

Received 26 May 2020 Accepted 6 June 2020

Edited by M. Weil, Vienna University of Technology, Austria

 $\label{eq:constraint} \begin{array}{l} \mbox{Keywords: crystal structure; sulfonamide; intermolecular N-H$--O$ hydrogen bonding; intermolecular C-H$--O$ hydrogen bonding. \end{array}$

CCDC reference: 2008411

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of 4-methyl-*N*-propylbenzenesulfonamide

Brock A. Stenfors,^a Rachel C. Collins,^a Jonah R. J. Duran,^a Richard J. Staples,^b Shannon M. Biros^a and Felix N. Ngassa^a*

^aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and ^bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. *Correspondence e-mail: ngassaf@gvsu.edu

The crystal structure of the title sulfonamide, $C_{10}H_{15}NO_2S$, comprises two molecules in the asymmetric unit. The S=O bond lengths of the sulfonamide functional group range from 1.428 (2) to 1.441 (2) Å, with S-C bond lengths of 1.766 (3) Å (for both molecules in the asymmetric unit), and S-N bond lengths of 1.618 (2) and 1.622 (3) Å, respectively. When both molecules are viewed down the N-S bond, the propyl group is *gauche* to the toluene moiety. In the crystal structure, molecules of the title compound are arranged in an intricate three-dimensional network that is formed *via* intermolecular C-H···O and N-H···O hydrogen bonds. The crystal structure was refined from a crystal twinned by inversion.

1. Chemical context

Molecules containing the sulfonamide moiety are found among a variety of biologically significant compounds, and have been used to inhibit a variety of enzymes to improve or repair biological functions. Commonly referred to as 'sulfa drugs', these molecules have been in clinical use since 1968 (Connor, 1998). Since then, many sulfonamides have been recognized as effective inhibitors of the zinc enzyme carbonic anhydrase (Gul *et al.*, 2018). Several interesting anticancer properties are exhibited upon inhibition of this enzyme (Supuran *et al.*, 2001).

The title compound, 4-methyl-*N*-propylbenzenesulfonamide, is structurally similar to a variety of biologically significant compounds. In particular, tacrine-*p*-toluenesulfonamide derivatives containing the 4-methyl-*N*-propylbenzenesulfonamide moiety have proven to be effective acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors (Makhaeva *et al.*, 2019; Fig. 1). The AChE cholinesterase enzyme catalyzes the hydrolysis of acetylcholine (ACh), a neurotransmitter with the ability to coordinate neural responses in the brain (Picciotto *et al.*, 2012). The inhibition of AChE decreases the extent of ACh hydrolysis and enhances cholinergic transmission. AChE inhibition treats the symptoms of neuron deterioration characteristic of

Figure 1

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing the *N*-propyl-4-methylbenzenesulfonamide moiety.

Alzheimer's disease (García-Ayllón *et al.*, 2011). While BChE and AChE both regulate the cholinergic system, the effects of BChE are more prevalent in the blood than the nervous system (Pohanka, 2014). BChE is, however, found in the central nervous system and is involved in the formation or growth of β -amyloid plaques (Kim *et al.*, 2016). The inhibition of both AChE and BChE improves cognitive function and minimizes the accumulation of β -amyloid and is a viable strategy for treating Alzheimer's disease.

A facile synthesis of sulfonamides is necessary to produce a variety of compounds with the potential to improve human health. A review of the current literature suggests that nucleophilic substitution of sulfonyl halides or sulfonic acids with an amine is an efficient method for the synthesis of sulfonamides (Mukherjee et al., 2018; De Luca & Giacomelli, 2008). The title compound was synthesized by reacting ptoluenesulfonyl chloride with propylamine in the presence of pyridine. The reaction was carried out in an inert atmosphere, using dichloromethane as the solvent. These reaction conditions resulted in a poor yield and slow reaction time. To work toward a facile synthesis of sulfonamides, a more efficient and environmentally benign method was recently developed. By substituting pyridine and dichloromethane with aqueous potassium carbonate and tetrahydrofuran, a significant increase in the yield and rate of the reaction was observed. The products formed under these reaction conditions are easily isolated upon acidification of the reaction mixture. Furthermore, the solvent combination supports a broader range of nitrogen nucleophiles. In our ongoing efforts to synthesize and characterize sulfonamide products, the synthesis and crystal structure of 4-methyl-N-propylbenzenesulfonamide is reported here.

2. Structural commentary

The title compound comprises two equivalents of the molecule in the asymmetric unit, as shown in Fig. 2 (suffix 'A' for all atomic labels used for the second molecule). The S=O bond lengths of the sulfonamide functional group range from

Figure 3

Overlay plot of the two independent molecules in the title compound, with grouping of the atoms C1-S1--N1 and C1A-S1A-N1A, and the molecule oriented so as to view it down the S-N bond. Displacement ellipsoids are as in Fig. 2.

Figure 2

The structures of the two molecules in the asymmetric unit of the title compound, with the atom-labeling scheme. Displacement ellipsoids are shown at the 40% probability level using standard CPK colors.

research communications

1.428 (2) to 1.441 (2) Å, which fall within expected values. The S-C bond lengths are 1.766 (3) Å for both molecules, and the S-N bond lengths are 1.618 (2) and 1.622 (3) Å. The O-S-O bond angles are 119.49 (13) and 118.26 $(13)^{\circ}$, with N-S-C bond angles of 106.86 (13) and 108.27 (13)°. The two independent molecules differ in the orientation of the propyl chain and the H atom attached to the N atom, however, in each case with the propyl chain being gauche to a sulfonamide oxygen atom and to the toluene moiety when the molecules are viewed down the N1-S1 bond (Fig. 3). The torsion angles between the first carbon atom of the propyl chain (C8 or C8A) and the sulfonamide oxygen atom O1 or O1A are 60.5(3) and 57.3 (2) $^{\circ}$, respectively. The groups bonded to the sulfur atom of both sulfonamide groups adopt slightly distorted tetrahedral environments with fourfold coordination τ_4 descriptors of 0.94 for both S1 and S1A (ideal values are 0 for squareplanar, 0.85 for trigonal pyramidal, and 1 for tetrahedral coordinations; Yang et al., 2007).

3. Supramolecular features

Hydrogen-bonding interactions, both $N-H\cdots O$ and $C-H\cdots O$, hold molecules of the title compound together in the crystal structure (Table 1, Fig. 4). The intermolecular $N-H\cdots O$ interactions are between the sulfonamide N(H) atoms

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3A - H3A \cdots O2A^{i}$	0.95	2.53	3.399 (4)	153
$C6-H6\cdots O1A^{ii}$	0.95	2.59	3.474 (4)	156
$C8-H8B\cdots O2A^{i}$	0.99	2.56	3.489 (4)	156
$C8A - H8AA \cdots O2^{iii}$	0.99	2.61	3.594 (4)	170
$N1A - H1A \cdots O1^{iv}$	0.82 (3)	2.14 (3)	2.925 (3)	161 (3)
$N1-H1\cdots O1A^{ii}$	0.85 (3)	2.13 (4)	2.968 (3)	172 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

and the oxygen (O1 or O1A) atoms of a nearby molecule. These classic hydrogen-bonding interactions form ribbons of the title compound that lie parallel to the *ab* plane. These interactions have $D \cdots A$ distances of 2.925 (3) and 2.968 (3) Å, with $D-H \cdots A$ angles of 161 (3) and 172 (3)°.

A diagram showing the specific hydrogen-bonding interactions (N– H···O: purple dashed lines, C–H···O: green dashed lines) present in the title compound, using a ball-and-stick model with standard CPK colors. Hydrogen atoms bonded to parent atoms that are not involved in a noncovalent interaction have been omitted for clarity. [Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (ii) $x, -y + 1, z + \frac{1}{2};$ (iii) $x, -y + 1, z - \frac{1}{2};$ (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}].$

Figure 5

A packing diagram of the title compound viewed down the *b* axis. Intermolecular hydrogen bonds are shown with dashed lines $(N-H\cdots O: purple, C-H\cdots O: green)$. This figure was drawn using a ball and stick model with standard CPK colors. Hydrogen atoms bonded to parent atoms that are not involved in a non-covalent interaction have been omitted for clarity.

The intermolecular C-H···O hydrogen bonding interactions (Sutor, 1958, 1962, 1963; Steiner, 1996) have, as expected, longer $D \cdot \cdot A$ distances ranging from 3.399 (4) to 3.594 (4) Å, and D-H···A angles ranging from 152.8 to 170.2°. Specifically, the C8(H8B)···O2A, C8A(H8AA)···O2 and C6(H6)···O1A interactions contribute to the stabilization of the supramolecular ribbons. The interaction between C3A(H3A) and O2A links the supramolecular ribbons into an intricate three-dimensional network (Fig. 5).

4. Database survey

A search for structures containing the *p*-methylbenzenesulfonamide entity in the Cambridge Structural Database (CSD, Version 5.41, November, 2019; Groom *et al.*, 2016), where the nitrogen atom bears one carbon-containing group, resulted in over 2,200 hits. A few structures with relatively simple, yet interesting, -R groups bonded to the sulfonamide nitrogen atom are BOLPOH (Germain *et al.*, 1983), AZUQUI (Rehman *et al.*, 2011), AYURUI and AYURUI01 (Khan *et al.*, 2011; Akyıldız *et al.*, 2018), and ATOVIO (Muller *et al.*, 2004). In the structures of BOLPOH and AZUQUI, the -R groups are both aromatic systems with a quinoline ring and a 4-aminobenzene ring, respectively. The structures of AYURUI and AYURUI01 contain two *p*-methylbenzenesulfonamide groups linked *via* a propane chain. Lastly, the -R group in ATOVIO is a tricycloheptyl ring system.

5. Synthesis and crystallization

The title compound was prepared by the dropwise addition of 0.59 M aqueous potassium carbonate (10 ml, 5.90 mmol) to a stirring mixture of propylamine (0.49 ml, 5.90 mmol) and p-toluenesulfonyl chloride (1.00 g, 5.25 mmol) in 10 ml of tetrahydrofuran. The reaction mixture was stirred at room temperate for 24 h under a nitrogen atmosphere. After acid-ification with 5 M HCl and dilution with 15 ml of dichloromethane, the organic layer was washed with water and brine. The aqueous layers were back extracted with 10 ml of dichloromethane. The combined organic layers were then combined, dried over anhydrous sodium sulfate, and evaporated to dryness. The liquid residue was triturated with diethyl ether, placed in a freezer for 48 h and, after isolation via vacuum filtration, the product was obtained as colorless crystals (59%; m.p. 335–337 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The crystal under investigation was twinned by inversion, with a refined Flack parameter of 0.443 (19) (Parsons *et al.*, 2013). For this structure, hydrogen atoms bonded to carbon atoms were placed in calculated positions and refined to ride on their parent atoms: C-H =0.95–1.00 Å with $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene groups and aromatic hydrogen atoms, and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl groups. Hydrogen atoms bonded to nitrogen atoms

Table 2	
Experimental details.	

1	
Crystal data	
Chemical formula	$C_{10}H_{15}NO_2S$
Mr	213.29
Crystal system, space group	Monoclinic, Cc
Temperature (K)	173
a, b, c (Å)	15.9353 (9), 10.3526 (6),
	14.8486 (9)
β (°)	115.1347 (6)
$V(Å^3)$	2217.7 (2)
Z	8
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.27
Crystal size (mm)	$0.45 \times 0.40 \times 0.39$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
	2013)
T_{\min}, T_{\max}	0.684, 0.745
No. of measured, independent and	18931, 4554, 4422
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.028
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.083, 1.02
No. of reflections	4554
No. of parameters	265
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
• • • • • -3	rennement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (e A^{-})$	0.2/, -0.20
Absolute structure	Flack x determined using 2140
	quotients $[(I^{+})-(I^{-})]/[(I^{+})+(I^{-})]$
	(Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.443 (19)

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXS* (Sheldrick, 2008), *SHELXL* (Sheldrick, 2015), *OLEX2* (Dolomanov *et al.*, 2009; Bourhis *et al.*, 2015) and *CrystalMaker* (Palmer, 2007).

were located using electron density difference maps, and were refined freely.

Acknowledgements

The authors are grateful to Pfizer, Inc. for the donation of a Varian INOVA 400 FT NMR.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. MRI CHE-1725699; grant No. MRI CHE-1919817); GVSU Chemistry Department's Weldon Fund.

References

- Akyıldız, F., Alyar, S., Bilkan, M. T. & Alyar, H. (2018). J. Mol. Struct. **1174**, 160–170.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
- Connor, E. E. (1998). Elsevier Science Inc. 5, 32-35.
- De Luca, L. & Giacomelli, G. (2008). J. Org. Chem. 73, 3967-3969.

research communications

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- García-Ayllón, M., Small, D. H., Avila, J. & Sáez-Valero, J. (2011). *Front. Mol. Neurosci.* 4, 22.
- Germain, G., Declercq, J.-P., Castresana, J. M., Elizalde, M. P. & Arrieta, J. M. (1983). Acta Cryst. C39, 230–232.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O. & Supuran, C. T. (2018). *Bioorg. Chem.* 77, 411–419.
- Khan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, 02371.
- Kim, J. H., Lee, S., Lee, H. W., Sun, Y. N., Jang, W., Yang, S., Jang, H. & Kim, Y. H. (2016). Int. J. Biol. Macromol. 91, 1033–1039.
- Makhaeva, G. F., Rudakova, E. V., Kovaleva, N. V., Lushchekina, S. V., Boltneva, N. P., Proshin, A. N., Shchegolkov, E. V., Burgart, Y. V. & Saloutin, V. I. (2019). *Russ. Chem. Bull.* 68, 967–984.
- Mukherjee, P., Woroch, C. P., Cleary, L., Rusznak, M., Franzese, R. W., Reese, M. R., Tucker, J. W., Humphrey, J. M., Etuk, S. M., Kwan, S. C., am Ende, C. W. & Ball, N. D. (2018). Org. Lett. 20, 3943–3947.

- Müller, P., Riegert, D. & Bernardinelli, G. (2004). *Helv. Chim. Acta*, **87**, 227–239.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Picciotto, M. R., Higley, M. J. & Mineur, Y. S. (2012). *Neuron*, **76**, 116–129.
- Pohanka, M. (2014). Int. J. Mol. Sci. 15, 9809-9825.
- Rehman, J., Ejaz, Khan, I. U. & Harrison, W. T. A. (2011). Acta Cryst. E67, 02709.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Steiner, T. (1996). Crystallogr. Rev. 6, 157-305.
- Supuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem. 9, 703–714.
- Sutor, D. J. (1958). Acta Cryst. 11, 453-458.
- Sutor, D. J. (1962). Nature, 195, 68-69.
- Sutor, D. J. (1963). J. Chem. Soc. pp. 1105-1110.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

supporting information

Acta Cryst. (2020). E76, 1070-1074 [https://doi.org/10.1107/S2056989020007756]

Crystal structure of 4-methyl-N-propylbenzenesulfonamide

Brock A. Stenfors, Rachel C. Collins, Jonah R. J. Duran, Richard J. Staples, Shannon M. Biros and Felix N. Ngassa

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009; Bourhis *et al.*, 2015); software used to prepare material for publication: *CrystalMaker* (Palmer, 2007).

4-Methyl-N-propylbenzenesulfonamide

Crystal data $C_{10}H_{15}NO_2S$ $M_r = 213.29$ Monoclinic, Cc a = 15.9353 (9) Å b = 10.3526 (6) Å c = 14.8486 (9) Å $\beta = 115.1347$ (6)° V = 2217.7 (2) Å³ Z = 8

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min} = 0.684, T_{\max} = 0.745$
18931 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.083$ S = 1.024554 reflections 265 parameters 2 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed F(000) = 912 $D_x = 1.278 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9996 reflections $\theta = 2.4-26.4^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 173 KBlock, colourless $0.45 \times 0.40 \times 0.39 \text{ mm}$

4554 independent reflections 4422 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.4^\circ$ $h = -19 \rightarrow 19$ $k = -12 \rightarrow 12$ $l = -18 \rightarrow 18$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0503P)^2 + 0.9882P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.27$ e Å⁻³ $\Delta\rho_{min} = -0.20$ e Å⁻³ Absolute structure: Flack *x* determined using 2140 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.443 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	0.40337 (4)	0.32398 (6)	0.21849 (4)	0.02809 (16)	
S1	0.61545 (4)	0.30322 (7)	0.77858 (4)	0.03083 (17)	
O2A	0.33689 (14)	0.2460 (2)	0.14206 (15)	0.0368 (5)	
C1A	0.48935 (19)	0.2218 (3)	0.3034 (2)	0.0266 (5)	
C5	0.3803 (2)	0.1709 (3)	0.5601 (3)	0.0388 (7)	
Н5	0.3189	0.2015	0.5231	0.047*	
C3A	0.6417 (2)	0.1911 (3)	0.4327 (2)	0.0325 (6)	
H3A	0.7009	0.2249	0.4749	0.039*	
C1	0.5341 (2)	0.2024 (3)	0.6871 (2)	0.0300 (6)	
C6	0.4440 (2)	0.2486 (3)	0.6334 (2)	0.0366 (7)	
H6	0.4267	0.3316	0.6470	0.044*	
C4	0.4047 (2)	0.0488 (3)	0.5397 (2)	0.0347 (6)	
C2A	0.5763 (2)	0.2713 (3)	0.3643 (2)	0.0324 (6)	
H2A	0.5905	0.3593	0.3590	0.039*	
N1	0.62264 (18)	0.4342 (2)	0.72284 (18)	0.0328 (5)	
O2	0.58027 (16)	0.3406 (2)	0.84936 (15)	0.0400 (5)	
C4A	0.6225 (2)	0.0614 (3)	0.4409 (2)	0.0319 (6)	
01A	0.45006 (14)	0.4257 (2)	0.19202 (16)	0.0362 (5)	
C2	0.5590 (2)	0.0820 (3)	0.6681 (2)	0.0370 (7)	
H2	0.6204	0.0514	0.7050	0.044*	
C3	0.4942 (2)	0.0052 (3)	0.5949 (2)	0.0418 (7)	
Н3	0.5115	-0.0784	0.5825	0.050*	
N1A	0.34797 (17)	0.3914 (2)	0.27586 (19)	0.0332 (5)	
C5A	0.5348 (2)	0.0145 (3)	0.3788 (2)	0.0350 (6)	
H5A	0.5204	-0.0736	0.3837	0.042*	
C8	0.6443 (2)	0.4213 (3)	0.6357 (2)	0.0399 (7)	
H8A	0.5885	0.3916	0.5774	0.048*	
H8B	0.6936	0.3558	0.6499	0.048*	
C9A	0.3349 (2)	0.5714 (3)	0.3760 (2)	0.0421 (7)	
H9AA	0.2776	0.5292	0.3720	0.051*	
H9AB	0.3659	0.6119	0.4425	0.051*	
C6A	0.4685 (2)	0.0937 (3)	0.3105 (2)	0.0338 (6)	
H6A	0.4090	0.0604	0.2688	0.041*	
01	0.70368 (15)	0.2382 (2)	0.81488 (17)	0.0411 (5)	
C7	0.3343 (3)	-0.0346 (3)	0.4595 (3)	0.0480 (8)	
H7A	0.3372	-0.0177	0.3960	0.072*	
H7B	0.2720	-0.0144	0.4535	0.072*	
H7C	0.3480	-0.1259	0.4772	0.072*	
C7A	0.6943 (2)	-0.0253(3)	0.5154 (2)	0.0420 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

H7AA	0.7558	0.0133	0.5359	0.063*
H7AB	0.6928	-0.1099	0.4851	0.063*
H7AC	0.6810	-0.0358	0.5737	0.063*
C8A	0.3984 (2)	0.4693 (3)	0.3654 (2)	0.0377 (6)
H8AA	0.4523	0.5114	0.3608	0.045*
H8AB	0.4219	0.4127	0.4248	0.045*
C10	0.6052 (3)	0.6546 (4)	0.5879 (3)	0.0575 (10)
H10D	0.5466	0.6260	0.5343	0.086*
H10E	0.6273	0.7319	0.5666	0.086*
H10F	0.5953	0.6747	0.6472	0.086*
C9	0.6761 (3)	0.5489 (4)	0.6120 (3)	0.0535 (9)
H9A	0.7334	0.5760	0.6696	0.064*
H9B	0.6916	0.5370	0.5546	0.064*
C10A	0.3090 (3)	0.6751 (4)	0.2977 (3)	0.0613 (11)
H10A	0.2820	0.6352	0.2316	0.092*
H10B	0.3645	0.7240	0.3061	0.092*
H10C	0.2636	0.7335	0.3044	0.092*
H1A	0.307 (2)	0.343 (3)	0.277 (2)	0.034 (9)*
H1	0.576 (2)	0.481 (3)	0.713 (2)	0.030 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0225 (3)	0.0303 (3)	0.0288 (3)	-0.0027 (3)	0.0082 (3)	0.0011 (3)
S 1	0.0278 (3)	0.0362 (3)	0.0270 (3)	0.0067 (3)	0.0102 (3)	-0.0013 (3)
O2A	0.0286 (10)	0.0384 (11)	0.0336 (10)	-0.0029 (9)	0.0039 (9)	-0.0020 (9)
C1A	0.0250 (13)	0.0287 (13)	0.0257 (13)	-0.0013 (10)	0.0104 (11)	0.0008 (11)
C5	0.0275 (15)	0.0389 (17)	0.0436 (18)	0.0017 (12)	0.0088 (14)	-0.0004 (13)
C3A	0.0274 (14)	0.0338 (16)	0.0327 (15)	-0.0037 (11)	0.0094 (13)	-0.0031 (11)
C1	0.0281 (14)	0.0353 (14)	0.0289 (14)	0.0030 (11)	0.0143 (12)	0.0011 (11)
C6	0.0304 (14)	0.0304 (15)	0.0451 (17)	0.0054 (12)	0.0124 (14)	-0.0022 (12)
C4	0.0403 (16)	0.0338 (15)	0.0327 (14)	-0.0044 (12)	0.0180 (13)	-0.0004 (12)
C2A	0.0275 (14)	0.0305 (14)	0.0362 (15)	-0.0043 (11)	0.0106 (12)	0.0009 (11)
N1	0.0309 (12)	0.0334 (12)	0.0349 (12)	0.0048 (10)	0.0147 (10)	-0.0028 (10)
O2	0.0442 (12)	0.0468 (12)	0.0318 (10)	0.0060 (10)	0.0188 (9)	-0.0014 (9)
C4A	0.0348 (15)	0.0362 (15)	0.0263 (13)	0.0020 (12)	0.0143 (12)	0.0023 (11)
O1A	0.0305 (10)	0.0367 (11)	0.0405 (11)	-0.0013 (8)	0.0141 (9)	0.0073 (9)
C2	0.0347 (15)	0.0360 (15)	0.0392 (16)	0.0100 (12)	0.0147 (13)	0.0005 (13)
C3	0.0485 (19)	0.0360 (16)	0.0412 (17)	0.0063 (14)	0.0193 (15)	-0.0034 (13)
N1A	0.0244 (11)	0.0343 (13)	0.0404 (13)	-0.0051 (10)	0.0133 (10)	-0.0042 (10)
C5A	0.0417 (17)	0.0272 (14)	0.0353 (14)	-0.0046 (12)	0.0156 (13)	0.0016 (11)
C8	0.0415 (16)	0.0430 (16)	0.0420 (16)	0.0048 (14)	0.0243 (14)	-0.0015 (14)
C9A	0.0377 (16)	0.0497 (19)	0.0421 (17)	-0.0032 (14)	0.0199 (14)	-0.0107 (14)
C6A	0.0323 (14)	0.0337 (14)	0.0323 (14)	-0.0075 (12)	0.0105 (12)	-0.0024 (11)
01	0.0334 (11)	0.0448 (13)	0.0379 (11)	0.0111 (9)	0.0083 (9)	0.0001 (9)
C7	0.051 (2)	0.0457 (18)	0.0440 (18)	-0.0119 (15)	0.0171 (16)	-0.0088 (15)
C7A	0.0437 (18)	0.0407 (17)	0.0381 (16)	0.0047 (13)	0.0139 (14)	0.0081 (13)
C8A	0.0321 (15)	0.0457 (16)	0.0323 (14)	-0.0014 (13)	0.0109 (12)	-0.0053 (13)

supporting information

C10	0.079 (3)	0.0418 (19)	0.060 (2)	-0.0037 (19)	0.038 (2)	0.0091 (16)
C9	0.053 (2)	0.058 (2)	0.062 (2)	-0.0094 (17)	0.0365 (19)	-0.0031 (18)
C10A	0.082 (3)	0.042 (2)	0.051 (2)	0.0113 (19)	0.021 (2)	-0.0126 (16)

Geometric parameters (Å, °)

S1A—O2A	1.428 (2)	N1A—C8A	1.469 (4)	
S1A—C1A	1.766 (3)	N1A—H1A	0.82 (3)	
S1A—O1A	1.437 (2)	С5А—Н5А	0.9500	
S1A—N1A	1.622 (3)	C5A—C6A	1.381 (4)	
S1—C1	1.766 (3)	C8—H8A	0.9900	
S1—N1	1.618 (3)	C8—H8B	0.9900	
S1—O2	1.438 (2)	C8—C9	1.509 (5)	
S1—O1	1.441 (2)	С9А—Н9АА	0.9900	
C1A—C2A	1.392 (4)	С9А—Н9АВ	0.9900	
C1A—C6A	1.382 (4)	C9A—C8A	1.518 (4)	
С5—Н5	0.9500	C9A—C10A	1.505 (6)	
C5—C6	1.387 (5)	C6A—H6A	0.9500	
C5—C4	1.393 (4)	С7—Н7А	0.9800	
СЗА—НЗА	0.9500	С7—Н7В	0.9800	
C3A—C2A	1.381 (4)	С7—Н7С	0.9800	
C3A—C4A	1.394 (4)	C7A—H7AA	0.9800	
C1—C6	1.397 (4)	C7A—H7AB	0.9800	
C1—C2	1.374 (4)	C7A—H7AC	0.9800	
С6—Н6	0.9500	C8A—H8AA	0.9900	
C4—C3	1.385 (5)	C8A—H8AB	0.9900	
C4—C7	1.512 (4)	C10—H10D	0.9800	
C2A—H2A	0.9500	C10—H10E	0.9800	
N1—C8	1.481 (4)	C10—H10F	0.9800	
N1—H1	0.85 (3)	C10—C9	1.503 (6)	
C4A—C5A	1.394 (4)	С9—Н9А	0.9900	
C4A—C7A	1.505 (4)	С9—Н9В	0.9900	
C2—H2	0.9500	C10A—H10A	0.9800	
C2—C3	1.389 (5)	C10A—H10B	0.9800	
С3—Н3	0.9500	C10A—H10C	0.9800	
O2A—S1A—C1A	108.49 (13)	N1—C8—H8A	109.5	
O2A—S1A—O1A	119.48 (13)	N1—C8—H8B	109.5	
O2A—S1A—N1A	105.96 (13)	N1—C8—C9	110.6 (3)	
O1A—S1A—C1A	107.43 (13)	H8A—C8—H8B	108.1	
O1A—S1A—N1A	106.77 (13)	C9—C8—H8A	109.5	
N1A—S1A—C1A	108.27 (13)	C9—C8—H8B	109.5	
N1—S1—C1	106.86 (13)	Н9АА—С9А—Н9АВ	107.8	
O2—S1—C1	109.52 (13)	С8А—С9А—Н9АА	109.0	
O2—S1—N1	106.43 (13)	C8A—C9A—H9AB	109.0	
02—S1—O1	118.26 (13)	С10А—С9А—Н9АА	109.0	
01—S1—C1	107.03 (13)	С10А—С9А—Н9АВ	109.0	
01—S1—N1	108.23 (14)	C10A—C9A—C8A	113.1 (3)	

C2A—C1A—S1A	120.0 (2)	С1А—С6А—Н6А	120.3
C6A—C1A—S1A	119.4 (2)	C5A—C6A—C1A	119.5 (3)
C6A—C1A—C2A	120.6 (3)	С5А—С6А—Н6А	120.3
С6—С5—Н5	119.4	С4—С7—Н7А	109.5
C6—C5—C4	121.2 (3)	С4—С7—Н7В	109.5
С4—С5—Н5	119.4	С4—С7—Н7С	109.5
С2А—С3А—НЗА	119.4	H7A—C7—H7B	109.5
C2A—C3A—C4A	121.2 (3)	H7A—C7—H7C	109.5
С4А—С3А—НЗА	119.4	H7B—C7—H7C	109.5
C6—C1—S1	118.5 (2)	С4А—С7А—Н7АА	109.5
C2—C1—S1	120.8 (2)	C4A—C7A—H7AB	109.5
C2—C1—C6	120.7 (3)	C4A—C7A—H7AC	109.5
C5—C6—C1	118.8 (3)	Н7АА—С7А—Н7АВ	109.5
С5—С6—Н6	120.6	Н7АА—С7А—Н7АС	109.5
С1—С6—Н6	120.6	H7AB—C7A—H7AC	109.5
C5—C4—C7	120.5 (3)	N1A—C8A—C9A	110.1 (2)
C3—C4—C5	118.7 (3)	N1A—C8A—H8AA	109.6
C3—C4—C7	120.8 (3)	N1A—C8A—H8AB	109.6
C1A—C2A—H2A	120.4	С9А—С8А—Н8АА	109.6
C3A—C2A—C1A	119.2 (3)	С9А—С8А—Н8АВ	109.6
C3A—C2A—H2A	120.4	H8AA—C8A—H8AB	108.2
S1—N1—H1	108 (2)	H10D—C10—H10E	109.5
C8—N1—S1	117.7 (2)	H10D-C10-H10F	109.5
C8—N1—H1	115 (2)	H10E—C10—H10F	109.5
C3A—C4A—C5A	118.3 (3)	C9—C10—H10D	109.5
C3A—C4A—C7A	120.8 (3)	С9—С10—Н10Е	109.5
C5A—C4A—C7A	120.9 (3)	C9—C10—H10F	109.5
C1—C2—H2	120.1	С8—С9—Н9А	108.9
C1—C2—C3	119.7 (3)	С8—С9—Н9В	108.9
С3—С2—Н2	120.1	С10—С9—С8	113.5 (3)
C4—C3—C2	120.9 (3)	С10—С9—Н9А	108.9
С4—С3—Н3	119.5	С10—С9—Н9В	108.9
С2—С3—Н3	119.5	H9A—C9—H9B	107.7
S1A—N1A—H1A	111 (2)	C9A—C10A—H10A	109.5
C8A—N1A—S1A	120.07 (19)	C9A—C10A—H10B	109.5
C8A—N1A—H1A	117 (2)	C9A—C10A—H10C	109.5
С4А—С5А—Н5А	119.4	H10A—C10A—H10B	109.5
C6A—C5A—C4A	121.2 (3)	H10A—C10A—H10C	109.5
С6А—С5А—Н5А	119.4	H10B—C10A—H10C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
$\overline{\text{C3}A-\text{H3}A\cdots\text{O2}A^{\text{i}}}$	0.95	2.53	3.399 (4)	153	
С6—Н6…О1Аіі	0.95	2.59	3.474 (4)	156	
C8—H8 B ···O2 A^{i}	0.99	2.56	3.489 (4)	156	
C8A—H8AA····O2 ⁱⁱⁱ	0.99	2.61	3.594 (4)	170	

			supporting information		
N1 <i>A</i> —H1 <i>A</i> ···O1 ^{iv}	0.82 (3)	2.14 (3)	2.925 (3)	161 (3)	
N1—H1···O1 <i>A</i> ⁱⁱ	0.85 (3)	2.13 (4)	2.968 (3)	172 (3)	

Symmetry codes: (i) *x*+1/2, *-y*+1/2, *z*+1/2; (ii) *x*, *-y*+1, *z*+1/2; (iii) *x*, *-y*+1, *z*-1/2; (iv) *x*-1/2, *-y*+1/2, *z*-1/2.