.0468 (15)	C8—C9	1.415 (2)
Fe1—C8	2.0485 (14)	C8—H8	1.0000
Fe1—C3	2.0485 (15)	C9—C10	1.425 (2)
Fe1—C9	2.0498 (15)	С9—Н9	1.0000
01—C11	1.2179 (17)	C10—H10	1.0000
O2—C18	1.2243 (17)	C11—C12	1.5107 (19)
O3—C18	1.3085 (16)	C12—C17	1.387 (2)
O3—H3O	0.816 (15)	C12—C13	1.4005 (18)
C1—C5	1.429 (2)	C13—C14	1.3918 (19)
C1—C2	1.4328 (19)	C13—C18	1.4797 (19)
C1-C11	1.476 (2)	C14—C15	1.383 (2)
С2—С3	1.417 (2)	C14—H14	0.9500
С2—Н2	1.0000	C15—C16	1.384 (2)
C3—C4	1.422 (2)	C15—H15	0.9500

С3—НЗА	1.0000	C16—C17	1.389 (2)
C4—C5	1.421 (2)	C16—H16	0.9500
C4—H4	1.0000	С17—Н17	0.9500
C6—Fe1—C1	106.43 (6)	C5-C4-Fe1	69.43 (8)
C6—Fe1—C10	40.88 (7)	C3—C4—Fe1	69.75 (8)
C1—Fe1—C10	117.84 (6)	C5—C4—H4	125.9
C6—Fe1—C7	40.60 (7)	C3—C4—H4	125.9
C1—Fe1—C7	126.38 (6)	Fe1—C4—H4	125.9
C10—Fe1—C7	68 39 (7)	C4-C5-C1	107 86 (13)
C6-Fe1-C5	127.97 (6)	C4-C5-Fel	69 88 (8)
C1—Fe1—C5	41.08 (5)	C1-C5-Fe1	69 10 (8)
C10 Fe1 $C5$	108 76 (6)	C4-C5-H5	126.1
C7—Fe1—C5	165 35 (6)	C1_C5_H5	126.1
$C_{1} = C_{1} = C_{2}$	105.55(0) 116.41(7)	Ea1 C5 H5	126.1
$C_0 = C_1 = C_2$	110.41(7)	$C_7 C_6 C_{10}$	120.1 108.02(15)
C1 - FeI - C2	41.19(3)	$C_{}C_{0}C_{10}$	108.02(13)
C10—Fe1— $C2$	151.12 (7)		/0.14 (9)
C/-FeI-C2	106.1 / (6)	Clo—C6—Fel	69.80 (10)
C5—FeI—C2	68.98 (6)	C/C6H6	126.0
C6—Fel—C4	166.99 (7)	С10—С6—Н6	126.0
C1—Fe1—C4	68.79 (6)	Fe1—C6—H6	126.0
C10—Fe1—C4	129.55 (7)	C6—C7—C8	108.18 (15)
C7—Fe1—C4	151.90 (6)	C6—C7—Fe1	69.26 (9)
C5—Fe1—C4	40.70 (6)	C8—C7—Fe1	70.02 (9)
C2—Fe1—C4	68.56 (6)	С6—С7—Н7	125.9
C6—Fe1—C8	68.40 (6)	С8—С7—Н7	125.9
C1—Fe1—C8	164.76 (6)	Fe1—C7—H7	125.9
C10—Fe1—C8	68.32 (7)	C9—C8—C7	108.21 (15)
C7—Fe1—C8	40.59 (6)	C9—C8—Fe1	69.85 (8)
C5—Fe1—C8	153.14 (6)	C7—C8—Fe1	69.40 (8)
C2—Fe1—C8	126.94 (6)	С9—С8—Н8	125.9
C4—Fe1—C8	119.31 (6)	С7—С8—Н8	125.9
C6—Fe1—C3	150.36 (7)	Fe1—C8—H8	125.9
C1—Fe1—C3	68.69 (6)	C8—C9—C10	107.64 (15)
C10—Fe1—C3	167.54 (7)	C8—C9—Fe1	69.74 (9)
C7—Fe1—C3	117.40 (7)	C10—C9—Fe1	69.02 (9)
C5—Fe1—C3	68.52 (6)	С8—С9—Н9	126.2
C^2 —Fe1—C3	40.52 (6)	C10-C9-H9	126.2
C4—Fe1—C3	40.64 (6)	Fe1-C9-H9	126.2
C8—Fe1—C3	108 25 (6)	C6-C10-C9	107.96 (15)
C6-Fe1-C9	68 68 (7)	C6-C10-Ee1	69 32 (9)
C_1 Fe1 C_2	152 73 (6)	$C_0 = C_{10} = 10$	70.14(9)
$C_1 = C_1 = C_2$	132.73(0)		126.0
$C_1 = C_2$	-10.0+ (/) 68 28 (7)	$C_{0} = C_{10} = H_{10}$	120.0
$C_{1} = C_{1} = C_{2}$	110 66 (6)	$C_2 = C_1 O_1 = H_1 O_2$	120.0
$C_{2} = F_{2} I = C_{2}$	119.00 (0)	$\begin{array}{ccc} \Gamma \in I \\ \Gamma = C \\ \Gamma = C$	120.0
C_2 —rei—Cy	103.39 (0)		121.49 (13)
C4—Fe1—C9	109.66 (/)		119.31 (13)
C8—Fel—C9	40.41 (7)	C1-C11-C12	118.88 (12)

C3—Fe1—C9	128.95 (7)	C17—C12—C13	118.61 (13)
C18—O3—H3O	108.5 (14)	C17—C12—C11	117.03 (12)
C5-C1-C2	107.82 (12)	C13—C12—C11	124.32 (12)
$C_{5}-C_{1}-C_{11}$	127 38 (13)	C_{14} C_{13} C_{12}	120.14(13)
$C_2 C_1 C_{11}$	127.36(13) 124.35(12)	C14 $C13$ $C18$	120.14(13) 110.06(12)
$C_2 = C_1 = C_1$	124.33(12)	C12 - C12 - C18	119.90(12)
C3—C1—Fel	69.83 (7)		119.77 (12)
C2—C1—Fel	69.83 (7)		120.56 (12)
C11—C1—Fe1	119.82 (9)	C15—C14—H14	119.7
C3—C2—C1	107.75 (12)	C13—C14—H14	119.7
C3—C2—Fe1	69.97 (8)	C14—C15—C16	119.54 (13)
C1-C2-Fe1	68.99 (8)	C14—C15—H15	120.2
С3—С2—Н2	126.1	C16—C15—H15	120.2
C1—C2—H2	126.1	C15—C16—C17	120.11 (14)
Fe1—C2—H2	126.1	C15—C16—H16	119.9
$C^2 - C^3 - C^4$	108 45 (13)	C17 - C16 - H16	119.9
$C_2 C_3 E_1$	69 50 (8)	C_{12} C_{17} C_{16}	121.02(13)
$C_2 = C_3 = 1$	69.50(8)	$C_{12} = C_{17} = C_{10}$	121.02 (13)
	09.02 (9)		119.5
C2—C3—H3A	125.8		119.5
С4—С3—НЗА	125.8	02	123.72 (13)
Fe1—C3—H3A	125.8	O2—C18—C13	121.82 (12)
C5—C4—C3	108.11 (13)	O3—C18—C13	114.44 (12)
C5—C1—C2—C3	0.28 (15)	C7-C6-C10-Fe1	59.98 (11)
C11—C1—C2—C3	-172.45 (12)	C8—C9—C10—C6	-0.06(18)
Fe1—C1—C2—C3	-5946(10)	Fe1—C9—C10—C6	59 21 (11)
$C_5 - C_1 - C_2 - F_{e1}$	59 73 (9)	C8-C9-C10-Fe1	-59.27(11)
C_{11} C_{11} C_{2} C_{21} C_{21}	-112.00(13)	$C_5 C_1 C_{11} O_1$	-168 41 (13)
C1 = C2 = C4	112.99(13)	$C_{2} = C_{1} = C_{11} = O_{1}$	100.41(13)
C1 = C2 = C3 = C4	-0.03(10)		2.9 (2)
Fel-C2-C3-C4	-58.89 (10)	Fel—Cl—Cll—Ol	-81.98 (15)
C1—C2—C3—Fel	58.84 (9)	C5—C1—C11—C12	5.0 (2)
C2—C3—C4—C5	-0.20 (16)	C2-C1-C11-C12	176.29 (12)
Fe1—C3—C4—C5	-59.02 (10)	Fe1—C1—C11—C12	91.44 (13)
C2-C3-C4-Fe1	58.82 (10)	O1—C11—C12—C17	65.23 (17)
C3—C4—C5—C1	0.37 (16)	C1-C11-C12-C17	-108.34 (15)
Fe1—C4—C5—C1	-58.85 (9)	O1-C11-C12-C13	-112.41 (16)
C3—C4—C5—Fe1	59.22 (10)	C1—C11—C12—C13	74.02 (17)
C2-C1-C5-C4	-0.40(15)	C17—C12—C13—C14	1.08 (19)
$C_{11} - C_{1} - C_{5} - C_{4}$	172 04 (13)	C_{11} C_{12} C_{13} C_{14}	178.69(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 33 (0)	C_{17} C_{12} C_{13} C_{18}	-174.74(12)
$C_{1}^{-} C_{1}^{-} C_{2}^{-} C_{4}^{-}$	59.55 (9)	$C_{11} = C_{12} = C_{13} = C_{16}$	1/4.74(12)
C2-CI-C3-Fel	-39.73 (9)		2.9 (2)
CII—CI—C5—Fel	112./1 (13)		0.2 (2)
C10—C6—C7—C8	-0.36 (17)	C18—C13—C14—C15	175.97 (12)
Fe1—C6—C7—C8	59.41 (11)	C13—C14—C15—C16	-0.8(2)
C10-C6-C7-Fe1	-59.77 (11)	C14—C15—C16—C17	0.2 (2)
C6—C7—C8—C9	0.33 (17)	C13—C12—C17—C16	-1.7 (2)
Fe1—C7—C8—C9	59.26 (11)	C11—C12—C17—C16	-179.45 (13)
C6—C7—C8—Fe1	-58.94 (10)	C15—C16—C17—C12	1.0 (2)
C7—C8—C9—C10	-0.16 (17)	C14—C13—C18—O2	-176.50 (13)

Fe1—C8—C9—C10	58.82 (11)	C12—C13—C18—O2	-0.7 (2)
C7—C8—C9—Fe1	-58.98 (11)	C14—C13—C18—O3	1.82 (19)
C7—C6—C10—C9	0.26 (17)	C12—C13—C18—O3	177.65 (12)
Fe1—C6—C10—C9	-59.72 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O3—H3 <i>O</i> …O2 ⁱ	0.82 (2)	1.79 (2)	2.6073 (15)	174 (2)

3996 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 32.1^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ $h = -52 \rightarrow 52$

 $R_{\rm int} = 0.028$

 $k = -7 \rightarrow 8$

 $l = -19 \rightarrow 19$

Symmetry code: (i) -x, -y, -z+1.

3-Ferrocenyl-2-benzofuran-1(3H)-one (2)

Crystal data	
$[Fe(C_5H_5)(C_{13}H_9O_2)]$	F(000) = 1312
$M_r = 318.14$	$D_{\rm x} = 1.619 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 35.4613 (11) Å	Cell parameters from 7794 reflections
b = 5.6873 (2) Å	$\theta = 3.2 - 32.1^{\circ}$
c = 13.1523 (4) Å	$\mu = 1.16 \text{ mm}^{-1}$
$\beta = 100.2019 \ (16)^{\circ}$	T = 110 K
$V = 2610.61 (15) \text{ Å}^3$	Plate, yellow
Z = 8	$0.42 \times 0.38 \times 0.03 \text{ mm}$
Data collection	
Bruker Kappa APEXII DUO CCD	18463 measured reflections
diffractometer	4536 independent reflections

Radiation source: fine-focus sealed tube TRIUMPH curved graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.826, T_{\max} = 0.966$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0315P)^2 + 13.1297P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.57389 (2)	0.67010 (6)	0.58883 (2)	0.01039 (8)	
01	0.65076 (5)	1.0009 (3)	0.84658 (13)	0.0165 (3)	
O2	0.68358 (5)	0.9504 (4)	1.00710 (14)	0.0250 (4)	
C1	0.60472 (6)	0.8061 (4)	0.72069 (15)	0.0113 (3)	
C2	0.58955 (6)	0.5814 (4)	0.74145 (16)	0.0130 (4)	
H2	0.6048	0.4402	0.7690	0.016*	
C3	0.54919 (6)	0.5933 (5)	0.71433 (16)	0.0159 (4)	
Н3	0.5310	0.4614	0.7192	0.019*	
C4	0.53896 (6)	0.8244 (5)	0.67775 (17)	0.0173 (4)	
H4	0.5123	0.8830	0.6528	0.021*	
C5	0.57335 (6)	0.9569 (4)	0.68203 (16)	0.0143 (4)	
H5	0.5751	1.1249	0.6611	0.017*	
C6	0.60854 (6)	0.6500 (4)	0.48005 (16)	0.0146 (4)	
H6	0.6358	0.7030	0.4892	0.018*	
C7	0.59580 (7)	0.4215 (4)	0.50246 (16)	0.0149 (4)	
H7	0.6125	0.2861	0.5301	0.018*	
C8	0.55499 (7)	0.4205 (4)	0.47973 (17)	0.0163 (4)	
H8	0.5380	0.2842	0.4882	0.020*	
C9	0.54272 (7)	0.6482 (5)	0.44290 (17)	0.0176 (4)	
H9	0.5155	0.6999	0.4211	0.021*	
C10	0.57580 (7)	0.7897 (4)	0.44237 (16)	0.0168 (4)	
H10	0.5760	0.9580	0.4205	0.020*	
C11	0.64568 (6)	0.8790 (4)	0.74621 (16)	0.0133 (4)	
H11	0.6521	0.9870	0.6917	0.016*	
C12	0.67423 (6)	0.6817 (4)	0.76521 (17)	0.0142 (4)	
C13	0.69187 (6)	0.6877 (4)	0.86754 (18)	0.0158 (4)	
C14	0.71987 (7)	0.5259 (5)	0.9088 (2)	0.0200 (4)	
H14	0.7316	0.5313	0.9795	0.024*	
C15	0.72993 (7)	0.3569 (5)	0.8429 (2)	0.0228 (5)	
H15	0.7491	0.2445	0.8681	0.027*	
C16	0.71201 (7)	0.3503 (5)	0.7390 (2)	0.0210 (5)	
H16	0.7192	0.2325	0.6950	0.025*	
C17	0.68418 (7)	0.5112 (4)	0.69940 (19)	0.0180 (4)	
H17	0.6722	0.5054	0.6289	0.022*	
C18	0.67642 (6)	0.8863 (4)	0.91828 (18)	0.0170 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
0.01266 (13)	0.01193 (14)	0.00692 (13)	-0.00146 (11)	0.00262 (9)	-0.00142 (10)
0.0162 (7)	0.0157 (8)	0.0163 (7)	0.0010 (6)	-0.0007 (6)	-0.0061 (6)
0.0213 (8)	0.0346 (11)	0.0175 (8)	0.0019 (8)	-0.0012 (6)	-0.0067 (8)
0.0139 (8)	0.0111 (9)	0.0090 (8)	-0.0012 (7)	0.0020 (6)	-0.0018 (7)
0.0148 (9)	0.0151 (9)	0.0093 (8)	-0.0028 (7)	0.0026 (7)	-0.0001 (7)
0.0146 (9)	0.0228 (11)	0.0112 (9)	-0.0052 (8)	0.0045 (7)	-0.0020 (8)
	U ¹¹ 0.01266 (13) 0.0162 (7) 0.0213 (8) 0.0139 (8) 0.0148 (9) 0.0146 (9)	U^{11} U^{22} $0.01266 (13)$ $0.01193 (14)$ $0.0162 (7)$ $0.0157 (8)$ $0.0213 (8)$ $0.0346 (11)$ $0.0139 (8)$ $0.0111 (9)$ $0.0148 (9)$ $0.0151 (9)$ $0.0146 (9)$ $0.0228 (11)$	U^{11} U^{22} U^{33} $0.01266 (13)$ $0.01193 (14)$ $0.00692 (13)$ $0.0162 (7)$ $0.0157 (8)$ $0.0163 (7)$ $0.0213 (8)$ $0.0346 (11)$ $0.0175 (8)$ $0.0139 (8)$ $0.0111 (9)$ $0.0090 (8)$ $0.0148 (9)$ $0.0151 (9)$ $0.0093 (8)$ $0.0146 (9)$ $0.0228 (11)$ $0.0112 (9)$	$\begin{array}{c ccccc} U^{11} & U^{22} & U^{33} & U^{12} \\ \hline 0.01266\ (13) & 0.01193\ (14) & 0.00692\ (13) & -0.00146\ (11) \\ 0.0162\ (7) & 0.0157\ (8) & 0.0163\ (7) & 0.0010\ (6) \\ 0.0213\ (8) & 0.0346\ (11) & 0.0175\ (8) & 0.0019\ (8) \\ 0.0139\ (8) & 0.0111\ (9) & 0.0090\ (8) & -0.0012\ (7) \\ 0.0148\ (9) & 0.0151\ (9) & 0.0093\ (8) & -0.0028\ (7) \\ 0.0146\ (9) & 0.0228\ (11) & 0.0112\ (9) & -0.0052\ (8) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C4	0.0143 (9)	0.0251 (11)	0.0128 (9)	0.0013 (8)	0.0035 (7)	-0.0049 (8)	
C5	0.0177 (9)	0.0138 (9)	0.0116 (8)	0.0027 (8)	0.0031 (7)	-0.0026 (7)	
C6	0.0185 (9)	0.0162 (10)	0.0109 (8)	-0.0033 (8)	0.0069 (7)	-0.0019 (7)	
C7	0.0204 (10)	0.0139 (9)	0.0114 (9)	-0.0003 (8)	0.0056 (7)	-0.0015 (7)	
C8	0.0209 (10)	0.0167 (10)	0.0121 (9)	-0.0051 (8)	0.0047 (7)	-0.0042 (8)	
C9	0.0180 (10)	0.0241 (12)	0.0098 (8)	0.0010 (9)	0.0002 (7)	-0.0030 (8)	
C10	0.0267 (11)	0.0150 (10)	0.0094 (8)	0.0001 (8)	0.0050 (8)	-0.0002 (7)	
C11	0.0147 (9)	0.0121 (9)	0.0130 (8)	-0.0017 (7)	0.0020 (7)	-0.0024 (7)	
C12	0.0127 (8)	0.0138 (9)	0.0168 (9)	-0.0017 (7)	0.0043 (7)	-0.0006 (8)	
C13	0.0121 (8)	0.0169 (10)	0.0187 (9)	-0.0020 (8)	0.0039 (7)	-0.0006 (8)	
C14	0.0132 (9)	0.0240 (12)	0.0225 (11)	0.0009 (8)	0.0025 (8)	0.0038 (9)	
C15	0.0170 (10)	0.0185 (11)	0.0339 (13)	0.0043 (9)	0.0071 (9)	0.0065 (10)	
C16	0.0161 (10)	0.0198 (11)	0.0280 (12)	0.0020 (9)	0.0064 (9)	-0.0008 (9)	
C17	0.0166 (10)	0.0179 (11)	0.0211 (10)	-0.0011 (8)	0.0074 (8)	-0.0042 (8)	
C18	0.0124 (9)	0.0198 (11)	0.0186 (10)	-0.0032 (8)	0.0021 (7)	-0.0037 (8)	

Geometric parameters (Å, °)

Fe1—C1	2.032 (2)	C6—C10	1.421 (3)
Fe1—C9	2.042 (2)	C6—C7	1.424 (3)
Fe1—C5	2.042 (2)	С6—Н6	1.0000
Fe1—C8	2.045 (2)	C7—C8	1.425 (3)
Fe1—C4	2.046 (2)	С7—Н7	1.0000
Fe1—C6	2.047 (2)	C8—C9	1.424 (4)
Fe1—C3	2.048 (2)	C8—H8	1.0000
Fe1—C2	2.049 (2)	C9—C10	1.423 (3)
Fe1—C7	2.051 (2)	С9—Н9	1.0000
Fe1—C10	2.055 (2)	C10—H10	1.0000
O1-C18	1.356 (3)	C11—C12	1.502 (3)
01—C11	1.474 (3)	C11—H11	1.0000
O2—C18	1.207 (3)	C12—C13	1.381 (3)
C1—C5	1.425 (3)	C12—C17	1.386 (3)
C1—C2	1.431 (3)	C13—C14	1.391 (3)
C1-C11	1.490 (3)	C13—C18	1.467 (3)
C2—C3	1.414 (3)	C14—C15	1.383 (4)
С2—Н2	1.0000	C14—H14	0.9500
C3—C4	1.424 (4)	C15—C16	1.401 (4)
С3—Н3	1.0000	C15—H15	0.9500
C4—C5	1.426 (3)	C16—C17	1.378 (3)
C4—H4	1.0000	C16—H16	0.9500
С5—Н5	1.0000	C17—H17	0.9500
C1—Fe1—C9	160.95 (10)	С3—С4—Н4	126.0
C1—Fe1—C5	40.95 (8)	С5—С4—Н4	126.0
C9—Fe1—C5	123.48 (10)	Fe1—C4—H4	126.0
C1—Fe1—C8	157.36 (9)	C1—C5—C4	107.7 (2)
C9—Fe1—C8	40.77 (10)	C1C5Fe1	69.13 (12)
C5—Fe1—C8	159.82 (9)	C4—C5—Fe1	69.71 (13)

C1—Fe1—C4	68.75 (9)	С1—С5—Н5	126.2
C9—Fe1—C4	106.36 (9)	С4—С5—Н5	126.2
C5—Fe1—C4	40.84 (9)	Fe1—C5—H5	126.2
C8—Fe1—C4	122.84 (9)	C10—C6—C7	108.2 (2)
C1—Fe1—C6	108.60 (9)	C10-C6-Fe1	70.02 (12)
C9—Fe1—C6	68.39 (9)	C7—C6—Fe1	69.80 (12)
C5—Fe1—C6	122.32 (9)	С10—С6—Н6	125.9
C8—Fe1—C6	68.51 (9)	С7—С6—Н6	125.9
C4—Fe1—C6	157.29 (10)	Fe1—C6—H6	125.9
C1—Fe1—C3	68.63 (9)	C6—C7—C8	107.9 (2)
C9—Fe1—C3	120.46 (9)	C6-C7-Fe1	69.55 (12)
C5—Fe1—C3	68.64 (10)	C8—C7—Fe1	69.43 (13)
C8—Fe1—C3	106 47 (9)	C6-C7-H7	126.0
C4—Fe1—C3	40 71 (10)	C8—C7—H7	126.0
C6-Fe1-C3	161 17 (10)	Fe1—C7—H7	126.0
C1—Fe1—C2	41 07 (8)	C9 - C8 - C7	107.8(2)
C9—Fe1—C2	156.00 (10)	C9-C8-Fe1	6949(13)
C_{5} Fe1 C_{2}	68 80 (9)	C7 - C8 - Fe1	69.85 (13)
C8—Fe1—C2	120.98 (9)	C9 - C8 - H8	126.1
C4—Fe1—C2	68 41 (9)	C7 - C8 - H8	126.1
C_{6} Fe1 C_{2}	125 37 (9)	$E_{1} = C_{8} = H_{8}$	126.1
C_3 —Fe1—C2	40.38 (9)	C10-C9-C8	120.1 108.3(2)
C1—Fe1—C7	122 40 (9)	C10 - C9 - Ee1	70.17(13)
C9—Fe1—C7	68.44(9)	C8 - C9 - Fe1	69.74(12)
$C_{2} = C_{1} = C_{1}$	158 00 (0)	$C_{10} = C_{9} = H_{9}$	125.0
C_{3} C_{1} C_{2} C_{3} C_{1} C_{2}	138.09(9)	$C_{10} C_{20} C_{10} $	125.9
$C_{0} = C_{1} = C_{1}$	150.06(10)	$C_0 = C_0 = H_0$	125.9
C4 - FeI - C/	139.90 (10)	$\begin{array}{cccc} FeI - C9 - Fi9 \\ C6 & C10 & C0 \\ \end{array}$	123.9 107.8 (2)
$C_0 = Fe_1 = C_7$	40.03(9) 122.98(10)	$C_{0} = C_{10} = C_{9}$	107.8(2)
$C_3 = Fe_1 = C_7$	125.88(10) 108.02(0)	C0 - C10 - Fel	69.43(12)
C_2 —rei— C_7	108.02 (9)	C_{2}	09.17 (12)
C_1 —re1— C_10	124.89(9)	$C_0 = C_{10} = H_{10}$	120.1
C_{2} FeI C_{10}	40.00 (10)	C9-C10-H10	120.1
C_{2} FeI C_{10}	107.08(9)	FeI = CI0 = HI0	120.1
C_8 —FeI—CI0	68.48 (9) 121 18 (10)		107.00(17)
C4—FeI—CI0	121.18 (10)	01 - C11 - C12	103.34 (17)
C6—FeI— $C10$	40.54 (9)	CI = CII = CI2	115.52 (18)
C_3 —Fel—Cl0	156.30 (10)		110.2
C2—Fe1—C10	162.11 (9)	CI-CII-HII	110.2
C/—Fel—Cl0	68.31 (9)	C12—C11—H11	110.2
C18—O1—C11	110.93 (17)	C13—C12—C17	120.3 (2)
C5-C1-C2	108.03 (19)	C13—C12—C11	108.63 (19)
C5—C1—C11	125.5 (2)	C17—C12—C11	131.1 (2)
C2—C1—C11	126.12 (19)	C12—C13—C14	122.2 (2)
C5—C1—Fe1	69.92 (12)	C12—C13—C18	108.7 (2)
C2—C1—Fe1	70.10 (12)	C14—C13—C18	129.1 (2)
C11—C1—Fe1	130.81 (14)	C15—C14—C13	117.4 (2)
C3—C2—C1	107.9 (2)	C15—C14—H14	121.3
C3-C2-Fe1	69.79 (12)	C13—C14—H14	121.3

C1-C2-Fe1	68.83 (11)	C14—C15—C16	120.4 (2)
С3—С2—Н2	126.1	C14—C15—H15	119.8
C1—C2—H2	126.1	C16—C15—H15	119.8
Fe1 - C2 - H2	126.1	C17-C16-C15	121.5(2)
$C_2 C_3 C_4$	108.4.(2)	C_{17} C_{16} H_{16}	121.3 (2)
$C_2 = C_3 = C_4$	106.4(2)		119.5
C2—C3—Fel	69.83 (12)	C15—C16—H16	119.3
C4—C3—Fel	69.56 (12)	C16—C17—C12	118.2 (2)
С2—С3—Н3	125.8	С16—С17—Н17	120.9
С4—С3—Н3	125.8	С12—С17—Н17	120.9
Fe1—C3—H3	125.8	O2-C18-O1	121.9 (2)
C3—C4—C5	108.0 (2)	O2-C18-C13	129.9 (2)
C3—C4—Fe1	69.73 (13)	O1—C18—C13	108.22 (19)
C5-C4-Fe1	69 45 (12)		(
	09.45 (12)		
C5—C1—C2—C3	0.8 (2)	Fe1—C9—C10—C6	58.89 (15)
$C_{11} - C_{1} - C_{2} - C_{3}$	174 33 (19)	C8—C9—C10—Fe1	-59.56(15)
F_{e1} $-C_{1}$ $-C_{2}$ $-C_{3}$	-59.07(15)	$C_{18} = 0_{1} = C_{11} = C_{11}$	1185(2)
$C_{5} = C_{1} = C_{2} = C_{5}$	50.88 (14)	$C_{10} = O_1 = C_{11} = C_{12}$	-3.0(2)
C_{1}	12((14))	$C_{18} = 01 = 011 = 012$	3.9(2)
	-120.0(2)		//.4 (2)
C1—C2—C3—C4	-0.6 (2)	C2_C1_C11_01	-95.0 (2)
Fe1—C2—C3—C4	-59.06 (15)	Fel—Cl—Cl1—Ol	170.79 (15)
C1—C2—C3—Fe1	58.47 (14)	C5-C1-C11-C12	-168.17 (19)
C2—C3—C4—C5	0.1 (2)	C2-C1-C11-C12	19.4 (3)
Fe1—C3—C4—C5	-59.09 (15)	Fe1—C1—C11—C12	-74.8 (3)
C2-C3-C4-Fe1	59.23 (15)	O1-C11-C12-C13	2.8 (2)
C2-C1-C5-C4	-0.7 (2)	C1—C11—C12—C13	-113.7 (2)
C11—C1—C5—C4	-174.30 (19)	O1—C11—C12—C17	-177.1 (2)
Fe1—C1—C5—C4	59.26 (15)	C1-C11-C12-C17	66.4 (3)
C2-C1-C5-Fe1	-59.99 (14)	C17—C12—C13—C14	-0.1(3)
C11—C1—C5—Fe1	126.4 (2)	C11—C12—C13—C14	180.0 (2)
$C_{3}-C_{4}-C_{5}-C_{1}$	0.4(2)	C_{17} C_{12} C_{13} C_{18}	1791(2)
E_{2} E_{3} E_{4} E_{5} E_{1}	-58.00(14)	C_{11} C_{12} C_{13} C_{18}	-0.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.30(14)	C12 - C12 - C13 - C18	0.8(2)
	39.27 (13)		0.3 (4)
	-0.7(2)	018-013-014-015	-1/8.5(2)
Fe1—C6—C7—C8	59.02 (15)	C13—C14—C15—C16	-0.6 (4)
C10-C6-C7-Fe1	-59.70 (15)	C14—C15—C16—C17	0.3 (4)
C6—C7—C8—C9	0.3 (2)	C15—C16—C17—C12	0.1 (4)
Fe1—C7—C8—C9	59.36 (15)	C13—C12—C17—C16	-0.2 (3)
C6-C7-C8-Fe1	-59.09 (15)	C11—C12—C17—C16	179.7 (2)
C7—C8—C9—C10	0.2 (2)	C11-O1-C18-O2	-176.6(2)
Fe1—C8—C9—C10	59.83 (15)	C11-O1-C18-C13	3.6 (2)
C7—C8—C9—Fe1	-59.58 (15)	C_{12} C_{13} C_{18} O_{2}	178.5 (3)
C7 - C6 - C10 - C9	0.8 (2)	C_{14} C_{13} C_{18} C_{2}	-23(4)
$E_{1} = C_{10} = C_{10} = C_{10}$	-58.73(15)	$C_{17} = C_{13} = C_{10} = 0_2$	-1.7(3)
$C_{1} = C_{1} = C_{1} = C_{2}$	50.75(13)	C_{12} C_{13} C_{10} C	1.7(3)
	39.36 (14)	U14—U13—U18—U1	1//.5(2)
C8—C9—C10—C6	-0.7 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6····O2 ⁱ	1.00	2.58	3.470 (3)	148

Symmetry code: (i) x, -y+2, z-1/2.