CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 27 March 2020
Accepted 22 June 2020

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; hydroxy-thiophenone; hydrogen bonding.

CCDC references: 2011283; 2011284
Supporting information: this article has supporting information at journals.iucr.org/e

1. Chemical context

Thiolactomycin (TLM) 1, (5R)-4-hydroxy-3,5-dimethyl-5-[(1E)-2-methylbuta-1,3-dienyl]thiophen-2-one, is a naturally occurring antibiotic isolated from Norcardia spp (Sasaki et al., 1982). Over the last three decades, synthetic efforts towards the synthesis of the single enantiomer and analogues have provided relatively complex solutions. These have exploited asymmetric synthesis, diasteromeric recrystallization or enzymatic resolution requiring between seven and eleven steps and thus have significantly restricted the development of this scaffold towards clinical application. For examples see Chambers \& Thomas (1997), McFadden et al. (2002), Ohata \& Terashima (2009), Kamal et al. (2008), Toyama et al. (2006) and Bommineni et al. (2016). Herein we present findings from our initial studies focused on the single-crystal determination of thiolactone analogues.

4

5

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$) for 4.

$\mathrm{S} 1-\mathrm{C} 1$	$1.778(3)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.351(4)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.816(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.507(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.238(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.434(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.326(3)$		
			$112.3(2)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4$	$92.62(12)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$112.1(2)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$113.4(2)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$105.16(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.8(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	

Table 2
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for 5.

S1-C1	$1.775(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.440(4)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.799(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.347(4)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.231(4)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.502(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.332(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.499(4)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4$	$92.33(15)$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.7(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$112.0(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$112.2(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$106.2(2)$

2. Structural commentary

The molecular structures of compounds $\mathbf{4}$ and $\mathbf{5}$ are shown in Figs. 1 and 2, respectively. As can be seen from Tables 1 and 2, equivalent geometric parameters in the two structures are similar, with the largest difference in bond length being found for the $\mathrm{S} 1-\mathrm{C} 4$ values $[1.816$ (3) and 1.799 (3) \AA]. A notable structural difference is the orientation of the hydroxy groups containing the O 2 atoms. In both structures, this O atom is coplanar with the SC_{4} ring, but in structure 4 the H atom points towards C 5 and is eclipsed by the $\mathrm{C} 2=\mathrm{C} 3$ double bond whilst in structure 5 the H atom points towards the CH_{2} group and is eclipsed by the $\mathrm{C} 3-\mathrm{C} 4$ single bond. This change in orientation is associated with a change in the bond angles involving O 2 [compare $\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 2$ angles of 113.4 (2) and 119.7 (3) ${ }^{\circ}$. A search of the Cambridge Structural Database (version 5.40; Groom et al., 2016) found only three other structures with similar 4-hydroxy-thiophen-2-one cores. These are TLM itself (BIHKIM, Nawata et al., 1989) and two other derivatives (FIVKEA, Chambers et al., 1987; POXZOS,

Figure 1
The molecular structure of $\mathbf{4}$ with non-H atoms shown as 50% probability ellipsoids. H atoms are drawn as small spheres of arbitrary size.

Table 3
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for 4.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 H \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.88(4)$	$1.77(4)$	$2.621(3)$	$164(4)$

Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.
Table 4
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$ for 5.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 H \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.84(5)$	$1.80(5)$	$2.629(3)$	$168(5)$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.99	2.58	$3.552(4)$	169

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x, y, z-1$.

Kikionis et al., 2009). These have generally similar geometric parameters to those of $\mathbf{4}$ and 5 . Two of the database structures have the same hydroxy group orientation as 5. Only POXZOS has the same hydroxy orientation as $\mathbf{4}$, and here this orientation is predetermined by the OH group participating in an intramolecular six-membered hydrogen-bonded ring. As with structures $\mathbf{4}$ and $\mathbf{5}$, in the database structures the orientation of the OH group is associated with systematic changes to the $\mathrm{C}-$ $\mathrm{C}-\mathrm{O}$ bond angles involving OH .

3. Supramolecular features

The main supramolecular feature of both structures $\mathbf{4}$ and $\mathbf{5}$ is a one-dimensional $C(6)$ hydrogen-bonded chain utilizing OH as the donor group and O 1 as the acceptor group, see Tables 3 and 4. Behind these basic similarities there lies a great deal of difference in detail. In 5 the chains propagate by translations corresponding to $x+1, y, z+1$. This propagation by translation alone gives the repeating pattern shown in Fig. 3 where all of the SC_{4} rings of the hydrogen-bonded unit are coplanar and all of the S atoms lie on the same side of the chain. When travelling along the b-axis direction, neighbouring chains bear their S atoms on different sides, giving the layered structure shown in Fig. 4. In contrast, for structure 4 the chain propagates through a $-x+\frac{3}{2}, y+\frac{1}{2}, z$ operation giving a chain lying

Figure 2
The molecular structure of $\mathbf{5}$ with non-H atoms shown as 50% probability ellipsoids. H atoms are drawn as small spheres of arbitrary size.

Figure 3
Part of the hydrogen-bonded chain motif present in the structure of $\mathbf{5}$. The chain extends parallel to the [101] direction.

Figure 4
Packing diagram for compound 5 in a view down the a axis. Note the alternating Me \cdots Me and $\mathrm{S} \cdots \mathrm{S}$ layers.
parallel to the crystallographic b-axis direction. As shown in Fig. 5, this results in the neighbouring R and S enantiomers of the racemic chain having perpendicular relationships between the planes of their SC_{4} rings. This different chain geometry gives a very different packing arrangement from that of structure 5, see Fig. 6. The only interchain contact significantly shorter than the sum of van der Waals radii in either structure occurs in structure 5 . This is a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contact between the CH_{2} group and the ketone O atom. Of the 4-hydroxy-thio-phen-2-one structures described in the literature, both those of FIVKEA and BIHKIM (TLM) display the same $C(6)$ hydrogen-bonded chain motif as $\mathbf{4}$ and 5. In both cases, the geometrical detail of the chain is similar to that found in $\mathbf{4}$, with the difference that both literature examples are enantiopure. The final structure, POXZOS, contains additional

Figure 5
Part of the hydrogen-bonded chain motif present in the structure of 4. The chain extends parallel to the cystallographic b axis.
carboxylic acid and carbonyl groups and these strong hydrogen-bonding groups dominate the intermolecular contacts formed and so stop the formation of the otherwise common $C(6)$ motif.

4. Synthesis and crystallization

General synthesis of thiolactone analogues 4 and 5:

(i) a) $\mathrm{Br}_{2}, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}$; b) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{COSH}, \mathrm{THF}$; c) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{HCl}, 40^{\circ} \mathrm{C}$

Bromine (1.1 eq) was added to a stirring solution of the corresponding oxoester (1 eq.) dissolved in chloroform $(50 \mathrm{ml})$ at 273 K . The mixtures were allowed to warm to ambient temperature and stirred for 20 h before removing the solvent under vacuum. The resulting crude mixtures were dissolved in THF (50 ml) before adding trimethylamine (1.1 eq.) and thioacetic acid (1.1 eq.) and stirring at ambient temperature for a further 18 h . The resulting mixtures were reduced under vacuum to give dark-orange oils that were vacuum filtered over silica using petrol (40/60) and diethyl ether (5:2) as eluent before removing the solvent. The mixtures were dissolved in ethanol (50 ml) before adding a solution of sodium hydroxide (2 eq.) dissolved in water $(20 \mathrm{ml})$ and stirring for 24 h at 333 K . After cooling, HCl $(0.1 M)$ was added until the solutions reached pH 5 before washing with ethyl acetate $(3 \times 50 \mathrm{ml})$ and drying over anhydrous magnesium sulfate. The mixtures were reduced under vacuum and precipitated using petrol (40/60) and

Figure 6
Packing diagram for compound 4 with a view down the a axis.

Table 5
Experimental details.

	4	5
Crystal data		
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$	$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$
$M_{\text {r }}$	144.18	130.16
Crystal system, space group	Orthorhombic, Pbca	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	123	100
$a, b, c(\mathrm{~A})$	9.286 (1), 11.4809 (8), 12.6469 (10)	4.1054 (3), 22.9727 (13), 6.1928 (5)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 103.728 (7), 90
$V\left(\AA^{3}\right)$	1348.3 (2)	567.37 (7)
Z	8	4
Radiation type	$\mathrm{Cu} K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.63	0.46
Crystal size (mm)	$0.55 \times 0.08 \times 0.04$	$0.12 \times 0.02 \times 0.01$
Data collection		
Diffractometer	Oxford Diffraction Gemini S	Rigaku XtaLAB AFC12
Absorption correction	Analytical (CrysAlis PRO; Rigaku OD, 2019)	Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
$T_{\text {min }}, T_{\text {max }}$	$0.323,0.847$	0.766, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	4293, 1323, 1115	2121, 2121, 1955
$R_{\text {int }}$	0.049	0.026
$(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.620	0.650
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.053, 0.148, 1.07	0.050, 0.113, 1.19
No. of reflections	1323	2121
No. of parameters	88	79
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.67, -0.29	$0.43,-0.33$

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012).
diethyl ether to give the products as a solid. For 4, crystals suitable for crystallographic analysis were grown from a THF solution. For $\mathbf{5}$, crystals were grown from a toluene solution.
3-Hydroxy-2,4-dimethyl-2H-thiophen-5-one (4) Off-white solid ($1.1 \mathrm{~g}, 22 \%$): m.p. $408-409 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.12$ $(d d, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(d, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 197.16,177.63,111.32,77.26,77.21,77.00,76.75$, 42.99, 18.80, 7.62.

3-Hydroxy-4-methyl-2H-thiophen-5-one (5)
Off-white solid ($1.6 \mathrm{~g}, 18 \%$): m.p. $397-398 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.94(s, 2 \mathrm{H}), 1.68(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 195.1$, 175.2, 111.2, 32.1, 7.2.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For both structures, C-bound H atoms were placed in the expected geometric positions and treated in riding modes with $\mathrm{C}-\mathrm{H}=0.98,0.99$ and $1.00 \AA$ for methyl, CH_{2} and CH groups, respectively. $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups and $1.2 U_{\text {eq }}(\mathrm{C})$ for the other CH groups. The H atoms of the hydroxy groups were refined isotropically. Data collection on $\mathbf{5}$ was carried out by the National Crystallography Service (Cole \& Gale, 2012). The crystals of $\mathbf{5}$ were found to be twinned by a 180° rotation about the reciprocal 001 direction. This feature was accounted for by producing a hklf 5 formatted datafile during data processing.

In the final refinement the twin ratio refined to 0.568 (2):0.432 (2).

Acknowledgements

The authors wish to thank the National Crystallographic Service at the University of Southampton for data collection on 5.

Funding information

The Saudi Arabia Universities External Joint Supervision Programme is thanked for funding a studentship (AN).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Bommineni, G. R., Kapilashrami, K., Cummings, J. E., Lu, Y., Knudson, S. E., Gu, C. D., Walker, S. G., Slayden, R. A. \& Tonge, P. J. (2016). J. Med. Chem. 59, 5377-5390.

Chambers, M. S. \& Thomas, E. J. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 417-432.
Chambers, M. S., Thomas, E. J. \& Williams, D. J. (1987). J. Chem. Soc. Chem. Commun. pp. 1228-1230.
Coles, S. J. \& Gale, P. A. (2012). Chem. Sci. 3, 683-689.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kamal, A., Azeeza, S., Malik, M. S., Shaik, A. A. \& Rao, M. V. (2008). J. Pharm. Pharm. Sci. 11, 56S-80S.

Kikionis, S., McKee, V., Markopoulos, J. \& Igglessi-Markopoulou, O. (2009). Tetrahedron, 65, 3711-3716.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
McFadden, J. M., Frehywot, G. L. \& Townsend, C. A. (2002). Org. Lett. 4, 3859-3862.
Nawata, Y., Sasaki, H., Oishi, H., Suzuki, K., Sawada, M., Ando, K. \& Iitaka, Y. (1989). Acta Cryst. C45, 978-979.
Ohata, K. \& Terashima, S. (2009). Tetrahedron, 65, 2244-2253.

Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
Sasaki, H., Oishi, H., Hayashi, T., Matsuura, I., Ando, K. \& Sawada, M. (1982). J. Antibiot. 35, 396-400.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Toyama, K., Tauchi, T., Mase, N., Yoda, H. \& Takabe, K. (2006). Tetrahedron Lett. 47, 7163-7166.

supporting information

Acta Cryst. (2020). E76, 1158-1162 [https://doi.org/10.1107/S2056989020008269]

Synthesis and crystal structures of 3-hydroxy-2,4-dimethyl-2H-thiophen-5-one and 3-hydroxy-4-methyl-2H-thiophen-5-one

Asma Nashawi, Christopher P. Lawson, M. Omar Abdel-Sattar, Joop H. ter Horst, Geoffrey D. Coxon and Alan R. Kennedy

Computing details

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

3-Hydroxy-2,4-dimethyl-2H-thiophen-5-one (4)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=144.18$
Orthorhombic, Pbca
$a=9.286$ (1) \AA
$b=11.4809$ (8) \AA
$c=12.6469(10) \AA$
$V=1348.3(2) \AA^{3}$
$Z=8$
$F(000)=608$

Data collection

Oxford Diffraction Gemini S diffractometer
Radiation source: sealed tube ω scans
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2019)
$T_{\text {min }}=0.323, T_{\text {max }}=0.847$
4293 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.148$
$S=1.07$
1323 reflections
88 parameters
0 restraints
$D_{\mathrm{x}}=1.421 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 1393 reflections
$\theta=7.0-72.8^{\circ}$
$\mu=3.63 \mathrm{~mm}^{-1}$
$T=123 \mathrm{~K}$
Rod, colourless
$0.55 \times 0.08 \times 0.04 \mathrm{~mm}$

1323 independent reflections
1115 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=73.0^{\circ}, \theta_{\text {min }}=7.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 10$
$l=-15 \rightarrow 12$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.081 P)^{2}+0.8472 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} *^{*} U_{\text {eq }}$
S1	$0.84281(8)$	$0.16688(5)$	$0.67914(5)$	$0.0327(3)$
O1	$0.6506(2)$	$0.17209(14)$	$0.52486(16)$	$0.0311(5)$
O2	$0.9490(2)$	$0.48890(16)$	$0.62458(16)$	$0.0329(5)$
C3	$0.8868(3)$	$0.3850(2)$	$0.6199(2)$	$0.0283(6)$
C6	$0.9207(4)$	$0.3465(3)$	$0.8144(2)$	$0.0374(7)$
H6A	0.9733	0.4199	0.8231	0.056^{*}
H6B	0.9571	0.2890	0.8651	0.056^{*}
H6C	0.8179	0.3597	0.8271	0.056^{*}
C2	$0.7822(3)$	$0.3476(2)$	$0.5539(2)$	$0.0272(6)$
C1	$0.7427(3)$	$0.2288(2)$	$0.57332(19)$	$0.0281(6)$
C5	$0.7097(3)$	$0.4157(2)$	$0.4680(2)$	$0.0330(6)$
H5A	0.6367	0.4670	0.4990	0.049^{*}
H5B	0.6636	0.3619	0.4182	0.049^{*}
H5C	0.7815	0.4627	0.4304	0.049^{*}
C4	$0.9423(3)$	$0.3008(2)$	$0.7017(2)$	$0.0302(6)$
H4	1.0472	0.2864	0.6892	0.036^{*}
H1H	$0.914(5)$	$0.542(3)$	$0.581(3)$	$0.053(11)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0477(5)$	$0.0172(4)$	$0.0332(4)$	$0.0017(2)$	$-0.0059(3)$	$0.0025(2)$
O1	$0.0410(11)$	$0.0178(9)$	$0.0344(10)$	$-0.0013(7)$	$-0.0046(7)$	$-0.0024(7)$
O2	$0.0438(11)$	$0.0188(9)$	$0.0360(10)$	$-0.0026(8)$	$-0.0046(8)$	$-0.0005(7)$
C3	$0.0383(13)$	$0.0172(11)$	$0.0294(12)$	$0.0014(10)$	$0.0030(10)$	$-0.0021(9)$
C6	$0.0475(17)$	$0.0328(14)$	$0.0318(14)$	$-0.0009(12)$	$-0.0047(12)$	$-0.0014(11)$
C2	$0.0377(14)$	$0.0178(12)$	$0.0262(11)$	$0.0024(10)$	$0.0017(10)$	$-0.0022(9)$
C1	$0.0389(14)$	$0.0187(12)$	$0.0266(11)$	$0.0046(10)$	$0.0025(10)$	$-0.0012(9)$
C5	$0.0473(15)$	$0.0183(13)$	$0.0334(13)$	$-0.0006(11)$	$-0.0048(11)$	$0.0004(9)$
C4	$0.0352(13)$	$0.0208(12)$	$0.0346(13)$	$0.0014(10)$	$-0.0035(10)$	$-0.0018(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.778(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9800
$\mathrm{~S} 1-\mathrm{C} 4$	$1.816(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9800
$\mathrm{O} 1-\mathrm{C} 1$	$1.238(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.434(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.326(3)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.498(4)$
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{H}$	$0.88(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{C} 2$	$1.351(4)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9800

C3-C4	1.507 (4)	C5-H5C	0.9800
C6-C4	1.532 (4)	C4-H4	1.0000
C6-H6A	0.9800		
C1-S1-C4	92.62 (12)	O1-C1-S 1	121.6 (2)
C3-O2-H1H	116 (3)	C2-C1-S1	112.1 (2)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	128.8 (2)	$\mathrm{C} 2-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	113.4 (2)	C2-C5-H5B	109.5
C2-C3-C4	117.8 (2)	H5A-C5-H5B	109.5
C4-C6-H6A	109.5	C2-C5-H5C	109.5
C4-C6-H6B	109.5	H5A-C5-H5C	109.5
H6A-C6-H6B	109.5	H5B-C5-H5C	109.5
C4- $66-\mathrm{H} 6 \mathrm{C}$	109.5	C3-C4-C6	112.0 (2)
H6A-C6-H6C	109.5	C3-C4-S1	105.16 (18)
H6B-C6-H6C	109.5	C6-C4-S1	111.7 (2)
C3-C2-C1	112.3 (2)	C3-C4-H4	109.3
C3-C2-C5	127.3 (2)	C6-C4-H4	109.3
C1-C2-C5	120.4 (2)	S1-C4-H4	109.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	126.3 (2)		
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	-180.0 (2)	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{O} 1$	-179.6 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	-0.9 (3)	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	0.2 (2)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5$	0.2 (5)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	58.8 (3)
C4-C3-C2-C5	179.2 (2)	C2-C3-C4-C6	-120.4 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	-179.8 (3)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	-179.77 (18)
C5-C2-C1-O1	0.0 (4)	C2-C3-C4-S1	1.0 (3)
C3-C2-C1-S1	0.4 (3)	C1-S1-C4-C3	-0.64 (19)
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	-179.8 (2)	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 6$	121.0 (2)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 H \cdots \mathrm{O1}^{\mathrm{i}}$	$0.88(4)$	$1.77(4)$	$2.621(3)$	$164(4)$

Symmetry code: (i) $-x+3 / 2, y+1 / 2, z$.
3-Hydroxy-4-methyl-2H-thiophen-5-one (5)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=130.16$
Monoclinic, $P 2{ }_{1} / c$
$a=4.1054$ (3) \AA
$b=22.9727(13) \AA$
$c=6.1928$ (5) \AA
$\beta=103.728$ (7) ${ }^{\circ}$
$V=567.37(7) \AA^{3}$
$Z=4$
$F(000)=272$
$D_{\mathrm{x}}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1968 reflections
$\theta=5.2-31.4^{\circ}$
$\mu=0.46 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.12 \times 0.02 \times 0.01 \mathrm{~mm}$

Data collection

Rigaku XtaLAB AFC12
diffractometer
Radiation source: rotating anode
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
$T_{\min }=0.766, T_{\max }=1.000$
2121 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.113$
$S=1.19$
2121 reflections
79 parameters
0 restraints

> 2121 independent reflections
> 1955 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.5^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-29 \rightarrow 29$
> $l=-8 \rightarrow 8$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0078 P)^{2}+1.3568 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.43$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin against a hklf 5 formatted datafile.
This datafile was created by CrysalisPro for twinning by a 180 degree rotation about rec 001 .
Matrix used -0.9970-0.0004 0.0038 0.0195-0.9997 0.0133 0.7232 0.0009 0.9991
BASF refined to 0.432 (2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} *_{\text {eq }}$
S1	$0.6910(2)$	$0.70598(3)$	$0.55558(14)$	$0.0183(2)$
O1	$0.8610(6)$	$0.64486(10)$	$0.9223(4)$	$0.0231(6)$
O2	$0.0808(6)$	$0.58103(10)$	$0.2795(4)$	$0.0203(5)$
C1	$0.6862(8)$	$0.64503(13)$	$0.7309(5)$	$0.0164(7)$
C2	$0.4606(8)$	$0.60031(13)$	$0.6216(5)$	$0.0164(7)$
C3	$0.3060(8)$	$0.61502(12)$	$0.4117(5)$	$0.0155(6)$
C4	$0.3963(8)$	$0.67257(13)$	$0.3276(5)$	$0.0160(6)$
H4A	0.1943	0.6972	0.2798	0.019^{*}
H4B	0.4987	0.6669	0.1996	0.019^{*}
C5	$0.4138(10)$	$0.54539(13)$	$0.7423(6)$	$0.0213(7)$
H5A	0.2293	0.5227	0.6513	0.032^{*}
H5B	0.3611	0.5553	0.8842	0.032^{*}
H5C	0.6206	0.5224	0.7701	0.032^{*}
H1H	$0.003(12)$	$0.597(2)$	$0.156(8)$	$0.045(14)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
S1	$0.0204(4)$	$0.0149(3)$	$0.0183(4)$	$-0.0017(3)$	$0.0021(3)$	$0.0002(3)$

supporting information

O1	$0.0287(15)$	$0.0240(11)$	$0.0138(11)$	$0.0028(10)$	$-0.0005(10)$	$0.0007(9)$
O2	$0.0211(13)$	$0.0178(10)$	$0.0187(12)$	$-0.0034(10)$	$-0.0017(10)$	$0.0002(9)$
C1	$0.0161(17)$	$0.0162(14)$	$0.0172(15)$	$0.0052(13)$	$0.0043(12)$	$0.0002(12)$
C2	$0.0182(17)$	$0.0133(13)$	$0.0189(15)$	$0.0015(12)$	$0.0067(13)$	$0.0016(12)$
C3	$0.0126(14)$	$0.0138(13)$	$0.0202(16)$	$0.0013(12)$	$0.0041(13)$	$-0.0011(12)$
C4	$0.0177(16)$	$0.0146(13)$	$0.0146(14)$	$0.0001(13)$	$0.0020(12)$	$0.0012(11)$
C5	$0.0261(19)$	$0.0157(14)$	$0.0226(16)$	$-0.0006(14)$	$0.0070(15)$	$0.0044(13)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C1	1.775 (3)	C2-C5	1.502 (4)
S1-C4	1.799 (3)	C3-C4	1.499 (4)
O1-C1	1.231 (4)	C4-H4A	0.9900
O2-C3	1.332 (4)	C4-H4B	0.9900
O2-H1H	0.84 (5)	C5-H5A	0.9800
C1-C2	1.440 (4)	C5-H5B	0.9800
C2-C3	1.347 (4)	C5-H5C	0.9800
C1-S1-C4	92.33 (15)	C3-C4-H4A	110.5
C3-O2-H1H	111 (3)	S1-C4-H4A	110.5
O1- $\mathrm{C} 1-\mathrm{C} 2$	127.8 (3)	C3-C4-H4B	110.5
O1-C1-S1	120.2 (3)	S1-C4-H4B	110.5
C2-C1-S1	112.0 (2)	H4A-C4-H4B	108.7
C3-C2-C1	112.2 (3)	C2-C5-H5A	109.5
C3-C2-C5	127.2 (3)	C2-C5-H5B	109.5
C1-C2-C5	120.6 (3)	H5A-C5-H5B	109.5
O2-C3-C2	123.0 (3)	C2-C5-H5C	109.5
O2-C3-C4	119.7 (3)	H5A-C5-H5C	109.5
C2-C3-C4	117.2 (3)	H5B-C5-H5C	109.5
C3-C4-S1	106.2 (2)		
C4-S1-C1-O1	179.5 (3)	C5-C2-C3-O2	0.3 (5)
C4-S1-C1-C2	-1.2 (3)	C1-C2-C3-C4	1.4 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	179.4 (3)	C5-C2-C3-C4	-179.8 (3)
S1-C1-C2-C3	0.1 (4)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	177.8 (3)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	0.5 (5)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	-2.1 (4)
S1-C1-C2-C5	-178.8 (3)	C1-S1-C4-C3	1.7 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	-178.6 (3)		

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 H \cdots \mathrm{Ol}^{\mathrm{i}}$	$0.84(5)$	$1.80(5)$	$2.629(3)$	$168(5)$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.99	2.58	$3.552(4)$	169

Symmetry codes: (i) $x-1, y, z-1$; (ii) $x, y, z-1$.

