

Crystal structures of $[(\mu_2-L1)$ dibromidodicopper(II)] dibromide and poly $[[(\mu_2-L1)$ diiodidodicopper(I)]-di- μ -iodido-dicopper(I)], where L1 is 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane

Received 20 May 2020 Accepted 27 May 2020

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; pyrazinophane; hexathiapyrazinophane; copper(II); copper(I); binuclear complex; two-dimensional coordination polymer; supramolecular network.

CCDC references: 2006571; 2006572

Supporting information: this article has supporting information at journals.iucr.org/e

Tokouré Assoumatine^a and Helen Stoeckli-Evans^{b*}

^aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The reaction of the hexathiapyrazinophane ligand, 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, $[\mu_2-2,5,8,11,14,17$ -hexathia-[9.9](2,6,3,5)pyrazinophane]bis[bromidocopper(II)] dibromide, $[Cu_2Br_2(C_{16}H_{24}N_2S_6)]Br_2$, (I). The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. The ligand coordinates to the copper(II) atom in a bis-tetradentate manner and the copper atom has a fivefold NS₃Br coordination environment with a distorted shape. The reaction of ligand L1 with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu₂I₂ unit to form a two-dimensional coordination polymer, poly[[μ_2 -2,5,8,11,14,17hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-µ-iodido-tetracopper(I)], $[Cu_4I_4 (C_{16}H_{24}N_2S_6)]_n$, (II). The binuclear unit possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The Cu_2I_2 unit is also located about an inversion center. The two independent copper(I) atoms are both fourfold coordinate. That coordinating to the ligand L1 in a bistridentate manner has an NS₂I coordination environment and an irregular shape, while the second copper(I) atom, where L1 coordinates in a bismonodentate manner, has an SI₃ coordination environment with an almost perfect tetrahedral geometry. In the crystal of I, the cations and Br⁻ anions are linked by a number of $C-H\cdots S$ and $C-H\cdots Br$ hydrogen bonds, forming a supramolecular network. In the crystal of **II**, the two-dimensional coordination polymers lie parallel to the *ab* plane and there are no significant inter-layer contacts present.

1. Chemical context

Tetrasubstituted pyrazines are interesting ligands for the formation of multi-dimensional coordination polymers and metal-organic frameworks: for example, tetra-2-pyridyl-pyrazine (Ouellette *et al.*, 2004; Nawrot *et al.*, 2015) and pyrazinetetracarboxylic acid (Masci & Thuéry, 2008; Zhang *et al.*, 2014). In recent years a new ligand, 2,3,5,6-(4-carboxyl-tetraphenyl)pyrazine, has been used successfully to form a number of metal-organic frameworks (Wang *et al.*, 2019).

A number of such ligands involving $N_{pyrazine}$ and S coordination sites have been synthesized and their coordination behaviour with transition metals investigated (Assoumatine, 1999). The title ligand, L1 (Assoumatine & Stoeckli-

Evans, 2020a), is the third in a series of pyrazinethiophane ligands that have been shown to form chains, networks and frameworks with copper halides (Assoumatine, 1999), especially with CuI. For example, ligand L2, 3,4,8,10,11,13-hexahydro-1*H*,6*H*-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, when reacted with CuI formed a two-dimensional coordination polymer, poly[[μ_4 -3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine]di-iodido-dicopper(I)] (Fig. 1a; Assoumatine & Stoeckli-Evans, 2020b). Ligand L3, 5,7-dihydro-1*H*,3*H*-dithieno[3,4-*b*:30,40-*e*]pyrazine, when reacted with CuI formed a three-dimensional coordination polymer, poly[(μ_4 -5,7-dihydro-1*H*,3*H*-dithieno[3,4-*b*:3',4'-*e*]pyrazine- $\kappa^4 N: N': S: S'$)tetra- μ_3 -iodidotetracopper] (Fig. 1b; Assoumatine & Stoeckli-Evans, 2020c). Interestingly, in compound CuI-L2 the copper atom does not coordinate to the pyrazine N atom, whereas in compound CuI-L3 one of the two independent copper atoms does coordinate to the pyrazine N atom. Herein, we report on the results of the reactions of ligand L1 with $CuBr_2$ and CuI, where in both cases the pyrazine N atom is involved in coordination to the copper(II) and copper(I) atoms, respectively.

research communications

Selected geomet	ric parameters (Å, ^o) for I .	
Cu1-N1	2.046 (6)	Cu1-S3	2.333 (2)
Cu1-S1	2.346 (2)	Cu1-Br1	2.3672 (11)
Cu1-S2	2.4549 (18)		
N1-Cu1-S1	85.26 (18)	S3-Cu1-Br1	94.97 (6)
N1-Cu1-S3	85.38 (18)	N1-Cu1-S2	104.48 (15)
S3-Cu1-S1	168.54 (7)	S1-Cu1-S2	88.79 (7)
N1-Cu1-Br1	145.45 (15)	S3-Cu1-S2	87.17 (7)
S1-Cu1-Br1	96.48 (6)	Br1-Cu1-S2	110.05 (6)

Table 1Selected geometric parameters (Å, $^{\circ}$) for I.

2. Structural commentary

of the hexathiapyrazinophane ligand, The reaction 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), with copper(II) dibromide led to the formation of a binuclear complex, $[(\mu_2-L1)$ dibromodo dicopper(II)] dibromide, (I); see Fig. 2. The complex possesses inversion symmetry with the pyrazine ring being situated about a center of symmetry. Selected bond distances and angles are given in Table 1. The ligand coordinates to the copper(II) atoms in a bis-tetradentate manner. The symmetry related Cu atoms have a fivefold NS₃Br coordination environment with a distorted shape, as indicated by the fivefold index parameter τ_5 of 0.38 $(\tau_5 = 0 \text{ for an ideal square-pyramidal coordination sphere, and}$ = 1 for an ideal trigonal-pyramidal coordination sphere; Addison et al., 1984). There are four five-membered chelate rings; Cu1/N1/C2/C3/S1 and Cu1/N1/C1/C8/S3 which are inclined by ca 90° to chelate rings Cu1/S1/C4/C5/S2 and Cu1/S2/C6/C7/S3 (Fig. 2).

Reaction of **L1** with copper(I) iodide also gave a binuclear complex, which is bridged by a Cu_2I_2 unit to form a twodimensional coordination polymer, poly-[(μ_2 -**L1**)diiodido-)diiodidodicopper(I)di(μ -iodido)dicopper(I)], (**II**); see Fig. 3. The binuclear complex possesses inversion symmetry with the pyrazine ring being located about a center of symmetry. The

Figure 2

A view of the molecular structure of complex I, with atom labelling for the asymmetric unit; symmetry code: (i) -x + 1, -y + 1, -z. Displacement ellipsoids are drawn at the 50% probability level.

Table 2	
Selected geometric parameters (Å, °) for II .

6	•	,	
Cu1-N1	2.095 (10)	Cu2-I1	2.665 (2)
Cu1-S1	2.342 (4)	Cu2-I2	2.6166 (19)
Cu1-S2	2.331 (4)	I1-Cu2 ⁱⁱ	2.675 (2)
Cu1-I2 ⁱ	2.5193 (18)	Cu2-Cu2 ⁱⁱ	2.663 (4)
Cu2-S3	2.359 (4)		
N1-Cu1-S2	110.2 (3)	S3-Cu2-I1 ⁱⁱ	99.22 (11)
N1-Cu1-S1	85.3 (3)	I2-Cu2-I1 ⁱⁱ	112.01 (7)
S2-Cu1-S1	91.74 (14)	$I1-Cu2-I1^{ii}$	120.18 (7)
$N1-Cu1-I2^i$	121.1 (3)	Cu2-I1-Cu2 ⁱⁱ	59.82 (7)
S2-Cu1-I2 ⁱ	112.48 (12)	Cu1 ⁱⁱⁱ -I2-Cu2	94.93 (7)
$S1-Cu1-I2^i$	130.61 (10)	Cu2 ⁱⁱ -Cu2-I1	60.27 (7)
S3-Cu2-I2	109.54 (11)	Cu2 ⁱⁱ -Cu2-I1 ⁱⁱ	59.91 (7)
S3-Cu2-I1	105.86 (10)	S3-Cu2-Cu2 ⁱⁱ	115.75 (13)
I2-Cu2-I1	109.04 (8)	I2-Cu2-Cu2 ⁱⁱ	134.68 (11)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z.

Cu₂I₂ unit is also located about an inversion center. Selected bond distances and angles are given in Table 2. The two independent copper(I) atoms, Cu1 and Cu2, are both fourfold coordinate. Atom Cu1 coordinates to the ligand L1 in a tridentate fashion and has an NS₂I coordination environment. The fourfold index parameter τ_4 is 0.77 indicating a very irregular shape ($\tau_4 = 1$ for a perfect tetrahedral environment, 0 for a perfect square-planar environment and 0.85 for a perfect trigonal–pyramidal environment; Yang *et al.*, 2007). There are three chelate rings, two of which are five-membered (Cu1/N1/ C2/C3/S1 and Cu1/S1/C4/C5/S2) and one eight-membered (Cu1/N1/C1/C8/S3/C7/C6/S2). The second copper(I) atom, Cu2, coordinates to L1 in a monodentate fashion and has an SI₃ environment with an almost perfect tetrahedral geometry; here the fourfold index parameter τ_4 is 0.91.

Figure 3

A view of the molecular structure of complex **II**, with atom labelling for the asymmetric unit; symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z. Displacement ellipsoids are drawn at the 50% probability level. (Atom Cu1 is green, while atom Cu2 is orange.)

Table 3					
Hydrogen-bond	geometry	(Å,	°)	for I .	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6B\cdots S1^{i}$	0.98	2.85	3.753 (9)	154
$C5-H5A\cdots S3^{ii}$	0.98	2.81	3.634 (8)	143
$C3-H3A\cdots Br2^{iii}$	0.98	2.86	3.814 (8)	165
$C3-H3B\cdots Br2^{ii}$	0.98	2.83	3.770 (7)	160
$C5-H5B\cdots Br2^{iv}$	0.98	2.87	3.821 (7)	164
$C7-H7B\cdots Br2^{i}$	0.98	2.82	3.646 (8)	142
$C8-H8A\cdots Br2^{i}$	0.98	2.84	3.769 (9)	159
$C8-H8B\cdots Br2^{v}$	0.98	2.89	3.713 (7)	142

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x, -y + 1, -z; (iv) -x + 1, -y + 1, -z; (v) -x + 1, -y, -z.

The Cu1-N1 bond lengths in the two complexes, 2.046 (6) Å in I and 2.095 (10) Å in II, are significantly different (Linden, 2020). They have a difference of 0.049 (12) Å so differ by 4.1 σ (*i.e.*, 0.049 Å = 0.012 Å × 4.1). In I, the bond length Cu1-S2 of 2.455 (2) Å is significantly longer than bond lengths Cu1-S1 [2.346 (2) Å] and Cu1-S3 [2.333 (2) Å]. In II, bond lengths Cu1-S1 and Cu1-S2, involving the five-membered chelate rings, *viz.* 2.342 (4) and 2.331 (4) Å, respectively, are similar to those in I, while bond length Cu2-S3 [2.359 (4) Å] is only slightly longer. The bridging Cu2-Cu2ⁱ distance in the Cu₂I₂ unit in II is 2.663 (4) Å (Table 2), considerably shorter than the same distance observed in complex CuI-L2 [2.776 (1) Å] [Fig. 1*a*; Assoumatine & Stoeckli-Evans, 2020*b*].

3. Supramolecular features

In the crystal of **I**, the cations are linked by pairs of C6– $H6B\cdots S1^{i}$ hydrogen bonds to form chains along the *a*-axis direction. Chains are also formed along the *b*-axis direction *via* C5– $H5A\cdots S3^{ii}$ hydrogen bonds (Table 3). These interactions result in the formation of a supramolecular network that lies parallel to the *ab* plane (Fig. 4). There are also a large number of C– $H\cdots$ Br contacts present involving the anion, Br2⁻,

Figure 4

A view along the *c* axis of the crystal packing of **I**. The $C-H\cdots S$ hydrogen bonds are shown as dashed lines (see Table 3). For clarity, the Br^{-} anion and the H atoms not involved in these intermolecular interactions have been omitted.

A view along the *b* axis of the crystal packing of **I**. The $C-H\cdots$ S and $C-H\cdots$ Br⁻ hydrogen bonds (Table 3) are shown as dashed lines (see Table 3). For clarity, only the H atoms involved in these intermolecular interactions have been included.

strengthening the supramolecular network (Fig. 5 and Table 3). There are no significant inter-layer contacts present in the crystal.

In the crystal of \mathbf{II} , the two-dimensional coordination polymers lie parallel to the (001) plane, as shown in Fig. 6. There are no significant inter-layer contacts present in the crystal (Fig. 7).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom *et al.*, 2016) for

Figure 6

A view along the c axis of the two-dimensional structure of complex **II**. For clarity, H atoms have been omitted.

research communications

 Table 4

 Experimental details.

	I	П
Crystal data		
Chemical formula	$[Cu_2Br_2(C_{16}H_{24}N_2S_6)]Br_2$	$[Cu_4I_4(C_{16}H_{24}N_2S_6)]$
M_r	883.45	1198.49
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$
Temperature (K)	223	293
a, b, c (Å)	7.2090 (7), 8.1422 (8), 12.3904 (14)	7.7713 (8), 8.9456 (9), 11.2464 (14)
α, β, γ (°)	71.842 (12), 74.702 (12), 72.694 (12)	106.839 (13), 104.644 (13), 93.412 (12)
$V(\dot{A}^3)$	647.93 (13)	716.53 (15)
Z	1	1
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	8.30	7.69
Crystal size (mm)	$0.20 \times 0.20 \times 0.03$	$0.30 \times 0.20 \times 0.05$
Data collection		
Diffractometer	Stoe IPDS 1	Stoe IPDS 1
Absorption correction	Multi-scan (MULABS; Spek, 2020)	Multi-scan (MULABS; Spek, 2020)
T_{\min}, T_{\max}	0.421, 1.000	0.435, 1.000
No. of measured, independent and	5057, 2320, 1843	5260, 2505, 1698
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.076	0.100
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.613	0.606
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.060, 0.153, 1.01	0.070, 0.183, 0.95
No. of reflections	2320	2505
No. of parameters	106	127
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	1.65, -1.67	2.25, -2.58

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2020), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publcIF (Westrip, 2010).

tri- or hexa-thiabenzenophane ligands gave only three hits. They include the trithiabenzenophane ligand, 2,5,8-trithia(9)*m*-benzenophane (CSD refcode VEYNES; Groot & Loeb, 1990), and a palladium and a silver complex of the same ligand, *viz*. dichloro[2,5,8-trithia(9)-*m*-benzenophane]palladium(II) (KOMNOP; Groot *et al.*, 1991), a mononuclear complex, and poly[[2,5,8-trithia(9)-*m*-cyclophane-*S*,*S'*,*S''*]-silver(I) trifluoromethylsulfonate acetonitrile solvate] (ZIDPEH; Casabo *et al.*, 1995), a two-dimensional coordination polymer. In KOMNOP, the ligand coordinates in a

Figure 7

A view along the a axis of the crystal packing of complex **II**. For clarity, H atoms have been omitted.

bidentate manner. The palladium(II) atom is fourfold S_2Cl_2 coordinate with a square-planar environment (index parameter τ_4 is 0.04), In ZIDPEH, the ligand coordinates in a bridging μ_3 -monodentate manner. The silver(I) atom is five-fold NOS₃ coordinate with an irregular shape (index parameter τ_5 is 0.56).

A search for benzenophane ligands similar to L2 and L3 gave zero hits for L2 and ten hits for L3. The latter compounds have been compared in a recent article (Assoumatine & Stoeckli-Evans, 2020*d*), which also describes the syntheses and crystal structures of both L2 and L3.

5. Synthesis and crystallization

The synthesis and crystal structure of the ligand 2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane (L1), have been reported (Assoumatine & Stoeckli-Evans, 2020*a*).

Synthesis of complex $[(\mu_2-L1)$ dibromodo dicopper(II)] dibromide (I): A solution of L1 (15 mg, 0.03 mmol) in CHCl₃ (10 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. Then a solution of CuBr₂ (7 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least 3 weeks, whereupon brown crystals of complex I were isolated in the buffer zone.

Synthesis of complex poly-[$(\mu_2$ -L1)diiodido-dicopper(I)di(μ -iodido)-dicopper(I)] (II): A solution of L1 (15 mg, 0.03 mmol) in CH₂Cl₂ (5 ml) was introduced into a 16 mm diameter glass tube and layered with MeCN (2 ml) as a buffer zone. A solution of CuI (6 mg, 0.03 mmol) in MeCN (5 ml) was added gently to avoid possible mixing. The glass tube was sealed under an atmosphere of nitrogen and left in the dark at room temperature for at least 3 weeks, whereupon small orange crystals of complex **II** were isolated in the buffer zone.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were included in calculated positions and treated as riding on their parent atoms: C-H = 0.98 Å for I and 0.97 Å for II, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Intensity data were measured using a STOE IPDS-1 onecircle diffractometer. For the triclinic system often only 93% of the Ewald sphere is accessible, which explains why the alerts diffrn_refIns_laue_measured_fraction_full value (0.94) below minimum (0.95) for both compounds I and II are given. This involves 145 random reflections out of the expected 2336 for the IUCr cutoff limit of $\sin \theta/\lambda = 0.60$ for I, and 155 random reflections out of the expected 2600 reflections for II. The residual electron-density peaks are approximately 1Å from the halogen atoms in both structures.

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel .

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.
- Assoumatine, T. & Stoeckli-Evans, H. (2020*a*). Acta Cryst. E**76**, 977–983.
- Assoumatine, T. & Stoeckli-Evans, H. (2020b). IUCrData, 5, x200467.
- Assoumatine, T. & Stoeckli-Evans, H. (2020c). IUCrData, 5, x200401.
- Assoumatine, T. & Stoeckli-Evans, H. (2020*d*). Acta Cryst. E**76**, 539–546.
- Casabo, J., Flor, T., Hill, M. N. S., Jenkins, H. A., Lockhart, J. C., Loeb, S. J., Romero, I. & Teixidor, F. (1995). *Inorg. Chem.* **34**, 5410–5415.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Groot, B. de, Hanan, G. S. & Loeb, S. J. (1991). *Inorg. Chem.* **30**, 4644–4647.
- Groot, B. de & Loeb, S. J. (1990). Inorg. Chem. 29, 4084-4090.
- Linden, A. (2020). Acta Cryst. E76, 765-775.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Masci, B. & Thuéry, P. (2008). Cryst. Growth Des. 8, 1689-1696.
- Nawrot, I., Machura, B. & Kruszynski, R. (2015). *CrystEngComm*, **17**, 830–845.
- Ouellette, W., Burkholder, E., Manzar, S., Bewley, L., Rarig, R. S. & Zubieta, J. (2004). *Solid State Sci.* 6, 77–84.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Stoe & Cie (1997). *IPDS-I* Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
- Wang, T., Huang, K., Peng, M., Li, X., Han, D., Jing, L. & Qin, D. (2019). CrystEngComm, 21, 494–501.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.
- Zhang, F., Yan, P., Li, H., Zou, X., Hou, G. & Li, G. (2014). Dalton Trans. 43, 12574–12581.

Acta Cryst. (2020). E76, 984-989 [https://doi.org/10.1107/S2056989020007161]

Crystal structures of $[(\mu_2-L1)$ dibromidodicopper(II)] dibromide and poly $[[(\mu_2-L1)]$ L1)diiodidodicopper(I)]-di-*µ*-iodido-dicopper(I)], where L1 is 2,5,8,11,14,17hexathia-[9.9](2,6,3,5)-pyrazinophane

Tokouré Assoumatine and Helen Stoeckli-Evans

Computing details

For both structures, data collection: EXPOSE in IPDS-I (Stoe & Cie, 1997); cell refinement: CELL in IPDS-I (Stoe & Cie, 1997); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

 $[\mu_2-2,5,8,11,14,17$ -Hexathia-[9.9](2,6,3,5)-pyrazinophane]bis[bromidocopper(II)] dibromide (I)

Crystal data	
$[Cu_2Br_2(C_{16}H_{24}N_2S_6)]Br_2$	Z = 1
$M_r = 883.45$	F(000) = 428
Triclinic, P1	$D_{\rm x} = 2.264 {\rm Mg} {\rm m}^{-3}$
a = 7.2090 (7) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 8.1422 (8) Å	Cell parameters from 5000 reflections
c = 12.3904 (14) Å	$\theta = 2.7 - 25.8^{\circ}$
$\alpha = 71.842 (12)^{\circ}$	$\mu = 8.30 \text{ mm}^{-1}$
$\beta = 74.702 (12)^{\circ}$	T = 223 K
$\gamma = 72.694 \ (12)^{\circ}$	Plate, brown
V = 647.93 (13) Å ³	$0.20 \times 0.20 \times 0.03 \text{ mm}$
Data collection	
STOE IPDS 1	5057 measured reflections
diffractometer	2320 independent reflections
Radiation source: fine-focus sealed tube	1843 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.076$
φ rotation scans	$\theta_{\text{max}} = 25.8^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(MULABS; Spek, 2020)	$k = -9 \longrightarrow 9$
$T_{\min} = 0.421, \ T_{\max} = 1.000$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	2320 reflections
Least-squares matrix: full	106 parameters
$R[F^2 > 2\sigma(F^2)] = 0.060$	0 restraints

 $wR(F^2) = 0.153$

S = 1.01

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.1019P)^2]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 1.65 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -1.67 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.19307 (12)	0.19827 (12)	0.45400 (7)	0.0328 (3)
Cu1	0.38840 (13)	0.35871 (11)	0.29477 (7)	0.0163 (3)
S1	0.1670 (3)	0.6379 (2)	0.28528 (15)	0.0215 (4)
S2	0.6115 (3)	0.4639 (2)	0.36310 (15)	0.0197 (4)
S3	0.6481 (3)	0.1120 (2)	0.27313 (15)	0.0175 (4)
N1	0.4546 (9)	0.4439 (7)	0.1184 (5)	0.0156 (7)
C1	0.5922 (11)	0.3381 (9)	0.0573 (6)	0.0156 (7)
C2	0.3618 (10)	0.6046 (9)	0.0628 (6)	0.0156 (7)
C3	0.2054 (11)	0.7229 (9)	0.1295 (6)	0.0202 (16)
H3A	0.080095	0.744824	0.104611	0.024*
H3B	0.240502	0.837592	0.109580	0.024*
C4	0.3042 (11)	0.7561 (10)	0.3270 (6)	0.0213 (9)
H4A	0.262709	0.883424	0.290981	0.026*
H4B	0.267942	0.739951	0.411020	0.026*
C5	0.5303 (11)	0.6978 (9)	0.2940 (6)	0.0156 (7)
H5A	0.592228	0.768345	0.318918	0.019*
H5B	0.570091	0.717761	0.209820	0.019*
C6	0.8280 (12)	0.3836 (9)	0.2624 (6)	0.0213 (9)
H6A	0.808898	0.438922	0.182395	0.026*
H6B	0.945536	0.410333	0.272072	0.026*
C7	0.8506 (11)	0.1809 (9)	0.2918 (7)	0.0223 (16)
H7A	0.867485	0.130400	0.372431	0.027*
H7B	0.971846	0.130109	0.243159	0.027*
C8	0.6904 (12)	0.1574 (9)	0.1173 (6)	0.0213 (9)
H8A	0.833237	0.139237	0.087755	0.026*
H8B	0.644904	0.070380	0.097392	0.026*
Br2	0.21653 (11)	0.20772 (10)	0.02398 (7)	0.0267 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0270 (5)	0.0335 (5)	0.0267 (5)	-0.0116 (4)	-0.0043 (3)	0.0114 (3)
Cu1	0.0194 (5)	0.0085 (5)	0.0194 (5)	-0.0036 (4)	-0.0032 (4)	-0.0013 (3)
S 1	0.0215 (10)	0.0172 (10)	0.0201 (9)	0.0018 (8)	-0.0013 (7)	-0.0053 (7)

S2	0.0281 (10)	0.0115 (9)	0.0223 (9)	-0.0028 (8)	-0.0095 (8)	-0.0060 (7)
S3	0.0270 (10)	0.0051 (8)	0.0195 (8)	-0.0025 (8)	-0.0085 (7)	0.0005 (6)
N1	0.0223 (18)	0.0065 (15)	0.0219 (16)	-0.0034 (14)	-0.0088 (13)	-0.0053 (12)
C1	0.0223 (18)	0.0065 (15)	0.0219 (16)	-0.0034 (14)	-0.0088 (13)	-0.0053 (12)
C2	0.0223 (18)	0.0065 (15)	0.0219 (16)	-0.0034 (14)	-0.0088 (13)	-0.0053 (12)
C3	0.029 (4)	0.012 (4)	0.014 (3)	0.008 (3)	-0.007 (3)	-0.006 (3)
C4	0.031 (3)	0.011 (2)	0.022 (2)	-0.002 (2)	-0.0101 (19)	-0.0047 (17)
C5	0.0223 (18)	0.0065 (15)	0.0219 (16)	-0.0034 (14)	-0.0088 (13)	-0.0053 (12)
C6	0.031 (3)	0.011 (2)	0.022 (2)	-0.002 (2)	-0.0101 (19)	-0.0047 (17)
C7	0.024 (4)	0.011 (4)	0.035 (4)	0.002 (3)	-0.020 (3)	-0.004 (3)
C8	0.031 (3)	0.011 (2)	0.022 (2)	-0.002 (2)	-0.0101 (19)	-0.0047 (17)
Br2	0.0247 (4)	0.0210 (4)	0.0385 (5)	-0.0073 (4)	-0.0041 (3)	-0.0127 (3)

Geometric parameters (Å, °)

Cu1—N1	2.046 (6)	C2—C3	1.497 (9)	
Cu1—S1	2.346 (2)	С3—НЗА	0.9800	
Cu1—S2	2.4549 (18)	С3—Н3В	0.9800	
Cu1—S3	2.333 (2)	C4—C5	1.536 (10)	
Cu1—Br1	2.3672 (11)	C4—H4A	0.9800	
S1—C3	1.811 (7)	C4—H4B	0.9800	
S1—C4	1.822 (7)	С5—Н5А	0.9800	
S2—C6	1.815 (8)	С5—Н5В	0.9800	
S2—C5	1.814 (7)	C6—C7	1.542 (9)	
S3—C7	1.802 (7)	С6—Н6А	0.9800	
S3—C8	1.808 (7)	C6—H6B	0.9800	
N1—C1	1.342 (9)	С7—Н7А	0.9800	
N1—C2	1.340 (9)	С7—Н7В	0.9800	
C1-C2 ⁱ	1.394 (10)	C8—H8A	0.9800	
C1—C8	1.482 (11)	C8—H8B	0.9800	
N1—Cu1—S1	85.26 (18)	S1—C3—H3B	108.4	
N1—Cu1—S3	85.38 (18)	НЗА—СЗ—НЗВ	107.5	
S3—Cu1—S1	168.54 (7)	C5—C4—S1	115.1 (5)	
N1—Cu1—Br1	145.45 (15)	C5—C4—H4A	108.5	
S1—Cu1—Br1	96.48 (6)	S1—C4—H4A	108.5	
S3—Cu1—Br1	94.97 (6)	C5—C4—H4B	108.5	
N1—Cu1—S2	104.48 (15)	S1—C4—H4B	108.5	
S1—Cu1—S2	88.79 (7)	H4A—C4—H4B	107.5	
S3—Cu1—S2	87.17 (7)	C4—C5—S2	109.4 (4)	
Br1—Cu1—S2	110.05 (6)	C4—C5—H5A	109.8	
C3—S1—C4	102.4 (3)	S2—C5—H5A	109.8	
C3—S1—Cu1	98.5 (2)	C4—C5—H5B	109.8	
C4—S1—Cu1	101.4 (3)	S2—C5—H5B	109.8	
C6—S2—C5	104.4 (3)	H5A—C5—H5B	108.3	
C6—S2—Cu1	93.8 (2)	C7—C6—S2	105.4 (5)	
C5—S2—Cu1	96.5 (2)	С7—С6—Н6А	110.7	
C7—S3—C8	100.9 (4)	S2—C6—H6A	110.7	

C7—S3—Cu1	101.0 (2)	С7—С6—Н6В	110.7
C8—S3—Cu1	97.8 (3)	S2—C6—H6B	110.7
C1—N1—C2	119.4 (6)	H6A—C6—H6B	108.8
C1—N1—Cu1	119.9 (5)	C6—C7—S3	115.5 (5)
C2—N1—Cu1	120.7 (5)	С6—С7—Н7А	108.4
$N1-C1-C2^{i}$	120.2 (7)	S3—C7—H7A	108.4
N1—C1—C8	119.9 (6)	С6—С7—Н7В	108.4
C2 ⁱ —C1—C8	119.9 (6)	S3—C7—H7B	108.4
$N1-C2-C1^{i}$	120.4 (6)	H7A—C7—H7B	107.5
N1—C2—C3	120.1 (6)	C1—C8—S3	115.4 (5)
C1 ⁱ C2C3	119.5 (7)	C1—C8—H8A	108.4
C2—C3—S1	115.3 (5)	S3—C8—H8A	108.4
С2—С3—НЗА	108.4	C1—C8—H8B	108.4
S1—C3—H3A	108.4	S3—C8—H8B	108.4
С2—С3—Н3В	108.4	H8A—C8—H8B	107.5
$C2-N1-C1-C2^{i}$	0.2 (10)	Cu1—S1—C4—C5	30.4 (6)
$Cu1$ — $N1$ — $C1$ — $C2^i$	-179.9 (4)	S1—C4—C5—S2	-59.9 (6)
C2—N1—C1—C8	-177.6 (5)	C6—S2—C5—C4	148.0 (5)
Cu1—N1—C1—C8	2.3 (8)	Cu1—S2—C5—C4	52.4 (4)
$C1$ — $N1$ — $C2$ — $C1^i$	-0.2 (10)	C5—S2—C6—C7	-158.1 (5)
Cu1—N1—C2—C1 ⁱ	179.9 (4)	Cu1—S2—C6—C7	-60.3 (5)
C1—N1—C2—C3	178.9 (6)	S2—C6—C7—S3	62.3 (6)
Cu1—N1—C2—C3	-1.0 (8)	C8—S3—C7—C6	74.9 (6)
N1—C2—C3—S1	3.6 (8)	Cu1—S3—C7—C6	-25.4 (6)
$C1^{i}$ — $C2$ — $C3$ — $S1$	-177.3 (5)	N1-C1-C8-S3	-11.6 (8)
C4—S1—C3—C2	99.9 (5)	C2 ⁱ —C1—C8—S3	170.6 (5)
Cu1—S1—C3—C2	-3.8 (5)	C7—S3—C8—C1	-89.9 (6)
C3—S1—C4—C5	-71.0 (6)	Cu1—S3—C8—C1	13.0 (5)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6 <i>B</i> ···S1 ⁱⁱ	0.98	2.85	3.753 (9)	154
C5—H5 <i>A</i> ···S3 ⁱⁱⁱ	0.98	2.81	3.634 (8)	143
C3—H3A····Br2 ^{iv}	0.98	2.86	3.814 (8)	165
C3—H3 <i>B</i> ···Br2 ⁱⁱⁱ	0.98	2.83	3.770 (7)	160
C5—H5 B ···Br2 ⁱ	0.98	2.87	3.821 (7)	164
C7—H7 <i>B</i> ···Br2 ⁱⁱ	0.98	2.82	3.646 (8)	142
C8—H8A····Br2 ⁱⁱ	0.98	2.84	3.769 (9)	159
C8—H8 <i>B</i> ····Br2 ^v	0.98	2.89	3.713 (7)	142

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*, -*y*+1, -*z*; (v) -*x*+1, -*y*, -*z*.

 $Poly[[\mu_2-2,5,8,11,14,17-hexathia-[9.9](2,6,3,5)-pyrazinophane]tetra-\mu-iodido-tetracopper(I)]$ (II)

Z = 1

F(000) = 558

 $\theta = 2.0 - 25.8^{\circ}$

 $\mu = 7.69 \text{ mm}^{-1}$

Plate, orange

 $0.30 \times 0.20 \times 0.05$ mm

T = 293 K

 $D_{\rm x} = 2.777 \ {\rm Mg \ m^{-3}}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 4652 reflections

Crystal data

 $\begin{bmatrix} Cu_4I_4(C_{16}H_{24}N_2S_6) \end{bmatrix} \\ M_r = 1198.49 \\ \text{Triclinic, } P\overline{1} \\ a = 7.7713 (8) \text{ Å} \\ b = 8.9456 (9) \text{ Å} \\ c = 11.2464 (14) \text{ Å} \\ a = 106.839 (13)^{\circ} \\ \beta = 104.644 (13)^{\circ} \\ \gamma = 93.412 (12)^{\circ} \\ V = 716.53 (15) \text{ Å}^3 \\ \end{bmatrix}$

Data collection

STOE IPDS 1	5260 measured reflections
diffractometer	2505 independent reflections
Radiation source: fine-focus sealed tube	1698 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.100$
φ rotation scans	$\theta_{\rm max} = 25.5^\circ, \ \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(MULABS; Spek, 2020)	$k = -10 \rightarrow 10$
$T_{\min} = 0.435, \ T_{\max} = 1.000$	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from
$wR(F^2) = 0.183$	neighbouring sites
S = 0.95	H-atom parameters constrained
2505 reflections	$w = 1/[\sigma^2(F_o^2) + (0.110P)^2]$
127 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 2.25 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.58 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.73534 (12)	0.70224 (11)	0.11663 (9)	0.0396 (3)
I2	0.34990 (12)	0.56223 (11)	0.29340 (9)	0.0370 (3)
Cu1	1.2404 (2)	0.2890 (2)	0.28830 (16)	0.0332 (4)
Cu2	0.5027 (2)	0.4653 (2)	0.10778 (18)	0.0415 (5)
S1	1.3999 (4)	0.0851 (4)	0.3255 (3)	0.0326 (8)
S2	1.1079 (5)	0.2923 (4)	0.4531 (3)	0.0349 (8)
S3	0.6749 (4)	0.2663 (4)	0.1450 (3)	0.0296 (7)
N1	1.0914 (12)	0.1189 (12)	0.1149 (10)	0.025 (2)

C1	0.9371 (16)	0.1373 (15)	0.0368 (12)	0.0238 (18)	
C2	1.1538 (15)	-0.0213 (15)	0.0762 (11)	0.0238 (18)	
C3	1.3271 (19)	-0.0448 (18)	0.1606 (13)	0.038 (3)	
H3A	1.421167	-0.033142	0.120089	0.046*	
H3B	1.314897	-0.152610	0.162526	0.046*	
C4	1.2385 (17)	0.0077 (18)	0.3947 (13)	0.035 (3)	
H4A	1.126049	-0.037376	0.327911	0.042*	
H4B	1.284935	-0.075140	0.427765	0.042*	
C5	1.206 (2)	0.1374 (18)	0.5023 (14)	0.039 (2)	
H5A	1.319763	0.181893	0.567821	0.047*	
H5B	1.127970	0.092387	0.541897	0.047*	
C6	0.8751 (19)	0.2106 (18)	0.3709 (14)	0.039 (2)	
H6A	0.868179	0.113955	0.301594	0.047*	
H6B	0.817806	0.185297	0.431304	0.047*	
C7	0.7789 (16)	0.3263 (16)	0.3162 (12)	0.030 (2)	
H7A	0.864140	0.420800	0.338968	0.036*	
H7B	0.686666	0.355435	0.359299	0.036*	
C8	0.8623 (16)	0.2892 (16)	0.0814 (13)	0.030 (2)	
H8A	0.824277	0.329504	0.008985	0.036*	
H8B	0.956964	0.366690	0.147795	0.036*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0407 (5)	0.0292 (6)	0.0494 (6)	0.0003 (4)	0.0136 (4)	0.0134 (4)
I2	0.0437 (5)	0.0156 (5)	0.0585 (6)	0.0031 (4)	0.0271 (4)	0.0110 (4)
Cu1	0.0348 (8)	0.0176 (10)	0.0487 (10)	0.0019 (7)	0.0144 (7)	0.0110 (7)
Cu2	0.0424 (10)	0.0387 (12)	0.0546 (12)	0.0177 (8)	0.0220 (8)	0.0219 (9)
S1	0.0277 (15)	0.030 (2)	0.0386 (18)	0.0065 (13)	0.0051 (13)	0.0109 (15)
S2	0.0374 (17)	0.025 (2)	0.042 (2)	0.0028 (14)	0.0146 (14)	0.0084 (15)
S3	0.0284 (15)	0.0216 (19)	0.045 (2)	0.0109 (13)	0.0161 (14)	0.0138 (14)
N1	0.025 (5)	0.013 (6)	0.042 (6)	0.005 (4)	0.017 (5)	0.009 (4)
C1	0.029 (4)	0.014 (5)	0.031 (5)	0.007 (3)	0.011 (4)	0.009 (3)
C2	0.029 (4)	0.014 (5)	0.031 (5)	0.007 (3)	0.011 (4)	0.009 (3)
C3	0.052 (8)	0.022 (8)	0.038 (8)	0.021 (6)	0.014 (6)	0.002 (6)
C4	0.030 (6)	0.038 (9)	0.046 (8)	0.005 (6)	0.012 (6)	0.028 (7)
C5	0.050 (6)	0.027 (6)	0.044 (6)	0.005 (5)	0.012 (5)	0.018 (5)
C6	0.050 (6)	0.027 (6)	0.044 (6)	0.005 (5)	0.012 (5)	0.018 (5)
C7	0.029 (5)	0.024 (6)	0.042 (5)	0.013 (4)	0.018 (4)	0.011 (4)
C8	0.029 (5)	0.024 (6)	0.042 (5)	0.013 (4)	0.018 (4)	0.011 (4)

Geometric parameters (Å, °)

Cu1—N1	2.095 (10)	C1—C2 ⁱⁱⁱ	1.373 (17)
Cu1—S1	2.342 (4)	C1—C8	1.511 (18)
Cu1—S2	2.331 (4)	C2—C3	1.504 (19)
Cu1—I2 ⁱ	2.5193 (18)	С3—НЗА	0.9700
Cu2—S3	2.359 (4)	С3—Н3В	0.9700

Cu2—I1	2.665 (2)	C4—C5	1.50(2)
Cu2—I2	2.6166 (19)	C4—H4A	0.9700
I1—Cu2 ⁱⁱ	2.675 (2)	C4—H4B	0.9700
Cu2—Cu2 ⁱⁱ	2.663 (4)	C5—H5A	0.9700
S1—C3	1.803 (13)	С5—Н5В	0.9700
S1—C4	1.834 (13)	C6—C7	1.50(2)
S2—C5	1.779 (16)	С6—Н6А	0.9700
S2—C6	1.808 (14)	С6—Н6В	0.9700
\$3—C7	1.793 (13)	C7—H7A	0.9700
\$3-68	1.803 (12)	C7—H7B	0.9700
N1—C1	1 346 (16)	C8—H8A	0 9700
N1—C2	1 364 (16)	C8—H8B	0.9700
111 02	1.501 (10)		0.9700
N1—Cu1—S2	110.2 (3)	C2—C3—S1	116.7 (10)
N1—Cu1—S1	85.3 (3)	С2—С3—НЗА	108.1
S2—Cu1—S1	91.74 (14)	S1—C3—H3A	108.1
N1—Cu1—I2 ⁱ	121.1 (3)	С2—С3—Н3В	108.1
S2—Cu1—I2 ⁱ	112.48 (12)	S1—C3—H3B	108.1
S1—Cu1—I2 ⁱ	130.61 (10)	НЗА—СЗ—НЗВ	107.3
S3—Cu2—I2	109.54 (11)	C5-C4-S1	110.1 (10)
\$3—Cu2—I1	105.86 (10)	C5—C4—H4A	109.6
I2	109.04 (8)	S1—C4—H4A	109.6
S_{3} Cu2 II	99 22 (11)	C5-C4-H4B	109.6
$12-Cu^2-11^{ii}$	112 01 (7)	S1—C4—H4B	109.6
$II - Cu^2 - II^{ii}$	120.18(7)	H4A - C4 - H4B	108.2
$Cu2$ —I1— $Cu2^{ii}$	59 82 (7)	$C4-C5-S^2$	1144(10)
$Cu1^{iv}$ I2 Cu2	94 93 (7)	C4 - C5 - H5A	108 7
$Cu2^{ii}$ $Cu2^{ii}$ $Cu2^{ii}$	60 27 (7)	S2-C5-H5A	108.7
$Cu2^{ii}$ $Cu2^{ii}$ $I1^{ii}$	59 91 (7)	C4-C5-H5B	108.7
S_{3} C_{11}^{2} C_{11}^{2}	11575(13)	S2C5H5B	108.7
$12 - Cu^2 - Cu^{2ii}$	134 68 (11)	H5A_C5_H5B	107.6
C_{3}	100.9(7)	C7_C6_\$2	107.0 110.2(10)
$C_3 = S_1 = C_1$	964(5)	C7 C6 H6A	100.6
$C_{4} = S_{1} = C_{11}$	90.4 (5)	S2 C6 H6A	109.0
$C_{5} = S_{2} = C_{6}$	94.3(3) 104.7(7)	52-60-10A	109.0
$C_{5} = S_{2} = C_{1}$	104.7(7)	S2 C6 H6B	109.0
$C_{5} = S_{2} = C_{11}$	98.8(3)		109.0
$C_0 = S_2 = C_0$	103.0(3) 102.8(6)	10A - C0 - 110B	100.1 117.8(10)
$C_{7} = S_{3} = C_{8}$	102.8(0) 106.0(4)	$C_{0} = C_{1} = S_{3}$	107.0
$C_{1}^{2} = S_{2}^{2} = C_{12}^{2}$	100.0(4) 105.2(5)	S2 C7 H7A	107.9
C_{0}	103.2(3)	S_{3} C_{-} C_{7} U_{7} U_{7}	107.9
C1 - N1 - C2	110.0(10) 124.0(0)	$C_0 - C_1 - H_1 B$	107.9
C1 - N1 - Cu1	124.9 (9)	S_{3} C_{1} $H_{1}B$	107.9
U_2 —INI—UII	118.3(8) 122.1(12)	$\Pi/A - U/- H/B$	107.2
$NI = CI = C2^{-1}$	122.1(12)	C1 = C0 = U0A	113.2 (9)
$NI - U - U \delta$	11/.1 (11)	$C_1 - C_0 - H_0 A$	108.9
$U_2^{\text{m}} = U_1 = U_8$	120.8 (11)	S_{3} — C_{8} — $H_{8}A$	108.9
NI	121.3 (11)		108.9
NI-C2-C3	117.9 (11)	S3—C8—H8B	108.9

C1 ⁱⁱⁱ —C2—C3	120.7 (12)	H8A—C8—H8B	107.7
C2—N1—C1—C2 ⁱⁱⁱ	0.0 (19)	Cu1—S1—C4—C5	-52.9 (10)
Cu1—N1—C1—C2 ⁱⁱⁱ	179.6 (9)	S1—C4—C5—S2	62.8 (12)
C2—N1—C1—C8	177.4 (10)	C6—S2—C5—C4	74 9 (11)
$C_{1} = C_{1} = C_{3}$ $C_{1} = C_{1} = C_{3}$ $C_{1} = C_{1} = C_{3}$ $C_{1} = C_{1} = C_{3}$ $C_{1} = C_{1} = C_{3}$	-3.0(15) 0.0(19)	Cu1—S2—C5—C4 Cu1—S2—C5—C4 C5—S2—C6—C7	-33.3(10) -176.2(10)
$Cu1-N1-C2-C1^{m}$	-179.6 (9)	Cu1—S2—C6—C7	-72.6 (10)
C1-N1-C2-C3	179.3 (11)	S2—C6—C7—S3	121.3 (9)
Cu1-N1-C2-C3	-0.3 (15)	C8—S3—C7—C6	-78.8 (11)
N1—C2—C3—S1	18.3 (17)	Cu2—S3—C7—C6	171.0 (9)
C1 ⁱⁱⁱ —C2—C3—S1	-162.3 (10)	N1—C1—C8—S3	-103.2 (11)
C4—S1—C3—C2	72.6 (13)	C2 ⁱⁱⁱ —C1—C8—S3	74 2 (14)
Cu1—S1—C3—C2	-23.2 (12)	C7—S3—C8—C1	96.8 (10)
C3—S1—C4—C5	-150.3 (10)	Cu2—S3—C8—C1	-152.4 (8)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+2, -*y*, -*z*; (iv) *x*-1, *y*, *z*.