

Received 22 April 2020 Accepted 22 May 2020

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; platinum(II) complexes; eugenol; pyridine derivatives; cytotoxicity.

CCDC references: 2005230; 2005229; 2005228

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of three platinacyclic complexes bearing isopropyl eugenoxyacetate and pyridine derivatives

Nguyen Thi Thanh Chi,^a Pham Van Thong^a and Luc Van Meervelt^{b*}

^aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and ^bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: Luc.VanMeervelt@kuleuven.be

Three new platinum(II) complexes bearing a eugenol and a pyridine derivative, $(n^2-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl$ namelv κC^1)chlorido(pyridine- κN)platinum(II), [Pt(C₁₅H₁₉O₄)Cl(C₅H₅N)], (I), (η^2 -2allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κC^{1})chlorido(4methylpyridine- κN)platinum(II), [Pt(C₁₅H₁₉O₄)Cl(C₆H₇N)], (II), and (η^2 -2allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κC^{1})chlorido-(pyridine-4-carboxylic acid- κN)platinum(II), [Pt(C₁₅H₁₉O₄)Cl(C₆H₅NO₂)], (III), have been synthesized and further characterized by single-crystal X-ray diffraction. The Pt^{II} atoms exhibit the usual distorted square-planar coordination and are surrounded by one Cl atom, one N atom, and a C atom and C=C double bond of the eugenol ligand. The donor N atom of the pyridine ligand occupies a *cis* position with respect to the double bond. Complexes (I) and (II) crystallize isomorphously in space group $P\overline{1}$ and display a similar crystal packing characterized by C-H···O hydrogen bonding, C-H··· π and π - π interactions. However, the presence of the additional methyl group in the 4-methylpyridine ligand in (II) disturbs the π - π interactions. The crystal packing of (III) is characterized by $O-H \cdots O$ hydrogen bonding, resulting in the formation of chains of molecules connected in a head-to-tail fashion and running in the [101] direction. The IC₅₀ values for the HepG2 and KB cell lines are 150.9, 122.3 μM for (I) and 138.9, 93.2 μM for (II), respectively.

1. Chemical context

Although platinum-based drugs have dominated the treatment of various cancers by chemical agents, the research on new platinum(ll) complexes for the purpose of medical application is still attractive for the worldwide scientific society (Johnstone *et al.*, 2016). Recently, numerous platinum(ll) complexes bearing alkene and pyridine derivatives have been synthesized and tested for their anti-cancer activities (Bigioni *et al.*, 2000; Da *et al.*, 2012, 2015; Chi *et al.*, 2017, 2018; Cucciolito *et al.*, 2018; Dodoff *et al.*, 2012). Nevertheless, crystal data for these complexes are limited, some examples being the crystal structures of [PtCl(eugenol-1*H*)(pyridine)], [PtCl(eugenol-1*H*)(4-methylpyridine)] (Chi *et al.*, 2018) and *trans*-[PtCl₂(C₂H₄)(*N*-3-pyridinylmethanesulfonamide)] (Dodoff *et al.*, 2012).

In this paper, the crystal structures of three mononuclear platinacyclic complexes namely, $(\eta^2-2\text{-allyl-4-methoxy-5-}{[(\text{propan-2-yloxy})\text{carbonyl}]\text{methoxy}}\text{phenyl-}\kappa C^1)\text{chlorido-}(\text{pyridine-}\kappa N)\text{platinum}(\text{II}), [Pt(C_{15}\text{H}_{19}\text{O}_4)\text{Cl}(C_5\text{H}_5\text{N})], (I), (\eta^2-2\text{-allyl-4-methoxy-5-}{[(\text{propan-2-yloxy})\text{carbonyl}]\text{meth-}oxy}\text{phenyl-}\kappa C^1)\text{chlorido}(4\text{-methylpyridine-}\kappa N)\text{platinum}(\text{II}),$

Figure 1

Reaction scheme for the synthesis of mixed i PrEug-pyridine derivative platinum(II) complexes (I), (II) and (III).

[Pt(C₁₅H₁₉O₄)Cl(C₆H₇N)], (**II**), and (η^{2} -2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κC^{1})chlorido-(pyridine-4-carboxylic acid- κN)platinum(II), [Pt(C₁₅H₁₉O₄)-Cl(C₆H₅NO₂)], (**III**), are reported. Complexes (**I**), (**II**), (**III**) are obtained from the reactions of the dinuclear chelate ring complex [Pt(μ -Cl)(^{*i*}PrEug)]₂ (**1**, ^{*i*}PrEug: deprotonated isopropyl eugenoxyacetate) with pyridine (Py), 4-methyl-pyridine (MePy) and pyridine-4-carboxylic acid (PyCOOH), respectively. The synthesis of the three complexes is summarized in Fig. 1.

The Py, MePy and PyCOOH cleave the Pt^1-Cl^2 (or Pt^2-Cl^1) bond in complex 1 to form complexes (I), (II), (III). This is due to the weaker Pt^1-Cl^2 or Pt^2-Cl^1 bond (2.4773 Å) as compared to the Pt^1-Cl^1 or Pt^2-Cl^2 bond (2.3527 Å) (Nguyen Thi Thanh *et al.*, 2016) and results in a *cis* but not *trans* position of the pyridine ligands with respect to the allyl group of ^{*i*}PrEug. Similar results have been observed when the complexes $[Pt(\mu-Cl)(arylolefin-1H)]_2$ (arylolefin: safrole or eugenol derivatives) analogous to 1 react with different amines (Da *et al.*, 2012, 2015; Chi *et al.*, 2018).

Figure 3

Overlay of the three complexes, showing the different conformation of the pyridine ring for (III). Complex (I) is in black, complex (II) in red and complex (III) in green.

2. Structural commentary

Complexes (I) and (II) crystallize isomorphously in the triclinic space group $P\overline{1}$. The central Pt^{II} atom displays a distorted square-planar coordination with the Cl atom, the N atom of the pyridine or 4-methylpyridine ligand, and completed with a C atom and C=C double bond of the eugenol ligand (Fig. 2a and 2b). The C=C group and N atom are in a *cis* position with respect to each other. The dihedral angle between the best planes through the pyridine and phenyl rings is 74.90 (15)° for complex (I) and 75.00 (11)° for complex (II). The dihedral angle between the planes through the planes through the allyl atoms (C8, C9, C10) and the pyridine ring is 16.0 (2)° for complex (I) and 20.08 (12)° for complex (II). The almost identical conformation is further evidenced by a fit of both structures, excluding H atoms and the methyl substituent in (II), which gives an r.m.s. deviation of 0.1867 Å (Fig. 3).

Complex (III) also crystallizes in space group $P\overline{1}$, but due to the presence of the carboxylic acid function the crystal structure is no longer isomorphous with (I) and (II) (Fig. 2c). Although the square-planar coordination of the central Pt^{II} atom is identical, the dihedral angle of 21.6 (2)° illustrates that

The molecular structure of complexes (I), (II) and (III) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Table 1					
Hydrogen-bond	geometry	(Å,	°) fo	or	(I).

Cg5 is the centroid of the C2-C7 phenyl ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C12-H12B\cdots O16^{i}$	0.98	2.42	3.354 (3)	160
$C14-H14A\cdots O11^{ii}$	0.99	2.31	3.266 (3)	161
$C14-H14A\cdots O13^{ii}$	0.99	2.56	3.330 (4)	134
$C20-H20B\cdots Cg5^{iii}$	0.98	2.93	3.586 (3)	125
$C26-H26\cdots Cg5^{iv}$	0.95	2.88	3.736 (3)	150

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y, -z + 2; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1.

the mutual orientation of the eugenol and pyridine parts is different. The plane through the allyl group makes an angle of 40.9 (3)° with the pyridine plane. An overlay of the identical parts in (I) and (III) gives an r.m.s. deviation of 0.5782 Å, while 0.5507 Å for (II) and (III) (Fig. 3).

Comparing the bond distances in the coordination sphere of the central Pt^{II} atom of the three complexes shows that the largest differences occur for the Pt-N distance: 2.139 (2) Å for (I) within experimental error the same as 2.1418 (18) Å for (II), and 2.164 (3) Å for (III).

3. Supramolecular features

The crystal packing of complex (I) is characterized by C– H···O hydrogen bonding, C–H··· π and π - π interactions (Fig. 4, Table 1). The bifurcated hydrogen bond between C14–H14A and O11/O13 gives rise to the formation of inversion dimers. The eugenol parts are further linked into chains running in the *a*-axis direction by C12–H12B···O16 hydrogen-bond interactions. Further dimer formation is obtained through π - π stacking between the pyridine rings [Cg4··· $Cg4^v = 3.560$ (2) Å; Cg4 is the centroid of ring N22/ C23–C27; symmetry code: (v) 2 - x, 2 - y, 1 - z]. The phenyl ring C2–C7 participates in two C–H··· π interactions.

Figure 4

Partial crystal packing of complex (I), showing $C-H \cdots O$ hydrogen bonding (red dashed lines), $C-H \cdots \pi$ and $\pi-\pi$ interactions (grey dashed lines). Hydrogen atoms not involved in interactions have been omitted for clarity (see Table 1 for symmetry codes).

Table 2		
Hydrogen-bond geometry (A	Å, °) fo	r (II).

Cg5 is the centroid of the C2-C7 phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C12 - H12B \cdots O16^{i}$	0.98	2.45	3.397 (3)	162
$C14 - H14A \cdots O11^{ii}$	0.99	2.39	3.341 (3)	161
$C14 - H14A \cdots O13^{ii}$	0.99	2.57	3.351 (3)	136
$C8-H8B\cdots Cl21^{i}$	0.99	2.76	3.713 (3)	162
$C20-H20B\cdots Cg5^{iii}$	0.98	2.87	3.562 (3)	128
$C26-H26\cdots Cg5^{iv}$	0.95	2.93	3.873 (3)	171
$C28-H28B\cdots Cg4^{v}$	0.98	2.87	3.425 (3)	117

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y, -z + 2; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 2, -y + 2, -z + 1.

Table 3Hydrogen-bond geometry (Å, $^{\circ}$) for (III).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O30-H30\cdots O13^{i}$	0.84	2.10	2.932 (4)	170
$C10-H10A\cdots O16^{ii}$	0.95	2.41	3.317 (5)	159
$C12-H12A\cdots O16^{iii}$	0.98	2.51	3.415 (5)	154
$C14-H14A\cdots O29^{iv}$	0.99	2.46	3.268 (5)	139
$C14 - H14B \cdots O29^{v}$	0.99	2.46	3.178 (5)	129
$C26-H26\cdots O16^{vi}$	0.95	2.43	3.336 (5)	159

Symmetry codes: (i) x - 1, y, z - 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z + 1; (v) -x, -y + 2, -z; (vi) -x, -y + 1, -z.

Complex (II) displays a very similar crystal packing (Fig. 5, Table 2). But, due to the presence of a 4-methylpyridine ring in (II), the π - π stacking is absent [$Cg4 \cdots Cg4^{v} = 4.312$ (1) Å, slippage 2.703 Å; Cg4 is the centroid of ring N22/C23-C27; symmetry code: (v) 2 - x, 2 - y, 1 - z] and is in fact replaced by two C-H··· π interactions between the methyl group and the pyridine ring. This slippage of the pyridine ring also results in an additional C8-H8B····Cl21 interaction between the allyl CH₂ group and a neighboring Cl atom.

The carboxylic acid function present in complex (III) is involved in head-to-tail fashion $O-H\cdots O$ interactions resulting in the formation of chains running in the [101]

Partial crystal packing of complex (II), showing $C-H\cdots O$ hydrogen bonding (red dashed lines), $C-H\cdots Cl$ (green dashed lines), $C-H\cdots \pi$ and $\pi-\pi$ interactions (grey dashed lines). Hydrogen atoms not involved in interactions have been omitted for clarity (see Table 2 for symmetry codes).

Table 4

Pt bond distances (Å) for Pt complexes with the Pt atom coordinated to a Cl atom, N atom and allylaryl ligand found in the Cambridge Structural Database.

CSD refcode	Pt-Cl	Pt-N	Pt-C _{aryl}	Pt-Cg	Reference
EWAVOP	2.323	2.107	1.995	2.011	Nguyen Thi Thanh et al. (2016)
GOYJEL	2.324	2.177	2.001	2.011	Da et al. (2015)
OFUREN	2.319	2.160	2.109	2.057	Da et al. (2008)
OFUREN	2.340	2.187	1.843	1.995	Da et al. (2008)
SOMNUF	2.329	2.188	2.015	2.009	Mangwala Kimpende et al. (2014)
TALTIM	2.321	2.143	2.002	2.009	Le Thi Hong et al. (2017)
VEZHOA	2.332	2.140	2.006	2.010	Chi et al. (2018)
VEZJIW	2.314	2.142	1.991	2.007	Chi et al. (2018)
VEZJIW	2.318	2.138	1.999	2.017	Chi et al. (2018)
VEZJOC	2.317	2.199	2.002	2.015	Chi et al. (2018)

$C_{\rm res}$ is the arvl C atom and	Ca the centroid of the	C = C group of the	coordinating allylaryl ligand
C _{arvl} is the aryl C atom and	cg me centrola of me	C-C group of the	coordinating anylaryr nganu.

direction (Fig. 6, Table 3). Parallel chains interact through π - π interactions [$Cg4 \cdots Cg5^{vi} = 3.947$ (2) Å; Cg4 and Cg5 are the centroids of rings N22/C23-C27 and C2-C7, respectively; symmetry code: (vi) -x, 1 - y, -z] and C-H···O hydrogenbonding interactions (Fig. 6, Table 3).

No voids are observed in the crystal packing of complexes (I) and (II), but for complex (III) a small void of 37 Å³ is present around ($\frac{1}{2}$, 0, 0).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for Pt complexes with the Pt atom coordinated to a Cl atom, N atom and allylaryl ligand (similar to the title complexes) gave eight hits. The C=C group and N atom are always in a *cis* position with respect to each other. All complexes also possess a distorted square-planar coordination for the Pt atom with a deviation of the Pt atom from the best plane through the coordinating Cl, N, C_{aryl} and centroid (Cg) of the C=C group between 0.018 Å [chloro-(4,5-dimethoxy-2-prop-2-en-1yl)phenyl-(2-methylaniline)platinum(II), refcode GOYJEL; Da et al., 2015] and 0.048 Å $[(\eta^2-5-hydroxy-4-methoxy-$ 2-(prop-2-en-1-yl)phenyl)-chloro-(4-methylpyridine)platinum(II), CSD refcode VEZJIW; Chi et al., 2018]. Table 4 gives an overview of the four Pt bond distances for each compound. The average Pt-Cl, Pt-N, Pt- C_{aryl} and Pt-Cg distances are

Figure 6

Partial crystal packing of complex (III), showing the chain formation in the [101] direction. O-H···O and C-H···O hydrogen bonding are shown as red dashed lines, π - π interactions as grey dashed lines. Hydrogen atoms not involved in interactions have been omitted for clarity (see Table 3 for symmetry codes).

2.324 (8), 2.158 (29), 1.996 (64) and 2.014 (16) Å, respectively. The largest spread is observed for the Pt- C_{aryl} bond (1.843 to 2.109 Å in the two molecules present in the asymmetric unit of chloro-(η^2 -6-ethenyl-1,3-benzodioxole-5-yl)piperidine-

platinum(II) (CSD refcode OFUREN; Da *et al.*, 2008). The averages correspond to the observed distances for complexes (I)–(III). It is worthwhile to note that upon binding to Pt, the C=C bond distance [1.29 (4) Å for allylaryl fragments in the CSD] increased significantly. The average C=C bond distance for the complexes in Table 4 is 1.39 (3) Å, comparable to the C=C bond distances in the title complexes [1.389 (4), 1.401 (3) and 1.376 (6) Å for (I)–(III), respectively].

5. In vitro cytotoxicity of complexes (I) and (II)

The in vitro cytotoxicity of complexes (I) and (II) was tested according to the method described in Skehan et al. (1990) and Likhitwitayawuid et al. (1993) on two human cancer cell lines of HepG2 (hepatocellular carcinoma) and KB (human epidermal carcinoma). The IC₅₀ values for the HepG2 and KB cell lines calculated based on OD values taken on an Elisa instrument at 515–540 nm are 150.9, 122.3 μM for (I) and 138.9, 93.2 μ M for (II), respectively. This result shows that the presence of the extra methyl group on the pyridine ring in the para position in (II) does not have a notable effect on its anticancer activities as compared to those of (I). However, a comparison of complexes that differ solely in the olefin ligand reveals a significant influence. Specifically, complex (I) exhibits much better cytotoxicity against HepG2 and KB cell lines than [PtCl(eugenol-1H)(Py)] (>270.7, 211.8 μ M, respectively; Chi et al., 2018) but worse than [Pt(methyleugenol-1H)(Py)] $(7.07 \ \mu M \text{ for KB cell line; Da et al., 2015}).$

6. Synthesis and crystallization

The synthetic protocol for the three complexes is shown in Fig. 1. The starting complex $[Pt(\mu-Cl)({}^{i}PrEug)]_{2}$ (1) was synthesized according to the synthetic protocol of Thong & Chi (2014).

[PtCl('PrEug)(pyridine)] (**I**). A solution of pyridine (80 μ L, 1.0 mmol) in 10 mL ethanol was slowly added with stirring to a suspension of [Pt(μ -Cl)('PrEug)]₂ (494 mg, 0.5 mmol) in

research communications

Table 5Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$[Pt(C_1 H_1 O_4)Cl(C_1 H_5 N)]$	$[Pt(C_{15}H_{10}O_4)Cl(C_6H_7N)]$	$[Pt(C_{15}H_{10}O_{4})Cl(C_{6}H_{5}NO_{2})]$
<i>M</i> _	572.94	586.97	616.95
Crystal system, space group	Triclinic. $P\overline{1}$	Triclinic. $P\overline{1}$	Triclinic. P1
Temperature (K)	100	100	100
a, b, c (Å)	8.3146 (3), 8.6714 (4), 14.5827 (6)	8.36089 (15), 9.12717 (16), 14.5582 (3)	7.8746 (2), 9.7566 (2), 15.0004 (4)
$lpha,eta,\gamma$ (°)	90.534 (4), 104.376 (4), 101.135 (3)	94.9089 (15), 102.2766 (16), 100.4541 (15)	95.782 (2), 102.874 (2), 93.843 (2)
$V(\text{\AA}^3)$	997.49 (7)	1058.58 (3)	1113.02 (5)
Z	2	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})^{31}$	7.19	6.78	6.46
Crystal size (mm)	$0.25 \times 0.2 \times 0.15$	$0.25 \times 0.2 \times 0.2$	$0.4 \times 0.4 \times 0.35$
Data collection			
Diffractometer	Rigaku Oxford Diffraction Super- Nova, Single source at offset/far, Eos	Rigaku Oxford Diffraction Super- Nova, Single source at offset/far, Eos	Rigaku Oxford Diffraction Super- Nova, Single source at offset/far, Eos
Absorption correction	Multi-scan <i>CrysAlis PRO</i> (Rigaku OD, 2018)	Multi-scan <i>CrysAlis PRO</i> (Rigaku OD, 2018)	Multi-scan CrysAlis PRO (Rigaku OD, 2018)
Tmin. Tmax	0.717. 1.000	0.671, 1.000	0.429, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17455, 4084, 3881	43513, 4327, 4252	22839, 4542, 4276
Rint	0.040	0.036	0.077
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.625	0.625	0.625
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.018, 0.040, 1.05	0.013, 0.033, 1.12	0.027, 0.068, 1.05
No. of reflections	4084	4327	4542
No. of parameters	247	257	275
No. of restraints	0	0	27
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.53, -0.68	0.38, -0.92	1.87, -1.77

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), SHELXL 2016/4 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

10 mL acetone. The reaction mixture was stirred at ambient temperature (AT) and filtered off after 30 minutes to remove the insoluble part. Subsequently, slow evaporation of the solvent of the obtained solution at AT gave within 10 h transparent crystals, which were suitable for X-ray diffraction and other analyses. The yield was 515 mg (90%). %Pt (found/ calculated): 34.15/34.06. ESI MS (m/z, intensity), -MS: 1021, 100%, $[2M - 2Py + Cl]^{-}$; +MS: 1067, 100%, $[2M - Py + H]^{+}$; 988, 30%, $[2M - 2Py + H]^+$. IR (cm⁻¹, ν): 3089, 2970 and 2839 (CH); 1748 (C=O); 1597 and 1477 (C=C, C=N). ¹H NMR (500 MHz, acetone-d₆): 8.79 (ov, 2H, Ar-H), 8.04 (m, 1H, Ar-H), 7.65 (ov, 2H, Ar-H), 7.04 (s, ${}^{3}J_{PtH} = 40$, 1H, Ar-H), 6.66 (s, 1H, Ar–H), 5.07 (m, 1H, O–CH), 4.83 (m, ${}^{2}J_{PtH} =$ 70 Hz, 1H, CH=CH₂), 4.54 (s, 2H, OCH₂), 3.81 [d, ³J(H,H) = 13.0 Hz, 1H, CH=CH₂], 3.78-3.74 (ov, 2H, CH=CH₂, CH₂-CH), 3.73 (s, 3H, OCH₃), 2.66 (d, ${}^{2}J(H,H) = 16.5$ Hz, ${}^{3}J_{PtH} =$ 110 Hz, 1H, CH_2 -CH), 1.27 [*d*, ${}^{3}J$ (H,H) = 6.5 Hz, 6H, CH- $(CH_3)_2$].

[PtCl(^{*i***}PrEug)(4-methylpyridine)] (II)**. This complex was prepared starting from $[Pt(\mu-Cl)(^{$ *i* $</sup>PrEug)]_2$ (494 mg, 0.5 mmol) and 4-methylpyridine (100 µL, 1.0 mmol) according to the procedure for the synthesis of **I**. The yield was 539 mg (92%), transparent crystals were suitable for X-ray diffraction and other analyses. %Pt (found/calculated): 32.34/32.25. ESI

MS (*m*/*z*, intensity), -MS: 1021, 100%, $[2M - 2MePy + Cl]^-$; +MS: 1079, 70%, $[2M - MePy + H]^+$; 986, 25%, $[2M - 2MePy + H]^+$; IR (cm⁻¹, *v*): 2970, 2920 and 2839 (CH); 1748 (C=O); 1616 and 1477 (C=C, C=N). ¹H NMR (500 MHz, acetone*d*₀): 8.60 [*d*, ³*J*(H,H) = 5.5 Hz, 2H, Ar-H], 7.46 [*d*, ³*J*(H,H) = 5.5 Hz, 2H, Ar-H], 7.04 (*s*, ³*J*_{PtH} = 40, 1H, Ar-H), 6.65 (*s*, 1H, Ar-H), 5.07 (*m*, 1H, O-CH), 4.79 (*m*, ²*J*_{PtH} = 70 Hz, 1H, *CH*=CH₂), 4.54 (*s*, 2H, OCH₂), 3.78 [*d*, ³*J*(H,H) = 13.0 Hz, 1H, CH=CH₂], 3.76-3.74 (*ov*, 2H, CH=CH₂, CH₂-CH), 3.73 (*s*, 3H, OCH₃), 2.64 [*d*, ²*J*(H,H) = 16.5 Hz, 1H, CH₂-CH], 2.46 (*s*, 3H, CH₃), 1.27 [*d*, ³*J*(H,H) = 6.5 Hz, 6H, CH-(CH₃)₂].

[PtCl(^{*i*}PrEug)(pyridine-4-carboxylic acid)] (III). A mixture of pyridine-4-carboxylic acid (123 mg, 1.0 mmol) and [Pt(μ -Cl)(^{*i*}PrEug)]₂ (494 mg, 0.5 mmol) in 10 mL acetone was stirred at AT for 8 h. The resulting precipitate was filtered off and washed consecutively with ethanol (2 × 5 mL) and cold chloroform (2 × 5 mL), then crystallized in chloroform to give a light-yellow powder. The yield was 493 mg (80%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation within 8 h from a concentrated chloroform/ ethanol solution at AT. %Pt (found/calculated): 31.58/31.63. ESI MS (*m*/*z*, intensity), -*M*S: 1021, 100%, [2*M* – 2PyCOOH + Cl]⁻; +MS: 1110, 8%, [2*M* – PyCOOH + H]⁺; 989, 10%, [2*M* –

2PyCOOH + H]⁺. IR (cm⁻¹, ν): 3267 (OH), 3093, 2974 and 2839 (CH); 1728 (C=O); 1586 and 1477 (C=C, C=N). ¹H NMR (500 MHz, dimethyl sulfoxide- d_6): 13.80 (br, 1H, OH), 8.79 [d, ³J(H,H) = 4.5 Hz, 2H, Ar-H], 7.83 [d, ³J(H,H) = 4.5 Hz, 2H, Ar-H], 6.75–6.74 (ov, 2H, Ar-H), 5.08 (m, 1H, CH=CH₂), 4.97 (m, 1H, O-CH), 4.58/4.51 [d, ²J(H,H) = 16.5 Hz, 2H, OCH₂], 4.33 [d, ³J(H,H) = 6.0 Hz, 1H, CH=CH₂], 3.93 [d, ³J(H,H) = 13.5 Hz, 1H, CH=CH₂], 3.79– 3.70 (ov, 4H, CH₂-CH, OCH₃), 2.77 [d, ²J(H,H) = 17.0 Hz, 1H, CH₂-CH], 1.23 [d, ³J(H,H) = 6.0 Hz, 6H, CH-(CH₃)₂].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5.

The H atoms were placed in idealized positions and included as riding contributions with $U_{iso}(H)$ values of $1.2U_{eq}$ or $1.5U_{eq}$ of the parent atoms, with C-H distances of 0.95 (aromatic), 1.00 (CH), 0.99 (CH₂) and 0.98 Å (CH₃). The carboxylic acid H atom in (III) was refined as rotating group with a O-H distance of 0.84 Å. The displacement parameters of the bonded atoms in the carboxylic acid and isopropyl groups in (III) were restrained to be similar along the bond.

Funding information

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

References

Bigioni, M., Ganis, P., Panunzi, A., Ruffo, F., Salvatore, C. & Vito, A. (2000). *Eur. J. Inorg. Chem.* pp. 1717–1721.

- Chi, N. T. T., Da, T. T., Ha, N. V. & Dinh, N. H. (2017). J. Coord. Chem. 70, 1008–1019.
- Chi, N. T. T., Da, T. T., Robeyns, K., Van Meervelt, L., Mai, T. T. C., Dat, N. D. & Dinh, N. H. (2018). *Polyhedron*, **151**, 330–337.
- Cucciolito, M. E., D'Amora, A., De Feo, G., Ferraro, G., Giorgio, A., Petruk, G., Monti, D. M., Merlino, A. & Ruffo, F. (2018). *Inorg. Chem.* 57, 3133–3143.
- Da, T. T., Chi, N. T. T., Van Meervelt, L., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104–109.
- Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.
- Da, T. T., Kim, Y. M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611–3613.
- Dodoff, N. I., Lalia-Kantouri, M., Gdaniec, M., Czapik, A., Vassilev, N. G., Markova, L. S. & Apostolova, M. D. (2012). J. Coord. Chem. 65, 688–704.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. (2016). Chem. Rev. 116, 3436–3486.
- Le Thi Hong, H., Nguyen Thu, T., Nguyen, H. & Van Meervelt, L. (2017). Acta Cryst. E**73**, 573–578.
- Likhitwitayawuid, K., Angerhofer, C. K., Cordell, G. A., Pezzuto, J. M. & Ruangrungsi, N. (1993). J. Nat. Prod. 56, 30–38.
- Mangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435–437.
- Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). *Acta Cryst.* C72, 758–764.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107–1112.
- Thong, P. V. & Chi, N. T. T. (2014). J. Chem (Vietnam) 52, 381–386.

Acta Cryst. (2020). E76, 1012-1017 [https://doi.org/10.1107/S2056989020006957]

Crystal structures of three platinacyclic complexes bearing isopropyl eugenoxyacetate and pyridine derivatives

Nguyen Thi Thanh Chi, Pham Van Thong and Luc Van Meervelt

Computing details

For all structures, data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008). Program(s) used to refine structure: *SHELXL* (Sheldrick, 2015) for (I), (II); *SHELXL* 2016/4 (Sheldrick, 2015) for (III). For all structures, molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $(\eta^2-2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-\kappa C^1)chlorido(pyridine-\kappa N)platinum(II) (I)$

Crystal data

 $[Pt(C_{15}H_{19}O_4)Cl(C_5H_5N)]$ $M_r = 572.94$ Triclinic, $P\overline{1}$ a = 8.3146 (3) Å b = 8.6714 (4) Å c = 14.5827 (6) Å a = 90.534 (4)° $\beta = 104.376$ (4)° $\gamma = 101.135$ (3)° V = 997.49 (7) Å³

Data collection

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 15.9631 pixels mm⁻¹ ω scans
Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2018)

Refinement

Refinement on F^2 247 parameterLeast-squares matrix: full0 restrain $R[F^2 > 2\sigma(F^2)] = 0.018$ Primary a $wR(F^2) = 0.040$ HydrogenS = 1.05neighbor4084 reflectionsH-atom p

Z = 2 F(000) = 556 $D_x = 1.908 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12348 reflections $\theta = 3.2-29.0^{\circ}$ $\mu = 7.19 \text{ mm}^{-1}$ T = 100 KNeedle, clear colourless $0.25 \times 0.2 \times 0.15 \text{ mm}$

 $T_{\min} = 0.717, T_{\max} = 1.000$ 17455 measured reflections 4084 independent reflections 3881 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -10 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$

247 parameters
0 restraints
Primary atom site location: heavy-atom method
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0133P)^2 + 0.0785P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.53 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.68 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	0.99983 (2)	0.56342 (2)	0.66724 (2)	0.00936 (4)
C2	0.9123 (4)	0.3610 (3)	0.7197 (2)	0.0114 (6)
C3	0.7406 (3)	0.2958 (3)	0.6843 (2)	0.0112 (6)
C4	0.6695 (4)	0.1536 (3)	0.7156 (2)	0.0118 (6)
H4	0.552907	0.109068	0.689752	0.014*
C5	0.7671 (4)	0.0764 (3)	0.7842 (2)	0.0109 (6)
C6	0.9385 (3)	0.1462 (3)	0.8242 (2)	0.0107 (6)
C7	1.0104 (4)	0.2848 (3)	0.79078 (19)	0.0111 (6)
H7	1.127197	0.328942	0.816169	0.013*
C8	0.6398 (4)	0.3846 (3)	0.6098 (2)	0.0159 (7)
H8A	0.527756	0.383967	0.622071	0.019*
H8B	0.621058	0.332488	0.546305	0.019*
C9	0.7352 (3)	0.5535 (3)	0.6122 (2)	0.0165 (7)
Н9	0.755404	0.595040	0.555064	0.020*
C10	0.7937 (4)	0.6486 (4)	0.6956 (2)	0.0211 (7)
H10A	0.774433	0.608533	0.753176	0.025*
H10B	0.853053	0.753727	0.695070	0.025*
011	0.7105 (2)	-0.0634 (2)	0.81928 (13)	0.0131 (4)
C12	0.5418 (3)	-0.1455 (3)	0.7741 (2)	0.0149 (7)
H12A	0.530511	-0.162299	0.706052	0.022*
H12B	0.460286	-0.082864	0.783549	0.022*
H12C	0.519246	-0.247470	0.801796	0.022*
013	1.0221 (2)	0.0671 (2)	0.89596 (14)	0.0170 (5)
C14	1.1676 (4)	0.1557 (4)	0.9612 (2)	0.0159 (7)
H14A	1.180615	0.108580	1.023559	0.019*
H14B	1.151072	0.264493	0.969509	0.019*
C15	1.3272 (4)	0.1608 (3)	0.9288 (2)	0.0127 (6)
O16	1.3354 (3)	0.0981 (2)	0.85702 (14)	0.0194 (5)
O17	1.4603 (2)	0.2461 (2)	0.99284 (14)	0.0159 (5)
C18	1.6258 (4)	0.2675 (4)	0.9695 (2)	0.0175 (7)
H18	1.635179	0.168389	0.937456	0.021*
C19	1.7574 (4)	0.2994 (4)	1.0648 (2)	0.0248 (8)
H19A	1.743163	0.392815	1.097858	0.037*
H19B	1.871372	0.317564	1.054367	0.037*
H19C	1.742192	0.208415	1.103366	0.037*
C20	1.6394 (4)	0.4002 (4)	0.9044 (2)	0.0204 (7)

H20A	1.549167	0.373773	0.845589	0.031*	
H20B	1.749964	0.416659	0.889566	0.031*	
H20C	1.627884	0.496738	0.935450	0.031*	
Cl21	1.25878 (9)	0.49780 (8)	0.67051 (5)	0.01618 (16)	
N22	1.0890 (3)	0.7834 (3)	0.61344 (17)	0.0113 (5)	
C23	1.1235 (4)	0.9189 (3)	0.6672 (2)	0.0140 (6)	
H23	1.099025	0.916392	0.727521	0.017*	
C24	1.1935 (4)	1.0613 (3)	0.6375 (2)	0.0157 (7)	
H24	1.216748	1.155279	0.676646	0.019*	
C25	1.2290 (4)	1.0645 (4)	0.5497 (2)	0.0168 (7)	
H25	1.277421	1.160967	0.527790	0.020*	
C26	1.1935 (4)	0.9263 (4)	0.4941 (2)	0.0169 (7)	
H26	1.216671	0.926321	0.433546	0.020*	
C27	1.1239 (4)	0.7885 (3)	0.5282 (2)	0.0136 (6)	
H27	1.099668	0.693346	0.490065	0.016*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00967 (6)	0.00807 (6)	0.01093 (7)	0.00194 (4)	0.00356 (5)	0.00123 (4)
C2	0.0130 (15)	0.0100 (14)	0.0118 (15)	0.0020 (11)	0.0044 (12)	-0.0017 (12)
C3	0.0122 (14)	0.0114 (14)	0.0104 (14)	0.0028 (11)	0.0035 (12)	-0.0017 (12)
C4	0.0105 (14)	0.0130 (15)	0.0113 (15)	0.0007 (11)	0.0031 (12)	-0.0014 (12)
C5	0.0160 (15)	0.0102 (14)	0.0092 (14)	0.0018 (11)	0.0088 (12)	0.0000 (12)
C6	0.0103 (14)	0.0106 (14)	0.0105 (14)	0.0038 (11)	0.0002 (12)	0.0004 (12)
C7	0.0092 (14)	0.0132 (15)	0.0110 (15)	0.0014 (11)	0.0036 (12)	0.0003 (12)
C8	0.0119 (15)	0.0150 (16)	0.0212 (17)	0.0039 (12)	0.0041 (13)	0.0050 (13)
C9	0.0084 (14)	0.0181 (16)	0.0261 (18)	0.0068 (12)	0.0070 (13)	0.0089 (14)
C10	0.0184 (17)	0.0163 (16)	0.034 (2)	0.0053 (13)	0.0153 (15)	0.0048 (15)
011	0.0121 (10)	0.0111 (10)	0.0122 (10)	-0.0033 (8)	0.0003 (8)	0.0022 (8)
C12	0.0095 (14)	0.0149 (15)	0.0175 (16)	-0.0030 (12)	0.0021 (12)	0.0005 (13)
013	0.0117 (11)	0.0160 (11)	0.0168 (11)	-0.0030 (8)	-0.0040 (9)	0.0072 (9)
C14	0.0125 (15)	0.0213 (17)	0.0104 (15)	-0.0008 (13)	-0.0003 (12)	0.0051 (13)
C15	0.0132 (15)	0.0096 (14)	0.0140 (15)	0.0023 (11)	0.0012 (12)	0.0037 (12)
O16	0.0184 (12)	0.0210 (12)	0.0160 (11)	0.0036 (9)	-0.0004 (9)	-0.0072 (10)
O17	0.0106 (10)	0.0203 (11)	0.0137 (11)	-0.0026 (8)	0.0019 (9)	-0.0044 (9)
C18	0.0124 (15)	0.0224 (17)	0.0183 (16)	0.0009 (13)	0.0073 (13)	-0.0015 (14)
C19	0.0159 (17)	0.032 (2)	0.0223 (18)	-0.0008 (14)	0.0018 (14)	0.0025 (16)
C20	0.0222 (17)	0.0204 (17)	0.0188 (17)	-0.0016 (13)	0.0100 (14)	-0.0001 (14)
Cl21	0.0109 (3)	0.0124 (4)	0.0265 (4)	0.0028 (3)	0.0067 (3)	0.0034 (3)
N22	0.0079 (12)	0.0111 (12)	0.0140 (13)	0.0013 (9)	0.0013 (10)	0.0014 (10)
C23	0.0136 (15)	0.0151 (15)	0.0126 (15)	0.0052 (12)	0.0001 (12)	0.0017 (13)
C24	0.0147 (15)	0.0122 (15)	0.0189 (16)	0.0020 (12)	0.0027 (13)	-0.0023 (13)
C25	0.0129 (15)	0.0138 (15)	0.0215 (17)	0.0011 (12)	0.0011 (13)	0.0056 (13)
C26	0.0190 (16)	0.0212 (17)	0.0131 (15)	0.0057 (13)	0.0075 (13)	0.0044 (13)
C27	0.0121 (15)	0.0149 (15)	0.0142 (15)	0.0046 (12)	0.0024 (12)	0.0012 (13)

Geometric parameters (Å, °)

Pt1—C2	2.001 (3)	O13—C14	1.419 (3)
Pt1—C9	2.131 (3)	C14—H14A	0.9900
Pt1-C10	2.118 (3)	C14—H14B	0.9900
Pt1—Cl21	2.3205 (7)	C14—C15	1.509 (4)
Pt1—N22	2.139 (2)	C15—O16	1.198 (3)
C2—C3	1.393 (4)	C15—O17	1.342 (3)
C2—C7	1.407 (4)	O17—C18	1.476 (3)
C3—C4	1.393 (4)	C18—H18	1.0000
C3—C8	1.513 (4)	C18—C19	1.525 (4)
C4—H4	0.9500	C18—C20	1.505 (4)
C4—C5	1.388 (4)	С19—Н19А	0.9800
C5—C6	1.409 (4)	C19—H19B	0.9800
C5-011	1.365 (3)	C19—H19C	0.9800
C6—C7	1 384 (4)	C20—H20A	0.9800
C6-013	1.373(3)	C20—H20B	0.9800
C7—H7	0.9500	C20—H20C	0.9800
C8—H8A	0.9900	N22-C23	1.349 (4)
C8—H8B	0.9900	N22—C27	1.344 (4)
C8—C9	1 520 (4)	C23—H23	0.9500
C9—H9	0.9500	C23—C24	1.381 (4)
C9—C10	1.389 (4)	C24—H24	0.9500
C10—H10A	0.9500	C24—C25	1.383 (4)
C10—H10B	0.9500	C25—H25	0.9500
011-C12	1.434 (3)	C25—C26	1.380 (4)
C12—H12A	0.9800	C26—H26	0.9500
C12—H12B	0.9800	C26—C27	1.378 (4)
C12—H12C	0.9800	С27—Н27	0.9500
C2—Pt1—C9	81.36 (12)	H12A—C12—H12B	109.5
C2-Pt1-C10	87.41 (12)	H12A—C12—H12C	109.5
C2-Pt1-Cl21	93.43 (9)	H12B—C12—H12C	109.5
C2-Pt1-N22	178.21 (10)	C6—O13—C14	117.1 (2)
C9—Pt1—Cl21	154.99 (9)	O13—C14—H14A	109.1
C9—Pt1—N22	97.67 (10)	O13—C14—H14B	109.1
C10—Pt1—C9	38.16 (12)	O13—C14—C15	112.3 (2)
C10—Pt1—Cl21	166.72 (9)	H14A—C14—H14B	107.9
C10—Pt1—N22	90.90 (11)	C15—C14—H14A	109.1
N22—Pt1—Cl21	88.08 (7)	C15—C14—H14B	109.1
C3—C2—Pt1	116.6 (2)	O16—C15—C14	125.5 (3)
C3—C2—C7	118.8 (3)	O16—C15—O17	124.6 (3)
C7—C2—Pt1	124.6 (2)	O17—C15—C14	109.8 (2)
C2—C3—C8	116.7 (3)	C15—O17—C18	116.4 (2)
C4—C3—C2	120.5 (3)	O17—C18—H18	109.6
C4—C3—C8	122.8 (2)	O17—C18—C19	105.1 (2)
C3—C4—H4	119.6	O17—C18—C20	109.0 (3)
C5—C4—C3	120.7 (3)	C19—C18—H18	109.6

C5 C4 H4	110.6	C20 C19 H19	100.6
$C_3 - C_4 - H_4$	119.0	C_{20} C_{18} C_{10}	109.0
C4 - C5 - C6	119.1 (3)	$C_{20} = C_{18} = C_{19}$	113.7 (3)
011	125.5 (3)	С18—С19—Н19А	109.5
011	115.5 (3)	С18—С19—Н19В	109.5
C7—C6—C5	120.0 (3)	C18—C19—H19C	109.5
O13—C6—C5	115.1 (2)	H19A—C19—H19B	109.5
O13—C6—C7	124.9 (2)	H19A—C19—H19C	109.5
С2—С7—Н7	119.6	H19B—C19—H19C	109.5
C6—C7—C2	120.7 (3)	C18—C20—H20A	109.5
С6—С7—Н7	119.6	C18—C20—H20B	109.5
C3—C8—H8A	109.7	C18—C20—H20C	109.5
C3-C8-H8B	109.7	H_{20A} C_{20} H_{20B}	109.5
$C_3 - C_8 - C_9$	109.8 (2)	$H_{20}A = C_{20} = H_{20}C$	109.5
	109.8 (2)	$H_{20} R = C_{20} = H_{20} C$	109.5
HoA - Co - HoA	100.2	$H_20B = C_20 = H_20C$	109.3
C_{2} C_{3} H_{8} H_{8}	109.7	C23—N22—Pt1	120.7(2)
С9—С8—Н8В	109./	C2/—N22—Pt1	120.71 (19)
Pt1—C9—H9	90.2	C27—N22—C23	118.4 (2)
C8—C9—Pt1	109.4 (2)	N22—C23—H23	118.9
С8—С9—Н9	119.1	N22—C23—C24	122.1 (3)
C10—C9—Pt1	70.44 (17)	С24—С23—Н23	118.9
С10—С9—С8	121.7 (3)	C23—C24—H24	120.6
С10—С9—Н9	119.1	C23—C24—C25	118.7 (3)
Pt1-C10-H10A	108.6	C25—C24—H24	120.6
Pt1-C10-H10B	90.0	C24—C25—H25	120.3
C9-C10-Pt1	71 40 (18)	$C_{26} - C_{25} - C_{24}$	1194(3)
C9-C10-H10A	120.0	$C_{26} = C_{25} = H_{25}$	120.3
C_{0} C_{10} H_{10} H_{10}	120.0	C_{25} C_{25} H_{26}	120.5
	120.0	$C_{23} = C_{20} = 1120$	120.0
HI0A-CI0-HI0B	120.0	$C_2/-C_{20}-C_{23}$	118.8 (5)
	11/.1(2)	$C_2/-C_{20}-H_{20}$	120.6
011—C12—H12A	109.5	N22—C27—C26	122.5 (3)
O11—C12—H12B	109.5	N22—C27—H27	118.7
O11—C12—H12C	109.5	С26—С27—Н27	118.7
Pt1—C2—C3—C4	178.9 (2)	C7—C2—C3—C4	-3.1 (4)
Pt1—C2—C3—C8	0.3 (3)	C7—C2—C3—C8	178.4 (3)
Pt1—C2—C7—C6	178.8 (2)	C7—C6—O13—C14	22.9 (4)
Pt1-N22-C23-C24	174.9 (2)	C8—C3—C4—C5	-179.9 (3)
Pt1-N22-C27-C26	-175.0 (2)	C8-C9-C10-Pt1	101.2 (3)
C2—C3—C4—C5	1.6 (4)	O11—C5—C6—C7	177.3 (2)
C2—C3—C8—C9	-18.2 (4)	O11—C5—C6—O13	-2.8(4)
C3—C2—C7—C6	0.9 (4)	O13—C6—C7—C2	-177.2(3)
$C_{3}-C_{4}-C_{5}-C_{6}$	21(4)	013 - C14 - C15 - 016	-0.4(4)
C_{3} C_{4} C_{5} O_{11}	-1796(3)	013 - C14 - C15 - 017	1799(2)
$C_3 - C_8 - C_9 - P_{t_1}$	25.9 (3)	C14-C15-O17-C18	-1777(2)
$C_3 C_8 C_0 C_{10}$	-525(4)	$C_{17} = C_{10} = C$	-1557(2)
$C_{4} = C_{2} = C_{2} = C_{10}$	52.5(4)	$C_{13} = 0_{17} = 0_{10} = 0_{10} = 0_{10}$	133.7(2)
C4 = C5 = C6 = C7	103.3(3)	C_{13} $- C_{16}$ $- C_{20}$	02.1(3)
	-4.2 (4)		2.6 (4)
C4—C5—C6—O13	175.7 (3)	N22—C23—C24—C25	0.0 (4)

C4—C5—O11—C12	7.4 (4)	C23—N22—C27—C26	0.1 (4)
C5—C6—C7—C2	2.7 (4)	C23—C24—C25—C26	0.2 (4)
C5—C6—O13—C14	-156.9 (3)	C24—C25—C26—C27	-0.2 (4)
C6—C5—O11—C12	-174.1 (2)	C25—C26—C27—N22	0.1 (5)
C6—O13—C14—C15	-88.0 (3)	C27—N22—C23—C24	-0.1 (4)

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C2–C7 phenyl ring.

D—H···A	D—H	H···A	D···A	D—H···A
C12—H12B····O16 ⁱ	0.98	2.42	3.354 (3)	160
C14—H14 <i>A</i> ···O11 ⁱⁱ	0.99	2.31	3.266 (3)	161
C14—H14 <i>A</i> ···O13 ⁱⁱ	0.99	2.56	3.330 (4)	134
C20—H20 <i>B</i> ··· <i>C</i> g5 ⁱⁱⁱ	0.98	2.93	3.586 (3)	125
C26—H26····Cg 5^{iv}	0.95	2.88	3.736 (3)	150

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*+1.

 $(\eta^2$ -2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κC^1)chlorido(4-methylpyridine-

κN)platinum(II) (II)

Crystal data

[Pt(C₁₅H₁₉O₄)Cl(C₆H₇N)] $M_r = 586.97$ Triclinic, $P\overline{1}$ a = 8.36089 (15) Å b = 9.12717 (16) Å c = 14.5582 (3) Å $a = 94.9089 (15)^{\circ}$ $\beta = 102.2766 (16)^{\circ}$ $\gamma = 100.4541 (15)^{\circ}$ $V = 1058.58 (3) Å^{3}$

Data collection

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 15.9631 pixels mm⁻¹ ω scans
Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2018)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.013$ $wR(F^2) = 0.033$ S = 1.124327 reflections 257 parameters Z = 2 F(000) = 572 $D_x = 1.841 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 35745 reflections $\theta = 3.2-29.0^{\circ}$ $\mu = 6.78 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.25 \times 0.2 \times 0.2 \text{ mm}$

 $T_{\min} = 0.671, T_{\max} = 1.000$ 43513 measured reflections
4327 independent reflections
4252 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$ $\theta_{\text{max}} = 26.4^\circ, \theta_{\text{min}} = 2.9^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$

0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.015P)^{2} + 0.659P] \qquad \Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.92 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.005$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Pt1	1.00923 (2)	0.54971 (2)	0.69268 (2)	0.00989 (3)
C2	0.9207 (3)	0.3594 (2)	0.74088 (15)	0.0119 (4)
C3	0.7507 (3)	0.2995 (2)	0.70567 (15)	0.0126 (4)
C4	0.6771 (3)	0.1616 (2)	0.72883 (15)	0.0122 (4)
H4	0.562025	0.120185	0.702254	0.015*
C5	0.7718 (3)	0.0851 (2)	0.79059 (15)	0.0119 (4)
C6	0.9409 (3)	0.1511 (2)	0.83258 (15)	0.0124 (4)
C7	1.0146 (3)	0.2846 (2)	0.80607 (15)	0.0126 (4)
H7	1.129836	0.325802	0.832241	0.015*
C8	0.6526 (3)	0.3880 (2)	0.63896 (16)	0.0163 (4)
H8A	0.632773	0.340077	0.572804	0.020*
H8B	0.542682	0.387817	0.654178	0.020*
C9	0.7486 (3)	0.5483 (2)	0.64848 (17)	0.0176 (5)
H9	0.764409	0.589874	0.592650	0.021*
C10	0.8151 (3)	0.6376 (3)	0.73626 (18)	0.0202 (5)
H10A	0.800671	0.598144	0.792944	0.024*
H10B	0.874500	0.737636	0.739110	0.024*
011	0.71319 (18)	-0.05067 (16)	0.81844 (11)	0.0144 (3)
C12	0.5483 (3)	-0.1295 (2)	0.76921 (16)	0.0164 (4)
H12A	0.542265	-0.144001	0.700981	0.025*
H12B	0.466172	-0.070730	0.781434	0.025*
H12C	0.524050	-0.227516	0.791625	0.025*
O13	1.02076 (19)	0.07216 (17)	0.89891 (11)	0.0171 (3)
C14	1.1632 (3)	0.1545 (2)	0.96761 (15)	0.0155 (4)
H14A	1.173924	0.106448	1.026448	0.019*
H14B	1.147068	0.257814	0.982931	0.019*
C15	1.3235 (3)	0.1620 (2)	0.93298 (15)	0.0134 (4)
O16	1.3310 (2)	0.10801 (18)	0.85616 (11)	0.0201 (3)
O17	1.45437 (18)	0.23658 (17)	1.00086 (10)	0.0160 (3)
C18	1.6184 (3)	0.2570 (3)	0.97671 (16)	0.0165 (4)
H18	1.623467	0.166368	0.934555	0.020*
C19	1.7466 (3)	0.2720 (3)	1.06927 (18)	0.0277 (6)
H19A	1.858792	0.285300	1.056968	0.042*
H19B	1.724572	0.181059	1.099656	0.042*
H19C	1.739589	0.359312	1.111216	0.042*
C20	1.6403 (3)	0.3939 (3)	0.92522 (18)	0.0239 (5)

H20A	1.637086	0.483010	0.966895	0.036*
H20B	1.549879	0.379957	0.868030	0.036*
H20C	1.748194	0.407443	0.907410	0.036*
Cl21	1.26067 (6)	0.48086 (6)	0.68589 (4)	0.01889 (11)
N22	1.0906 (2)	0.74891 (19)	0.63327 (13)	0.0129 (4)
C23	1.1236 (3)	0.8889 (2)	0.68027 (15)	0.0135 (4)
H23	1.107292	0.901003	0.742873	0.016*
C24	1.1802 (3)	1.0157 (2)	0.64104 (15)	0.0147 (4)
H24	1.203176	1.112415	0.676689	0.018*
C25	1.2034 (3)	1.0004 (2)	0.54849 (16)	0.0146 (4)
C26	1.1654 (3)	0.8558 (2)	0.49975 (16)	0.0175 (5)
H26	1.176376	0.840720	0.436193	0.021*
C27	1.1117 (3)	0.7344 (2)	0.54383 (16)	0.0168 (4)
H27	1.088589	0.636514	0.509765	0.020*
C28	1.2680 (3)	1.1334 (3)	0.50278 (17)	0.0195 (5)
H28A	1.256524	1.225818	0.538017	0.029*
H28B	1.203488	1.123624	0.437162	0.029*
H28C	1.386158	1.137376	0.503370	0.029*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.00854 (5)	0.00956 (5)	0.01200 (5)	0.00219 (3)	0.00279 (3)	0.00204 (3)
C2	0.0118 (10)	0.0109 (10)	0.0139 (10)	0.0034 (8)	0.0048 (8)	0.0004 (8)
C3	0.0119 (10)	0.0141 (10)	0.0136 (10)	0.0058 (8)	0.0038 (8)	0.0023 (8)
C4	0.0073 (9)	0.0153 (10)	0.0139 (10)	0.0024 (8)	0.0027 (8)	0.0005 (8)
C5	0.0113 (10)	0.0112 (10)	0.0140 (10)	0.0011 (8)	0.0055 (8)	0.0014 (8)
C6	0.0111 (10)	0.0137 (10)	0.0127 (10)	0.0044 (8)	0.0011 (8)	0.0026 (8)
C7	0.0090 (10)	0.0145 (10)	0.0133 (10)	0.0016 (8)	0.0013 (8)	0.0014 (8)
C8	0.0108 (10)	0.0175 (11)	0.0209 (12)	0.0042 (8)	0.0019 (9)	0.0060 (9)
C9	0.0095 (10)	0.0191 (11)	0.0274 (13)	0.0063 (9)	0.0058 (9)	0.0098 (9)
C10	0.0173 (11)	0.0149 (11)	0.0339 (14)	0.0066 (9)	0.0148 (10)	0.0045 (10)
O11	0.0092 (7)	0.0125 (7)	0.0189 (8)	-0.0015 (6)	-0.0005 (6)	0.0044 (6)
C12	0.0090 (10)	0.0145 (10)	0.0229 (12)	-0.0014 (8)	0.0012 (9)	0.0016 (9)
O13	0.0109 (7)	0.0157 (7)	0.0203 (8)	-0.0019 (6)	-0.0045 (6)	0.0080 (6)
C14	0.0112 (10)	0.0185 (11)	0.0138 (11)	-0.0009 (8)	-0.0010 (9)	0.0043 (9)
C15	0.0119 (10)	0.0112 (10)	0.0148 (11)	0.0015 (8)	-0.0020 (8)	0.0032 (8)
O16	0.0172 (8)	0.0239 (8)	0.0160 (8)	0.0047 (7)	-0.0004(7)	-0.0047 (7)
O17	0.0092 (7)	0.0218 (8)	0.0136 (8)	-0.0023 (6)	0.0020 (6)	-0.0021 (6)
C18	0.0105 (10)	0.0200 (11)	0.0179 (11)	-0.0001 (8)	0.0051 (9)	-0.0017 (9)
C19	0.0129 (11)	0.0416 (15)	0.0245 (13)	-0.0005 (11)	0.0011 (10)	0.0027 (11)
C20	0.0212 (12)	0.0226 (12)	0.0291 (14)	0.0001 (10)	0.0123 (11)	0.0039 (10)
Cl21	0.0115 (2)	0.0175 (3)	0.0308 (3)	0.0050 (2)	0.0091 (2)	0.0056 (2)
N22	0.0119 (9)	0.0119 (8)	0.0145 (9)	0.0022 (7)	0.0020 (7)	0.0028 (7)
C23	0.0118 (10)	0.0159 (10)	0.0108 (10)	0.0021 (8)	-0.0007(8)	0.0007 (8)
C24	0.0127 (10)	0.0142 (10)	0.0140 (11)	0.0018 (8)	-0.0023 (8)	-0.0002 (8)
C25	0.0088 (10)	0.0170 (11)	0.0171 (11)	0.0021 (8)	0.0001 (8)	0.0046 (9)
C26	0.0199 (11)	0.0189 (11)	0.0153 (11)	0.0044 (9)	0.0073 (9)	0.0025 (9)

C27	0.0194 (11)	0.0143 (10)	0.0163 (11)	0.0021 (9)	0.0059 (9)	-0.0021 (8)
C28	0.0195 (12)	0.0180 (11)	0.0195 (12)	0.0008 (9)	0.0029 (10)	0.0059 (9)

Geometric parameters (Å, °)

Pt1—C2	2.005 (2)	C14—H14B	0.9900
Pt1—C9	2.134 (2)	C14—C15	1.521 (3)
Pt1-C10	2.123 (2)	C15—O16	1.202 (3)
Pt1-Cl21	2.3197 (5)	C15—O17	1.339 (3)
Pt1—N22	2.1418 (18)	O17—C18	1.471 (3)
C2—C3	1.393 (3)	C18—H18	1.0000
C2—C7	1.405 (3)	C18—C19	1.512 (3)
C3—C4	1.399 (3)	C18—C20	1.514 (3)
C3—C8	1.518 (3)	C19—H19A	0.9800
C4—H4	0.9500	C19—H19B	0.9800
C4—C5	1.388 (3)	C19—H19C	0.9800
C5—C6	1.413 (3)	C20—H20A	0.9800
C5—O11	1.375 (2)	C20—H20B	0.9800
C6—C7	1.387 (3)	С20—Н20С	0.9800
C6—O13	1.384 (2)	N22—C23	1.348 (3)
С7—Н7	0.9500	N22—C27	1.349 (3)
C8—H8A	0.9900	С23—Н23	0.9500
C8—H8B	0.9900	C23—C24	1.386 (3)
C8—C9	1.515 (3)	C24—H24	0.9500
С9—Н9	0.9500	C24—C25	1.400 (3)
C9—C10	1.401 (3)	C25—C26	1.392 (3)
C10—H10A	0.9500	C25—C28	1.503 (3)
C10—H10B	0.9500	C26—H26	0.9500
O11—C12	1.436 (2)	C26—C27	1.380 (3)
C12—H12A	0.9800	С27—Н27	0.9500
C12—H12B	0.9800	C28—H28A	0.9800
C12—H12C	0.9800	C28—H28B	0.9800
O13—C14	1.423 (3)	C28—H28C	0.9800
C14—H14A	0.9900		
C2—Pt1—C9	81.60 (8)	C6—O13—C14	117.11 (16)
C2—Pt1—C10	86.78 (9)	O13—C14—H14A	109.2
C2—Pt1—Cl21	93.24 (6)	O13—C14—H14B	109.2
C2—Pt1—N22	176.29 (7)	O13—C14—C15	112.13 (18)
C9—Pt1—Cl21	156.66 (7)	H14A—C14—H14B	107.9
C9—Pt1—N22	95.50 (8)	C15—C14—H14A	109.2
C10—Pt1—C9	38.42 (9)	C15—C14—H14B	109.2
C10-Pt1-Cl21	164.63 (7)	O16-C15-C14	124.81 (19)
C10—Pt1—N22	92.37 (8)	O16—C15—O17	125.2 (2)
N22—Pt1—Cl21	88.53 (5)	O17—C15—C14	109.96 (18)
C3—C2—Pt1	115.65 (15)	C15—O17—C18	116.30 (16)
C3—C2—C7	118.71 (19)	O17—C18—H18	109.5
C7—C2—Pt1	125.64 (16)	O17—C18—C19	106.23 (18)

C2—C3—C4	120.89 (19)	O17—C18—C20	108.67 (18)
C2—C3—C8	116.84 (19)	C19—C18—H18	109.5
C4—C3—C8	122.23 (19)	C19—C18—C20	113.4 (2)
C3—C4—H4	119.9	C20—C18—H18	109.5
C5—C4—C3	120.14 (19)	C18—C19—H19A	109.5
C5—C4—H4	119.9	C18—C19—H19B	109.5
C4—C5—C6	119.24 (19)	C18—C19—H19C	109.5
011-C5-C4	125.20(19)	H19A_C19_H19B	109.5
011 - C5 - C6	115 42 (18)	H19A - C19 - H19C	109.5
C7 - C6 - C5	120.07(19)	H19B_C19_H19C	109.5
013 - C6 - C5	114 89 (18)	C18 - C20 - H20A	109.5
013 - C6 - C7	125 04 (19)	$C_{18} = C_{20} = H_{20R}$	109.5
$C_2 = C_7 = H_7$	110.7	$C_{10} = C_{20} = H_{20C}$	109.5
$C_{2} = C_{7} = C_{7}$	120.66 (10)	$H_{20A} = C_{20} = H_{20B}$	109.5
C6 C7 H7	110.7	$H_{20A} = C_{20} = H_{20C}$	109.5
$C_0 = C_1 = H_1$	100.6	H_{20}^{-1120} H_{20}^{-1120} H_{20}^{-1120}	109.5
$C_{2} = C_{0} = H_{0} A$	109.0	$H_20B - C_20 - H_20C$	109.3 102.97(15)
	109.0	C_{23} N22 C_{27}	123.87(13)
H8A - C8 - H8B	108.2	$C_{23} = N_{22} = C_{27}$	11/.0/(18)
$C_{2} = C_{3}$	110.11 (18)	C27—N22—Pt1	118.40 (14)
C9 - C8 - H8A	109.6	N22-C23-H23	118.6
C9—C8—H8B	109.6	$N_{22} = C_{23} = C_{24}$	122.7 (2)
PtI—C9—H9	91.2	C24—C23—H23	118.6
C8—C9—Pt1	108.44 (14)	C23—C24—H24	120.2
С8—С9—Н9	118.7	C23—C24—C25	119.5 (2)
C10—C9—Pt1	70.35 (12)	C25—C24—H24	120.2
C10—C9—C8	122.7 (2)	C24—C25—C28	122.0 (2)
С10—С9—Н9	118.7	C26—C25—C24	117.3 (2)
Pt1C10H10A	107.5	C26—C25—C28	120.6 (2)
Pt1-C10-H10B	91.2	C25—C26—H26	120.0
C9—C10—Pt1	71.23 (12)	C27—C26—C25	119.9 (2)
C9—C10—H10A	120.0	С27—С26—Н26	120.0
C9—C10—H10B	120.0	N22—C27—C26	122.8 (2)
H10A—C10—H10B	120.0	N22—C27—H27	118.6
C5-011-C12	116.96 (16)	С26—С27—Н27	118.6
O11—C12—H12A	109.5	C25—C28—H28A	109.5
O11—C12—H12B	109.5	C25—C28—H28B	109.5
O11—C12—H12C	109.5	C25—C28—H28C	109.5
H12A—C12—H12B	109.5	H28A—C28—H28B	109.5
H12A—C12—H12C	109.5	H28A—C28—H28C	109.5
H12B—C12—H12C	109.5	H28B—C28—H28C	109.5
Pt1—C2—C3—C4	175.43 (16)	C7—C2—C3—C8	177.26 (19)
Pt1—C2—C3—C8	-2.5 (2)	C7—C6—O13—C14	23.4 (3)
Pt1—C2—C7—C6	-178.28 (16)	C8—C3—C4—C5	-179.68 (19)
Pt1-N22-C23-C24	178.30 (15)	C8—C9—C10—Pt1	99.79 (19)
Pt1-N22-C27-C26	-179.30 (17)	O11—C5—C6—C7	176.98 (18)
C2—C3—C4—C5	2.5 (3)	O11-C5-C6-O13	-2.7 (3)
C2—C3—C8—C9	-17.9 (3)	O13—C6—C7—C2	-177.25 (19)

C3—C2—C7—C6	2.0 (3)	O13—C14—C15—O16	1.4 (3)
C3—C4—C5—C6	2.6 (3)	O13—C14—C15—O17	-178.19 (16)
C3-C4-C5-O11	179.99 (19)	C14—C15—O17—C18	-178.25 (17)
C3-C8-C9-Pt1	27.8 (2)	C15—O17—C18—C19	-153.51 (19)
C3—C8—C9—C10	-50.2 (3)	C15—O17—C18—C20	84.2 (2)
C4—C3—C8—C9	164.2 (2)	O16—C15—O17—C18	2.2 (3)
C4—C5—C6—C7	-5.4 (3)	N22—C23—C24—C25	0.7 (3)
C4—C5—C6—O13	174.91 (18)	C23—N22—C27—C26	0.2 (3)
C4—C5—O11—C12	9.6 (3)	C23—C24—C25—C26	0.8 (3)
C5—C6—C7—C2	3.1 (3)	C23—C24—C25—C28	-178.7 (2)
C5-C6-O13-C14	-156.95 (19)	C24—C25—C26—C27	-1.7 (3)
C6—C5—O11—C12	-172.89 (18)	C25—C26—C27—N22	1.3 (3)
C6—O13—C14—C15	-87.5 (2)	C27—N22—C23—C24	-1.2 (3)
C7—C2—C3—C4	-4.8 (3)	C28—C25—C26—C27	177.8 (2)

Hydrogen-bond geometry (Å, °)

*Cg*5 is the centroid of the C2–C7 phenyl ring.

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
C12—H12 <i>B</i> ···O16 ⁱ	0.98	2.45	3.397 (3)	162
C14—H14A…O11 ⁱⁱ	0.99	2.39	3.341 (3)	161
C14—H14A…O13 ⁱⁱ	0.99	2.57	3.351 (3)	136
C8—H8B···Cl21 ⁱ	0.99	2.76	3.713 (3)	162
C20—H20 <i>B</i> ··· <i>Cg</i> 5 ⁱⁱⁱ	0.98	2.87	3.562 (3)	128
C26—H26…Cg5 ^{iv}	0.95	2.93	3.873 (3)	171
C28—H28 B ···Cg4 ^v	0.98	2.87	3.425 (3)	117

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*+2, -*y*+2, -*z*+1.

 $(\eta^2$ -2-Allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl- κ C¹)chlorido(pyridine-4-carboxylic acid- κ N)platinum(II) (III)

Crystal data	
$[Pt(C_{15}H_{19}O_4)Cl(C_6H_5NO_2)]$	Z = 2
$M_r = 616.95$	F(000) = 600
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.841 {\rm Mg} {\rm m}^{-3}$
a = 7.8746 (2) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 9.7566(2) Å	Cell parameters from 13370 reflections
c = 15.0004 (4) Å	$\theta = 2.8 - 29.1^{\circ}$
$\alpha = 95.782(2)^{\circ}$	$\mu = 6.46 \text{ mm}^{-1}$
$\beta = 102.874 \ (2)^{\circ}$	T = 100 K
$\gamma = 93.843 (2)^{\circ}$	Block, light yellow
V = 1113.02 (5) Å ³	$0.4 \times 0.4 \times 0.35 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction SuperNova, Single	Detector resolution: 15.9631 pixels mm ⁻¹
source at offset/far, Eos	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: micro-focus sealed X-ray	CrysAlisPro (Rigaku OD, 2018)
tube, SuperNova (Mo) X-ray Source	$T_{\min} = 0.429, T_{\max} = 1.000$
Mirror monochromator	22839 measured reflections

4542 independent reflections	$h = -9 \rightarrow 9$
4276 reflections with $I > 2\sigma(I)$	$k = -12 \rightarrow 12$
$R_{\rm int} = 0.077$	$l = -18 \rightarrow 18$
$\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.7^\circ$	
Refinement	
Refinement on F^2	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.068$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
4542 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0316P)^2 + 0.7413P]$
275 parameters	where $P = (F_o^2 + 2F_c^2)/3$
27 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
	$\Delta ho_{ m max} = 1.87 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.77 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Pt1	-0.08260 (2)	0.65313 (2)	0.08249 (2)	0.01501 (7)
C2	0.0203 (5)	0.6097 (4)	0.2108 (3)	0.0169 (8)
C3	-0.0464 (5)	0.4856 (4)	0.2343 (3)	0.0187 (9)
C4	0.0185 (5)	0.4418 (4)	0.3205 (3)	0.0183 (8)
H4	-0.028452	0.357164	0.335382	0.022*
C5	0.1523 (5)	0.5231 (4)	0.3843 (3)	0.0178 (9)
C6	0.2201 (5)	0.6479 (4)	0.3614 (3)	0.0174 (8)
C7	0.1555 (5)	0.6914 (4)	0.2757 (3)	0.0169 (8)
H7	0.202597	0.776169	0.260973	0.020*
C8	-0.1822 (6)	0.3961 (4)	0.1617 (3)	0.0217 (9)
H8A	-0.273612	0.356019	0.189827	0.026*
H8B	-0.127352	0.319045	0.134342	0.026*
C9	-0.2649 (5)	0.4817 (4)	0.0868 (3)	0.0211 (9)
H9	-0.269614	0.449717	0.024284	0.025*
C10	-0.3329 (5)	0.6041 (5)	0.1073 (3)	0.0245 (10)
H10A	-0.329033	0.637354	0.169486	0.029*
H10B	-0.383691	0.655430	0.059143	0.029*
O11	0.2235 (4)	0.4935 (3)	0.47161 (19)	0.0224 (7)
C12	0.1579 (6)	0.3684 (4)	0.4996 (3)	0.0239 (9)
H12A	0.211332	0.364448	0.564733	0.036*
H12B	0.186894	0.288719	0.462377	0.036*
H12C	0.030620	0.366276	0.490730	0.036*
O13	0.3539 (4)	0.7181 (3)	0.43083 (18)	0.0200 (6)
C14	0.4376 (6)	0.8428 (4)	0.4126 (3)	0.0219 (9)
H14A	0.505769	0.893802	0.471514	0.026*

H14B	0.347315	0.901710	0.384927	0.026*
C15	0.5587 (6)	0.8167 (4)	0.3483 (3)	0.0239 (10)
O16	0.5679 (4)	0.7092 (3)	0.3051 (2)	0.0245 (7)
O17	0.6589 (5)	0.9325 (3)	0.3507 (3)	0.0485 (10)
C18	0.7874 (8)	0.9294 (6)	0.2922 (5)	0.0561 (14)
H18	0.823471	0.833482	0.284121	0.067*
C19	0.9440 (9)	1.0257 (7)	0.3460 (7)	0.091 (2)
H19A	0.999568	0.985788	0.401411	0.136*
H19B	0.905267	1.115713	0.363746	0.136*
H19C	1.028227	1.037723	0.307526	0.136*
C20	0.7028 (9)	0.9695 (7)	0.1996 (6)	0.0701 (17)
H20A	0.678687	1.066797	0.206270	0.105*
H20B	0.592848	0.911267	0.174277	0.105*
H20C	0.781548	0.956588	0.157863	0.105*
Cl21	0.16747 (13)	0.78892 (10)	0.07378 (7)	0.0212 (2)
N22	-0.2017 (4)	0.6881 (4)	-0.0569 (2)	0.0177 (7)
C23	-0.1998 (6)	0.8167 (4)	-0.0836 (3)	0.0208 (9)
H23	-0.146276	0.892910	-0.039469	0.025*
C24	-0.2727 (5)	0.8411 (4)	-0.1723 (3)	0.0194 (9)
H24	-0.264964	0.932045	-0.189494	0.023*
C25	-0.3581 (5)	0.7307 (4)	-0.2368 (3)	0.0152 (8)
C26	-0.3638 (5)	0.5988 (4)	-0.2095 (3)	0.0160 (8)
H26	-0.422090	0.521699	-0.251417	0.019*
C27	-0.2827 (5)	0.5822 (4)	-0.1198 (3)	0.0170 (8)
H27	-0.284227	0.491574	-0.101825	0.020*
C28	-0.4300 (5)	0.7530 (4)	-0.3353 (3)	0.0173 (8)
O29	-0.3773 (4)	0.8497 (3)	-0.3691 (2)	0.0245 (7)
O30	-0.5521 (4)	0.6547 (3)	-0.3784 (2)	0.0275 (7)
H30	-0.576378	0.661965	-0.435015	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01412 (10)	0.01776 (10)	0.00990 (10)	-0.00293 (7)	-0.00293 (6)	0.00194 (6)
C2	0.014 (2)	0.020 (2)	0.014 (2)	0.0018 (16)	-0.0022 (16)	0.0023 (16)
C3	0.015 (2)	0.023 (2)	0.015 (2)	-0.0046 (17)	0.0008 (16)	-0.0015 (17)
C4	0.019 (2)	0.022 (2)	0.013 (2)	-0.0014 (17)	0.0005 (16)	0.0046 (16)
C5	0.019 (2)	0.023 (2)	0.0099 (19)	0.0038 (17)	-0.0003 (16)	0.0039 (16)
C6	0.017 (2)	0.020 (2)	0.012 (2)	0.0016 (16)	-0.0024 (16)	-0.0019 (16)
C7	0.017 (2)	0.018 (2)	0.0115 (19)	-0.0026 (16)	-0.0020 (16)	-0.0017 (16)
C8	0.024 (2)	0.026 (2)	0.012 (2)	-0.0062 (18)	-0.0012 (17)	0.0041 (17)
C9	0.016 (2)	0.028 (2)	0.015 (2)	-0.0119 (18)	0.0013 (17)	0.0022 (17)
C10	0.013 (2)	0.040 (3)	0.019 (2)	-0.0039 (19)	0.0005 (17)	0.0070 (19)
O11	0.0249 (16)	0.0260 (16)	0.0124 (15)	-0.0013 (13)	-0.0049 (12)	0.0070 (12)
C12	0.026 (2)	0.026 (2)	0.020 (2)	0.0035 (19)	0.0027 (18)	0.0083 (18)
O13	0.0235 (16)	0.0185 (14)	0.0110 (14)	-0.0055 (12)	-0.0084 (12)	0.0013 (11)
C14	0.026 (2)	0.016 (2)	0.018 (2)	-0.0019 (17)	-0.0063 (18)	-0.0013 (16)
C15	0.018 (2)	0.016 (2)	0.032 (3)	-0.0025 (17)	-0.0063 (18)	0.0036 (18)

O16	0.0247 (17)	0.0199 (15)	0.0252 (17)	-0.0025 (13)	0.0003 (13)	0.0011 (13)
O17	0.036 (2)	0.0189 (17)	0.095 (3)	-0.0076 (15)	0.034 (2)	-0.0052 (18)
C18	0.042 (3)	0.023 (3)	0.111 (4)	-0.009 (2)	0.045 (3)	-0.007 (3)
C19	0.045 (3)	0.049 (4)	0.178 (7)	-0.024 (3)	0.047 (4)	-0.020 (4)
C20	0.065 (4)	0.047 (4)	0.125 (4)	0.018 (3)	0.067 (3)	0.023 (3)
Cl21	0.0205 (5)	0.0226 (5)	0.0168 (5)	-0.0075 (4)	-0.0013 (4)	0.0031 (4)
N22	0.0149 (18)	0.0186 (17)	0.0158 (18)	-0.0037 (14)	-0.0022 (14)	0.0006 (14)
C23	0.024 (2)	0.018 (2)	0.016 (2)	-0.0053 (17)	-0.0012 (17)	0.0012 (17)
C24	0.023 (2)	0.0152 (19)	0.016 (2)	-0.0005 (17)	-0.0018 (17)	0.0020 (16)
C25	0.0131 (19)	0.0181 (19)	0.013 (2)	0.0024 (16)	-0.0005 (15)	0.0041 (16)
C26	0.015 (2)	0.0165 (19)	0.013 (2)	-0.0004 (16)	-0.0013 (16)	-0.0014 (16)
C27	0.018 (2)	0.0157 (19)	0.014 (2)	-0.0015 (16)	-0.0020 (16)	0.0026 (16)
C28	0.0174 (18)	0.0186 (15)	0.0125 (18)	0.0013 (12)	-0.0030 (14)	0.0010 (12)
O29	0.0297 (17)	0.0234 (14)	0.0165 (15)	-0.0021 (12)	-0.0035 (13)	0.0067 (11)
O30	0.0302 (17)	0.0320 (15)	0.0113 (15)	-0.0110 (13)	-0.0095 (13)	0.0017 (12)

Geometric parameters (Å, °)

Pt1—C2	2.014 (4)	C14—H14B	0.9900
Pt1—C9	2.146 (4)	C14—C15	1.517 (6)
Pt1	2.118 (4)	C15—O16	1.191 (5)
Pt1—Cl21	2.3345 (10)	C15—O17	1.327 (5)
Pt1—N22	2.164 (3)	O17—C18	1.480 (7)
C2—C3	1.396 (6)	C18—H18	1.0000
C2—C7	1.409 (5)	C18—C19	1.517 (8)
C3—C4	1.401 (6)	C18—C20	1.503 (11)
C3—C8	1.502 (5)	С19—Н19А	0.9800
C4—H4	0.9500	С19—Н19В	0.9800
C4—C5	1.393 (6)	С19—Н19С	0.9800
C5—C6	1.401 (6)	C20—H20A	0.9800
C5—O11	1.373 (5)	C20—H20B	0.9800
C6—C7	1.393 (5)	C20—H20C	0.9800
C6—O13	1.390 (5)	N22—C23	1.355 (5)
С7—Н7	0.9500	N22—C27	1.346 (5)
C8—H8A	0.9900	С23—Н23	0.9500
C8—H8B	0.9900	C23—C24	1.379 (6)
C8—C9	1.523 (6)	C24—H24	0.9500
С9—Н9	0.9500	C24—C25	1.396 (5)
C9—C10	1.376 (6)	C25—C26	1.391 (5)
C10—H10A	0.9500	C25—C28	1.504 (5)
C10—H10B	0.9500	C26—H26	0.9500
O11—C12	1.431 (5)	C26—C27	1.385 (5)
C12—H12A	0.9800	С27—Н27	0.9500
C12—H12B	0.9800	C28—O29	1.206 (5)
C12—H12C	0.9800	C28—O30	1.318 (5)
O13—C14	1.424 (5)	O30—H30	0.8400
C14—H14A	0.9900		

C2—Pt1—C9	81.33 (16)	H12B—C12—H12C	109.5
C2-Pt1-C10	87.62 (17)	C6—O13—C14	118.0 (3)
C2-Pt1-Cl21	93.86 (12)	O13—C14—H14A	109.1
C2—Pt1—N22	176.68 (13)	O13—C14—H14B	109.1
C9—Pt1—Cl21	163.54 (12)	O13—C14—C15	112.5 (3)
C9—Pt1—N22	95.48 (14)	H14A—C14—H14B	107.8
C10—Pt1—C9	37.64 (16)	C15—C14—H14A	109.1
C10—Pt1—Cl21	158.51 (13)	C15—C14—H14B	109.1
C10—Pt1—N22	90.39 (15)	O16—C15—C14	126.1 (4)
N22—Pt1—Cl21	88.97 (9)	016-015-017	125.2 (5)
C3-C2-Pt1	115.9 (3)	017-015-014	108.7(4)
C_{3} $-C_{2}$ $-C_{7}$	118.8 (4)	$C_{15} - C_{17} - C_{18}$	117.4 (4)
C7-C2-Pt1	125 3 (3)	017 - C18 - H18	109.1
$C^2 - C^3 - C^4$	121.2 (4)	017 - C18 - C19	105.1 105.4(5)
$C_2 - C_3 - C_8$	1176(4)	017 - C18 - C20	108.8(5)
C_{4} C_{3} C_{8}	121 0 (4)	C19 - C18 - H18	100.0 (5)
C_{3} C_{4} H_{4}	121.0 (4)	C_{20} C_{18} H_{18}	109.1
$C_5 C_4 C_3$	120.2 110 7 (4)	$C_{20} = C_{10} = 110$	115.0 (6)
C_{5} C_{4} H_{4}	119.7 (4)	C_{18} C_{19} H_{19A}	109.5
C_{4} C_{5} C_{6}	110 5 (4)	C_{18} C_{19} H_{19R}	109.5
011 - 05 - 04	119.5 (4)	C_{18} C_{19} H_{19} C_{18} C_{18} C_{19} H_{19} C_{18} C_{18} C_{19} H_{19} C_{18} C_{19} H_{19} C_{18} C_{18} C_{19} H_{19} C_{18} C_{18} C_{19} H_{19} C_{18} C_{18} C_{19} H_{19} C_{18} C_{18} C_{18} C_{19} H_{19} C_{18} C	109.5
011 C5 C6	125.2(4) 115.2(4)	$H_{10A} = C_{10} = H_{10B}$	109.5
C7 C6 C5	113.2(4) 120.8(4)	$H_{10A} = C_{10} = H_{10C}$	109.5
$C_{1} = C_{0} = C_{1}$	120.0(4) 113.7(3)	H10R C10 H10C	109.5
013 - 00 - 03	115.7(5) 125.6(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{13} = C_{13} = C_{13}$	123.0 (4)	$C_{18} = C_{20} = H_{20R}$	109.5
$C_2 = C_7 = C_1^2$	120.0	$C_{18} = C_{20} = H_{20C}$	109.5
$C_{0} - C_{7} - C_{2}$	120.0 (4)	$H_{20A} = C_{20} = H_{20B}$	109.5
$C_{0} = C_{1} = H_{1}$	120.0	$H_{20A} = C_{20} = H_{20C}$	109.5
$C_3 = C_6 = H_8 P$	109.7	H_{20} H	109.5
$C_3 = C_8 = C_9$	109.7	1120D - C20 - 1120C	109.5 121.5(2)
C_{3}	109.9 (5)	C_{23} N22 $D_{\pm 1}$	121.3(3) 120.7(2)
$\Pi \delta A - C \delta - \Pi \delta B$	108.2	$C_27 = N_{22} = C_{23}$	120.7(3) 117.8(2)
$C_{0} = C_{0} = H_{0} = H_{0}$	109.7	$V_{2} = V_{2} = V_{2}$	117.8(5)
C9—C6—R6B	109.7	N22-C23-H23	110.0 122.4(4)
$\begin{array}{ccc} F(1 - C 9 - H 9 \\ C 8 - C 0 - P t 1 \end{array}$	90.7 100.2 (2)	$N_{22} = C_{23} = C_{24}$	122.4 (4)
C_{8} C_{9} H_{1}	109.2 (5)	$C_{24} = C_{23} = H_{23}$	110.0
$C_{0} = C_{0} = H_{0}$	119.1	$C_{23} = C_{24} = H_{24}$	120.4
C10 = C9 = P(1)	70.1(2)	$C_{23} = C_{24} = C_{23}$	119.5 (4)
C10 - C9 - C8	121.8 (4)	$C_{23} = C_{24} = H_{24}$	120.4
C10-C9-H9	119.1	$C_{24} = C_{25} = C_{28}$	120.4 (4)
Pt1 C10 H10P	107.8	$C_{20} = C_{23} = C_{24}$	118.0 (4)
	89.9	$C_{20} = C_{20} = C_{20} = C_{20}$	120.8 (4)
C9 - C10 - Pt1	12.3 (2)	$C_{25} = C_{26} = H_{26}$	120./
$C_{2} = C_{10} = H_{10}$	120.0	(2) - (20 - (2))	118.0 (4)
	120.0	$U_2 / - U_2 0 - H_2 0$	120.7
HI0A - CI0 - HI0B	120.0	N22 - C27 - U20	125.2 (4)
C5—011—C12	117.9(3)	$N_{22} - C_{21} - H_{21}$	118.4
011—C12—H12A	109.5	C26-C27-H27	118.4

109.5	O29—C28—C25	122.4 (4)
109.5	O29—C28—O30	125.7 (4)
109.5	O30—C28—C25	112.0 (3)
109.5	С28—О30—Н30	109.5
177.9 (3)	C8—C3—C4—C5	175.9 (4)
1.8 (5)	C8—C9—C10—Pt1	100.7 (4)
-177.7 (3)	O11—C5—C6—C7	-178.3 (4)
179.1 (3)	O11—C5—C6—O13	2.4 (5)
178.8 (3)	O13—C6—C7—C2	179.3 (4)
-0.1 (6)	O13—C14—C15—O16	10.9 (6)
-19.4 (5)	O13—C14—C15—O17	-166.5 (4)
0.0 (6)	C14—C15—O17—C18	-179.9 (5)
0.1 (6)	C15—O17—C18—C19	-146.0 (5)
178.1 (4)	C15—O17—C18—C20	90.2 (6)
26.1 (4)	O16—C15—O17—C18	2.7 (8)
-51.9 (5)	N22—C23—C24—C25	2.6 (7)
164.5 (4)	C23—N22—C27—C26	-0.2 (6)
-0.1 (6)	C23—C24—C25—C26	-1.2 (6)
-179.5 (4)	C23—C24—C25—C28	-176.6 (4)
1.1 (6)	C24—C25—C26—C27	-0.8 (6)
0.1 (6)	C24—C25—C28—O29	21.8 (6)
176.9 (4)	C24—C25—C28—O30	-159.1 (4)
179.1 (4)	C25—C26—C27—N22	1.6 (6)
-73.7 (4)	C26—C25—C28—O29	-153.5 (4)
0.0 (6)	C26—C25—C28—O30	25.6 (6)
-176.1 (4)	C27—N22—C23—C24	-1.9 (6)
-2.4 (6)	C28—C25—C26—C27	174.6 (4)
	109.5 109.5 109.5 109.5 109.5 109.5 $177.9 (3)$ $1.8 (5)$ $-177.7 (3)$ $179.1 (3)$ $178.8 (3)$ $-0.1 (6)$ $-19.4 (5)$ $0.0 (6)$ $0.1 (6)$ $178.1 (4)$ $26.1 (4)$ $-51.9 (5)$ $164.5 (4)$ $-0.1 (6)$ $-179.5 (4)$ $1.1 (6)$ $0.1 (6)$ $176.9 (4)$ $179.1 (4)$ $-73.7 (4)$ $0.0 (6)$ $-176.1 (4)$ $-2.4 (6)$	109.5 $029-C28-C25$ 109.5 $030-C28-C25$ 109.5 $030-C28-C25$ 109.5 $C28-O30-H30$ $177.9 (3)$ $C8-C3-C4-C5$ $1.8 (5)$ $C8-C9-C10-Pt1$ $-177.7 (3)$ $011-C5-C6-C7$ $179.1 (3)$ $011-C5-C6-O13$ $178.8 (3)$ $013-C14-C15-016$ $-19.4 (5)$ $013-C14-C15-017$ $0.0 (6)$ $C14-C15-017-C18$ $0.1 (6)$ $C15-017-C18-C20$ $26.1 (4)$ $016-C15-017-C18$ $-51.9 (5)$ $N22-C23-C24-C25$ $164.5 (4)$ $C23-N22-C27-C26$ $-0.1 (6)$ $C23-C24-C25-C26$ $-179.5 (4)$ $C23-C24-C25-C28$ $1.1 (6)$ $C24-C25-C28-O29$ $176.9 (4)$ $C26-C25-C28-O30$ $179.1 (4)$ $C26-C25-C28-O30$ $179.1 (4)$ $C26-C25-C28-O30$ $179.1 (4)$ $C26-C25-C28-O30$ $-73.7 (4)$ $C26-C25-C28-O30$ $-176.1 (4)$ $C27-N22-C23-C24$ $-2.4 (6)$ $C28-C25-C26-C27$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O30—H30…O13 ⁱ	0.84	2.10	2.932 (4)	170	
C10—H10A…O16 ⁱⁱ	0.95	2.41	3.317 (5)	159	
C12—H12A…O16 ⁱⁱⁱ	0.98	2.51	3.415 (5)	154	
C14—H14A····O29 ^{iv}	0.99	2.46	3.268 (5)	139	
C14—H14 <i>B</i> ···O29 ^v	0.99	2.46	3.178 (5)	129	
C26—H26…O16 ^{vi}	0.95	2.43	3.336 (5)	159	

Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z+1; (v) -x, -y+2, -z; (vi) -x, -y+1, -z.