

Received 5 May 2020 Accepted 26 May 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; zinc; aminoalkoxide; zinc alkoxide; hydroxide; hydrogen bonding.

CCDC reference: 2005919

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of $[Zn_6Br_4(C_9H_{18}NO)_4(OH)_4] \cdot 2C_3H_6O_2$

Rebecca Scheel, Lukas Brieger, Kathrin Louven and Carsten Strohmann*

Inorganic Chemistry, TU Dortmund University, Otto-Hahn Str.6, 44227 Dortmund, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The complete molecule of the hexametallic title complex, namely, tetrabromidotetra- μ -hydroxido-hexakis[μ -2-methyl-3-(pyrrolidin-1-yl)propan-2-olato]hexazinc(II) acetone disolvate, [Zn₆Br₄(C₉H₁₈NO)₄(OH)₄]·2C₃H₆O₂, is generated by a crystallographic centre of symmetry. Two of the unique zinc atoms adopt distorted ZnO₂NBr tetrahedral coordination geometries and the other adopts a ZnO₃N tetrahedral arrangement. Both unique alkoxide ligands are *N*,*O*chelating and both hydroxide ions are μ^2 bridging. The crystal structure displays an O–H···O hydrogen bond between a μ^2 -OH group and an acetone solvent molecule. The Hirshfeld surface has been calculated and is described.

1. Chemical context

Zinc complexes have a wide range of applications. For example they can be found as catalysts in organic chemistry or in the human body in enzymes, such as oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases (Lipscomb & Sträter, 1996). As a result of the filled d^{10} shell of the Zn²⁺ cation, zinc complexes can exhibit different coordination geometries, including tetrahedral, trigonal–bipyramidal and octahedral (Kimura *et al.*, 1997). The tetrahedral coordination sphere is the most common because the ligands have the largest separation from each other (Holm *et al.*, 1996).

Zinc alkoxides find applications in many fields. They are used in organic catalysis, for example in the amplification of an enantiomer through an autocatalytic cycle by building a tetrameric zinc alkoxide as an intermediate (Shibata et al., 1997; Soai et al., 1995). In addition, they are also used as catalysts in polymerization reactions, for example for the ringopening polymerization of lactides (Chen et al., 2006, 2011). Moreover, zinc alkoxides are electronically favoured in comparison to the incorporation of hydroxide or water molecules (Bergquist & Parkin, 1999). Hence, zinc alkoxides are an important species in the human body for example for the liver alcohol dehydrogenase or the CO₂ transport through the circulatory system by carbonate anhydrase (Clegg et al., 1988; Siek et al., 2016). Liver alcohol dehydrogenase is an enzyme that catalyses the biological oxidation of alcohols to aldehydes and ketones (Bergquist et al., 2000). As part of this reaction, a tetrahedral zinc alkoxide complex is formed and after that, a formal hydride transfer occurs from the alkoxide to the oxidized form of NAD+ (see Fig. 1). The entire process depicted in Fig. 1 involves the removal of a ketone from the zinc atom.

In the title compound, (I), an acetone molecule interacts with the complex through hydrogen bonding. It can therefore

be understood as an intermediate of the ketone removal during the dehydrogenation process shown in Fig. 1. The remaining interaction of the ketone with the zinc complex is interesting for a deeper understanding of the liver alcohol dehydrogenase cycle.

2. Structural commentary

Compound (I) was crystallized from a mixture of zinc bromide and an aminoalkoxide in an acetone/water/triethylamine mixture at 278 K. It crystallizes in the monoclinic crystal system in space group $P2_1/n$ together with one solvent molecule of acetone and the complete hexa-metallic molecule is generated by crystallographic inversion symmetry. The structure of (I) is shown in Fig. 2 and selected bond lengths and angles are given in Table 1.

The bond lengths between the zinc atom and the oxygen atom of the alkoxide ligand are 1.9593 (9) Å for Zn1-O1 and 1.9401 (9) Å for Zn2-O4. The bond length for Zn2 may be

Figure 1

Reaction scheme of the liver alcohol dehydrogenase cycle by the formation of a zinc alkoxide (Bergquist *et al.*, 2000).

Table 1		
Selected geometric parameters	(Å	°)

0	1 ()	/	
Zn1-O1	1.9593 (9)	Zn2-O4	1.9401 (9)
Zn1-O2	1.9165 (10)	Zn2-N2	2.1358 (11)
Zn1-N1	2.1058 (11)	$Zn3-O1^{i}$	1.9646 (9)
Zn1-Br1	2.3816 (2)	Zn3–O3 ⁱ	1.9681 (9)
Zn2-O2	1.9310 (10)	Zn3-O4	1.9512 (9)
Zn2-O3	1.9147 (9)	Zn3-Br2	2.3722 (2)
O1 - Zn1 - Br1	114.12 (3)	O4-Zn2-N2	86.91 (4)
O1-Zn1-N1	88.54 (4)	$O1^{i}$ -Zn3-Br2	118.00 (3)
O2-Zn1-Br1	110.82 (3)	O1 ⁱ -Zn3-O3 ⁱ	106.38 (4)
O2-Zn1-O1	111.19 (4)	O3 ⁱ -Zn3-Br2	111.70 (3)
O2-Zn1-N1	116.18 (4)	O4-Zn3-Br2	117.11 (3)
N1-Zn1-Br1	114.35 (3)	O4-Zn3-O1 ⁱ	105.41 (4)
O2-Zn2-O4	116.23 (4)	O4-Zn3-O3 ⁱ	95.52 (4)
O2-Zn2-N2	110.18 (4)	Zn1-O1-Zn3 ⁱ	118.87 (5)
O3-Zn2-O2	108.79 (4)	Zn1-O2-Zn2	123.95 (5)
O3-Zn2-O4	120.54 (4)	Zn2-O3-Zn3 ⁱ	133.08 (5)
O3-Zn2-N2	112.11 (4)	Zn2-O4-Zn3	120.17 (4)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

shorter because of the direct bonding of a bromide ion to Zn1. Bond lengths between a zinc atom and an alkoxide oxygen atom have been observed to be 1.936 (3) Å (Chen et al., 2014) and 1.971 (2) Å (Siek et al., 2016), thus the corresponding bonds in (I) lie between these limits. The bond lengths between the zinc atom and the bridging hydroxide O atom, Zn1-O2 and Zn2-O3, are 1.9165 (10) Å and 1.9147 (9) Å, respectively, which are elongated in comparison to a similar zinc-hydroxide bond in the literature, where the distance is 1.900 (2) Å (Siek et al., 2016). However, the Zn1-Br1 [2.3816(2) Å] and the Zn3-Br2 bonds [2.3722(2) Å] are similar to other zinc-bromine bonds in related complexes [e.g. 2.358 (1) and 2.401 (1) Å; Chen et al., 2014]. Finally, (I) exhibits zinc-nitrogen bond lengths of 2.1058 (11) Å for Zn1-N1 and 2.1358 (11) Å for Zn2-N2. A similar Schiffbase complex containing zinc and hydroxide ions exhibits an zinc-imine bond length of 2.022 (4) Å (Chen et al., 2014), thus the bonds in (I) are slightly elongated in comparison, especially the Zn2-N2 bond.

Figure 2

The molecular structure of (I) with atom labelling and 50% displacement ellipsoids. Atoms with superscript a are generated by the symmetry operation 1 - x, 1 - y, 1 - z.

research communications

0.69(2)

O2−H2···O5

Table 2 Hydrogen-bond	l geometry (Å	⊾, °).		
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	

In general, the bond angles in (I) are as expected (Table 1), apart from the O-Zn-N angles: these are significantly compressed from the ideal tetrahedral values with O1-Zn1- $N1 = 88.54 (4)^{\circ}$ and $O4 - Zn2 - N2 = 86.91 (4)^{\circ}$, presumably because of the rigid structure of the aminoalkoxide and the higher steric demand of the tetrahedral nitrogen atom. This is supported by a similar compound in the literature with an O-Zn-N angle of 94.1 (1)° (Chen *et al.*, 2014). The N2-Zn2-O3 bond angle $[112.11 (4)^{\circ}]$ is slightly wider than the ideal tetrahedral angle, as is O2-Zn2-O4 [116.23 (4)°] but O2-Zn2-O3 is slightly compressed to 108.79 (4)°. The angle of the O2 hydroxyl oxygen atom, Zn1 and the O1 atom of the alkoxide is $111.19 (4)^{\circ}$, which is slightly expanded from the ideal tetrahedral angle. Finally, the N1–Zn1–Br1 bond angle is widened to $114.35 (3)^\circ$, which is similar to a compound in literature, where the corresponding angle is $113.1 (1)^{\circ}$ (Chen et al., 2014).

2.23(2)

2.9036 (15)

The central structural features of (I) are two six-membered rings, which consist of zinc-oxygen bonds (Fig. 2). In the sixmembered rings two zinc atoms are bridged by one oxygen atom of the alkoxide and the other zinc centres are bridged by a hydroxide ion. Then, both six-membered rings are connected by two oxygen atoms of the alkoxide species, so the two parts are interconnected to each other and a central eightmembered ring is formed by the connection of the two sixmembered rings. The four nitrogen atoms of the piperidine rings coordinate to the zinc atoms of the six-membered ring. The coordination spheres of the other zinc atoms are completed by bromide ions. The chelating 2-methyl-1-(piperidine-1-yl)propan-2-olate anions lie at the edges of the complex, so they do not interact with the other anions.

One of the methyl groups of the acetone solvent molecule is disordered over two sets of sites with occupancies of 0.519 (6) and 0.481 (6). The disorder of just one methyl group of an

3. Supramolecular features

 $D - H \cdot \cdot \cdot A$

166 (3)

In the extended structure of (I), the molecules are stacked along the *a* axis, as shown in Fig. 3. As noted already, an O– $H \cdots O$ hydrogen bond links the O2–H2 hydroxide ion with the acetone solvent molecule (Table 2). The graph-set motif of the O– $H \cdots O$ hydrogen bonding is described by a discrete finite pattern [D(2)] and, because of the inversion symmetry of the complex, a second [$D_2^2(11)$] pattern appears.

The Hirshfeld surface analysis of (I) (*CrystalExplorer17*; Turner *et al.*, 2017) highlights the hydrogen bonding between the main molecule and the acetone solvent molecule. The main molecule is shown (Fig. 4) with d_{norm} in the range -0.5240 to +1.5598: the characteristic red spot adjacent to H2 indicates the hydrogen bond to O5. As a result of steric shielding, no intermolecular hydrogen bonding through the bridging O3 hydroxide group occurs.

4. Database survey

Other examples of crystallographically characterized zinc complexes containing coordinated bromide ions or aminoalkoxides include $Zn_2Br_2OH_2(C_{27}H_{33}N_3O_2)\cdot C_2H_3N$ [CSD (Groom *et al.*, 2016]) refcode COCQOC; Chen *et al.*, 2014] and ZnBr_2(C_{25}H_{31}Cl_2N_3O_2) (COCQAO; Chen *et al.*, 2014), ZnOH(C_{21}H_{37}BN_9) (RUWSOT; Siek *et al.*, 2016), ZnBr(C_{16}H_{18}N_4O)ZnH_2OBr_3\cdot 2H_2O (SEQROY; Purkait *et al.*, 2018), ZnBr(C_{21}H_{22}N_6)\cdot ZnOCH_4Br_3 (MATFEV; Herber *et al.*, 2017), ZnBr(C_8H_{20}N_4O)\cdot CIO_4 (BAMZAR; Reichenbach-Klinke *et al.*, 2003), ZnI_2(C_{14}H_{21}BrN_2O)\cdot CH_4O (DUHJIA; Zhu *et al.*, 2009), ZnCl(C_{16}H_{13}BrN_3O \cdot CH_4O (GAVSOM; Qiu & Tong, 2005), Zn(C_2H_5)(C_{21}H_{29}BrN_3O (FEKMIU; Stasiw *et al.*, 2017), ZnBr(C_{26}H_{19}N_5O)\cdot Br (LIMBAM; Bachmann *et al.*, 2017), ZnBr(C_{26}H_{20}N_4O)\cdot Br (2005), Zn(2) + 2005), Zn(2) + 2005 + 2005 + 2005), Zn(2) + 2005

Figure 3 View along the *a*-axis direction of the crystal packing of (I).

Figure 4 Hirshfeld surface of (I): the $O-H \cdots O$ hydrogen bond between H2 and O5 is labelled.

Table 3Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) ZRadiation type μ (mm⁻¹)

Crystal size (mm)

Data collection Diffractometer

	detector
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.638, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	87000, 10668, 9283
R _{int}	0.044
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.760
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.021, 0.051, 1.03
No. of reflections	10668
No. of parameters	323
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.00, -1.02

 $[Zn_6Br_4(C_9H_{18}NO)_4(OH)_4]$

12.1464 (7), 21.0777 (12),

2C₃H₆O₂ 1521.02

100

2

Monoclinic, $P2_1/n$

12.5842 (7) 115.277 (2)

 $0.22 \times 0.17 \times 0.13$

Bruker D8 VENTURE area

2913.3 (3)

Μο Κα

5 22

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

2013), ZnBr(C₁₅H₁₈N₃O) (POGJAW; Ondráček *et al.*,1994), ZnBr₂(C₁₀H₂₄N₂) (DAGMUV01; Eckert *et al.*, 2013), ZnBr₂(C₂₃H₃₄N₂Si) (DASCIL; Gessner & Strohmann, 2012), Zn₂Br₄(C₈H₁₉NOSi)₂ (VUPFES; Däschlein *et al.*, 2009), Zn₂Br₂(C₁₁H₂₃NO)₂ (OMAHAM; Gessner *et al.*, 2010), Zn₂Br₂(C₁₅H₂₂FeNOSi)₂·C₃H₆O (FAWPOL; Golz *et al.*, 2017) and Zn₂Br₄(C₁₈H₂₃NOSi)₂ (VUPFAO; Däschlein & Strohmann, 2009).

5. Synthesis and crystallization

Zinc bromide (432 mg, 1.92 mmol, 3.00 eq.) was dissolved in 2.00 ml of acetone/water (v:v = 4:1). Then, 2-methyl-1-(piperidine-1-yl)propan-2-ol (200 mg, 1.28 mmol, 2.00 eq.) and triethylamine (0.10 ml, 0.64 mmol, 1.0 eq.) were added. The reaction solution turned dull and was stored at 278 K for seven days during which time (I) crystallized as colourless blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The O-bound hydrogen atoms were located in difference-Fourier maps and refined independently. All C-bound hydrogen atoms were placed in geometrically calculated positions (C-H = 0.98-0.99 Å) and

refined as riding atoms with the constraint $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support and LB thanks the Fonds der Chemischen Industrie (FCI) for a doctoral fellowship.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft; Verband der Chemischen Industrie.

References

- Arias, A., Forniés, J., Fortuño, C., Ibáñez, S., Martín, A., Mastrorilli, P., Gallo, V. & Todisco, S. (2013). *Inorg. Chem.* 52, 11398–11408.
- Bachmann, C., Guttentag, M., Spingler, B. & Alberto, R. (2013). Inorg. Chem. 52, 6055-6061.
- Balogh-Hergovich, E., Párkányi, L. & Speier, G. (1998). Z. *Kristallogr.* **213**, 265–266.
- Bergquist, C. & Parkin, G. (1999). Inorg. Chem. 38, 422-423.
- Bergquist, C., Storrie, H., Koutcher, L., Bridgewater, B. M., Friesner, R. A. & Parkin, G. (2000). J. Am. Chem. Soc. 122, 12651–12658.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H.-Q., Zhang, K., Jin, C. & Huang, W. (2014). Dalton Trans. 43, 8486–8492.
- Chen, H.-Y., Peng, Y.-L., Huang, T.-H., Sutar, A. K., Miller, S. A. & Lin, C.-C. (2011). J. Mol. Catal. A Chem. 339, 61–71.
- Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.
- Clegg, W., Little, I. R. & Straughan, B. P. (1988). Inorg. Chem. 27, 1916–1923.
- Däschlein, C., Bauer, J. O. & Strohmann, C. (2009). Angew. Chem. Int. Ed. 48, 8074–8077.
- Däschlein, C. & Strohmann, C. (2009). Z. Naturforsch. Teil B, 64, 1558–s1579.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eckert, P. K., Vieira, I. dos S., Gessner, V. H., Börner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151–157.
- Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640–5649.
- Gessner, V. H. & Strohmann, C. (2012). Dalton Trans. 41, 3452-3460.
- Golz, C., Steffen, P. & Strohmann, C. (2017). Angew. Chem. Int. Ed. 56, 8295–8298.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Herber, U., Hegner, K., Wolters, D., Siris, R., Wrobel, K., Hoffmann, A., Lochenie, C., Weber, B., Kuckling, D. & Herres-Pawlis, S. (2017). Eur. J. Inorg. Chem. pp. 1341–1354.
- Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). *Chem. Rev.* 96, 2239–2314.
- Kimura, E., Koike, T. & Shionoya, M. (1997). Struct. Bond. 89, 1-28.
- Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Ondráček, J., Kratochvíl, B. & Haber, V. (1994). Collect. Czech. Chem. Commun. 59, 1809–1814.
- Purkait, S., Chakraborty, P., Frontera, A., Bauzá, A., Zangrando, E. & Das, D. (2018). New J. Chem. 42, 12998–13009.

Reichenbach-Klinke, R., Zabel, M. & König, B. (2003). *Dalton Trans.* pp. 141–145.

Qiu, X.-H. & Tong, X.-L. (2005). Acta Cryst. E61, m2302-m2304.

research communications

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shibata, T., Hayase, T., Yamamoto, J. & Soai, K. (1997). Tetrahedron Asymmetry, 8, 1717–1719.
- Siek, S., Dixon, N. A., Kumar, M., Kraus, J. S., Wells, K. R., Rowe, B. W., Kelley, S. P., Zeller, M., Yap, G. P. A. & Papish, E. T. (2016). *Eur. J. Inorg. Chem.* **2016**, 2495–2507.
- Soai, K., Shibata, T., Morioka, H. & Choji, K. (1995). Nature, 378, 767–768.
- Stasiw, D. E., Luke, A. M., Rosen, T., League, A. B., Mandal, M., Neisen, B. D., Cramer, C. J., Kol, M. & Tolman, W. B. (2017). *Inorg. Chem.* 56, 14366–14372.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer17*. University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293-m1294.

supporting information

Acta Cryst. (2020). E76, 998-1002 [https://doi.org/10.1107/S2056989020007100]

Synthesis and crystal structure of [Zn₆Br₄(C₉H₁₈NO)₄(OH)₄]·2C₃H₆O₂

Rebecca Scheel, Lukas Brieger, Kathrin Louven and Carsten Strohmann

Computing details

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016);
program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009) and *publCIF* (Westrip, 2010).

 $Tetrabromidotetra-\mu-hydroxido-hexakis [\mu-2-methyl-3-(pyrrolidin-1-yl)propan-2-olato] hexazinc (II) acetone disolvate$

Crystal data

$[Zn_6Br_4(C_9H_{18}NO)_4(OH)_4] \cdot 2C_3H_6O_2$
$M_r = 1521.02$
Monoclinic, $P2_1/n$
a = 12.1464 (7) Å
b = 21.0777 (12) Å
c = 12.5842 (7) Å
$\beta = 115.277 \ (2)^{\circ}$
V = 2913.3 (3) Å ³
Z = 2

Data collection

Bruker D8 VENTURE area detector diffractometer Radiation source: microfocus sealed X-ray tube, Incoatec I μ s HELIOS mirror optics monochromator Detector resolution: 10.4167 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.051$ S = 1.0310668 reflections 323 parameters 0 restraints Primary atom site location: dual F(000) = 1536 $D_x = 1.734 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9842 reflections $\theta = 2.6-32.7^{\circ}$ $\mu = 5.22 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.22 \times 0.17 \times 0.13 \text{ mm}$

 $T_{\min} = 0.638, T_{\max} = 0.746$ 87000 measured reflections 10668 independent reflections 9283 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{\max} = 32.7^\circ, \theta_{\min} = 2.6^\circ$ $h = -18 \rightarrow 18$ $k = -31 \rightarrow 31$ $l = -19 \rightarrow 19$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0215P)^2 + 1.5066P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 1.00 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -1.02 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.62156 (2)	0.63111 (2)	0.41114 (2)	0.01274 (3)	
Zn2	0.45211 (2)	0.49658 (2)	0.32741 (2)	0.01142 (3)	
Zn3	0.61346 (2)	0.38070 (2)	0.51363 (2)	0.01140 (3)	
Br1	0.79563 (2)	0.61003 (2)	0.59007 (2)	0.02105 (3)	
Br2	0.80568 (2)	0.34023 (2)	0.54000 (2)	0.02140 (3)	
01	0.48677 (8)	0.67133 (4)	0.43216 (9)	0.01519 (17)	
O2	0.56873 (9)	0.55579 (5)	0.31759 (9)	0.01716 (18)	
H2	0.616 (2)	0.5432 (11)	0.309 (2)	0.037 (6)*	
O3	0.37153 (9)	0.53555 (5)	0.41228 (9)	0.01578 (17)	
Н3	0.3282 (18)	0.5134 (10)	0.4186 (17)	0.022 (5)*	
O4	0.50357 (8)	0.40863 (4)	0.35585 (8)	0.01269 (16)	
N1	0.63568 (10)	0.71351 (5)	0.32313 (10)	0.0155 (2)	
N2	0.32698 (10)	0.46745 (5)	0.15543 (9)	0.01465 (19)	
C1	0.45082 (12)	0.72981 (6)	0.36876 (13)	0.0174 (2)	
C2	0.41477 (15)	0.77873 (7)	0.43809 (15)	0.0255 (3)	
H2A	0.3434	0.7635	0.4478	0.038*	
H2B	0.3952	0.8191	0.3954	0.038*	
H2C	0.4826	0.7849	0.5156	0.038*	
C3	0.34282 (13)	0.71765 (7)	0.25016 (14)	0.0236 (3)	
H3A	0.3621	0.6823	0.2103	0.035*	
H3B	0.3264	0.7559	0.2014	0.035*	
H3C	0.2708	0.7070	0.2628	0.035*	
C4	0.56436 (13)	0.75801 (6)	0.36102 (13)	0.0190 (2)	
H4A	0.5381	0.7941	0.3054	0.023*	
H4B	0.6189	0.7751	0.4392	0.023*	
C5	0.58516 (13)	0.71191 (7)	0.19220 (13)	0.0220 (3)	
H5A	0.5839	0.7555	0.1626	0.026*	
H5B	0.5002	0.6963	0.1598	0.026*	
C6	0.65865 (15)	0.66969 (8)	0.14903 (14)	0.0261 (3)	
H6A	0.6231	0.6711	0.0621	0.031*	
H6B	0.6548	0.6253	0.1731	0.031*	
C7	0.79068 (15)	0.69111 (8)	0.19897 (16)	0.0293 (3)	
H7A	0.7959	0.7333	0.1669	0.035*	
H7B	0.8389	0.6607	0.1760	0.035*	
C8	0.84214 (13)	0.69466 (8)	0.33251 (15)	0.0250 (3)	
H8A	0.8459	0.6515	0.3648	0.030*	
H8B	0.9260	0.7118	0.3645	0.030*	
C9	0.76406 (12)	0.73670 (7)	0.37067 (14)	0.0207 (3)	
H9A	0.7990	0.7376	0.4576	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H9B	0.7649	0.7805	0.3428	0.025*	
C10	0.46559 (11)	0.37274 (6)	0.25037 (11)	0.0139 (2)	
C11	0.45016 (13)	0.30319 (6)	0.27504 (13)	0.0202 (3)	
H11A	0.5295	0.2853	0.3269	0.030*	
H11B	0.4162	0.2795	0.2009	0.030*	
H11C	0.3949	0.3001	0.3131	0.030*	
C12	0.56244 (13)	0.37841 (7)	0.20344 (13)	0.0208 (3)	
H12A	0.5782	0.4233	0.1952	0.031*	
H12B	0.5334	0.3576	0.1267	0.031*	
H12C	0.6378	0.3580	0.2584	0.031*	
C13	0.33860 (12)	0.39724 (6)	0.16641 (11)	0.0162 (2)	
H13A	0.3171	0.3791	0.0874	0.019*	
H13B	0.2786	0.3812	0.1939	0.019*	
C14	0.19942 (12)	0.48510(7)	0.13000 (13)	0.0202 (3)	
H14A	0.1802	0.4696	0.1944	0.024*	
H14B	0.1431	0.4641	0.0565	0.024*	
C15	0.17948 (14)	0.55629 (8)	0.11732 (14)	0.0251 (3)	
H15A	0.2309	0.5772	0.1928	0.030*	
H15B	0.0933	0.5659	0.0984	0.030*	
C16	0.21093 (16)	0.58260 (9)	0.02080 (15)	0.0313 (3)	
H16A	0.1520	0.5665	-0.0566	0.038*	
H16B	0.2056	0.6295	0.0197	0.038*	
C17	0.33921 (16)	0.56243 (8)	0.04279 (14)	0.0286 (3)	
H17A	0.3560	0.5760	-0.0242	0.034*	
H17B	0.3987	0.5837	0.1144	0.034*	
C18	0.35499 (15)	0.49096 (8)	0.05796 (13)	0.0237 (3)	
H18A	0.3004	0.4698	-0.0162	0.028*	
H18B	0.4399	0.4796	0.0745	0.028*	
05	0.76193 (12)	0.52276 (7)	0.24976 (13)	0.0363 (3)	
C19	0.86250 (16)	0.50349 (10)	0.29097 (18)	0.0379 (4)	
C20	0.9050 (6)	0.4770 (4)	0.4156 (5)	0.082 (3)	0.519 (6)
H20A	0.9538	0.5090	0.4727	0.122*	0.519 (6)
H20B	0.9546	0.4389	0.4241	0.122*	0.519 (6)
H20C	0.8340	0.4660	0.4297	0.122*	0.519 (6)
C20A	0.8773 (4)	0.4280 (2)	0.3187 (5)	0.0537 (18)	0.481 (6)
H20D	0.8394	0.4171	0.3712	0.081*	0.481 (6)
H20E	0.9640	0.4170	0.3566	0.081*	0.481 (6)
H20F	0.8375	0.4042	0.2451	0.081*	0.481 (6)
C21	0.96197 (15)	0.52689 (8)	0.26145 (16)	0.0292 (3)	
H21A	0.9265	0.5461	0.1830	0.044*	
H21B	1.0143	0.4913	0.2625	0.044*	
H21C	1.0104	0.5586	0.3195	0.044*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.01269 (6)	0.00878 (6)	0.01867 (7)	-0.00006 (5)	0.00852 (6)	0.00090 (5)
Zn2	0.01198 (6)	0.00917 (6)	0.01388 (6)	-0.00076 (5)	0.00627 (5)	-0.00150 (5)

supporting information

Br1 0.01778 (6) 0.02193 (7) 0.02107 (7) 0.00233 (5) 0.00602 (5) 0.0 Br2 0.01385 (6) 0.02248 (7) 0.03002 (7) 0.00588 (5) 0.01142 (5) 0.0 O1 0.0159 (4) 0.0097 (4) 0.0236 (5) 0.0029 (3) 0.0119 (4) 0.0 O2 0.0166 (4) 0.0126 (4) 0.0272 (5) 0.0029 (2) 0.0140 (4) 0.0	.00430 (5) .00404 (5) .0046 (3) 0.0030 (4)
Br2 0.01385 (6) 0.02248 (7) 0.03002 (7) 0.00588 (5) 0.01142 (5) 0.0 O1 0.0159 (4) 0.0097 (4) 0.0236 (5) 0.0029 (3) 0.0119 (4) 0.0 O2 0.0166 (4) 0.0126 (4) 0.0272 (5) 0.0020 (2) 0.0140 (4) 0.0	.00404 (5) .0046 (3) 0.0030 (4)
O1 $0.0159(4)$ $0.0097(4)$ $0.0236(5)$ $0.0029(3)$ $0.0119(4)$ $0.0020(2)$ O2 $0.0166(4)$ $0.0126(4)$ $0.0272(5)$ $0.0020(2)$ $0.01140(4)$ $0.0140(4)$.0046 (3) 0.0030 (4)
	0.0030 (4)
02 $0.0100(4)$ $0.0120(4)$ $0.02/2(5)$ $-0.0020(5)$ $0.0140(4)$ -0	
O3 0.0182 (4) 0.0130 (4) 0.0204 (5) -0.0034 (3) 0.0122 (4) -0	0.0041 (3)
O4 0.0150 (4) 0.0107 (4) 0.0117 (4) -0.0001 (3) 0.0050 (3) -0	0.0031 (3)
N1 0.0167 (5) 0.0123 (5) 0.0203 (5) -0.0016 (4) 0.0105 (4) 0.0	.0011 (4)
N2 0.0145 (5) 0.0171 (5) 0.0122 (4) -0.0003 (4) 0.0056 (4) 0.0	.0006 (4)
C1 0.0197 (6) 0.0105 (5) 0.0262 (7) 0.0036 (4) 0.0137 (5) 0.0	.0054 (5)
C2 0.0320 (8) 0.0126 (6) 0.0411 (9) 0.0065 (5) 0.0244 (7) 0.0	.0036 (6)
C3 0.0189 (6) 0.0239 (7) 0.0286 (7) 0.0046 (5) 0.0106 (6) 0.0	.0094 (6)
C4 0.0231 (6) 0.0094 (5) 0.0288 (7) 0.0001 (5) 0.0154 (6) 0.0	.0020 (5)
C5 0.0225 (6) 0.0232 (7) 0.0217 (6) 0.0010 (5) 0.0108 (5) 0.0	.0055 (5)
C6 0.0314 (8) 0.0281 (7) 0.0243 (7) 0.0003 (6) 0.0171 (6) 0.0	.0008 (6)
C7 0.0311 (8) 0.0314 (8) 0.0367 (9) 0.0013 (6) 0.0252 (7) 0.0	0057 (7)
C8 0.0192 (6) 0.0257 (7) 0.0347 (8) -0.0005 (5) 0.0160 (6) 0.0	.0048 (6)
C9 0.0185 (6) 0.0173 (6) 0.0287 (7) -0.0058 (5) 0.0122 (6) 0.0	.0005 (5)
C10 0.0155 (5) 0.0123 (5) 0.0149 (5) -0.0023 (4) 0.0075 (5) -0	0.0055 (4)
C11 0.0227 (6) 0.0120 (5) 0.0261 (7) -0.0023 (5) 0.0106 (6) -0	0.0059 (5)
C12 0.0209 (6) 0.0251 (7) 0.0212 (6) -0.0004 (5) 0.0135 (5) -0	0.0043 (5)
C13 0.0163 (5) 0.0161 (6) 0.0147 (5) -0.0034 (4) 0.0052 (5) -0	0.0048 (4)
C14 0.0137 (5) 0.0239 (7) 0.0194 (6) 0.0007 (5) 0.0036 (5) 0.0	.0019 (5)
C15 0.0217 (6) 0.0246 (7) 0.0259 (7) 0.0072 (6) 0.0071 (6) 0.0	.0063 (6)
C16 0.0347 (8) 0.0290 (8) 0.0239 (7) 0.0058 (7) 0.0066 (7) 0.0	0116 (6)
C17 0.0346 (8) 0.0301 (8) 0.0234 (7) 0.0021 (7) 0.0146 (7) 0.0	.0112 (6)
C18 0.0291 (7) 0.0294 (7) 0.0159 (6) 0.0018 (6) 0.0127 (6) 0.0	.0040 (5)
O5 0.0309 (6) 0.0365 (7) 0.0516 (8) 0.0045 (5) 0.0273 (6) 0.0	.0029 (6)
C19 0.0260 (8) 0.0477 (11) 0.0405 (10) 0.0031 (7) 0.0146 (7) 0.0	.0224 (8)
C20 0.074 (4) 0.127 (6) 0.061 (3) 0.050 (4) 0.045 (3) 0.0	.063 (4)
C20A 0.0223 (17) 0.052 (3) 0.084 (4) 0.0048 (17) 0.020 (2) 0.0	.041 (3)
C21 0.0239 (7) 0.0305 (8) 0.0350 (8) -0.0013 (6) 0.0143 (7) 0.0	.0054 (7)

Geometric parameters (Å, °)

Zn1—O1	1.9593 (9)	C8—H8A	0.9900
Zn1—O2	1.9165 (10)	C8—H8B	0.9900
Zn1—N1	2.1058 (11)	C8—C9	1.518 (2)
Zn1—Br1	2.3816 (2)	С9—Н9А	0.9900
Zn2—O2	1.9310 (10)	С9—Н9В	0.9900
Zn2—O3	1.9147 (9)	C10-C11	1.5265 (19)
Zn2—O4	1.9401 (9)	C10—C12	1.5297 (18)
Zn2—N2	2.1358 (11)	C10—C13	1.5396 (18)
Zn3—O1 ⁱ	1.9646 (9)	C11—H11A	0.9800
Zn3—O3 ⁱ	1.9681 (9)	C11—H11B	0.9800
Zn3—O4	1.9512 (9)	C11—H11C	0.9800
Zn3—Br2	2.3722 (2)	C12—H12A	0.9800
O1—Zn3 ⁱ	1.9646 (9)	C12—H12B	0.9800

O1—C1	1.4314 (15)	C12—H12C	0.9800
O2—H2	0.69 (2)	C13—H13A	0.9900
O3—Zn3 ⁱ	1.9682 (9)	C13—H13B	0.9900
O3—H3	0.73 (2)	C14—H14A	0.9900
O4—C10	1.4227 (15)	C14—H14B	0.9900
N1—C4	1.4867 (17)	C14—C15	1.517 (2)
N1—C5	1.4930 (19)	C15—H15A	0.9900
N1—C9	1.4940 (17)	C15—H15B	0.9900
N2—C13	1.4876 (17)	C15—C16	1.525 (2)
N2—C14	1.4892 (17)	C16—H16A	0.9900
N2—C18	1.4907 (17)	C16—H16B	0.9900
C1—C2	1.531 (2)	C16—C17	1.522 (2)
C1—C3	1.530 (2)	C17—H17A	0.9900
C1—C4	1.5425 (19)	C17—H17B	0.9900
C2—H2A	0.9800	C17—C18	1.520(2)
C2—H2B	0.9800	C18—H18A	0.9900
C2—H2C	0.9800	C18—H18B	0.9900
С3—НЗА	0.9800	O5—C19	1.177 (2)
С3—Н3В	0.9800	C19—C20	1.532 (5)
С3—Н3С	0.9800	C19—C20A	1.623 (5)
C4—H4A	0.9900	C19—C21	1.491 (2)
C4—H4B	0.9900	C20—H20A	0.9800
С5—Н5А	0.9900	C20—H20B	0.9800
С5—Н5В	0.9900	C20—H20C	0.9800
C5—C6	1.516 (2)	C20A—H20D	0.9800
С6—Н6А	0.9900	C20A—H20E	0.9800
С6—Н6В	0.9900	C20A—H20F	0.9800
C6—C7	1.520 (2)	C21—H21A	0.9800
C7—H7A	0.9900	C21—H21B	0.9800
C7—H7B	0.9900	C21—H21C	0.9800
C7—C8	1.524 (2)		
O1—Zn1—Br1	114.12 (3)	C9—C8—C7	111.10(13)
O1— $Zn1$ — $N1$	88.54 (4)	С9—С8—Н8А	109.4
O2—Zn1—Br1	110.82 (3)	C9—C8—H8B	109.4
O2—Zn1—O1	111.19 (4)	N1—C9—C8	111.64 (12)
O2—Zn1—N1	116.18 (4)	N1—C9—H9A	109.3
N1— $Zn1$ — $Br1$	114.35 (3)	N1—C9—H9B	109.3
Ω_2 —Zn2— Ω_4	116.23 (4)	С8—С9—Н9А	109.3
Ω_2 —Zn2—N2	110.18 (4)	С8—С9—Н9В	109.3
Ω_3 — Zn_2 — Ω_2	108.79 (4)	H9A—C9—H9B	108.0
03—Zn2—O4	120.54 (4)	O4—C10—C11	109.87 (11)
O3—Zn2—N2	112.11 (4)	O4—C10—C12	108.80 (10)
04—Zn2—N2	86.91 (4)	O4—C10—C13	107.02 (10)
$O1^{i}$ —Zn3—Br2	118.00 (3)	C11—C10—C12	109.57 (11)
$O1^{i}$ Zn3 $O3^{i}$	106.38 (4)	$C_{11} - C_{10} - C_{13}$	106.71 (10)
$O3^{i}$ —Zn3—Br2	111.70 (3)	C12—C10—C13	114.78 (11)
O4— $Zn3$ — $Br2$	117.11 (3)	C10—C11—H11A	109.5

O4—Zn3—O1 ⁱ	105.41 (4)	C10—C11—H11B	109.5
$O4$ —Zn3— $O3^i$	95.52 (4)	C10-C11-H11C	109.5
$Zn1$ — $O1$ — $Zn3^{i}$	118.87 (5)	H11A—C11—H11B	109.5
Zn1—O2—Zn2	123.95 (5)	H11A—C11—H11C	109.5
$Zn2-O3-Zn3^{i}$	133.08 (5)	H11B—C11—H11C	109.5
Zn2—O4—Zn3	120.17 (4)	C10-C12-H12A	109.5
C1-O1-Zn1	111.77 (7)	C10-C12-H12B	109.5
$C1 - O1 - Zn3^{i}$	125 97 (8)	C10-C12-H12C	109.5
7n1-02-H2	109 (2)	H12A— $C12$ — $H12B$	109.5
$7n^2 + 0^2 + 12$	107(2)	$H_{12A} C_{12} H_{12C}$	109.5
$2\pi^2 - 02 - 112$	117(2) 1104(15)	$H_{12}A - C_{12} - H_{12}C$	109.5
$Z_{\rm H2} = 03 = H3$	110.4(15)	H12D - C12 - H12C	109.5
Zn3-03-H3	116.5 (15)	$N_2 = C_{13} = C_{10}$	115.14 (10)
C10—04—Zn2	112.67 (7)	N2—C13—H13A	108.5
C10—O4—Zn3	126.68 (8)	N2—C13—H13B	108.5
C4—N1—Zn1	99.33 (7)	C10—C13—H13A	108.5
C4—N1—C5	110.31 (11)	C10—C13—H13B	108.5
C4—N1—C9	108.46 (11)	H13A—C13—H13B	107.5
C5—N1—Zn1	118.32 (9)	N2—C14—H14A	109.2
C5—N1—C9	108.44 (11)	N2—C14—H14B	109.2
C9—N1—Zn1	111.39 (8)	N2—C14—C15	111.98 (12)
C13—N2—Zn2	101.16 (8)	H14A—C14—H14B	107.9
C13—N2—C14	108.49 (10)	C15—C14—H14A	109.2
C13—N2—C18	111.17 (11)	C15—C14—H14B	109.2
C14—N2—Zn2	111.77 (8)	С14—С15—Н15А	109.4
C14—N2—C18	108.80 (11)	C14—C15—H15B	109.4
$C18 = N2 = 7n^2$	115 13 (9)	C14-C15-C16	111 13 (13)
01-C1-C2	110.84 (11)	H15A-C15-H15B	108.0
01 - C1 - C3	109.26 (11)	C16-C15-H15A	109.0
$O_1 C_1 C_4$	107.20(11) 107.30(10)	C16 C15 H15R	109.4
$C_2 = C_1 = C_4$	107.37(10) 107.92(11)	C15 C16 H16A	109.4
$C_2 = C_1 = C_4$	104.92(11) 100.51(12)	C15 C16 H16P	109.7
$C_3 = C_1 = C_2$	109.31(12) 114.95(12)		109.7
$C_3 = C_1 = C_4$	114.85 (12)	$\Pi I 0 A - C 10 - \Pi I 0 B$	108.2
C1 = C2 = H2A	109.5		109.80 (13)
C1 = C2 = H2B	109.5	CI/-CI6-HI6A	109.7
CI-C2-H2C	109.5	C17—C16—H16B	109.7
H2A—C2—H2B	109.5	С16—С17—Н17А	109.4
H2A—C2—H2C	109.5	С16—С17—Н17В	109.4
H2B—C2—H2C	109.5	H17A—C17—H17B	108.0
С1—С3—НЗА	109.5	C18—C17—C16	111.34 (14)
C1—C3—H3B	109.5	C18—C17—H17A	109.4
С1—С3—Н3С	109.5	C18—C17—H17B	109.4
НЗА—СЗ—НЗВ	109.5	N2-C18-C17	111.83 (12)
НЗА—СЗ—НЗС	109.5	N2—C18—H18A	109.3
НЗВ—СЗ—НЗС	109.5	N2—C18—H18B	109.3
N1—C4—C1	115.86 (11)	C17—C18—H18A	109.3
N1—C4—H4A	108.3	C17—C18—H18B	109.3
N1—C4—H4B	108.3	H18A—C18—H18B	107.9
C1—C4—H4A	108.3	O5—C19—C20	114.2 (2)
-			

C1—C4—H4B	108.3	O5—C19—C20A	115.6 (2)
H4A—C4—H4B	107.4	O5—C19—C21	125.10 (17)
N1—C5—H5A	109.1	C21—C19—C20	114.9 (3)
N1—C5—H5B	109.1	C21—C19—C20A	110.5 (2)
N1—C5—C6	112.41 (12)	С19—С20—Н20А	109.5
H5A—C5—H5B	107.9	C19—C20—H20B	109.5
С6—С5—Н5А	109.1	С19—С20—Н20С	109.5
С6—С5—Н5В	109.1	H20A—C20—H20B	109.5
C5—C6—H6A	109.5	H20A—C20—H20C	109.5
C5—C6—H6B	109.5	H20B—C20—H20C	109.5
C5—C6—C7	110.88 (14)	C19—C20A—H20D	109.5
H6A—C6—H6B	108.1	C19—C20A—H20E	109.5
C7—C6—H6A	109.5	C19—C20A—H20F	109.5
C7—C6—H6B	109.5	H_{20D} C_{20A} H_{20E}	109.5
C6-C7-H7A	109.8	H_{20D} C_{20A} H_{20F}	109.5
C6—C7—H7B	109.8	H_{20E} C_{20A} H_{20E}	109.5
C6-C7-C8	109 51 (12)	C19-C21-H21A	109.5
H7A—C7—H7B	108.2	C19—C21—H21B	109.5
C8—C7—H7A	109.8	C19—C21—H21C	109.5
C8—C7—H7B	109.8	$H_{21}A - C_{21} - H_{21}B$	109.5
C7—C8—H8A	109.4	$H_{21}A - C_{21} - H_{21}C$	109.5
C7—C8—H8B	109.4	H_{21B} C_{21} H_{21C}	109.5
H8A - C8 - H8B	108.0		109.5
	100.0		
Zn1 - O1 - C1 - C2	-143.25(10)	C2-C1-C4-N1	165.89 (12)
Zn1—O1—C1—C3	95.97 (10)	C3—C1—C4—N1	-73.82(15)
Zn1-O1-C1-C4			· · · ·
	-29.18(13)	C4—N1—C5—C6	177.10 (12)
Zn1—N1—C4—C1	-29.18 (13) -38.23 (13)	C4—N1—C5—C6 C4—N1—C9—C8	177.10 (12) -178.28 (12)
Zn1—N1—C4—C1 Zn1—N1—C5—C6	-29.18 (13) -38.23 (13) -69.58 (14)	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1	177.10 (12) -178.28 (12) 86.76 (14)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13)	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8	177.10 (12) -178.28 (12) 86.76 (14) -58.48 (15)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13) -152.00 (8)	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8	177.10 (12) -178.28 (12) 86.76 (14) -58.48 (15) 54.13 (18)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11 Zn2—O4—C10—C12	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13) -152.00 (8) 88.05 (11)	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8 C6—C7—C8—C9	177.10 (12) -178.28 (12) 86.76 (14) -58.48 (15) 54.13 (18) -54.74 (17)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11 Zn2—O4—C10—C12 Zn2—O4—C10—C13	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13) -152.00 (8) 88.05 (11) -36.51 (11)	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—N1	177.10 (12) -178.28 (12) 86.76 (14) -58.48 (15) 54.13 (18) -54.74 (17) 58.21 (16)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11 Zn2—O4—C10—C12 Zn2—O4—C10—C13 Zn2—N2—C13—C10	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13) -152.00 (8) 88.05 (11) -36.51 (11) -32.11 (11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.10 (12) -178.28 (12) 86.76 (14) -58.48 (15) 54.13 (18) -54.74 (17) 58.21 (16) -154.62 (12)
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11 Zn2—O4—C10—C12 Zn2—O4—C10—C13 Zn2—N2—C13—C10 Zn2—N2—C14—C15	-29.18 (13) -38.23 (13) -69.58 (14) 73.40 (13) -152.00 (8) 88.05 (11) -36.51 (11) -32.11 (11) 69.34 (13)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$177.10(12) \\ -178.28(12) \\ 86.76(14) \\ -58.48(15) \\ 54.13(18) \\ -54.74(17) \\ 58.21(16) \\ -154.62(12) \\ 58.46(15) \\ \end{array}$
Zn1—N1—C4—C1 Zn1—N1—C5—C6 Zn1—N1—C9—C8 Zn2—O4—C10—C11 Zn2—O4—C10—C12 Zn2—O4—C10—C13 Zn2—N2—C13—C10 Zn2—N2—C14—C15 Zn2—N2—C18—C17	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \end{array}$	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—N1 C9—N1—C4—C1 C9—N1—C5—C6 C11—C10—C13—N2	$177.10(12) \\ -178.28(12) \\ 86.76(14) \\ -58.48(15) \\ 54.13(18) \\ -54.74(17) \\ 58.21(16) \\ -154.62(12) \\ 58.46(15) \\ 164.92(11) \\ 1000000000000000000000000000000000$
$Zn1-N1-C4-C1$ $Zn1-N1-C5-C6$ $Zn1-N1-C9-C8$ $Zn2-O4-C10-C11$ $Zn2-O4-C10-C12$ $Zn2-O4-C10-C13$ $Zn2-N2-C13-C10$ $Zn2-N2-C14-C15$ $Zn2-N2-C18-C17$ $Zn3^{i}-O1-C1-C2$	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \end{array}$	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—N1 C9—N1—C4—C1 C9—N1—C5—C6 C11—C10—C13—N2 C12—C10—C13—N2	$\begin{array}{c} 177.10 (12) \\ -178.28 (12) \\ 86.76 (14) \\ -58.48 (15) \\ 54.13 (18) \\ -54.74 (17) \\ 58.21 (16) \\ -154.62 (12) \\ 58.46 (15) \\ 164.92 (11) \\ -73.49 (14) \end{array}$
$Zn1-N1-C4-C1$ $Zn1-N1-C5-C6$ $Zn1-N1-C9-C8$ $Zn2-O4-C10-C11$ $Zn2-O4-C10-C13$ $Zn2-N2-C13-C10$ $Zn2-N2-C14-C15$ $Zn2-N2-C18-C17$ $Zn3^{i}-O1-C1-C2$ $Zn3^{i}-O1-C1-C3$	$\begin{array}{r} -29.18 (13) \\ -38.23 (13) \\ -69.58 (14) \\ 73.40 (13) \\ -152.00 (8) \\ 88.05 (11) \\ -36.51 (11) \\ -32.11 (11) \\ 69.34 (13) \\ -67.74 (14) \\ 57.94 (15) \\ -62.83 (13) \end{array}$	C4—N1—C5—C6 C4—N1—C9—C8 C5—N1—C4—C1 C5—N1—C9—C8 C5—C6—C7—C8 C6—C7—C8—C9 C7—C8—C9—N1 C9—N1—C4—C1 C9—N1—C5—C6 C11—C10—C13—N2 C12—C10—C13—N2 C13—N2—C14—C15	$\begin{array}{c} 177.10 (12) \\ -178.28 (12) \\ 86.76 (14) \\ -58.48 (15) \\ 54.13 (18) \\ -54.74 (17) \\ 58.21 (16) \\ -154.62 (12) \\ 58.46 (15) \\ 164.92 (11) \\ -73.49 (14) \\ -179.96 (11) \end{array}$
$\begin{array}{c} Zn1 & -N1 & -C4 & -C1 \\ Zn1 & -N1 & -C5 & -C6 \\ Zn1 & -N1 & -C9 & -C8 \\ Zn2 & -O4 & -C10 & -C11 \\ Zn2 & -O4 & -C10 & -C12 \\ Zn2 & -O4 & -C10 & -C13 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn3^{i} & -O1 & -C1 & -C2 \\ Zn3^{i} & -O1 & -C1 & -C3 \\ Zn3^{i} & -O1 & -C1 & -C4 \end{array}$	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10 (12) \\ -178.28 (12) \\ 86.76 (14) \\ -58.48 (15) \\ 54.13 (18) \\ -54.74 (17) \\ 58.21 (16) \\ -154.62 (12) \\ 58.46 (15) \\ 164.92 (11) \\ -73.49 (14) \\ -179.96 (11) \\ 178.00 (12) \end{array}$
$\begin{array}{c} Zn1 & N1 & C4 & C1 \\ Zn1 & N1 & C5 & C6 \\ Zn1 & N1 & C9 & C8 \\ Zn2 & O4 & C10 & C11 \\ Zn2 & O4 & C10 & C12 \\ Zn2 & O4 & C10 & C13 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C14 & C15 \\ Zn2 & N2 & C18 & C17 \\ Zn3^{i} & O1 & C1 & C2 \\ Zn3^{i} & O1 & C1 & C3 \\ Zn3^{i} & O1 & C1 & C4 \\ Zn3 & O4 & C10 & C11 \\ \end{array}$	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10 (12) \\ -178.28 (12) \\ 86.76 (14) \\ -58.48 (15) \\ 54.13 (18) \\ -54.74 (17) \\ 58.21 (16) \\ -154.62 (12) \\ 58.46 (15) \\ 164.92 (11) \\ -73.49 (14) \\ -179.96 (11) \\ 178.00 (12) \\ -149.80 (11) \end{array}$
$\begin{array}{c} Zn1 & N1 & C4 & C1 \\ Zn1 & N1 & C5 & C6 \\ Zn1 & N1 & C9 & C8 \\ Zn2 & O4 & C10 & C11 \\ Zn2 & O4 & C10 & C12 \\ Zn2 & O4 & C10 & C13 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C14 & C15 \\ Zn2 & N2 & C18 & C17 \\ Zn3^i & O1 & C1 & C2 \\ Zn3^i & O1 & C1 & C3 \\ Zn3^i & O1 & C1 & C4 \\ Zn3 & O4 & C10 & C11 \\ Zn3 & O4 & C10 & C12 \\ \end{array}$	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \\ -83.89 \ (12) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10 \ (12) \\ -178.28 \ (12) \\ 86.76 \ (14) \\ -58.48 \ (15) \\ 54.13 \ (18) \\ -54.74 \ (17) \\ 58.21 \ (16) \\ -154.62 \ (12) \\ 58.46 \ (15) \\ 164.92 \ (11) \\ -73.49 \ (14) \\ -179.96 \ (11) \\ 178.00 \ (12) \\ -149.80 \ (11) \\ 58.59 \ (16) \end{array}$
$\begin{array}{c} Zn1 & -N1 & -C4 & -C1 \\ Zn1 & -N1 & -C5 & -C6 \\ Zn1 & -N1 & -C9 & -C8 \\ Zn2 & -O4 & -C10 & -C11 \\ Zn2 & -O4 & -C10 & -C12 \\ Zn2 & -O4 & -C10 & -C13 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn3 & -O1 & -C1 & -C2 \\ Zn3^i & -O1 & -C1 & -C2 \\ Zn3^i & -O1 & -C1 & -C3 \\ Zn3^i & -O1 & -C1 & -C4 \\ Zn3 & -O4 & -C10 & -C11 \\ Zn3 & -O4 & -C10 & -C12 \\ Zn3 & -O4 & -C10 & -C13 \end{array}$	$\begin{array}{r} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \\ -83.89 \ (12) \\ 151.55 \ (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10 (12) \\ -178.28 (12) \\ 86.76 (14) \\ -58.48 (15) \\ 54.13 (18) \\ -54.74 (17) \\ 58.21 (16) \\ -154.62 (12) \\ 58.46 (15) \\ 164.92 (11) \\ -73.49 (14) \\ -179.96 (11) \\ 178.00 (12) \\ -149.80 (11) \\ 58.59 (16) \\ -53.46 (18) \end{array}$
$\begin{array}{c} Zn1 & -N1 & -C4 & -C1 \\ Zn1 & -N1 & -C5 & -C6 \\ Zn1 & -N1 & -C9 & -C8 \\ Zn2 & -O4 & -C10 & -C11 \\ Zn2 & -O4 & -C10 & -C12 \\ Zn2 & -O4 & -C10 & -C13 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C13 & -C10 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn2 & -N2 & -C14 & -C15 \\ Zn3 & -O1 & -C1 & -C2 \\ Zn3^{i} & -O1 & -C1 & -C3 \\ Zn3^{i} & -O1 & -C1 & -C4 \\ Zn3 & -O4 & -C10 & -C11 \\ Zn3 & -O4 & -C10 & -C12 \\ Zn3 & -O4 & -C10 & -C13 \\ O1 & -C1 & -C4 & -N1 \\ \end{array}$	$\begin{array}{r} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \\ -83.89 \ (12) \\ 151.55 \ (8) \\ 47.91 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10\ (12)\\ -178.28\ (12)\\ 86.76\ (14)\\ -58.48\ (15)\\ 54.13\ (18)\\ -54.74\ (17)\\ 58.21\ (16)\\ -154.62\ (12)\\ 58.46\ (15)\\ 164.92\ (11)\\ -73.49\ (14)\\ -179.96\ (11)\\ 178.00\ (12)\\ -149.80\ (11)\\ 58.59\ (16)\\ -53.46\ (18)\\ 53.38\ (19)\\ \end{array}$
$\begin{array}{c} Zn1 & N1 & C4 & C1 \\ Zn1 & N1 & C5 & C6 \\ Zn1 & N1 & C5 & C6 \\ Zn2 & O4 & C10 & C11 \\ Zn2 & O4 & C10 & C12 \\ Zn2 & O4 & C10 & C13 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C14 & C15 \\ Zn2 & N2 & C18 & C17 \\ Zn3^{i} & O1 & C1 & C2 \\ Zn3^{i} & O1 & C1 & C2 \\ Zn3^{i} & O1 & C1 & C3 \\ Zn3^{i} & O1 & C1 & C4 \\ Zn3 & O4 & C10 & C11 \\ Zn3 & O4 & C10 & C12 \\ Zn3 & O4 & C10 & C13 \\ O1 & C1 & C4 & N1 \\ O4 & C10 & C13 & N2 \\ \end{array}$	$\begin{array}{c} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \\ -83.89 \ (12) \\ 151.55 \ (8) \\ 47.91 \ (16) \\ 47.33 \ (14) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10\ (12)\\ -178.28\ (12)\\ 86.76\ (14)\\ -58.48\ (15)\\ 54.13\ (18)\\ -54.74\ (17)\\ 58.21\ (16)\\ -154.62\ (12)\\ 58.46\ (15)\\ 164.92\ (11)\\ -73.49\ (14)\\ -179.96\ (11)\\ 178.00\ (12)\\ -149.80\ (11)\\ 58.59\ (16)\\ -53.46\ (18)\\ 53.38\ (19)\\ -57.19\ (17)\\ \end{array}$
$\begin{array}{c} Zn1 & N1 & C4 & C1 \\ Zn1 & N1 & C5 & C6 \\ Zn1 & N1 & C9 & C8 \\ Zn2 & O4 & C10 & C11 \\ Zn2 & O4 & C10 & C12 \\ Zn2 & O4 & C10 & C13 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C13 & C10 \\ Zn2 & N2 & C14 & C15 \\ Zn2 & N2 & C18 & C17 \\ Zn3^{i} & O1 & C1 & C2 \\ Zn3^{i} & O1 & C1 & C2 \\ Zn3^{i} & O1 & C1 & C4 \\ Zn3 & O4 & C10 & C11 \\ Zn3 & O4 & C10 & C12 \\ Zn3 & O4 & C10 & C13 \\ O1 & C1 & C4 & N1 \\ O4 & C10 & C13 & N2 \\ N1 & C5 & C6 & C7 \end{array}$	$\begin{array}{r} -29.18 \ (13) \\ -38.23 \ (13) \\ -69.58 \ (14) \\ 73.40 \ (13) \\ -152.00 \ (8) \\ 88.05 \ (11) \\ -36.51 \ (11) \\ -32.11 \ (11) \\ 69.34 \ (13) \\ -67.74 \ (14) \\ 57.94 \ (15) \\ -62.83 \ (13) \\ 172.01 \ (8) \\ 36.06 \ (13) \\ -83.89 \ (12) \\ 151.55 \ (8) \\ 47.91 \ (16) \\ 47.33 \ (14) \\ -57.60 \ (16) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 177.10\ (12)\\ -178.28\ (12)\\ 86.76\ (14)\\ -58.48\ (15)\\ 54.13\ (18)\\ -54.74\ (17)\\ 58.21\ (16)\\ -154.62\ (12)\\ 58.46\ (15)\\ 164.92\ (11)\\ -73.49\ (14)\\ -179.96\ (11)\\ 178.00\ (12)\\ -149.80\ (11)\\ 58.59\ (16)\\ -53.46\ (18)\\ 53.38\ (19)\\ -57.19\ (17)\\ 90.61\ (13)\\ \end{array}$

Symmetry code: (i) -x+1, -y+1, -z+1.

supporting information

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…O5	0.69 (2)	2.23 (2)	2.9036 (15)	166 (3)