

Received 15 May 2020 Accepted 10 June 2020

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; internal alkyne; iron; platinum; heterobimetallic; metal-metal bond; dimetallcyclopentenone; bis(diphenylphosphino)methane; thioether; hydrogen bonding.

CCDC reference: 1996804

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of $\{\mu_2$ -1,2-bis[(4-methylphenylsulfanyl]-3-oxoprop-1-ene-1,3-diyl-1: $2\kappa^2 C^3: C^1$ }dicarbonyl-1 $\kappa^2 C$ -[μ_2 -methylenebis(diphenylphosphane)-1: $2\kappa^2 P:P'$](triphenylphosphane- $2\kappa P$)ironplatinum(*Fe*—*Pt*), [(OC)₂Fe(μ -dppm){ μ -C(=O)-C(4-MeC₆H₄SCH₂)=CCH₂SC₆H₄Me-4}Pt(PPh₃)]

Ahmed Said Mohamed,^{a,b} Isabelle Jourdain,^b Michael Knorr,^b Lukas Brieger^c and Carsten Strohmann^c*

^aCentre D'Etude et de Recherche de Djibouti, Djibouti, ^bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France, and ^cInstitute for Inorganic Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The title compound, $[FePt(C_{19}H_{18}OS_2)(C_{18}H_{15}P)(C_{25}H_{22}P_2)(CO)_2]$, **1**, $[(OC)_2-Fe(\mu-dppm)(\mu-C(=O)C(CH_2SC_6H_4Me-4)=CCH_2SC_6H_4Me-4)Pt(PPh_3)]$, represents the first example of a diphosphane-bridged heterobimetallic Fe–Pt dimetallacyclopentenone complex resulting from a bimetallic activation of metal-coordinated carbonyl ligand with an internal alkyne, namely 1,4-bis(*p*-tolylthio)but-2-yne. The bridging μ_2 -C(=O)C(CH_2SC_6H_4Me-4)=CCH_2SC_6H_4-Me-4)=CCH_2SC_6H_4-Me-4 unit (stemming from a carbon–carbon coupling reaction between CO and the triple bond of the alkyne dithioether) forms a five-membered dimetallacyclopentenone ring, in which the C=C bond is π -coordinated to the Fe center. The latter is connected to the Pt center through a short metal–metal bond of 2.5697 (6) Å.

1. Chemical context

Acetylenic dithioether ligands of type RSCH₂C=CCH₂SR (R = aryl, alkyl) have in recent years not only attracted attention as reactive building blocks for further organic transformations (Pourcelot & Cadiot, 1966; Everhardus & Brandsma; 1978; Levanova et al., 2015) but also as promising ligands for coordination chemistry because of their dytopic character, allowing both coordination to soft metal centers through dative $M \leftarrow S$ bonding and π -bonding via the acetylenic triple bond. In this context, we have explored in a series of several papers the coordination of this ligand family to CuX salts in a self-assembly process to discrete molecular compounds, mono- and bidimensional coordination polymers and threedimensional MOFs. For example, treatment of CuI with PhSCH₂C=CCH₂SPh afforded a three-dimensional network incorporating $Cu_6(\mu_3-I)$ hexagonal prisms as connection nodes (Knorr et al., 2009; Bai et al., 2018). In contrast, reaction of $BzSCH_2C \equiv CCH_2SBz$ (Bz = benzyl) with both CuI and CuBr provided simple isostructural dinuclear zero-dimensional complexes [{ $Cu(\mu_2 - X)_2Cu$ }(μ -BzSCH₂C=CCH₂SBz)₂] (X = I, Br). A far more original material resulted from coordination to CuCl, yielding a luminescent 2D material $[{Cu_2(\mu_2-Cl)(\mu_3-Cl)}(\mu-BzSCH_2C=CCH_2SBz)]_n$, in which

The reaction scheme for the synthesis of **1**.

the layers are assembled both by dative Cu-S thioether bonds and organometallic Cu- π -acetylenic interactions via the triple bond of the ligand. Furthermore, the Cu^I centers are interconnected through μ_2 - and μ_3 -bound chloro ligands. Treatment of CuI with the isomeric *p*-TolSCH₂C=CCH₂STolp (Tol = C₆H₄-p-Me) ligand led to the formation of a 2D network $[{Cu_4(\mu_3-I)_4}(\mu-TolSCH_2C \equiv CCH_2STol)_2]_n$ with closed cubane-type clusters as SBUs (Secondary Building Units), whilst with CuBr the 1D [{Cu(μ_2 -Br)_2Cu}(μ - $TolSCH_2C = CCH_2STol_2]_n$ coordination polymer was generated (Aly et al., 2014; Bonnot et al., 2015). An alternative approach to combining a metallic scaffold with $RSCH_2C = CCH_2SR$ -type ligands has been developed by Went and coworkers, who post-functionalized dicobaltatetrahedrane complexes $[Co_2(\mu - HOCH_2C \equiv CCH_2OH)(CO)_6]$ in the presence of HBF4·OEt2 and various thiols RSH to obtain $[Co_2(\mu - RSCH_2C \equiv CCH_2SR)(CO)_6]$ and $[Co_2(\mu - RSCH_2C \equiv CCH_2SR)(CO)_6]$ $RSCH_2C \equiv CCH_2SR(\mu\text{-dppm})(CO)_4$ [dppm = bis(diphenylphosphino)methane], respectively. Similar treatment of $[Mo_2(\mu-HOCH_2C=CCH_2OH)(CO)_4Cp_2]$ with EtSH yielded $[Mo_2(\mu-EtSCH_2C=CCH_2SEt)(CO)_4Cp_2]$. These former Co-Co thioether complexes were then employed as metalloligands coordinate further metal fragments such to as $[Cu(MeCN)_4]PF_6$, AgBF₄ and $[Mo(CO)_4(norbornadiene)]$ (Bennett, et al., 1992; Gelling et al., 1993). Related dicationic salts such as $[(Co_2(CO)_6)_2 - \mu, \eta^2, \eta^2 - (Me_2S - CH_2C \equiv CCH_2S - CH_2C = CCH_2C = C$ Me_2][BF₄]₂ have also been described (Amouri *et al.*, 2000). We and Shaw's group have demonstrated that upon treatment of the μ -carbonyl complex [(OC)₃Fe(μ -dppm)(μ -CO)Pt- (PPh_3)] with ArC=CH (Ar = Ph, p-Tol, 2,4,5-trimethylphenyl, $p-C_6H_4F$, 2,4-C₆H₃F₂, $p-C_6H_4CF_3$), dimetallacyclopentone complexes are formed, stemming from carbon-carbon coupling reactions between CO and the terminal alkyne (Fontaine et al., 1988; Jourdain et al., 2013; Knorr & Jourdain, 2017; Brieger et al., 2019). The first step involves the formation of a kinetic isomer $[(OC)_2Fe(\mu-dppm)\{\mu-C(=O)C(H)\}$ =C(Ar) Pt(PPh₃), which then evolves to the thermodynamic one $[(OC)_2Fe(\mu\text{-dppm})\{\mu\text{-}C(=O)C(Ar)=C(H)\}Pt(PPh_3)].$ We were now intrigued as to whether this route may be extended to internal alkynes $RC \equiv CR$, which are in general less reactive than terminal ones. We therefore probed the possibility of coupling $[(OC)_3Fe(\mu-dppm)(\mu-CO)Pt(PPh_3)]$ with p-TolSCH₂C=CCH₂STol-p in hot toluene as solvent and succeeded in isolating the targeted dimetallacyclopentone $[(OC)_2Fe(\mu-dppm)(\mu-C(=O)C(4-MeC_6H_4SCH_2)=CCH_2S C_6H_4Me-4$)Pt(PPh₃)] (1) as a stable crystalline product according to the reaction scheme shown in Fig. 1. With this title compound 1 in hand, we now have the possibility of coordinating other metal fragments in upcoming studies, for example $[Mo(CO)_4(norbornadiene)]$ or $ReBr(CO)_5$ in a chelating manner using the two adjacent thioether arms or of constructing coordination networks incorporating complex **1** as an organometallic building block by coordination of CuX or Ag^{I} salts on the S-donor sites (see above).

2. Structural commentary

The heterobimetallic compound **1** crystallizes in the monoclinic crystal system, space group $P2_1/c$. The molecular structure is depicted in Fig. 2 and selected bond lengths and angles are given in Table 1.

The Fe-Pt bond [2.5697 (6) Å] is spanned by a dppm ligand and bridged by the C(=O)C(R)=C(R) (R = 4-MeC₆H₄SCH₂) unit resulting from the carbon-carbon coupling reaction between CO and the alkyne. This value,

Figure 2

The molecular structure of the title complex **1**, with atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

Table 1Selected geometric parameters (Å, °).

Pt1-Fe1	2.5697 (6)	Fe1-C2	2.119 (4)
Pt1-P2	2.2850 (10)	Fe1-C3	1.932 (5)
Pt1-P3	2.2714 (12)	Fe1-C20	1.777 (5)
Pt1-C1	2.045 (4)	Fe1-C21	1.789 (5)
Fe1-P1	2.1966 (12)	O3-C3	1.216 (5)
Fe1-C1	2.162 (4)	C1-C2	1.407 (6)
P2-Pt1-Fe1	97.26 (3)	C1-Fe1-C2	38.35 (16)
P3-Pt1-Fe1	161.46 (3)	C20-Fe1-P1	95.66 (14)
P3-Pt1-P2	100.53 (4)	C21-Fe1-P1	102.63 (13)
C1-Pt1-Fe1	54.44 (12)	C3-Fe1-P1	88.88 (13)
C1-Pt1-P2	151.36 (12)	C1-Fe1-P1	141.85 (12)
C1-Pt1-P3	107.33 (12)	C2-Fe1-P1	130.91 (13)
Pt1-C1-Fe1	75.25 (13)	C20-Fe1-Pt1	168.78 (14)
C20-Fe1-C3	101.5 (2)	C21-Fe1-Pt1	87.76 (14)
C20-Fe1-C21	96.5 (2)	C2-Fe1-Pt1	73.72 (12)
C21-Fe1-C3	157.6 (2)	C1-Fe1-Pt1	50.30 (11)
C20-Fe1-C1	119.19 (18)	C3-Fe1-Pt1	72.18 (13)
C21-Fe1-C1	89.16 (18)	P1-Fe1-Pt1	93.50 (4)
C3-Fe1-C1	70.43 (18)	C2-C1-Pt1	109.1 (3)
C20-Fe1-C2	95.33 (18)	C2-C1-Fe1	69.2 (2)

which is less than 2.6 Å, is in the usual range for FePt(dppm)dimetallacyclopentenone complexes. Note that extreme Fe-Pt distances are reported for the μ -carbene [(OC)₃Fe{ μ - $C(Et)OSi(OMe)_3$ (μ -dppm)Pt(PPh_3)] [d(Fe-Pt)]2.5062 (9) Å; YOTCIT; Braunstein et al., 1995] and [Fe(η^5 - $C_5H_4S_2Pt(PPh_3)$] [d(Fe-Pt = 2.935 (2) Å; FENCUW; Akabori et al., 1987]. Coupling of an internal alkyne does not affect the structural features of the [FeC(=O)C(R)=C(R)Pt]motif significantly with respect to carbon-carbon coupling with a terminal alkyne. The relevant bond lengths and angles are very similar to those of other Fe-Pt structures published by Fontaine et al. (1988) and our group (see above). The presence of a bulky substituent on the C1 atom bound to platinum implies a significant reduction of the P3-Pt-P2 angle $[100.53 (4)^{\circ}]$ concomitant with an increasing value of the angle P3-Pt-C1 of 107.33 (12)°. In related compounds described previously in the literature, these P3-Pt-P2 angles usually lie in the range 103.93 (8) to 106.63 $(3)^{\circ}$, as exemplified by $[(OC)_2Fe(\mu-dppm){\mu-C(=O)C{(CH_2)_3CCH}=C(H)}Pt-$ (PPh₃)] (REDNEU) and $[(OC)_2Fe(\mu-dppm)]{\mu-C(=O)C(p-dppm)}$ $C_6H_4CF_3$ = C(H) Pt(PPh₃) (PIXLAL), and 98.8 (3) to $104.95 (10)^{\circ}$ for P3-Pt-C1 in $[(OC)_2 Fe(\mu - dppm)] \mu$ -C(=O)C(H)=C(H) [Pt(PPh₃)] (FEYBAM) and [(OC)₂Fe(μ dppm){ μ -C(=O)C(o,p-C₆H₃F₂)=C(H){Pt(PPh₃)] (PIX-KUE) (Fontaine et al., 1988; Jourdain et al., 2006, 2013). The crystal structure of the dithioether *p*-TolSCH₂C=CCH₂STol-*p* (MULHUZ) was reported by Aly et al. (2014). After complexation and a coupling reaction with a CO ligand, the C1-C2 bond is considerably longer [1.407 (6) vs 1.266 (5) Å] as a result of the conversion to an olefinic moiety, σ -bound to Pt and η^2 -coordinated to Fe. The alkyne bending angles are disparate [C1-C2-C4 = 126.2(4), C2-C1-C12 =119.6 (4)°] as well as the C1–C12 and C2–C4 distances [d(C1-C12) = 1.483(6), d(C2-C4) = 1.511(5) Å].Compared to 1,4-bis(p-tolylthio)but-2-yne, the C-S bonds are also considerably elongated [d(C4-S1 = 1.830(4))]d(C12-S2) = 1.808(4), d(C5-S1) = 1.782(5), d(C13-S2) =

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C15-H15\cdots O1^{i}$	0.93	2.67	3.316 (6)	128
C34—H34A···O3	0.97	2.62	3.271 (5)	125
C39−H39···O3 ⁱⁱ	0.93	2.49	3.239 (6)	138

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

1.771 (4) vs 1.685 (2) and 1.714 (2) Å] but they fit well with those encountered in the dimetallatetrahedrane $[Co_2{\mu-C_2(CH_2SMe)_2Mo(CO)_4}(\mu-dppm)(CO)_4][d(C-S = 1.827 (4), 1.833 (4),1.790 (5) and 1.819 (5) Å; JIHMUI10; Gelling$ *et al.*, 1993].

3. Supramolecular features

In the crystal, the individual molecules are linked by weak intermolecular interactions; for example a contact between $O3'' \cdots H39 \quad [d = 2.49 \text{ Å} \text{ and } C3'' - O3'' \cdots H39 = 138^{\circ};$ symmetry code: ('') -x + 1, -y + 1, -z + 1] occurs (Fig. 3, Table 2. A second, yet still weaker intermolecular interaction of 2.67 Å is observed between the O1' \cdots H15 [symmetry code: (') $x, -y + \frac{3}{2}, z - \frac{1}{2}$ atoms of two adjacent molecules. In addition there is an intramolecular contact between $O3 \cdot \cdot \cdot H34A$ (d = 2.62 Å and C3-O3 $\cdot \cdot \cdot$ H34 $A = 125^{\circ}$). Furthermore, there are also several loose intermolecular $C-H\cdots\pi$ interactions present; for example a contact between C43-H43 and the midpoint of the C13=C14 double bond $[d(H43 \cdots midpoint) =$ 2.73 Å and C-H···midpoint = 157°] of a tolyl ring attached to S2, as well as between C62-H62 and the C23-C24-C25 atoms of a phenyl ring $[d(H62 \cdots centroid) = 2.64 \text{ Å and } C H \cdot \cdot \cdot centroid = 148^{\circ}$ attached at P1. However, since all hydrogen atoms were not refined freely, a more accurate discussion of the bond lengths and angle is not appropriate.

Figure 3

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 2) are shown as dashed lines.

research communications

4. Database survey

Other examples of crystallographically characterized dimetallacyclopentenone complexes are $Fe_2Cp_2(CO)(\mu$ -CO){ μ -CH=C(Ph)C(=O)} (DAHTAJ; Boni et al., 2011), $Fe_2Cp_2(CO)(\mu-CO)\{\mu-C(C=CH)=CHC(=O)\}$ (JUZHIV; Akita *et al.*, 1993), Fe₂(CO)₅(μ -dppm){ μ -C(=O)CH=CH} (GACWIQ10; Knox *et al.*, 1995), $Fe_2(CO)_5(\mu-dppm)\{\mu-$ C(=O)C(Ph)=CH} (PIHMOI; Hitchcock et al., 1993), $Fe_2Cp_2(CO)(\mu-CO)\{\mu-C(COR)=C(Me)C(=O)\}\ (R = Ph,$ Bu) (SIZNUK, SIZPAS; Wong et al., 1991), $Fe_2\{(\eta-C_5H_4)_2 SiMe_2$ (CO)₂(μ -CO){ μ -C(Ph)=C(H)C(=O)} (ZUZGIK; McKee *et al.*, 1994), $Ru_2(CO)_4(\mu - dppm)_2\{\mu - C(=O)C\}$ $(CO_2Me) = C(CO_2Me)$ (JITZAN; Johnson & Gladfelter, 1991), $Ru_2(CO)_4(\mu$ -dppm)₂{ μ -CH=CHC(=O)} (LIFYUU; Mirza *et al.*, 1994), $Ru_2(\eta-C_5HMe_4)_2(CO)(\mu-CO)\{\mu-CO\}$ C(=O)C(R)=C(R) (R = Et, Me) (NEMVOS, NEMVUY; Horiuchi et al., 2012), $Rh_2Cp_2(CO)_4[\mu-C(CF_3)=C(CF_3)-C(CF_3)]$ C(=O)} (TFPNRH; Dickson *et al.*, 1981), Re₂Cp*₂(CO)₂{ μ - $CH = C\{C(=CH_2)CH_3\}C(=O)\}$ (WEZKIV; Casey et al., 1994). A rare example of a heterodinuclear combination $CpFe{\mu-C(=O)C(CMe_2OH)=CH}(\mu-CO)Ru(CO)Cp*$ is (FEHGOP: Dennett et al., 2005). We are also aware of $OsRu(CO)_{8}{\mu-HC=CHC(=O)}$ (Kiel *et al.*, 2000), but for the latter compound no structural data are available.

5. Synthesis and crystallization

 $[(OC)_3Fe(\mu-CO)(\mu-dppm)Pt(PPh_3)]$ (200 mg, 0.2 mmol) was treated with an excess of 1,4-bis(*p*-tolylthio)but-2-yne (100 mg, 0.4 mmol) in toluene (5 mL). The solution was stirred at 363 K for 6h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The brown residue was redissolved in a minimum of toluene. Orange–yellow crystals were isolated by layering with heptane (152 mg, 76% yield).

Calculated for C₆₄H₅₅FeO₃P₃PtS₂ (1279.18 g mol⁻¹): C, 60.05; H, 4.36. Found: C, 59.80; H, 4.21. ¹H NMR: δ 2.21 (*s*, 3H, CH₃), 2.28 (*s*, 3H, CH₃), 3.67 (*br*, 2H, CH₂), 3.97(*br*, 2H, CH₂), 4.53 (*br*, 2H, PCH₂P, ²J_{PtH} = 41), 6.45–7.85 (*m*, 43H, Ph). ³¹P{1H} NMR: δ 6.8 (*d*, P_{dppm Pt}, ²J_{PP} = 57, ^{2 + 3}J_{PP} = 5, ¹J_{PtP} = 2543), 32.7 (*d*, P_{PPh3 Pt}, ³J_{PP} = 32, ^{2 + 3}J_{PP} = 5, ¹J_{PtP} = 3506), 63.4 (*dd*, P_{dppm Fe}, ²J_{PP} = 57, ³J_{PP} = 32, ¹J_{PtP} = 135). IR(toluene): 1966, 1918s ν (CO), 1696m ν (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All of the hydrogen atoms were placed in geometrically calculated positions and each was assigned a fixed isotropic displacement parameter based on a riding model: C-H = 0.93-0.97 Å with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C-}$ methyl) and $1.2U_{\rm eq}({\rm C})$ for other H atoms.

Funding information

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.

Table 3 Experimental details.	
Crystal data	
Chemical formula	$[FePt(C_{19}H_{18}OS_2)(C_{18}H_{15}P)-$
М.	$(C_{25}H_{22}F_2)(CO)_2]$ 1280.05
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	12.0071 (6), 36.1737 (15), 13.6980 (6)
β (°)	111.970 (5)
$V(\dot{A}^3)$	5517.5 (5)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	3.01
Crystal size (mm)	$0.23 \times 0.15 \times 0.05$
Data collection	
Diffractometer	Agilent Technologies Xcalibur, Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.837, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	47863, 10566, 8245
R _{int}	0.071
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.611
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.076, 1.03
No. of reflections	10566
No. of parameters	669
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.12, -0.64

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT2014/5 (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Akabori, S., Kumagai, T., Shirahige, T., Sato, S., Kawazoe, K., Tamura, C. & Sato, M. (1987). *Organometallics*, **6**, 526–531.
- Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106.
- Aly, S. M., Pam, A., Khatyr, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Bauer, J. O., Strohmann, C. & Harvey, P. D. (2014). *J. Inorg. Organomet. Polym.* 24, 190–200.
- Amouri, H., Da Silva, C., Malézieux, B., Andrés, R., Vaissermann, J. & Gruselle, M. (2000). *Inorg. Chem.* 39, 5053–5058.
- Bai, S.-Q., Hoi Ka Wong, I., Zhang, N., Lin Ke, K., Lin, M., Young, D. J. & Hor, T. S. A. (2018). *Dalton Trans.* 47, 16292–16298.
- Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199.
- Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556.
- Bonnot, A., Knorr, M., Strohmann, C., Golz, C., Fortin, D. & Harvey, P. D. (2015). J. Inorg. Organomet. Polym. 25, 480–494.
- Braunstein, P., Knorr, M., DeCian, A. & Fischer, J. (1995). *Organometallics*, **14**, 1302–1309.
- Brieger, L., Jourdain, I., Knorr, M. & Strohmann, C. (2019). Acta Cryst. E75, 1902–1906.
- Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428.
- Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). *Dalton Trans.* pp. 63–73.
- Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

Everhardus, R. H. & Brandsma, L. (1978). Synthesis, pp. 359.

- Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.
- Gelling, A., Went, M. J. & Povey, D. C. (1993). J. Organomet. Chem. 455, 203–210.
- Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162.
- Horiuchi, S., Murase, T. & Fujita, M. (2012). *Angew. Chem. Int. Ed.* **51**, 12029–12031.
- Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099.
- Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359.
- Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). *Inorg. Chem. Commun.* 9, 127–131.
- Kiel, G.-Y., Zhang, Z., Takats, J. & Jordan, R. B. (2000). Organometallics, 19, 2766–2776.

- Knorr, M., Guyon, F., Khatyr, A., Däschlein, C., Strohmann, C., Aly, S. M., Abd-El-Aziz, A. S., Fortin, D. & Harvey, P. D. (2009). *Dalton Trans.* pp. 948–955.
- Knorr, M. & Jourdain, I. (2017). Coord. Chem. Rev. 350, 217-247.
- Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). *Polyhedron*, 14, 2723–2743.
- Levanova, E. P., Vakhrina, V. S., Grabel'nykh, V. A., Rozentsveig, I. B., Russavskaya, N. V., Albanov, A. I., Klyba, L. V. & Korchevin, N. A. (2015). *Russ. Chem. Bull.* 64, 2083–2089.
- McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259.
- Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). *Organometallics*, **13**, 3063–3067.
- Pourcelot, G. & Cadiot, P. (1966). Bull. Soc. Chim. Fr. 9, 3024-3033.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, 10, 530–532.

supporting information

Acta Cryst. (2020). E76, 1087-1091 [https://doi.org/10.1107/S2056989020007859]

Crystal structure of { μ_2 -1,2-bis[(4-methylphenylsulfanyl]-3-oxoprop-1-ene-1,3diyl-1:2 $\kappa^2 C^3$:C¹}dicarbonyl-1 $\kappa^2 C$ -[μ_2 -methylenebis(diphenylphosphane)-1:2 $\kappa^2 P$:P'](triphenylphosphane-2 κP)ironplatinum(Fe—Pt), [(OC)₂Fe(μ -dppm){ μ -C(&z-dbnd;O)C(4-MeC₆H₄SCH₂)&zdbnd;CCH₂SC₆H₄Me-4}Pt(PPh₃)]

Ahmed Said Mohamed, Isabelle Jourdain, Michael Knorr, Lukas Brieger and Carsten Strohmann

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

{ μ_2 -1,2-Bis[(4-methylphenylsulfanyl]-3-oxoprop-1-ene-1,3-diyl-1:2C³:C¹}dicarbonyl-1 κ^2 C-[μ_2 -methylenebis(diphenylphosphane)-1:2 κ^2 P:P'](triphenylphosphane-2 κ P)ironplatinum(Fe—Pt)

Crystal data

$[FePt(C_{19}H_{18}OS_2)(C_{18}H_{15}P)(C_{25}H_{22}P_2)(CO)_2]$	F(000) = 2576
$M_r = 1280.05$	$D_{\rm x} = 1.541 {\rm Mg m^{-3}}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 12.0071 (6) Å	Cell parameters from 9511 reflections
b = 36.1737 (15) Å	$\theta = 2.7 - 28.7^{\circ}$
c = 13.6980 (6) Å	$\mu = 3.01 \text{ mm}^{-1}$
$\beta = 111.970(5)^{\circ}$	T = 293 K
V = 5517.5 (5) Å ³	Plate, yellow
Z=4	$0.23 \times 0.15 \times 0.05 \text{ mm}$
Data collection	

Agilent Technologies Xcalibur, Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0560 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) $T_{\min} = 0.837, T_{\max} = 1.000$ 47863 measured reflections 10566 independent reflections 8245 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 25.8^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -11 \rightarrow 14$ $k = -44 \rightarrow 41$ $l = -16 \rightarrow 16$ Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0274P)^2 + 0.5475P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
10566 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
669 parameters	$\Delta \rho_{\rm max} = 1.12 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal structure determination of compound 1 was accomplished on an Oxford diffraction Xcalibur S Diffractometer. Suitable crystals of 1 were covered with an inert oil (perfluoropolyalkylether and used for X-ray crystal structure determination. Graphite monochromated Mo-K α radiation ($\lambda = 0.71073$?Å) was used. The processing and finalization of the crystal structure was done with the program Olex2 (Dolomanov, 2009). The crystal structures were solved by intrinsic phasing (SHELXT; Sheldrick, 2015a) and refined against F2 with the full-matrix least-squares method (SHELXL; Sheldrick, 2015b). A multi-scan absorption correction using the CrysAlis RED program (Oxford Diffraction, 2010) was employed. The non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.33424 (2)	0.62472 (2)	0.31155 (2)	0.01386 (6)
Fe1	0.52875 (5)	0.66228 (2)	0.35654 (4)	0.01541 (14)
S1	0.51458 (12)	0.61606 (4)	0.02018 (9)	0.0335 (3)
S2	0.19884 (11)	0.69548 (4)	0.12684 (8)	0.0242 (3)
P1	0.60180 (10)	0.64353 (3)	0.52099 (8)	0.0160 (3)
P2	0.36370 (10)	0.60649 (3)	0.47912 (8)	0.0136 (2)
P3	0.16428 (10)	0.59290 (3)	0.21914 (8)	0.0166 (3)
01	0.3898 (3)	0.72834 (9)	0.3663 (2)	0.0305 (8)
O2	0.7452 (3)	0.70095 (9)	0.3644 (3)	0.0331 (8)
O3	0.6059 (3)	0.58365 (9)	0.3412 (2)	0.0226 (7)
C1	0.3927 (4)	0.64918 (12)	0.2048 (3)	0.0167 (10)
C2	0.5040 (4)	0.63378 (12)	0.2148 (3)	0.0184 (10)
C3	0.5576 (4)	0.61346 (14)	0.3138 (3)	0.0199 (11)
C4	0.5728 (4)	0.64158 (13)	0.1445 (3)	0.0214 (10)
H4A	0.656425	0.635059	0.181663	0.026*
H4B	0.569106	0.667854	0.129478	0.026*
C5	0.5750 (4)	0.57103 (14)	0.0594 (3)	0.0284 (12)
C6	0.5322 (5)	0.54791 (15)	0.1179 (4)	0.0356 (13)
H6	0.469522	0.555719	0.137208	0.043*
C7	0.5815 (5)	0.51369 (15)	0.1475 (4)	0.0413 (15)
H7	0.552057	0.498782	0.187748	0.050*
C8	0.6741 (5)	0.50038 (15)	0.1194 (4)	0.0398 (14)
C9	0.7145 (5)	0.52324 (16)	0.0597 (4)	0.0436 (15)
Н9	0.775600	0.514984	0.038988	0.052*

C10	0.6673 (5)	0.55811 (16)	0.0295 (4)	0.0364 (14)
H10	0.696839	0.572966	-0.010742	0.044*
C11	0.7276 (6)	0.46250 (16)	0.1544 (5)	0.065(2)
H11A	0.743383	0.459346	0.227930	0.097*
H11B	0.801292	0.460237	0.142632	0.097*
H11C	0.672116	0.443892	0.114692	0.097*
C12	0.3296 (4)	0.67416 (13)	0.1153 (3)	0.0208 (11)
H12A	0.305131	0.660195	0.050210	0.025*
H12B	0.384620	0.693322	0.112025	0.025*
C13	0.1237(4)	0.71380(13)	-0.0009(3)	0.0213(11)
C14	0.1237(1) 0.1814(4)	0.72895 (13)	-0.0630(3)	0.0215(11)
H14	0.1614 (4)	0.728200	-0.039538	0.0230 (11)
C15	0.1159 (4)	0.725200 0.74513(14)	-0.1592(3)	0.031
H15	0.156559	0.74515(14)	-0.198448	0.0255 (12)
C16	-0.0078(4)	0.735504 0.74615(13)	-0.1983(3)	0.030
C10 C17	-0.0678(4)	0.74013(13) 0.73051(14)	-0.1363(3)	0.0204(11) 0.0286(12)
U17	-0.148221	0.73031 (14)	-0.160551	0.0280(12) 0.024*
П1/ С19	-0.148551	0.730799 0.71470(12)	-0.100331	0.034°
	-0.0010(4)	0.71470(13)	-0.0406 (3)	0.0252 (11)
HI8	-0.041978	0.704399	-0.001440	0.030*
C19	-0.0/94 (5)	0.76391 (16)	-0.3034 (4)	0.0428 (15)
HI9A	-0.04/412	0.787999	-0.306543	0.064*
HI9B	-0.161883	0.766129	-0.310870	0.064*
HI9C	-0.0/4281	0.748835	-0.359219	0.064*
C20	0.6604 (4)	0.68613 (13)	0.3621 (3)	0.0230 (11)
C21	0.4445 (4)	0.70239 (13)	0.3626 (3)	0.0199 (10)
C22	0.7607 (4)	0.62972 (13)	0.5705 (3)	0.0176 (10)
C23	0.8454 (4)	0.65829 (14)	0.5896 (3)	0.0246 (11)
H23	0.820210	0.682797	0.581983	0.030*
C24	0.9660 (4)	0.65016 (16)	0.6197 (3)	0.0326 (13)
H24	1.021532	0.669251	0.632344	0.039*
C25	1.0048 (4)	0.61401 (16)	0.6313 (3)	0.0324 (14)
H25	1.085863	0.608652	0.649885	0.039*
C26	0.9219 (4)	0.58565 (15)	0.6149 (3)	0.0315 (13)
H26	0.947659	0.561191	0.624560	0.038*
C27	0.8012 (4)	0.59378 (13)	0.5841 (3)	0.0234 (11)
H27	0.746189	0.574587	0.572385	0.028*
C28	0.6025 (4)	0.67405 (13)	0.6288 (3)	0.0198 (10)
C29	0.5891 (5)	0.71186 (14)	0.6141 (4)	0.0324 (13)
H29	0.581547	0.721995	0.549531	0.039*
C30	0.5869 (5)	0.73480 (15)	0.6941 (4)	0.0423 (15)
H30	0.577689	0.760181	0.683252	0.051*
C31	0.5983 (5)	0.71993 (16)	0.7901 (4)	0.0358 (13)
H31	0.595101	0.735182	0.843640	0.043*
C32	0.6144 (5)	0.68300 (15)	0.8061 (4)	0.0344 (13)
H32	0.623800	0.673087	0.871411	0.041*
C33	0.6168 (4)	0.65998 (13)	0.7268 (3)	0.0250 (11)
Н33	0.628129	0.634720	0.739143	0.030*
C34	0.5268 (4)	0.60132 (12)	0.5404 (3)	0.0150 (10)
	\ /	· /	× /	

H34A	0.552067	0.580369	0.509554	0.018*
H34B	0.549824	0.596640	0.615122	0.018*
C35	0.3097 (4)	0.56202 (12)	0.5064 (3)	0.0160 (10)
C36	0.1925 (4)	0.55998 (13)	0.5041 (3)	0.0218 (11)
H36	0.144301	0.580982	0.488889	0.026*
C37	0.1481 (5)	0.52697 (14)	0.5244 (3)	0.0289 (12)
H37	0.069837	0.525755	0.522178	0.035*
C38	0.2195 (5)	0.49550 (14)	0.5482 (4)	0.0326 (13)
H38	0.189317	0.473274	0.561975	0.039*
C39	0.3353 (5)	0.49742 (13)	0.5512 (3)	0.0283 (12)
H39	0.383817	0.476506	0.567991	0.034*
C40	0.3792 (4)	0.53025 (13)	0.5296 (3)	0.0216 (11)
H40	0.457018	0.531125	0.530449	0.026*
C41	0.3264 (4)	0.63622(12)	0.5696 (3)	0.0173 (10)
C42	0.2880(4)	0.67210(13)	0.5430(3)	0.0237(11)
H42	0.276531	0.680940	0.476120	0.028*
C43	0.2662(5)	0.69537 (14)	0.6159 (4)	0.028 0.0348 (13)
H43	0.240436	0.719544	0.597655	0.0348 (15)
C44	0.2831 (4)	0.68214 (15)	0.577055 0.7138 (4)	0.042 0.0334 (13)
	0.26017	0.607685	0.7138 (4)	0.0354 (15)
C45	0.209937 0.3103 (4)	0.64620 (15)	0.702477 0.7410 (3)	0.040
U45	0.3195 (4)	0.637407	0.7419(3)	0.0295 (12)
П45	0.328270 0.3421(4)	0.03/49/ 0.62250(12)	0.606160	0.033°
	0.3421(4)	0.02550 (15)	0.0700 (3)	0.0203 (10)
H40	0.1854 (4)	0.599408	0.089855	0.024*
C4/	0.1854 (4)	0.54327(12)	0.2099(3)	0.0190(10)
C48	0.0931 (4)	0.52009 (13)	0.1484 (3)	0.0258 (11)
H48	0.018084	0.530064	0.109826	0.031*
C49	0.1112 (5)	0.482/5 (14)	0.1440 (4)	0.0328 (13)
H49	0.047654	0.467587	0.104805	0.039*
C50	0.2232 (5)	0.46751 (15)	0.1974 (4)	0.0367 (14)
H50	0.234927	0.442181	0.194608	0.044*
C51	0.3172 (5)	0.49003 (15)	0.2546 (4)	0.0359 (13)
H51	0.393402	0.480116	0.288828	0.043*
C52	0.2979 (4)	0.52767 (13)	0.2611 (3)	0.0227 (11)
H52	0.361714	0.542713	0.300490	0.027*
C53	0.0484 (4)	0.60009 (13)	0.2734 (3)	0.0186 (10)
C54	0.0450 (4)	0.63486 (13)	0.3149 (3)	0.0231 (11)
H54	0.102310	0.652383	0.316344	0.028*
C55	-0.0423 (4)	0.64388 (14)	0.3541 (3)	0.0281 (12)
H55	-0.043485	0.667238	0.382068	0.034*
C56	-0.1277 (4)	0.61781 (14)	0.3515 (3)	0.0294 (12)
H56	-0.185895	0.623613	0.378580	0.035*
C57	-0.1272 (4)	0.58350 (14)	0.3091 (3)	0.0256 (12)
H57	-0.186297	0.566375	0.305649	0.031*
C58	-0.0381 (4)	0.57431 (14)	0.2713 (3)	0.0235 (11)
H58	-0.036596	0.550782	0.244489	0.028*
C59	0.0822 (4)	0.60429 (12)	0.0805 (3)	0.0188 (10)
C60	-0.0369 (4)	0.61515 (12)	0.0426 (3)	0.0223 (11)
				. ,

supporting information

H60	-0.077921	0.616660	0.088156	0.027*	
C61	-0.0950 (4)	0.62378 (14)	-0.0626 (3)	0.0298 (12)	
H61	-0.175186	0.630961	-0.087322	0.036*	
C62	-0.0358 (5)	0.62189 (14)	-0.1314 (3)	0.0312 (12)	
H62	-0.074977	0.628004	-0.201958	0.037*	
C63	0.0821 (5)	0.61082 (14)	-0.0938 (3)	0.0299 (12)	
H63	0.122595	0.609225	-0.139794	0.036*	
C64	0.1415 (4)	0.60201 (13)	0.0108 (3)	0.0244 (11)	
H64	0.221358	0.594538	0.034901	0.029*	

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Pt1	0.01128 (9)	0.01589 (10)	0.01397 (8)	-0.00082 (8)	0.00420 (7)	0.00141 (7)
Fe1	0.0129 (3)	0.0159 (4)	0.0171 (3)	-0.0014 (3)	0.0053 (3)	0.0025 (3)
S 1	0.0380 (8)	0.0434 (9)	0.0191 (6)	0.0099 (7)	0.0109 (6)	0.0031 (6)
S2	0.0228 (7)	0.0292 (7)	0.0210 (6)	0.0072 (6)	0.0087 (5)	0.0055 (5)
P1	0.0125 (6)	0.0177 (7)	0.0162 (5)	-0.0015 (5)	0.0035 (5)	0.0004 (5)
P2	0.0119 (6)	0.0134 (6)	0.0149 (5)	0.0001 (5)	0.0043 (5)	0.0015 (5)
P3	0.0129 (6)	0.0200 (7)	0.0159 (5)	-0.0013 (5)	0.0043 (5)	-0.0010 (5)
O1	0.026 (2)	0.026 (2)	0.038 (2)	0.0081 (17)	0.0105 (17)	-0.0009 (16)
O2	0.017 (2)	0.032 (2)	0.051 (2)	-0.0051 (17)	0.0128 (17)	0.0101 (17)
O3	0.0226 (19)	0.0190 (19)	0.0261 (17)	0.0048 (15)	0.0091 (15)	0.0030 (14)
C1	0.018 (3)	0.015 (3)	0.016 (2)	-0.004 (2)	0.0038 (19)	0.0017 (18)
C2	0.021 (3)	0.017 (3)	0.018 (2)	-0.003 (2)	0.009 (2)	-0.0023 (19)
C3	0.012 (2)	0.027 (3)	0.022 (2)	-0.003 (2)	0.008 (2)	-0.003 (2)
C4	0.023 (3)	0.019 (3)	0.022 (2)	-0.001 (2)	0.008 (2)	0.000 (2)
C5	0.028 (3)	0.036 (3)	0.018 (2)	-0.001 (2)	0.006 (2)	-0.009 (2)
C6	0.036 (3)	0.046 (4)	0.029 (3)	-0.002 (3)	0.016 (3)	-0.005 (3)
C7	0.063 (4)	0.029 (3)	0.030 (3)	-0.006 (3)	0.016 (3)	-0.002(2)
C8	0.045 (4)	0.032 (4)	0.032 (3)	0.002 (3)	0.002 (3)	-0.010 (3)
C9	0.036 (4)	0.045 (4)	0.050(3)	0.006 (3)	0.016 (3)	-0.013 (3)
C10	0.034 (3)	0.044 (4)	0.034 (3)	-0.007 (3)	0.017 (3)	-0.009 (3)
C11	0.082 (5)	0.040 (4)	0.062 (4)	0.020 (4)	0.015 (4)	-0.003 (3)
C12	0.014 (3)	0.026 (3)	0.023 (2)	-0.002 (2)	0.008 (2)	0.003 (2)
C13	0.019 (3)	0.024 (3)	0.019 (2)	0.001 (2)	0.004 (2)	0.002 (2)
C14	0.016 (3)	0.036 (3)	0.023 (2)	0.004 (2)	0.005 (2)	0.007 (2)
C15	0.026 (3)	0.042 (3)	0.023 (3)	0.001 (3)	0.011 (2)	0.005 (2)
C16	0.026 (3)	0.027 (3)	0.025 (3)	0.002 (2)	0.007 (2)	0.000(2)
C17	0.015 (3)	0.033 (3)	0.032 (3)	0.003 (2)	0.004 (2)	0.001 (2)
C18	0.019 (3)	0.031 (3)	0.026 (3)	0.002 (2)	0.010 (2)	0.004 (2)
C19	0.035 (3)	0.054 (4)	0.034 (3)	0.004 (3)	0.006 (3)	0.011 (3)
C20	0.020 (3)	0.022 (3)	0.026 (2)	0.005 (2)	0.007 (2)	0.004 (2)
C21	0.016 (3)	0.021 (3)	0.021 (2)	-0.003 (2)	0.006 (2)	0.003 (2)
C22	0.009 (2)	0.027 (3)	0.015 (2)	0.002 (2)	0.0027 (18)	0.0000 (19)
C23	0.020 (3)	0.033 (3)	0.020 (2)	-0.001 (2)	0.006 (2)	0.000 (2)
C24	0.017 (3)	0.056 (4)	0.022 (3)	-0.014 (3)	0.006 (2)	-0.002 (3)
C25	0.010 (3)	0.066 (4)	0.021 (2)	0.002 (3)	0.005 (2)	-0.006(3)

supporting information

C26	0.020 (3)	0.040 (3)	0.030 (3)	0.011 (3)	0.005 (2)	-0.011 (2)
C27	0.021 (3)	0.028 (3)	0.019 (2)	0.005 (2)	0.005 (2)	-0.003 (2)
C28	0.013 (2)	0.019 (3)	0.023 (2)	0.000 (2)	0.002 (2)	-0.004 (2)
C29	0.035 (3)	0.024 (3)	0.026 (3)	-0.001 (2)	-0.003 (2)	-0.006 (2)
C30	0.041 (4)	0.025 (3)	0.046 (3)	0.006 (3)	0.001 (3)	-0.011 (3)
C31	0.027 (3)	0.042 (4)	0.038 (3)	0.000 (3)	0.012 (2)	-0.021 (3)
C32	0.032 (3)	0.043 (4)	0.031 (3)	-0.011 (3)	0.016 (2)	-0.010 (3)
C33	0.030 (3)	0.018 (3)	0.028 (3)	-0.001 (2)	0.011 (2)	-0.003 (2)
C34	0.015 (2)	0.016 (3)	0.012 (2)	0.002 (2)	0.0037 (18)	0.0012 (18)
C35	0.019 (3)	0.017 (3)	0.010 (2)	-0.002 (2)	0.0045 (19)	0.0010 (18)
C36	0.021 (3)	0.021 (3)	0.020 (2)	-0.002 (2)	0.004 (2)	0.000 (2)
C37	0.028 (3)	0.032 (3)	0.029 (3)	-0.013 (3)	0.013 (2)	-0.006 (2)
C38	0.048 (4)	0.019 (3)	0.034 (3)	-0.017 (3)	0.018 (3)	-0.001 (2)
C39	0.038 (3)	0.016 (3)	0.029 (3)	0.005 (2)	0.010 (2)	0.000 (2)
C40	0.021 (3)	0.022 (3)	0.022 (2)	0.000 (2)	0.008 (2)	0.003 (2)
C41	0.011 (2)	0.018 (3)	0.023 (2)	-0.005 (2)	0.0069 (19)	-0.0025 (19)
C42	0.027 (3)	0.021 (3)	0.027 (2)	0.000 (2)	0.015 (2)	-0.001 (2)
C43	0.039 (3)	0.020 (3)	0.052 (3)	0.003 (3)	0.025 (3)	-0.006 (3)
C44	0.026 (3)	0.044 (4)	0.036 (3)	-0.009 (3)	0.017 (2)	-0.022 (3)
C45	0.025 (3)	0.044 (4)	0.021 (2)	-0.003 (3)	0.010 (2)	-0.004 (2)
C46	0.015 (2)	0.022 (3)	0.023 (2)	-0.004 (2)	0.0062 (19)	-0.001 (2)
C47	0.022 (3)	0.019 (3)	0.019 (2)	0.000 (2)	0.010 (2)	0.0020 (19)
C48	0.021 (3)	0.027 (3)	0.027 (3)	-0.004 (2)	0.006 (2)	-0.004 (2)
C49	0.037 (3)	0.027 (3)	0.030 (3)	-0.012 (3)	0.008 (3)	-0.007 (2)
C50	0.057 (4)	0.021 (3)	0.031 (3)	0.001 (3)	0.016 (3)	0.000 (2)
C51	0.035 (3)	0.033 (3)	0.035 (3)	0.008 (3)	0.008 (3)	0.004 (3)
C52	0.026 (3)	0.017 (3)	0.022 (2)	-0.004 (2)	0.005 (2)	-0.005 (2)
C53	0.013 (3)	0.027 (3)	0.014 (2)	-0.002 (2)	0.0023 (19)	0.0020 (19)
C54	0.016 (3)	0.028 (3)	0.023 (2)	0.001 (2)	0.005 (2)	0.003 (2)
C55	0.026 (3)	0.032 (3)	0.029 (3)	0.009 (3)	0.014 (2)	0.001 (2)
C56	0.020 (3)	0.046 (4)	0.025 (2)	0.006 (3)	0.011 (2)	0.005 (2)
C57	0.014 (3)	0.036 (3)	0.025 (2)	0.000 (2)	0.006 (2)	0.010 (2)
C58	0.017 (3)	0.033 (3)	0.020 (2)	-0.004 (2)	0.005 (2)	0.002 (2)
C59	0.016 (3)	0.019 (3)	0.018 (2)	-0.003 (2)	0.0011 (19)	-0.0021 (19)
C60	0.018 (3)	0.027 (3)	0.022 (2)	0.006 (2)	0.008 (2)	0.007 (2)
C61	0.020 (3)	0.036 (3)	0.024 (2)	0.007 (2)	-0.002 (2)	-0.001 (2)
C62	0.034 (3)	0.037 (3)	0.015 (2)	0.001 (3)	0.001 (2)	0.001 (2)
C63	0.036 (3)	0.040 (3)	0.017 (2)	0.001 (3)	0.014 (2)	-0.001 (2)
C64	0.016 (3)	0.034 (3)	0.022 (2)	0.001 (2)	0.005 (2)	-0.002 (2)

Geometric parameters (Å, °)

Pt1—Fe1	2.5697 (6)	C26—C27	1.382 (6)	
Pt1—P2	2.2850 (10)	С27—Н27	0.9300	
Pt1—P3	2.2714 (12)	C28—C29	1.383 (6)	
Pt1—C1	2.045 (4)	C28—C33	1.385 (6)	
Fe1—P1	2.1966 (12)	C29—H29	0.9300	
Fe1—C1	2.162 (4)	C29—C30	1.383 (6)	

Fe1—C2	2.119 (4)	С30—Н30	0.9300
Fe1—C3	1.932 (5)	C30—C31	1.379 (7)
Fe1—C20	1.777 (5)	C31—H31	0.9300
Fe1—C21	1.789 (5)	C31—C32	1.356 (7)
S1—C4	1.830 (4)	С32—Н32	0.9300
S1—C5	1.782 (5)	C32—C33	1.378 (6)
S2—C12	1.808 (4)	С33—Н33	0.9300
S2—C13	1.771 (4)	C34—H34A	0.9700
P1—C22	1.839 (4)	C34—H34B	0.9700
P1-C28	1.841 (4)	C35—C36	1.399 (6)
P1—C34	1.842 (4)	C35—C40	1.385 (6)
P2-C34	1.829 (4)	C36—H36	0.9300
P2-C35	1 824 (4)	C36—C37	1 378 (6)
P2-C41	1 819 (4)	C37—H37	0.9300
P3C47	1.019(1) 1.824(5)	$C_{37} - C_{38}$	1.388(7)
P3C53	1.824(3) 1 824(4)	C38_H38	0.9300
P3 C50	1.024(4)	C_{38} C_{30}	1.376(7)
01 C21	1.030(4)	$C_{30} = U_{30}$	1.370(7)
01 - 021	1.137(3)	C39—R39	0.9300
02 - 020	1.141(5)	$C_{39} - C_{40}$	1.377 (6)
03-03	1.216 (5)	C40—H40	0.9300
	1.407 (6)		1.380 (6)
	1.483 (6)	C41—C46	1.402 (6)
C2—C3	1.464 (6)	C42—H42	0.9300
C2—C4	1.511 (5)	C42—C43	1.404 (6)
C4—H4A	0.9700	C43—H43	0.9300
C4—H4B	0.9700	C43—C44	1.366 (6)
C5—C6	1.384 (6)	C44—H44	0.9300
C5—C10	1.397 (6)	C44—C45	1.376 (7)
С6—Н6	0.9300	C45—H45	0.9300
С6—С7	1.367 (7)	C45—C46	1.381 (6)
С7—Н7	0.9300	C46—H46	0.9300
C7—C8	1.392 (7)	C47—C48	1.394 (6)
C8—C9	1.373 (7)	C47—C52	1.388 (6)
C8—C11	1.513 (7)	C48—H48	0.9300
С9—Н9	0.9300	C48—C49	1.373 (7)
C9—C10	1.381 (7)	C49—H49	0.9300
C10—H10	0.9300	C49—C50	1.382 (7)
C11—H11A	0.9600	C50—H50	0.9300
C11—H11B	0.9600	C50—C51	1.374 (7)
C11—H11C	0.9600	C51—H51	0.9300
C12—H12A	0.9700	$C_{51} - C_{52}$	1 389 (6)
C12 H12R	0.9700	C52_H52	0.9300
C_{12} C_{14}	1 394 (6)	C52 1152	1 387 (6)
C13 - C14	1 390 (6)	$C_{55} = C_{57}$	1 380 (6)
C14 $H14$	0.0300	C54 H54	0.0300
C_{14} C_{14} C_{15}	1 387 (6)	C_{34}	1 284 (6)
C15 H15	1.307 (0)	C55 H55	0.0200
	0.9300	Сээ—Нээ	0.9300
	1.5/8 (0)	(33-(30	1.383 (7)

C16—C17	1.395 (6)	С56—Н56	0.9300
C16—C19	1.516 (6)	C56—C57	1.371 (7)
С17—Н17	0.9300	С57—Н57	0.9300
C17—C18	1.373 (6)	C57—C58	1.391 (6)
С18—Н18	0.9300	С58—Н58	0.9300
С19—Н19А	0.9600	C59—C60	1.383 (6)
C19—H19B	0.9600	C59—C64	1.390 (6)
C19—H19C	0.9600	С60—Н60	0.9300
C_{22} C_{23}	1,404 (6)	C60—C61	1.382 (6)
C^{22} C^{27}	1 376 (6)	C61—H61	0.9300
C23—H23	0.9300	C61-C62	1 378 (6)
C_{23} C_{24}	1 381 (6)	C62 - H62	0.9300
C24—H24	0.9300	C62 - C63	1.372(7)
C_{24} C_{25}	1 377 (7)	C63—H63	0.9300
C25_H25	0.9300	C63 - C64	1 379 (6)
$C_{25} - C_{26}$	1 388 (7)	C64—H64	0.9300
C26_H26	0.9300	C04 1104	0.7500
620-1120	0.7500		
P2—Pt1—Fe1	97 26 (3)	C24—C23—C22	120 3 (5)
P3_Pt1_Fe1	161 46 (3)	C_{24} C_{23} H_{23}	119.9
P3Pt1P2	100.53(4)	C_{23} C_{24} H_{24}	119.7
C1—Pt1—Fe1	54 44 (12)	$C_{25} = C_{24} = C_{23}$	120.5 (5)
C1— $Pt1$ — $P2$	151.36(12)	$C_{25} = C_{24} = H_{24}$	1197
C1— $Pt1$ — $P3$	107.33(12)	C_{24} C_{25} H_{25}	120.2
P1—Fe1—Pt1	93 50 (4)	C_{24} C_{25} C_{26} C_{26}	1195(5)
C1—Fe1—Pt1	50.30 (11)	$C_{26} = C_{25} = H_{25}$	120.2
C1—Fe1—P1	141 85 (12)	$C_{25} = C_{26} = H_{26}$	120.0
C2—Fe1—Pt1	73.72 (12)	C_{27} C_{26} C_{25} C_{25}	119.9 (5)
C2—Fe1—P1	130.91(13)	C27—C26—H26	120.0
C2—Fe1—C1	38.35 (16)	C_{22} C_{27} C_{26} C_{26} C_{27} C_{26}	120.0 121.3(5)
C3—Fe1—Pt1	72.18 (13)	С22—С27—Н27	119.3
C3—Fe1—P1	88.88 (13)	С26—С27—Н27	119.3
C3—Fe1—C1	70.43 (18)	C29—C28—P1	120.7 (3)
C3—Fe1—C2	42.03 (17)	C29—C28—C33	118.0 (4)
C20—Fe1—Pt1	168.78 (14)	C33—C28—P1	121.2 (4)
C20—Fe1—P1	95.66 (14)	C28—C29—H29	119.5
C20—Fe1—C1	119.19 (18)	C28—C29—C30	120.9 (5)
C20—Fe1—C2	95.33 (18)	С30—С29—Н29	119.5
C20—Fe1—C3	101.5 (2)	C29—C30—H30	120.1
C20—Fe1—C21	96.5 (2)	C31—C30—C29	119.8 (5)
C21—Fe1—Pt1	87.76 (14)	C31—C30—H30	120.1
C21—Fe1—P1	102.63 (13)	С30—С31—Н31	120.1
C21—Fe1—C1	89.16 (18)	C32—C31—C30	119.8 (5)
C21—Fe1—C2	123.33 (18)	C32—C31—H31	120.1
C21—Fe1—C3	157.6 (2)	C31—C32—H32	119.6
C5—S1—C4	102.1 (2)	C31—C32—C33	120.7 (5)
C13—S2—C12	102.2 (2)	С33—С32—Н32	119.6
C22—P1—Fe1	115.03 (13)	С28—С33—Н33	119.6

C22—P1—C28	100.05 (19)	C32—C33—C28	120.7 (5)
C22—P1—C34	102.6 (2)	С32—С33—Н33	119.6
C28—P1—Fe1	121.17 (15)	P1—C34—H34A	109.6
C28—P1—C34	103.71 (19)	P1-C34-H34B	109.6
C34—P1—Fe1	112.02 (13)	P2—C34—P1	110.3 (2)
C34—P2—Pt1	103.14 (13)	P2—C34—H34A	109.6
C35—P2—Pt1	121.79 (13)	P2—C34—H34B	109.6
C35—P2—C34	102.5 (2)	H34A—C34—H34B	108.1
C41—P2—Pt1	121.93 (15)	C36—C35—P2	118.3 (3)
C41—P2—C34	103.99 (19)	C40—C35—P2	123.3 (3)
C41—P2—C35	100.66 (19)	C40—C35—C36	118.5 (4)
C47—P3—Pt1	114.72 (15)	С35—С36—Н36	119.9
C47—P3—C53	108.4 (2)	C37—C36—C35	120.2 (5)
C47—P3—C59	100.6 (2)	С37—С36—Н36	119.9
C53—P3—Pt1	111.32 (15)	С36—С37—Н37	119.8
C53—P3—C59	101.2 (2)	C36—C37—C38	120.4 (5)
C59—P3—Pt1	119.15 (15)	С38—С37—Н37	119.8
Pt1—C1—Fe1	75 25 (13)	C37—C38—H38	120.2
C2-C1-Pt1	109.1 (3)	C_{39} C_{38} C_{37}	119.6 (5)
C2-C1-Fe1	69.2 (2)	C39—C38—H38	120.2
$C_2 - C_1 - C_{12}$	119.6 (4)	C38—C39—H39	120.0
C12-C1-Pt1	130.5 (3)	C_{38} C_{39} C_{40}	120.1 (5)
C12— $C1$ — $Fe1$	129.0 (3)	C40—C39—H39	120.0
C1-C2-Fe1	72.5 (2)	C35—C40—H40	119.4
C1 - C2 - C3	111.2 (4)	C_{39} C_{40} C_{35}	121.2 (4)
C1-C2-C4	126.2 (4)	C39—C40—H40	119.4
C3-C2-Fe1	62.1 (2)	C42-C41-P2	121.3 (3)
C3—C2—C4	121.9 (4)	C42—C41—C46	118.5 (4)
C4—C2—Fe1	124.8 (3)	C46—C41—P2	120.1(3)
03—C3—Fe1	146.8 (3)	C41—C42—H42	119.7
03-C3-C2	136.5 (4)	C41 - C42 - C43	120.6 (4)
C2-C3-Fe1	75.8 (3)	C43—C42—H42	119.7
S1—C4—H4A	109.0	C42—C43—H43	120.3
S1—C4—H4B	109.0	C44 - C43 - C42	119.3 (5)
$C_2 - C_4 - S_1$	112.9 (3)	C44—C43—H43	120.3
C2—C4—H4A	109.0	C43—C44—H44	119.3
C2—C4—H4B	109.0	C43—C44—C45	121.3 (4)
H4A—C4—H4B	107.8	C45—C44—H44	119.3
C6—C5—S1	121.9 (4)	C44—C45—H45	120.3
C6—C5—C10	118.4 (5)	C44—C45—C46	119.4 (4)
C10-C5-S1	119.7 (4)	C46—C45—H45	120.3
С5—С6—Н6	119.8	C41—C46—H46	119.6
C7—C6—C5	120.4 (5)	C45—C46—C41	120.8 (4)
С7—С6—Н6	119.8	C45—C46—H46	119.6
С6—С7—Н7	118.9	C48—C47—P3	122.3 (4)
C6—C7—C8	122.2 (5)	C52—C47—P3	120.0 (3)
С8—С7—Н7	118.9	C52—C47—C48	117.7 (4)
C7—C8—C11	121.0 (5)	C47—C48—H48	119.5

C9—C8—C7	116.9 (5)	C49—C48—C47	121.0 (5)
C9—C8—C11	122.1 (5)	C49—C48—H48	119.5
С8—С9—Н9	118.9	C48—C49—H49	119.8
C8—C9—C10	122.2 (5)	C48—C49—C50	120.5 (5)
С10—С9—Н9	118.9	C50—C49—H49	119.8
С5—С10—Н10	120.0	C49—C50—H50	120.2
C9—C10—C5	119.9 (5)	C51—C50—C49	119.6 (5)
С9—С10—Н10	120.0	C51—C50—H50	120.2
C8-C11-H11A	109.5	C50-C51-H51	120.1
C8-C11-H11B	109.5	C50-C51-C52	119.8 (5)
C8-C11-H11C	109.5	C52—C51—H51	120.1
	109.5	C47 - C52 - C51	120.1 121.3(4)
	109.5	C47 = C52 = C51	121.3 (4)
	109.5	$C_{4} = C_{52} = H_{52}$	119.3
	109.5	C54 C52 P2	117.3 116.1.(2)
$S_2 = C_{12} = H_{12}A$	109.1	$C_{54} = C_{52} = C_{58}$	110.1(3)
S2—C12—H12B	109.1	C54 - C53 - C58	118.7 (4)
CI = CI2 = S2	112.3 (3)	C58—C53—P3	125.1 (4)
CI-CI2-HI2A	109.1	C53—C54—H54	119.5
C1—C12—H12B	109.1	C55—C54—C53	121.0 (5)
H12A—C12—H12B	107.9	С55—С54—Н54	119.5
C14—C13—S2	124.4 (4)	C54—C55—H55	120.3
C18—C13—S2	118.1 (3)	C56—C55—C54	119.4 (5)
C18—C13—C14	117.5 (4)	С56—С55—Н55	120.3
C13—C14—H14	119.6	С55—С56—Н56	119.8
C15—C14—C13	120.7 (4)	C57—C56—C55	120.5 (4)
C15—C14—H14	119.6	С57—С56—Н56	119.8
C14—C15—H15	119.1	С56—С57—Н57	120.0
C16—C15—C14	121.7 (4)	C56—C57—C58	120.0 (5)
C16—C15—H15	119.1	С58—С57—Н57	120.0
C15—C16—C17	117.2 (4)	C53—C58—C57	120.4 (5)
C15—C16—C19	121.7 (4)	C53—C58—H58	119.8
C17—C16—C19	121.1 (5)	C57—C58—H58	119.8
C16—C17—H17	119.2	C60—C59—P3	122.2 (3)
C18—C17—C16	121.6 (5)	C60—C59—C64	118.9 (4)
C18—C17—H17	119.2	C64—C59—P3	118.9 (3)
C13-C18-H18	119.4	C59—C60—H60	119.9
C17 - C18 - C13	121.2 (4)	C_{61} $-C_{60}$ $-C_{59}$	120.2(4)
C_{17} C_{18} H_{18}	119.4	C61 - C60 - H60	119.9
C16-C19-H19A	109.5	C60 - C61 - H61	119.5
C_{16} C_{19} H_{19B}	109.5	C62 - C61 - C60	120.9(5)
C_{16} C_{19} H_{19C}	109.5	C62 C61 H61	110.6
$H_{10A} = C_{10} = H_{10B}$	109.5	$C_{02} = C_{01} = H_{01}$	119.0
$H_{10A} C_{10} = H_{10C}$	109.5	C63 C62 C61	110.0
ПТЭА—СТЭ—ПТЭС Ц10Р С10 Ц10С	109.5	$C_{03} = C_{02} = C_{01}$	110.0 (4)
$\frac{11170}{01} = 0.13 = 0.130$	109.3	$C_{03} = C_{02} = H_{02}$	120.0
$O_2 - C_2 U - \Gamma e_1$	1/0.7 (4) 170.0 (5)	$C_{02} = C_{03} = C_{03}$	119.4
$O_1 - O_2 - C_1 - C_1$	1/9.9 (3)	C(4 - C(2 - U(2)))	121.1 (4)
$C_{23} - C_{22} - P_1$	110.0 (4)	C04—C03—H03	119.4
$U_2 / - U_2 / - V_1$	124.9 (4)	C39—C04—H64	119.9

C27—C22—C23	118.4 (4)	C63—C64—C59	120.1 (4)
С22—С23—Н23	119.9	C63—C64—H64	119.9
Pt1—P2—C34—P1	52.0 (2)	C22—P1—C28—C29	109.4 (4)
Pt1—P2—C35—C36	-87.5 (3)	C22 - P1 - C28 - C33	-70.4(4)
$Pt1_P2_C35_C40$	92 7 (4)	C^{22} P1 C^{34} P2	-1720(2)
Pt1 - P2 - C41 - C42	-53(4)	C^{22} C^{23} C^{24} C^{25}	01(6)
Pt1-P2-C41-C46	177.8 (3)	C_{23} C_{22} C_{27} C_{27} C_{26}	-0.6(6)
Pt1-P3-C47-C48	-1741(3)	C_{23} C_{24} C_{25} C_{26}	-1.6(7)
$Pt1_P3_C47_C52$	26(4)	C_{24} C_{25} C_{26} C_{26} C_{27}	20(7)
Pt1_P3_C53_C54	2.0(4)	$C_{24} = C_{25} = C_{26} = C_{27} = C$	-0.9(7)
Pt1_P3_C53_C58	-1489(3)	$C_{23} = C_{20} = C_{23} = C_{24}$	10(6)
Pt1_P3_C59_C60	-1221(4)	C_{28} P_{1} C_{22} C_{23} C_{24}	-589(3)
$Pt1_P3_C59_C64$	57.8 (4)	$C_{23} = P_1 = C_{22} = C_{23}$	124.9(4)
Pt1	-652(2)	C_{28} P1 C_{34} P2	12+.9(+) 84 2 (2)
Pt1-C1-C2-C3	-15.6(4)	$C_{20} = 11 - C_{31} - 12$	04.2(2)
Pt1-C1-C2-C4	174.2(3)	$C_{20} = C_{20} = C_{30} = C_{31} = C_{32}$	1.8(7)
$P_{t1} = C_1 = C_2 = C_4$	174.2(3) 18.9(5)	$C_{29} = C_{20} = C_{33} = C_{32}$	1.0(7) 1.4(8)
F_{e1} _P1_C22_C23	72.6(3)	$C_{29} = C_{30} = C_{31} = C_{32}$	-1.4(8)
F_{e1} $P1$ $C22$ $C23$	-103.6(3)	C_{31} C_{32} C_{33} C_{28}	-0.2(8)
F_{e1} P1 C22 C27	-18.2(5)	C_{33} C_{28} C_{29} C_{30}	-1.7(7)
F_{e1} P1 C28 C33	162(3)	C_{34} P1 C_{22} C_{33}	-165.5(3)
F_{e1} P1 C28 C35	-48.1(2)	C_{34} P1 C_{22} C_{23}	105.5(5) 18 3 (4)
$F_{e1} = C_1 = C_2 = C_3$	40.1(2)	$C_{34} P_1 C_{22} C_{27}$	-144.9(4)
$F_{e1} = C_1 = C_2 = C_3$	-120.6(4)	$C_{34} = 1 = C_{26} = C_{23}$	144.9(4)
$F_{e1} = C_1 = C_2 = C_4$	-86.2(4)	$C_{34} = P_{2} = C_{35} = C_{35}$	35.3(4)
$F_{e1} = C_1 = C_1 = C_2 = C_2$	-170.8(6)	$C_{34} = 12 = C_{35} = C_{30}$	-21.6(4)
$F_{e1} = C_2 = C_3 = 0_3$	-172.3(2)	$C_{34} = 12 = C_{35} = C_{40}$	21.0(4)
161 - 62 - 64 - 51	172.3(2) -170 4 (4)	$C_{34} = 12 = C_{41} = C_{42}$	-66.6(4)
S1 = C5 = C10 = C7	-1/9.4(4)	$C_{34} = r_2 = C_{41} = C_{40}$	-00.0(4)
S1 - C3 - C10 - C9	-175.2(4)	$C_{33} = 12 = C_{34} = 11$	-142.8(19)
$S_2 = C_{13} = C_{14} = C_{13}$	-175.3(4)	C_{33} F_{2} C_{41} C_{42} C_{45} P_{2} C_{41} C_{46}	-143.8(4)
$S_2 = C_{13} = C_{16} = C_{17}$	1/0.1(4) -175 4 (3)	C_{33} $-r_{2}$ $-C_{41}$ $-C_{40}$ C_{35} C_{36} C_{37} C_{38}	39.3(4)
P1 = C22 = C23 = C24	-175.4(3)	$C_{33} = C_{30} = C_{37} = C_{38}$	0.0(0)
P1 = C22 = C27 = C20	173.3(3)	$C_{30} = C_{33} = C_{40} = C_{39}$	-0.8(0)
$P_1 = C_{20} = C_{20} = C_{30}$	-178.5(4)	$C_{30} = C_{37} = C_{38} = C_{37}$	-0.8(7)
$P_1 = C_{20} = C_{33} = C_{32}$	-170.0(4)	$C_{3}^{2} = C_{3}^{2} = C_{4}^{2} = C_{4}^{2}$	-0.8(7)
$P_2 = C_{35} = C_{30} = C_{37}$	-1/9.9(3)	$C_{38} = C_{39} = C_{40} = C_{33}$	1.3(7)
$P_2 = C_{41} = C_{42} = C_{42}$	1/9.0(3) -176.2(4)	$C_{40} = C_{30} = C_{30} = C_{37}$	-0.1(0)
$P_2 = C_{41} = C_{42} = C_{43}$	-170.3(4)	C41 - P2 - C34 - P1	-70.2(2)
$P_2 = C_{41} = C_{40} = C_{43}$	1/7.1(3) 170.2(2)	C41 - F2 - C35 - C30	31.1(3)
$P_{3} = C_{47} = C_{48} = C_{49}$	-1/9.2(3)	C41 - P2 - C35 - C40	-128.7(4)
$P_{3} = C_{4} = C_{52} = C_{54} = C_{55}$	-1/9.5(3)	$C_{41} = C_{42} = C_{43} = C_{44}$	-0.1(7)
$P_3 = C_{53} = C_{54} = C_{55}$	1/7.3(3)	C_{42} C_{41} C_{40} C_{45} C_{42} C_{42} C_{43} C_{45}	0.2(7)
r_{3} $-C_{3}$ $-C_{3}$ $-C_{3}$ $-C_{3}$	-1/3.9(3)	C_{42} C_{43} C_{44} C_{45} C_{46}	-1.1(8)
r_{3} $-C_{5}$ C_{64} C_{62}	1/9.3 (4) -170.2 (4)	$C_{43} = C_{44} = C_{43} = C_{40}$	$1.\delta(/)$ -1.2(7)
r_{3} $- c_{3}$ $- c_{4}$ $- c_{03}$ c_{1} c_{2} c_{2} c_{1} c_{3}	-1/9.5(4)	$C_{44} = C_{45} = C_{40} = C_{41}$	-1.3(/)
$C_1 - C_2 - C_3 - F_{e1}$	-33.2(3)	C40 - C41 - C42 - C43	0.5(7)
C1 - C2 - C3 - O3	134.0 (6)	C4/—P3—C53—C54	161.5 (3)

C1-C2-C4-S1	-79.3 (5)	C47—P3—C53—C58	-21.8 (4)
C2-C1-C12-S2	-172.5 (3)	C47—P3—C59—C60	111.6 (4)
C3—C2—C4—S1	111.4 (4)	C47—P3—C59—C64	-68.5 (4)
C4—S1—C5—C6	72.5 (4)	C47—C48—C49—C50	-2.6 (7)
C4—S1—C5—C10	-108.5 (4)	C48—C47—C52—C51	-2.3 (6)
C4—C2—C3—Fe1	115.5 (4)	C48—C49—C50—C51	-0.5 (7)
C4—C2—C3—O3	-55.3 (8)	C49—C50—C51—C52	2.1 (7)
C5—S1—C4—C2	-78.1 (4)	C50—C51—C52—C47	-0.6 (7)
C5—C6—C7—C8	-1.0 (8)	C52—C47—C48—C49	3.9 (6)
C6-C5-C10-C9	-0.9 (7)	C53—P3—C47—C48	60.8 (4)
C6—C7—C8—C9	-0.2 (8)	C53—P3—C47—C52	-122.4 (3)
C6—C7—C8—C11	179.4 (5)	C53—P3—C59—C60	0.3 (4)
C7—C8—C9—C10	0.8 (8)	C53—P3—C59—C64	-179.9 (4)
C8—C9—C10—C5	-0.3 (8)	C53—C54—C55—C56	-0.3 (7)
C10—C5—C6—C7	1.6 (7)	C54—C53—C58—C57	0.7 (6)
C11—C8—C9—C10	-178.7 (5)	C54—C55—C56—C57	-0.9 (7)
C12—S2—C13—C14	-36.3 (5)	C55—C56—C57—C58	1.9 (7)
C12—S2—C13—C18	146.7 (4)	C56—C57—C58—C53	-1.9 (7)
C12-C1-C2-Fe1	124.0 (4)	C58—C53—C54—C55	0.4 (6)
C12—C1—C2—C3	173.6 (4)	C59—P3—C47—C48	-44.9 (4)
C12—C1—C2—C4	3.3 (7)	C59—P3—C47—C52	131.8 (3)
C13—S2—C12—C1	-166.4 (3)	C59—P3—C53—C54	-93.2 (3)
C13—C14—C15—C16	-1.5 (8)	C59—P3—C53—C58	83.5 (4)
C14—C13—C18—C17	-1.1 (7)	C59—C60—C61—C62	-0.3 (8)
C14—C15—C16—C17	0.6 (7)	C60—C59—C64—C63	0.6 (7)
C14-C15-C16-C19	179.8 (5)	C60—C61—C62—C63	0.8 (8)
C15—C16—C17—C18	-0.1 (7)	C61—C62—C63—C64	-0.6 (8)
C16—C17—C18—C13	0.4 (8)	C62—C63—C64—C59	-0.1 (8)
C18—C13—C14—C15	1.7 (7)	C64—C59—C60—C61	-0.4 (7)
C19—C16—C17—C18	-179.3 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	D—H··· A
C15—H15…O1 ⁱ	0.93	2.67	3.316 (6)	128
C34—H34 <i>A</i> ···O3	0.97	2.62	3.271 (5)	125
C39—H39…O3 ⁱⁱ	0.93	2.49	3.239 (6)	138

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+1.