

Received 7 May 2020 Accepted 18 May 2020

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; isorbide; shortchain amphiphiles; carbohydrate derivate.

CCDC references: 2004430; 2004429; 2004428; 2004427

Supporting information: this article has supporting information at journals.iucr.org/e

2-O-Monoalkyl isosorbide ethers with C8, C10, C12 and C14 chain lengths

Felix Geburtig* and Volkmar Vill

Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany. *Correspondence e-mail: felix.geburtig@chemie.uni-hamburg.de

The title compounds, 6-(octyloxy)hexahydrofuro[3,2-*b*]furan-3-ol, $C_{14}H_{26}O_4$, 6-(decyloxy)hexahydrofuro[3,2-*b*]furan-3-ol, $C_{16}H_{30}O_4$, 6-(dodecyloxy)hexahydrofuro[3,2-*b*]furan-3-ol, $C_{18}H_{34}O_4$, and 6-(tetradecyloxy)hexahydrofuro-[3,2-*b*]furan-3-ol, $C_{20}H_{38}O_4$, consist of a polar headgroup (isosorbide) and a lipophilic alkyl chain linked *via* an ether bridge. Isosorbide is a biobased diol, containing two fused furan rings. One intermolecular hydrogen bond connects the molecules between the free *endo* hydroxy group and the opposing ether oxygen of the V-shaped head group. Thus the molecule layers interlock like in a herringbone pattern parallel to the *bc* plane.

1. Chemical context

We are interested in the synthesis and characterization of amphiphiles and liquid crystals based on renewable resources with a special focus on glycolipid structures. The molecules of the reported crystal structures are precursor compounds to possible liquid crystals, which may already present some liquid crystal properties. The exact geometric shape of the molecule under consideration is decisive for the explanation of observed desired liquid crystal properties. (Vill *et al.*, 1988; Vill *et al.*, 1989; Etzbach *et al.*, 1995). These reported precursors and their corresponding endo-isomers (5-O-alkylisosorbide) were also examined for thermotropic and lyotropic liquid crystal properties. In contrast to the exo-isomers presented here, the endo-isomers are colorless fluids at standard conditions for temperature and pressure. The exo-isomers crystallize in colorless needles at given conditions.

Compound	30	3h	30	34
Selected geometry	parameters	and intermolecular	torsion	angles (Å, °).
Table 1				

Compound	3a	3b	3c	3d	
	Iso-C ₈	Iso-C ₁₀	Iso-C ₁₂	Iso-C ₁₄	
C2-C3-O3	111.02 (18)	111.40 (19)	110.8 (3)	111.3 (3)	
O1-C4-C5	110.78 (18)	111.05 (19)	110.8 (3)	110.5 (3)	
O2-C2	1.422 (3)	1.422 (3)	1.424 (5)	1.430 (4)	
Torsion angle $O2-C2\cdots C2-O2^{i}$	52.375	53.870	53.646	54.854	

Symmetry code: (i) -x, $y + \frac{1}{2}$, -z - for 3a and -x, $y - \frac{1}{2}$, -z + 1 for 3b, 3c and 3d.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

Compound	3a	3b	3c	3d
	Iso-C ₈	Iso-C ₁₀	Iso-C ₁₂	Iso-C ₁₄
O4-H4	0.88 (3)	0.89 (4)	0.90(7)	0.83 (4)
$H4 \cdots O1^i$	2.00 (3)	1.97 (5)	1.96 (7)	2.03 (4)
$O4 \cdots O1^i$	2.827 (2)	2.823 (3)	2.830 (4)	2.834 (4)
$O4{-}H4{\cdots}O1^i$	155 (3)	160 (4)	162 (5)	161 (4)

Symmetry code: (i) -x, $y + \frac{1}{2}$, -z - for 3a and -x, $y - \frac{1}{2}$, -z + 1 for 3b, 3c and 3d.

2. Structural commentary

The Flack parameters and associated e.s.d. values in the title compounds are -0.7(5)(3a), -0.18(13)(3b), 1.6(9)(3c) and -1.1 (10) (3d). None of the esd values meets the criterion for enantiopure-sufficient inversion-distinguishing power (Flack & Bernardinelli, 2000), which is expected given that compounds 3a, 3b and 3d were measured using Mo radiation and Friedif values are in the range of 6 to 7 (Mo) and 33 to 35 (Cu), respectively (Flack et al., 2007; Flack, 2008). Absolute configurations were thus established from unchanging chiral centers of enantiopure starting materials (chemical absolute_configuration syn). The Flack parameter of the reported compounds is essentially inconclusive. Nevertheless, the structure analysis confirms the formation of compound 3a**d**. Fig. 1 shows compound **3d** with a chain length of C_{14} . The other compounds with chain lengths of C₈, C₁₀ and C₁₂ have a strong structural similarity and are not shown explicitly.

3. Supramolecular features

Van der Waals forces cause the molecules to stack in layers. A classical intermolecular hydrogen bond is observed (Table 2, Fig. 2) between the polar headgroups of two neighboring

Figure 1

Molecular structure of the title compound **3d** with chain length C_{14} in the crystal. Ellipsoids represent 50% probability levels.

Crystal structure of the title compound **3d** with chain length C_{14} in the crystal. Ellipsoids represent 50% probability levels.

layers. Because each polar headgroup functions as hydrogenbond acceptor and donor, the hydrogen bond reinforces the connection between the layers and strengthens the coherence within the layer, interlocking the molecules into a herringbone pattern parallel to the bc plane. The intermolecular torsion

Figure 3

Packing diagram of **3d** projected parallel to the *ac* plane. Dashed lines indicate the intermolecular hydrogen bonds. Hydrogen atoms not involved in the hydrogen-bonding system are omitted.

Figure 4

Detail of the packing diagram of **3a** with the intermolecular torsion angle highlighted in green. The intermolecular torsion angle corresponds to the opening angle of the herringbone pattern. Ellipsoids represent 50% probability levels.

angle $O2-C2\cdots C2-O2^{i}$ (Table 1) is between 52 and 55°. This intermolecular torsion angle directly corresponds to the opening angle of the herringbone pattern (Figs. 3 and 4).

Regarding the angle of the intermolecular hydrogen bond $O4-H4\cdots O1^{i}$, it can be seen that the angle varies slightly with the chain length of the non-polar chain between 155 and 162°; the distance between the donor and acceptor of the hydrogen bond also stays roughly the same: 2.823–2.834 Å (Table 2).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016) for isosorbide derivates gave only seven hits, whereby only three hits were mono-substituted: NOZVUW (Sagawa et al., 2019) is the 2-acetamide-2-deoxyisosorbide, PIMKOO (Kanters et al., 1993) is the isosorbide-2-mononitrate and TUQGET (Santschi et al., 2015) the isosorbide-5-mononitrate. Therefore, none of them represent mono-alkyl ethers. PIMKOL (Kanters et al., 1993) is the isosorbide dinitrate of the corresponding isosorbide-2-mononitrate whereas WECBUE (Wu et al., 2017) is the dinitrile. MOVFUY (Harata & Kawano, 2002) is a bis(α -cyclodextrin) clathrate of isosorbide dinitrate and TECRIC (Hušák et al., 1996) is a cyclosporine dimethylisosorbide solvate. Only the latter is an alkyl ether, but disubstituted. Regarding the angle C2-C3-O3 constituted by the annulated tetrahydrofuran rings, it is noticeable that the angles of the reported compounds here are larger than those of the mono- and dinitrates whereas the angle O1-C4-C5 is smaller. The cyclosporine dimethylisosorbide solvate has a larger angle for O1-C4-C5 whereas the angle for C2-C3-C3O3 is smaller in comparison to compounds presented here. The dinitrile isosorbide shows a comparable angle for the angle O1-C4-C5, but the C2-C3-O3 angle is larger in that compound compared to the mono-alkyl ethers. The same applies to the isosorbide dinitrate clathrate. The 2-acetamide-2-deoxyisosorbide shows angles that are comparable to the mono-alkyl ethers reported here.

5. Synthesis and crystallization

Isosorbide 1 (30 mmol) and potassium hydroxide (30 mmol) were dissolved under stirring in 15 mL dimethyl sulfoxide at 400 K. Bromo alkane 2 (20 mmol) was added slowly. The solution was kept at 400 K under stirring for 24h. The solution was cooled to room temperature and acidified to pH = 1 with 37% hydrochloric acid. Triple extraction with 50 mL of ethyl acetate and drying the collected organic phases over magnesium sulfate gave a golden-yellow raw product after removal of the solvent under reduced pressure. The raw product was separated and purified by column chromatography (solvent: petroleum ether 50–70/ethyl acetate 1:1). Evaporation of the solvent under reduced pressure afforded compound **3** as colorless crystals and compound **4** as colorless syrup-like fluids in a combined yield of 30 to 50% (Zhu *et al.*, 2008).

2-O-Octylisosorbide

$R_{\rm f} = 0.38.$

ESI-MS: $m/z = 259.26 (M + H)^+$, 296.08 $(M + K)^+$.

¹H NMR (400 MHz, chloroform-*d*) δ (ppm) = 4.60 (*t*, *J* = 5.0 Hz, 1H, H4), 4.45 (*d*, *J* = 4.5 Hz, 1H, H3), 4.27 (*dq*, *J* = 7.2 Hz, 5.7 Hz, 1H, H5), 4.06–3.95 (*m*, 2H, H2, H1a), 3.91–3.81 (*m*, 2H, H6, H1b), 3.57 (*dd*, *J* = 9.5 Hz, 5.7 Hz, 1H, H6b), 3.48 (*td*, *J* = 6.7Hz, 2.0 Hz, 2H, H7), 2.64 (*d*, *J* = 7.1 Hz, 1H, OH), 1.56 (*d*, *J* = 11.0 Hz, 2H, H8), 1.35–1.23 (*m*, 10H, H9–H13), 0.88 (*t*, *J* = 6.7 Hz, 3H, H14).

¹³C NMR (101 MHz, chloroform-*d*) δ (ppm) = 86.1 (C3), 84.3 (C1), 81.9 (C4), 73.8 (C6), 73.7 (C2), 72.4 (C5), 70.1 (C7), 32.0 (C10), 29.9 (C8), 29.5 (C9), 29.4 (C11), 26.2 (C12), 22.8 (C13), 14.2 (C14).

2-O-Decylisosorbide

 $R_{\rm f} = 0.41.$

ESI-MS: $m/z = 287.22 (M + H)^+$, 309.21 $(M + Na)^+$.

¹H NMR (400 MHz, chloroform-*d*) δ (ppm) = 4.61 (*t*, *J* = 5.0 Hz, 1H, H4), 4.45 (*d*, *J* = 4.6 Hz, 1H, H3), 4.27 (*m*, 1H, H5), 4.06–3.96 (*m*, 2H, H2, H1a), 3.88 (*dd*, *J* = 9.9 Hz, 3.7 Hz, 1H, H1b), 3.85 (*dd*, *J* = 10.0Hz, 6.3 Hz, 1H, H6a), 3.57 (*dd*, *J* = 9.4 Hz, 5.7 Hz, 1H, H6b), 3.48 (*td*, *J* = 6.6 Hz, 2.0 Hz, 2H, H7), 2.64 (*d*, *J* = 7.1 Hz, 1H, OH), 1.58–1.52 (*m*, 2H, H8), 1.35–1.17 (*m*, 14H, H9–H15), 0.88 (*t*, *J* = 6.7Hz, 3H, H16).

¹³C NMR (101 MHz, chloroform-*d*) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.8 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.0–22.8 (C8–C15), 14.3 (C16).

2-O-Dodecylisosorbide

 $R_{\rm f} = 0.56.$

ESI-MS: $m/z = 315.25 (M + H)^+$, 337.24 $(M + Na)^+$.

m.p. = 327.2–328.7 K.

¹H NMR (400 MHz, chloroform–*d*) δ (ppm) = 4.60 (*t*, *J* = 5.0 Hz, 1H, H4), 4.44 (*d*, *J* = 4.5 Hz, 1H, H3), 4.27 (*m*, 1H, H5), 4.04–3.93 (*m*, 2H, H2, H1a), 3.87 (*dd*, *J* = 10.0, 3.6 Hz, 1H, H1b), 3.84 (*dd*, *J* = 9.9 Hz, 6.3 Hz, 1H, H6a), 3.56 (*dd*, *J* = 9.4 Hz, 5.7 Hz, 1H, H6b), 3.47 (*td*, *J* = 6.7 Hz, 2.0 Hz, 2H, H7), 2.67 (*d*, *J* = 7.0 Hz, 1H, OH), 1.61–1.49 (*m*, 2H, H8), 1.25 (*s*, 18H, H9–H17), 0.87 (*t*, *J* = 6.7 Hz, 3H, H18).

¹³C NMR (101 MHz, chloroform-*d*) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.7 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.1–22.8 (C8–C17), 14.3 (C18).

research communications

Table 3Experimental details.

	Iso-C ₈	Iso-C ₁₀	Iso-C ₁₂	Iso-C ₁₄
Crystal data				
Chemical formula	$C_{14}H_{26}O_{4}$	$C_{16}H_{20}O_4$	$C_{18}H_{24}O_4$	$C_{20}H_{28}O_4$
<i>M</i> _	258.35	286.40	314.45	342.50
Crystal system, space group	Monoclinic. $P2_1$	Monoclinic. $P2_1$	Monoclinic. $P2_1$	Monoclinic. $P2_1$
Temperature (K)	100	100	100	100
a, b, c (Å)	7.0008 (13), 5.5112 (10), 18.544 (3)	6.9892 (2), 5.4888 (2), 20.8041 (6)	7.0250 (5), 5.4674 (5), 23.377 (2)	7.040 (6), 5.438 (5), 25.56 (2)
β (°)	100.155 (4)	91.302 (3)	97.051 (9)	91.914 (9)
$V(A^3)$	704.3 (2)	797.89 (4)	891.08 (14)	978.2 (14)
Z	2	2	2	2
Radiation type	Μο Κα	Cu Kα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.09	0.67	0.08	0.08
Crystal size (mm)	$0.29 \times 0.15 \times 0.05$	$0.44 \times 0.16 \times 0.08$	$0.37\times0.08\times0.03$	$0.3 \times 0.1 \times 0.02$
Data collection				
Diffractometer	Bruker APEXII CCD	Rigaku Oxford Diffraction SuperNova, Dual, Atlas	Rigaku Oxford Diffraction SuperNova, Dual, Atlas	Bruker APEXII CCD
Absorption correction	Numerical (SADABS; Bruker, 2016)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2020)	Numerical (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.604, 0.746	0.590, 1.000	0.534, 1.000	0.543, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	16451, 3491, 3128	17428, 3268, 3028	20988, 4546, 3638	12041, 4278, 2949
R	0.048	0.048	0.089	0.069
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.668	0.632	0.692	0.640
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.110, 1.10	0.042, 0.118, 1.07	0.082, 0.202, 1.10	0.055, 0.140, 1.04
No. of reflections	3491	3268	4546	4278
No. of parameters	167	185	203	221
No. of restraints	1	1	1	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.29, -0.22	0.28, -0.21	0.50, -0.38	0.22, -0.24
Absolute structure	Flack x determined using 1274 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1249 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 1143 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 980 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.7 (5)	-0.18 (13)	-0.6 (9)	-1.2 (10)

Computer programs: CrysAlis PRO (Rigaku OD, 2020), BlS (Bruker, 2016), SAINT (Bruker, 2019), SHELXT2014/5 and SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

2-O-Tetradecylisosorbide

 $R_{\rm f} = 0.69.$

ESI-MS: $m/z = 343.28 (M + Na)^+$, 365.27 $(M + Na)^+$.

¹H NMR (400 MHz, chloroform–*d*) δ (ppm) = 4.60 (*t*, *J* = 4.9 Hz, 1H, H4), 4.45 (*d*, *J* = 4.5 Hz, 1H, H3), 4.27 (*dq*, *J* = 7.2 Hz, 5.7 Hz, 1H, H5), 4.04–3.97 (*m*, 2H, H2, H1a), 3.89 (*dd*, *J* = 9.9 Hz, 3.9 Hz, 1H, H1b), 3.85 (*dd*, *J* = 9.5Hz, 5.9 Hz, 1H, H6a), 3.57 (*dd*, *J* = 9.4 Hz, 5.6 Hz, 1H, H6b), 3.48 (*td*, *J* = 6.7 Hz, 3.0 Hz, 2H, H7), 2.65 (*d*, *J* = 7.1 Hz, 1H, OH), 1.58–1.52 (*m*, 2H, H8), 1.35–1.17 (*m*, 14H, H9–H19), 0.88 (*t*, *J* = 6.9 Hz, 3H, H20).

¹³C NMR (101MHz, chloroform-*d*) δ (ppm) = 86.1 (C3), 84.2 (C1), 81.8 (C4), 73.7 (C6), 73.6 (C2), 72.4 (C5), 70.1 (C7), 32.1–22.8 (C8–C19), 14.3 (C20).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Methyl groups were refined as

idealized rigid groups allowed to rotate but not tip (C–H = 0.98 Å and H–C–H = 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions (methylene C–H = 0.98 and methine C–H = 1.00 Å). The $U_{\rm iso}$ (H) values were fixed at 1.5 (for the methyl H and hydroxy H) or 1.2 times the equivalent U_{iso} value of the parent carbon atoms and oxygen atom, respectively.

Acknowledgements

VV and FG would like to thank Klaus Brandenburg of Research Center Borstel – Leibniz Lung Center for the biochemical examinations.

References

- Bruker (2016). BlS and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2019). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). *J. Appl. Cryst.* **42**, 339–341.

research communications

- Etzbach, K.-H., Delavier, P., Siemensmeyer, K., Wagenblast, G., Laupichler, L. & Vill, V. (1995). DE Patent 4342280.
- Flack, H. D. (2008). Acta Chim. Slov. 55, 689-691.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257-265.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Harata, K. & Kawano, K. (2002). Carbohydr. Res. 337, 537-547.
- Hušák, M., Kratochvíl, B., Jegorov, A., Mat'ha, V., Stuchlík, M. & Andrýsek, T. (1996). Z. Kristallogr. 211, 313–318.
- Kanters, J. A., Schouten, A., Sterk, G. J. & de Jong, M. H. (1993). J. Mol. Struct. 298, 113–120.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.

- Sagawa, T., Kobayashi, H., Murata, C., Shichibu, Y., Konishi, K. & Fukuoka, A. (2019). ACS Sustainable Chem. Eng. 7, 14883-14888.
- Santschi, N., Wagner, S., Daniliuc, C., Hermann, S., Schäfers, M. & Gilmour, R. (2015). ChemMedChem, 10, 1724–1732.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vill, V., Fischer, F. & Thiem, J. (1988). Z. Naturforsch. Teil A, 42, 1119–1125.
- Vill, V., Fischer, F. & Thiem, J. (1989). Z. Naturforsch. Teil A, 43, 675–679.
- Wu, J., Thiyagarajan, S., Guerra, C. F., Eduard, P., Lutz, M., Noordover, B. A. J., Koning, C. E., van Es, D. S. (2017). *ChemSusChem*, **10**, 3202–3211.
- Zhu, Y., Durand, M., Molinier, V. & Aubry, J.-M. (2008). *Green Chem.* **10**, 532–540.

Acta Cryst. (2020). E76, 924-928 [https://doi.org/10.1107/S2056989020006647]

2-O-Monoalkyl isosorbide ethers with C8, C10, C12 and C14 chain lengths

Felix Geburtig and Volkmar Vill

Computing details

Data collection: *BlS* (Bruker, 2016) for iso-c8, iso-c14; *CrysAlis PRO* (Rigaku OD, 2020) for iso-c10, iso-c12. Cell refinement: *SAINT* (Bruker, 2019) for iso-c8, iso-c14; *CrysAlis PRO* (Rigaku OD, 2020) for iso-c10, iso-c12. Data reduction: *SAINT* (Bruker, 2019) for iso-c8, iso-c14; *CrysAlis PRO* (Rigaku OD, 2020) for iso-c10, iso-c12. Program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a) for iso-c8, iso-c14; *SHELXT2018/2* (Sheldrick, 2015a) for iso-c10, iso-c12. For all structures, program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

6-(Octyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c8)

Crystal data

 $C_{14}H_{26}O_4$ $M_r = 258.35$ Monoclinic, $P2_1$ a = 7.0008 (13) Å b = 5.5112 (10) Å c = 18.544 (3) Å $\beta = 100.155 (4)^\circ$ $V = 704.3 (2) Å^3$ Z = 2

Data collection

Bruker APEXII CCD diffractometer Detector resolution: 8.3 pixels mm⁻¹ φ and ω scans Absorption correction: numerical (SADABS; Bruker, 2016) $T_{\min} = 0.604$, $T_{\max} = 0.746$ 16451 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.110$ S = 1.103491 reflections 167 parameters 1 restraint F(000) = 284 $D_x = 1.218 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5399 reflections $\theta = 3.0-27.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.29 \times 0.14 \times 0.05 \text{ mm}$

3491 independent reflections 3128 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -9 \rightarrow 9$ $k = -7 \rightarrow 7$ $l = -24 \rightarrow 24$

Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0584P)^2 + 0.0928P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Absolute structure: Flack x determined using 1274 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* al., 2013)

Absolute structure parameter: -0.7 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
04	-0.3146 (2)	1.1240 (3)	0.46449 (9)	0.0206 (4)
H4	-0.204 (4)	1.202 (6)	0.4671 (15)	0.031*
O3	-0.2626 (2)	1.1015 (3)	0.66173 (9)	0.0223 (4)
C6	-0.3112 (3)	1.2324 (5)	0.59462 (13)	0.0202 (5)
H6A	-0.211534	1.356261	0.590200	0.024*
H6B	-0.438754	1.313362	0.591209	0.024*
C5	-0.3178 (3)	1.0391 (4)	0.53597 (12)	0.0175 (5)
Н5	-0.439886	0.943600	0.534571	0.021*
C4	-0.1475 (3)	0.8769 (4)	0.56869 (12)	0.0162 (4)
H4A	-0.167151	0.705588	0.551189	0.019*
01	0.0336 (2)	0.9757 (3)	0.55443 (8)	0.0173 (3)
C1	0.1401 (3)	1.0801 (4)	0.62113 (12)	0.0184 (5)
H1A	0.112653	1.255842	0.623537	0.022*
H1B	0.281444	1.057319	0.623838	0.022*
C2	0.0702 (3)	0.9457 (4)	0.68292 (12)	0.0178 (5)
H2	0.083366	1.047420	0.728187	0.021*
C3	-0.1426 (3)	0.8969 (4)	0.65068 (12)	0.0172 (4)
Н3	-0.189743	0.744399	0.670946	0.021*
O2	0.1583 (2)	0.7144 (3)	0.69783 (9)	0.0196 (4)
C7	0.3524 (3)	0.7307 (5)	0.73806 (13)	0.0224 (5)
H7A	0.355169	0.837569	0.781134	0.027*
H7B	0.438704	0.801247	0.706650	0.027*
C8	0.4223 (3)	0.4806 (5)	0.76282 (13)	0.0207 (5)
H8A	0.421057	0.375583	0.719426	0.025*
H8B	0.332855	0.409170	0.792837	0.025*
С9	0.6279 (3)	0.4879 (5)	0.80782 (13)	0.0217 (5)
H9A	0.716491	0.559354	0.777433	0.026*
H9B	0.628485	0.595407	0.850628	0.026*
C10	0.7051 (3)	0.2392 (5)	0.83484 (12)	0.0197 (5)
H10A	0.625967	0.175594	0.869914	0.024*
H10B	0.691287	0.126099	0.792767	0.024*
C11	0.9172 (3)	0.2475 (5)	0.87199 (13)	0.0207 (5)
H11A	0.994196	0.323853	0.838152	0.025*
H11B	0.928797	0.351471	0.916094	0.025*
C12	1.0032 (3)	-0.0002 (4)	0.89449 (13)	0.0205 (5)

H12A	0.997027	-0.102242	0.850206	0.025*	
H12B	0.923641	-0.079522	0.926877	0.025*	
C13	1.2132 (3)	0.0131 (5)	0.93423 (13)	0.0234 (5)	
H13A	1.290702	0.102721	0.903187	0.028*	
H13B	1.217835	0.106071	0.980190	0.028*	
C14	1.3052 (4)	-0.2343 (5)	0.95257 (15)	0.0286 (6)	
H14A	1.306695	-0.324955	0.907209	0.043*	
H14B	1.229830	-0.324164	0.983527	0.043*	
H14C	1.438497	-0.213184	0.978793	0.043*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0132 (7)	0.0254 (9)	0.0228 (8)	-0.0035 (7)	0.0025 (6)	0.0041 (7)
O3	0.0213 (8)	0.0237 (9)	0.0231 (9)	0.0053 (7)	0.0074 (6)	-0.0009 (7)
C6	0.0159 (10)	0.0189 (11)	0.0264 (12)	0.0016 (9)	0.0056 (8)	0.0013 (10)
C5	0.0129 (9)	0.0176 (11)	0.0223 (11)	-0.0009 (8)	0.0040 (8)	0.0014 (9)
C4	0.0142 (10)	0.0113 (9)	0.0237 (11)	-0.0013 (8)	0.0053 (8)	0.0014 (8)
01	0.0127 (7)	0.0192 (8)	0.0208 (8)	-0.0004 (6)	0.0052 (6)	0.0002 (6)
C1	0.0154 (10)	0.0162 (10)	0.0234 (11)	-0.0010 (8)	0.0030 (8)	-0.0009 (9)
C2	0.0169 (10)	0.0164 (11)	0.0198 (11)	-0.0006 (8)	0.0026 (8)	-0.0004 (9)
C3	0.0139 (10)	0.0139 (10)	0.0243 (12)	-0.0002 (8)	0.0045 (8)	0.0026 (9)
O2	0.0151 (7)	0.0172 (8)	0.0251 (9)	0.0001 (7)	-0.0002 (6)	0.0024 (7)
C7	0.0152 (10)	0.0240 (12)	0.0267 (12)	-0.0029 (10)	-0.0004 (8)	0.0034 (11)
C8	0.0157 (10)	0.0209 (11)	0.0244 (12)	-0.0006 (9)	0.0008 (8)	0.0020 (10)
C9	0.0160 (10)	0.0220 (11)	0.0260 (12)	-0.0025 (9)	0.0008 (8)	0.0028 (10)
C10	0.0155 (10)	0.0222 (11)	0.0211 (11)	-0.0011 (9)	0.0022 (8)	0.0006 (10)
C11	0.0154 (10)	0.0217 (11)	0.0252 (12)	-0.0005 (9)	0.0039 (8)	0.0011 (10)
C12	0.0159 (10)	0.0215 (11)	0.0242 (12)	-0.0005 (9)	0.0039 (8)	0.0010 (10)
C13	0.0154 (10)	0.0255 (13)	0.0287 (13)	0.0008 (9)	0.0023 (8)	0.0019 (10)
C14	0.0220 (12)	0.0317 (15)	0.0311 (14)	0.0053 (10)	0.0024 (10)	0.0023 (11)

O4—H4	0.88 (3)	С7—С8	1.507 (3)
O4—C5	1.410 (3)	C8—H8A	0.9900
O3—C6	1.427 (3)	C8—H8B	0.9900
O3—C3	1.442 (3)	C8—C9	1.532 (3)
С6—Н6А	0.9900	С9—Н9А	0.9900
С6—Н6В	0.9900	С9—Н9В	0.9900
C6—C5	1.517 (3)	C9—C10	1.525 (3)
С5—Н5	1.0000	C10—H10A	0.9900
C5—C4	1.527 (3)	C10—H10B	0.9900
C4—H4A	1.0000	C10—C11	1.524 (3)
C4—O1	1.447 (2)	C11—H11A	0.9900
C4—C3	1.519 (3)	C11—H11B	0.9900
O1—C1	1.446 (3)	C11—C12	1.520 (3)
C1—H1A	0.9900	C12—H12A	0.9900

C1—H1B	0.9900	C12—H12B	0.9900
C1—C2	1.516 (3)	C12—C13	1.526 (3)
C2—H2	1.0000	C13—H13A	0.9900
C2—C3	1 528 (3)	C13—H13B	0 9900
$C^{2}-O^{2}$	1.020(3) 1.422(3)	C13-C14	1 521 (4)
$C_2 = C_2$	1.422 (3)	C14 $H144$	0.0200
C_{3}	1.0000	C14 $H14P$	0.9800
	1.455 (5)	С14—П14В	0.9800
	0.9900	C14—H14C	0.9800
С/—Н/В	0.9900		
C5—O4—H4	105.8 (19)	С8—С7—Н7А	109.8
C6—O3—C3	109.08 (16)	С8—С7—Н7В	109.8
O3—C6—H6A	110.9	С7—С8—Н8А	109.3
O3—C6—H6B	110.9	C7—C8—H8B	109.3
O3—C6—C5	104.04 (19)	С7—С8—С9	111.45 (19)
H6A—C6—H6B	109.0	H8A—C8—H8B	108.0
С5—С6—Н6А	110.9	С9—С8—Н8А	109.3
С5—С6—Н6В	110.9	С9—С8—Н8В	109.3
04	115.94 (19)	C8—C9—H9A	108.9
04—C5—H5	107.8	C8—C9—H9B	108.9
04-C5-C4	115, 27, (17)	$H_{0}A = C_{0} = H_{0}B$	107.7
C6 C5 H5	107.8	$C_{10} = C_{0} = C_{0}$	113 56 (10)
C_{0}	107.0 101.72(17)	C_{10} C_{9} U_{0A}	102.0
$C_{0} - C_{3} - C_{4}$	101.72 (17)	C10 - C9 - H9A	108.9
C4—C5—H5	107.8	С10—С9—Н9В	108.9
C5—C4—H4A	111.8	C9—C10—H10A	109.1
O1—C4—C5	110.80 (18)	C9—C10—H10B	109.1
O1—C4—H4A	111.8	H10A—C10—H10B	107.8
O1—C4—C3	106.84 (17)	С11—С10—С9	112.47 (19)
C3—C4—C5	103.52 (17)	C11—C10—H10A	109.1
C3—C4—H4A	111.8	C11—C10—H10B	109.1
C1C4	109.25 (16)	C10-C11-H11A	108.8
01—C1—H1A	110.7	C10—C11—H11B	108.8
01—C1—H1B	110.7	H11A—C11—H11B	107.7
01-C1-C2	105 42 (18)	C12-C11-C10	1138(2)
HIA_C1_HIB	108.8	C12 $C11$ $H11A$	108.8
$C_2 C_1 H_{1A}$	110.7	C_{12} C_{11} H_{11B}	108.8
$C_2 = C_1 = H_1 R$	110.7	C_{12} C	100.0
	110.7	C_{11} C_{12} H_{12}	109.0
C1 = C2 = H2	111.5	CII—CI2—HI2B	109.0
C1-C2-C3	102.28 (18)		113.0 (2)
C3—C2—H2	111.5	H12A—C12—H12B	107.8
O2—C2—C1	113.45 (18)	C13—C12—H12A	109.0
O2—C2—H2	111.5	C13—C12—H12B	109.0
O2—C2—C3	106.12 (17)	C12—C13—H13A	108.9
O3—C3—C4	106.73 (17)	C12—C13—H13B	108.9
O3—C3—C2	111.02 (18)	H13A—C13—H13B	107.7
O3—C3—H3	111.4	C14—C13—C12	113.5 (2)
C4—C3—C2	104.65 (17)	C14—C13—H13A	108.9
С4—С3—Н3	111.4	C14—C13—H13B	108.9

С2—С3—Н3	111.4	C13—C14—H14A	109.5
C2—O2—C7	112.60 (18)	C13—C14—H14B	109.5
O2—C7—H7A	109.8	C13—C14—H14C	109.5
O2—C7—H7B	109.8	H14A—C14—H14B	109.5
O2—C7—C8	109.21 (19)	H14A—C14—H14C	109.5
H7A—C7—H7B	108.3	H14B—C14—H14C	109.5
O4—C5—C4—O1	44.0 (3)	C1—C2—C3—O3	-85.1 (2)
O4—C5—C4—C3	158.17 (18)	C1—C2—C3—C4	29.6 (2)
O3—C6—C5—O4	-164.56 (16)	C1—C2—O2—C7	76.8 (2)
O3—C6—C5—C4	-38.7 (2)	C2—O2—C7—C8	170.27 (18)
C6—O3—C3—C4	-10.3 (2)	C3—O3—C6—C5	31.1 (2)
C6—O3—C3—C2	103.2 (2)	C3-C4-O1-C1	-6.4 (2)
C6-C5-C4-O1	-82.3 (2)	C3—C2—O2—C7	-171.63 (17)
C6—C5—C4—C3	31.9 (2)	O2—C2—C3—O3	155.71 (17)
C5-C4-O1-C1	105.7 (2)	O2—C2—C3—C4	-89.5 (2)
C5—C4—C3—O3	-14.4 (2)	O2—C7—C8—C9	-178.64 (18)
C5—C4—C3—C2	-132.20 (18)	C7—C8—C9—C10	179.5 (2)
C4—O1—C1—C2	25.7 (2)	C8—C9—C10—C11	173.59 (19)
O1—C4—C3—O3	102.57 (19)	C9—C10—C11—C12	-175.6 (2)
O1—C4—C3—C2	-15.2 (2)	C10-C11-C12-C13	-177.75 (19)
O1—C1—C2—C3	-34.0 (2)	C11—C12—C13—C14	-176.2 (2)
O1—C1—C2—O2	79.9 (2)		

6-(Decyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c10)

Crystal data

 $C_{16}H_{30}O_4$ $M_r = 286.40$ Monoclinic, $P2_1$ a = 6.9892 (2) Å b = 5.4888 (2) Å c = 20.8041 (6) Å $\beta = 91.302$ (3)° V = 797.89 (4) Å³ Z = 2

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Atlas diffractometer Detector resolution: 10.4127 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{min} = 0.590, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ F(000) = 316 $D_x = 1.192 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 7114 reflections $\theta = 4.2-76.2^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.44 \times 0.16 \times 0.08 \text{ mm}$

17428 measured reflections 3268 independent reflections 3028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 76.9^\circ, \theta_{min} = 4.3^\circ$ $h = -8 \rightarrow 8$ $k = -6 \rightarrow 6$ $l = -26 \rightarrow 26$

 $wR(F^2) = 0.118$ S = 1.07 3268 reflections

185 parameters
1 restraint
Primary atom site location: dual
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0741P)^2 + 0.1068P]$
where $P = (F_o^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.28 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3} \\ \text{Absolute structure: Flack x determined using} \\ 1249 \text{ quotients } [(I^+) - (I^-)]/[(I^+) + (I^-)] \text{ (Parsons et } al., 2013) \\ \text{Absolute structure parameter: } -0.18 (13) \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameter	: (À	ľ²)
--	------	-----

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	-0.2948 (2)	-0.2388 (4)	0.53094 (8)	0.0285 (4)	
C5	-0.3362 (3)	-0.1528 (5)	0.46833 (11)	0.0261 (5)	
Н5	-0.457030	-0.055647	0.469645	0.031*	
C6	-0.3615 (4)	-0.3478 (5)	0.41677 (12)	0.0285 (5)	
H6A	-0.259150	-0.472001	0.420463	0.034*	
H6B	-0.487258	-0.429298	0.420144	0.034*	
03	-0.3497 (3)	-0.2169 (4)	0.35754 (8)	0.0295 (4)	
C3	-0.2217 (3)	-0.0132 (4)	0.36691 (11)	0.0253 (5)	
H3	-0.279228	0.140392	0.349299	0.030*	
C4	-0.1813 (3)	0.0076 (4)	0.43919 (11)	0.0236 (5)	
H4A	-0.189557	0.179951	0.454433	0.028*	
01	0.0067 (2)	-0.0944 (3)	0.45089 (8)	0.0260 (4)	
C1	0.0779 (3)	-0.1993 (4)	0.39222 (11)	0.0271 (5)	
H1A	0.049214	-0.375810	0.390087	0.032*	
H1B	0.217929	-0.176099	0.389610	0.032*	
C2	-0.0268 (3)	-0.0629 (4)	0.33802 (11)	0.0253 (5)	
H2	-0.039074	-0.165289	0.298387	0.030*	
O2	0.0557 (3)	0.1676 (3)	0.32444 (8)	0.0274 (4)	
C7	0.2266 (4)	0.1490 (5)	0.28830 (12)	0.0300 (5)	
H7A	0.203111	0.045168	0.250013	0.036*	
H7B	0.329320	0.072848	0.314992	0.036*	
C8	0.2878 (4)	0.4002 (5)	0.26759 (12)	0.0278 (5)	
H8A	0.310745	0.502828	0.306136	0.033*	
H8B	0.183564	0.475990	0.241529	0.033*	
C9	0.4700 (4)	0.3917 (5)	0.22816 (12)	0.0282 (5)	
H9A	0.574428	0.319412	0.254840	0.034*	
H9B	0.447666	0.284008	0.190571	0.034*	
C10	0.5339 (4)	0.6413 (5)	0.20451 (11)	0.0266 (5)	
H10A	0.546751	0.753028	0.241709	0.032*	
H10B	0.434015	0.708219	0.174967	0.032*	
C11	0.7238 (4)	0.6321 (5)	0.16973 (12)	0.0283 (5)	
H11A	0.821209	0.554476	0.198301	0.034*	

H11B	0.708077	0.528647	0.130987	0.034*
C12	0.7967 (4)	0.8820 (5)	0.14951 (12)	0.0282 (5)
H12A	0.813283	0.985547	0.188208	0.034*
H12B	0.699513	0.960098	0.120955	0.034*
C13	0.9863 (4)	0.8696 (5)	0.11464 (11)	0.0277 (5)
H13A	1.082709	0.789157	0.143048	0.033*
H13B	0.969014	0.767306	0.075754	0.033*
C14	1.0631 (4)	1.1179 (5)	0.09472 (12)	0.0282 (5)
H14A	0.963902	1.202929	0.068427	0.034*
H14B	1.088498	1.216908	0.133771	0.034*
C15	1.2459 (4)	1.1010 (5)	0.05646 (12)	0.0305 (6)
H15A	1.218905	1.007541	0.016575	0.037*
H15B	1.343110	1.009609	0.082066	0.037*
C16	1.3286 (4)	1.3485 (5)	0.03860 (13)	0.0346 (6)
H16A	1.233105	1.440762	0.013414	0.052*
H16B	1.443206	1.324933	0.013041	0.052*
H16C	1.362570	1.438813	0.077856	0.052*
H4	-0.190 (6)	-0.330 (8)	0.5295 (18)	0.052*

Atomic displacement parameters (\mathring{A}^2)

$\begin{array}{c} U^{23} \\ \hline 6) & 0.0043 \ (7) \\ 9) & 0.0016 \ (9) \\ 9) & 0.0011 \ (10) \end{array}$
6)0.0043 (7)9)0.0016 (9)9)0.0011 (10)
9)0.0016 (9)9)0.0011 (10)
9) 0.0011 (10)
6) 0.0005 (7)
9) 0.0006 (9)
8) 0.0003 (9)
6) 0.0012 (6)
(9) 0.0007 (9)
9) -0.0007 (9)
) 0.0017 (7)
0) 0.0030 (10)
) 0.0009 (9)
) 0.0033 (10)
8) 0.0008 (9)
9) 0.0020 (10)
) 0.0012 (10)
9) 0.0015 (10)
9) -0.0008 (10)
10) 0.0019 (10)
0) 0.0019 (11)

O4—C5	1.409 (3)	C8—C9	1.531 (3)
O4—H4	0.89 (4)	С9—Н9А	0.9900
С5—Н5	1.0000	С9—Н9В	0.9900

C5—C6	1 523 (3)	C9—C10	1 526 (3)
C5-C4	1.525(3) 1.531(3)	C10—H10A	0.9900
C6—H6A	0.9900	C10—H10B	0.9900
C6—H6B	0.9900	C10-C11	1.527(3)
C6	1,430(3)		0.0000
$C_0 = C_3$	1.430(3)		0.9900
C3 H3	1.442 (3)		1.526 (3)
$C_3 = C_4$	1.528 (2)	C12 H12A	0.0000
$C_3 = C_4$	1.526(3) 1.526(3)	C12 H12R	0.9900
$C_3 = C_2$	1.0000	C12 - C12	0.3300 1.527(2)
C4 - H4A	1.0000	C12 - C13	1.327(3)
C4 = OI	1.444(3)	C12 U12D	0.9900
	1.448 (3)		0.9900
	0.9900	C13 - C14	1.525 (5)
	0.9900	CI4—HI4A	0.9900
C1 = C2	1.526 (3)	C14—H14B	0.9900
C2—H2	1.0000		1.524 (3)
C2-02	1.422 (3)	CI5—HI5A	0.9900
02	1.429 (3)	C15—H15B	0.9900
C7—H7A	0.9900	C15—C16	1.526 (4)
C7—H7B	0.9900	C16—H16A	0.9800
С7—С8	1.510 (4)	C16—H16B	0.9800
C8—H8A	0.9900	C16—H16C	0.9800
C8—H8B	0.9900		
C5—O4—H4	108 (2)	С9—С8—Н8А	109.3
O4—C5—H5	108.0	C9—C8—H8B	109.3
O4—C5—C6	115.7 (2)	С8—С9—Н9А	108.9
O4—C5—C4	115.25 (19)	C8—C9—H9B	108.9
С6—С5—Н5	108.0	H9A—C9—H9B	107.7
C6—C5—C4	101.37 (18)	C10—C9—C8	113.5 (2)
C4—C5—H5	108.0	С10—С9—Н9А	108.9
С5—С6—Н6А	110.9	С10—С9—Н9В	108.9
С5—С6—Н6В	110.9	C9—C10—H10A	109.0
H6A—C6—H6B	108.9	C9—C10—H10B	109.0
O3—C6—C5	104.2 (2)	C9—C10—C11	112.8 (2)
O3—C6—H6A	110.9	H10A-C10-H10B	107.8
O3—C6—H6B	110.9	C11—C10—H10A	109.0
C6—O3—C3	108.71 (18)	C11—C10—H10B	109.0
O3—C3—H3	111.2	C10-C11-H11A	108.8
O3—C3—C4	106.92 (19)	C10-C11-H11B	108.8
O3—C3—C2	111.40 (19)	H11A—C11—H11B	107.7
С4—С3—Н3	111.2	C12—C11—C10	113.6 (2)
С2—С3—Н3	111.2	C12—C11—H11A	108.8
C2—C3—C4	104.72 (18)	C12—C11—H11B	108.8
С5—С4—Н4А	111.8	C11—C12—H12A	109.0
C3—C4—C5	103.31 (19)	C11—C12—H12B	109.0
С3—С4—Н4А	111.8	C11—C12—C13	113.0 (2)
O1—C4—C5	111.05 (19)	H12A—C12—H12B	107.8

O1—C4—C3	106.51 (18)	C13—C12—H12A	109.0
O1—C4—H4A	111.8	C13—C12—H12B	109.0
C4—O1—C1	109.92 (17)	C12—C13—H13A	108.8
01—C1—H1A	110.7	C12—C13—H13B	108.8
O1—C1—H1B	110.7	H13A—C13—H13B	107.7
O1—C1—C2	105.05 (18)	C14—C13—C12	113.8 (2)
H1A—C1—H1B	108.8	C14—C13—H13A	108.8
C2—C1—H1A	110.7	C14—C13—H13B	108.8
C2—C1—H1B	110.7	C13—C14—H14A	109.0
С3—С2—Н2	111.4	C13—C14—H14B	109.0
C1—C2—C3	102.34 (18)	H14A—C14—H14B	107.8
C1—C2—H2	111.4	C15—C14—C13	113.1 (2)
O2—C2—C3	106.81 (18)	C15—C14—H14A	109.0
O2—C2—C1	113.20 (19)	C15—C14—H14B	109.0
O2—C2—H2	111.4	C14—C15—H15A	108.9
C2—O2—C7	112.85 (19)	C14—C15—H15B	108.9
O2—C7—H7A	109.8	C14—C15—C16	113.6 (2)
O2—C7—H7B	109.8	H15A—C15—H15B	107.7
O2—C7—C8	109.3 (2)	C16—C15—H15A	108.9
H7A—C7—H7B	108.3	C16—C15—H15B	108.9
С8—С7—Н7А	109.8	C15—C16—H16A	109.5
С8—С7—Н7В	109.8	C15—C16—H16B	109.5
C7—C8—H8A	109.3	C15—C16—H16C	109.5
C7—C8—H8B	109.3	H16A—C16—H16B	109.5
C7—C8—C9	111.7 (2)	H16A—C16—H16C	109.5
H8A—C8—H8B	107.9	H16B—C16—H16C	109.5
O4—C5—C6—O3	-164.89 (19)	C4—C3—C2—O2	-89.3 (2)
O4—C5—C4—C3	157.97 (19)	C4—O1—C1—C2	25.1 (2)
O4—C5—C4—O1	44.1 (3)	O1—C1—C2—C3	-33.7 (2)
C5—C6—O3—C3	31.7 (2)	O1—C1—C2—O2	80.9 (2)
C5-C4-O1-C1	106.0 (2)	C1—C2—O2—C7	76.9 (2)
C6—C5—C4—C3	32.2 (2)	C2—C3—C4—C5	-132.86 (19)
C6-C5-C4-O1	-81.6 (2)	C2—C3—C4—O1	-15.8 (2)
C6—O3—C3—C4	-10.6(2)	C2—O2—C7—C8	171.6 (2)
C6—O3—C3—C2	103.3 (2)	O2—C7—C8—C9	-179.61 (19)
O3—C3—C4—C5	-14.6 (2)	C7—C8—C9—C10	178.3 (2)
O3—C3—C4—O1	102.5 (2)	C8—C9—C10—C11	175.6 (2)
O3—C3—C2—C1	-85.4 (2)	C9-C10-C11-C12	-176.2 (2)
O3—C3—C2—O2	155.46 (18)	C10-C11-C12-C13	-179.8 (2)
C3—C4—O1—C1	-5.8 (2)	C11—C12—C13—C14	-179.3 (2)
C3—C2—O2—C7	-171.21 (18)	C12—C13—C14—C15	-176.5 (2)
C4—C5—C6—O3	-39.5 (2)	C13—C14—C15—C16	-177.7 (2)
C4—C3—C2—C1	29.9 (2)		~ /

6-(Dodecyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c12)

Crystal data

 $C_{18}H_{34}O_4$ $M_r = 314.45$ Monoclinic, $P2_1$ a = 7.0250 (5) Å b = 5.4674 (5) Å c = 23.377 (2) Å $\beta = 97.051 (9)^\circ$ $V = 891.08 (14) Å^3$ Z = 2

Data collection

Rigaku Oxford Diffraction SuperNova, Dual, Atlas diffractometer Detector resolution: 5.2063 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) $T_{\min} = 0.534, T_{\max} = 1.000$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.082$ $w = 1/[\sigma^2(F_0^2) + (0.0818P)^2 + 0.8491P]$ $wR(F^2) = 0.202$ where $P = (F_0^2 + 2F_c^2)/3$ *S* = 1.10 $(\Delta/\sigma)_{\rm max} < 0.001$ 4546 reflections $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 203 parameters 1 restraint Absolute structure: Flack x determined using Primary atom site location: dual 1143 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et* al., 2013) Hydrogen site location: mixed Absolute structure parameter: -0.6(9)

F(000) = 348

 $\theta = 3.5 - 28.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 100 K

Plate, colourless $0.37 \times 0.08 \times 0.03 \text{ mm}$

 $R_{\rm int} = 0.089$

 $h = -9 \rightarrow 9$

 $k = -7 \rightarrow 7$

 $l = -31 \rightarrow 31$

 $D_{\rm x} = 1.172 {\rm Mg m^{-3}}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 3996 reflections

20988 measured reflections

 $\theta_{\rm max} = 29.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

4546 independent reflections 3638 reflections with $I > 2\sigma(I)$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
04	-0.3077 (4)	-0.3567 (6)	0.47225 (13)	0.0195 (7)	
C5	-0.3215 (5)	-0.2711 (8)	0.52867 (18)	0.0158 (9)	
H5	-0.439260	-0.174098	0.527443	0.019*	
C6	-0.3266 (6)	-0.4653 (9)	0.57474 (19)	0.0174 (9)	
H6A	-0.451597	-0.542957	0.571783	0.021*	
H6B	-0.229956	-0.589455	0.571468	0.021*	
03	-0.2875 (4)	-0.3345 (7)	0.62790 (13)	0.0208 (7)	
C3	-0.1630 (5)	-0.1300 (8)	0.61918 (19)	0.0159 (9)	

Н3	-0.210764	0.021798	0.634561	0.019*
C4	-0.1536 (5)	-0.1104 (8)	0.55496 (18)	0.0140 (8)
H4A	-0.167596	0.059104	0.541499	0.017*
01	0.0281 (4)	-0.2142 (6)	0.54414 (12)	0.0153 (6)
C1	0.1227 (5)	-0.3212 (9)	0.59724 (17)	0.0170 (9)
H1A	0.260627	-0.301348	0.599673	0.020*
H1B	0.093479	-0.494261	0.599072	0.020*
C2	0.0441 (5)	-0.1834 (7)	0.64566 (19)	0.0136 (8)
H2	0.047254	-0.284334	0.680410	0.016*
02	0.1320 (4)	0.0484 (6)	0.65820(13)	0.0166 (7)
C7	0.3182 (6)	0.0286 (9)	0.6908 (2)	0.0188 (9)
H7A	0.406758	-0.047907	0.667560	0.023*
H7B	0.310862	-0.072266	0.724628	0.023*
C8	0.3891 (6)	0.2810 (8)	0.7090 (2)	0.0166 (9)
H8A	0.298790	0.357484	0.731649	0.020*
H8B	0.396366	0.380691	0.674985	0.020*
C9	0.5881 (6)	0.2697 (9)	0.74473 (19)	0.0175 (9)
H9A	0.580593	0.166828	0.778182	0.021*
H9B	0.678027	0.194711	0.721704	0.021*
C10	0.6637 (5)	0.5215 (9)	0.76483 (19)	0.0160 (9)
H10A	0.580027	0.590708	0.790675	0.019*
H10B	0.660987	0.628991	0.731717	0.019*
C11	0.8693 (6)	0.5098 (9)	0.7959 (2)	0.0165 (9)
H11A	0.870743	0.406446	0.829691	0.020*
H11B	0.951671	0.434785	0.770482	0.020*
C12	0.9500 (6)	0.7609 (8)	0.8145 (2)	0.0172 (9)
H12A	0.865418	0.837972	0.838936	0.021*
H12B	0.952258	0.862509	0.780571	0.021*
C13	1.1527 (6)	0.7484 (8)	0.8471 (2)	0.0170 (9)
H13A	1.149900	0.648491	0.881296	0.020*
H13B	1.236680	0.668910	0.822859	0.020*
C14	1.2354 (6)	0.9980 (9)	0.8651 (2)	0.0183 (9)
H14A	1.151432	1.077765	0.889286	0.022*
H14B	1.238637	1.097924	0.830894	0.022*
C15	1.4371 (6)	0.9839 (9)	0.8976 (2)	0.0191 (10)
H15A	1.433404	0.884511	0.931853	0.023*
H15B	1.520532	0.902806	0.873456	0.023*
C16	1.5227 (6)	1.2328 (9)	0.9156 (2)	0.0207(10)
H16A	1.437411	1.316001	0.938848	0.025*
H16B	1.530016	1.330526	0.881305	0.025*
C17	1 7225 (6)	1.230020 1.2177(10)	0.9498(2)	0.023 0.0231 (11)
H17A	1 714132	1 126633	0.984997	0.028*
H17B	1 806347	1 127749	0 927284	0.028*
C18	1 8111 (7)	1 4663 (11)	0.9652(2)	0.020 0.0277(11)
H18A	1.826747	1.554178	0.930507	0.042*
H18B	1.933962	1.444704	0.987558	0.042*
H18C	1 728567	1 557221	0.987212	0.042*
H4	-0.207(9)	-0.459(13)	0.937212 0.475 (2)	0.042*
	······································	0.107 (10)	···· (4)	0.012

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0071 (12)	0.0232 (18)	0.0277 (16)	0.0025 (13)	0.0006 (11)	-0.0055 (14)
C5	0.0054 (16)	0.013 (2)	0.028 (2)	0.0004 (15)	0.0016 (15)	-0.0010 (17)
C6	0.0092 (17)	0.013 (2)	0.030 (2)	-0.0021 (17)	0.0029 (15)	-0.0012 (19)
03	0.0127 (13)	0.0239 (18)	0.0265 (16)	-0.0038 (13)	0.0048 (11)	0.0004 (14)
C3	0.0072 (17)	0.010(2)	0.031 (2)	0.0029 (16)	0.0021 (15)	-0.0011 (18)
C4	0.0070 (17)	0.0063 (18)	0.029 (2)	0.0008 (16)	0.0033 (15)	-0.0031 (17)
01	0.0075 (12)	0.0128 (15)	0.0262 (16)	0.0019 (11)	0.0044 (11)	0.0004 (12)
C1	0.0082 (16)	0.017 (2)	0.026 (2)	0.0018 (17)	0.0013 (15)	0.0008 (19)
C2	0.0085 (16)	0.008 (2)	0.024 (2)	0.0031 (16)	0.0011 (14)	0.0010 (16)
O2	0.0072 (12)	0.0112 (15)	0.0304 (17)	-0.0017 (12)	-0.0016 (11)	-0.0012 (13)
C7	0.0082 (17)	0.016 (2)	0.031 (2)	0.0039 (18)	-0.0027 (15)	-0.002 (2)
C8	0.0109 (17)	0.012 (2)	0.027 (2)	-0.0018 (17)	0.0010 (15)	0.0008 (19)
C9	0.0116 (18)	0.015 (2)	0.025 (2)	0.0047 (17)	0.0006 (15)	-0.0034 (18)
C10	0.0088 (17)	0.018 (2)	0.021 (2)	-0.0001 (17)	0.0019 (14)	-0.0033 (18)
C11	0.0094 (17)	0.012 (2)	0.028 (2)	0.0035 (16)	0.0002 (15)	-0.0023 (18)
C12	0.0087 (17)	0.015 (2)	0.028 (2)	-0.0014 (17)	0.0022 (15)	-0.0015 (19)
C13	0.0082 (17)	0.013 (2)	0.029 (2)	0.0031 (16)	0.0003 (15)	-0.0027 (18)
C14	0.0102 (17)	0.016 (2)	0.028 (2)	0.0011 (17)	-0.0003 (15)	-0.0008 (19)
C15	0.0094 (18)	0.020(2)	0.028 (2)	0.0013 (18)	0.0024 (16)	-0.0025 (19)
C16	0.0106 (18)	0.024 (3)	0.028 (2)	-0.0006 (18)	0.0017 (16)	0.002 (2)
C17	0.0114 (19)	0.027 (3)	0.031 (2)	-0.0001 (19)	0.0006 (17)	-0.001 (2)
C18	0.019 (2)	0.032 (3)	0.032 (3)	-0.005 (2)	-0.0002 (18)	-0.002 (2)

Atomic displacement parameters $(Å^2)$

O4—C5	1.414 (5)	C9—C10	1.529 (6)
O4—H4	0.90 (7)	C10—H10A	0.9700
С5—Н5	0.9800	C10—H10B	0.9700
C5—C6	1.516 (6)	C10-C11	1.536 (5)
C5—C4	1.537 (6)	C11—H11A	0.9700
С6—Н6А	0.9700	C11—H11B	0.9700
С6—Н6В	0.9700	C11—C12	1.528 (6)
C6—O3	1.431 (5)	C12—H12A	0.9700
O3—C3	1.449 (5)	C12—H12B	0.9700
С3—Н3	0.9800	C12—C13	1.532 (5)
C3—C4	1.514 (6)	C13—H13A	0.9700
C3—C2	1.538 (5)	C13—H13B	0.9700
C4—H4A	0.9800	C13—C14	1.522 (6)
C4—O1	1.447 (4)	C14—H14A	0.9700
O1—C1	1.457 (5)	C14—H14B	0.9700
C1—H1A	0.9700	C14—C15	1.526 (6)
C1—H1B	0.9700	C15—H15A	0.9700
C1—C2	1.519 (6)	C15—H15B	0.9700
С2—Н2	0.9800	C15—C16	1.526 (7)
C2—O2	1.425 (5)	C16—H16A	0.9700

O2—C7	1.435 (5)	C16—H16B	0.9700
С7—Н7А	0.9700	C16—C17	1.530 (6)
С7—Н7В	0.9700	C17—H17A	0.9700
С7—С8	1.510 (6)	С17—Н17В	0.9700
C8—H8A	0.9700	C17—C18	1.520 (7)
C8—H8B	0.9700	C18—H18A	0.9600
C8—C9	1.539 (5)	C18—H18B	0.9600
С9—Н9А	0.9700	C18—H18C	0.9600
С9—Н9В	0.9700		
C5—O4—H4	107 (4)	С10—С9—Н9А	109.0
04—C5—H5	107.8	С10—С9—Н9В	109.0
04	116.2 (4)	C9—C10—H10A	109.2
04	115.2 (3)	C9—C10—H10B	109.2
С6—С5—Н5	107.8	C9—C10—C11	112.3 (3)
C6—C5—C4	101.5 (3)	H10A—C10—H10B	107.9
С4—С5—Н5	107.8	C11—C10—H10A	109.2
С5—С6—Н6А	110.9	C11—C10—H10B	109.2
С5—С6—Н6В	110.9	C10—C11—H11A	109.0
H6A—C6—H6B	108.9	C10—C11—H11B	109.0
O3—C6—C5	104.4 (4)	H11A—C11—H11B	107.8
O3—C6—H6A	110.9	C12—C11—C10	113.0 (3)
O3—C6—H6B	110.9	C12—C11—H11A	109.0
C6—O3—C3	108.6 (3)	C12—C11—H11B	109.0
O3—C3—H3	111.3	C11—C12—H12A	109.0
O3—C3—C4	107.1 (3)	C11—C12—H12B	109.0
O3—C3—C2	110.7 (3)	C11—C12—C13	113.1 (3)
С4—С3—Н3	111.3	H12A—C12—H12B	107.8
C4—C3—C2	105.0 (3)	C13—C12—H12A	109.0
С2—С3—Н3	111.3	C13—C12—H12B	109.0
C5—C4—H4A	111.7	C12—C13—H13A	108.9
C3—C4—C5	103.4 (3)	C12—C13—H13B	108.9
C3—C4—H4A	111.7	H13A—C13—H13B	107.7
O1—C4—C5	110.9 (3)	C14—C13—C12	113.4 (3)
O1—C4—C3	107.0 (3)	C14—C13—H13A	108.9
O1—C4—H4A	111.7	C14—C13—H13B	108.9
C4—O1—C1	109.2 (3)	C13—C14—H14A	109.0
O1—C1—H1A	110.7	C13—C14—H14B	109.0
O1—C1—H1B	110.7	C13—C14—C15	113.1 (4)
O1—C1—C2	105.4 (3)	H14A—C14—H14B	107.8
H1A—C1—H1B	108.8	C15—C14—H14A	109.0
C2—C1—H1A	110.7	C15—C14—H14B	109.0
C2—C1—H1B	110.7	C14—C15—H15A	108.8
С3—С2—Н2	111.4	C14—C15—H15B	108.8
C1—C2—C3	101.9 (3)	H15A—C15—H15B	107.7
C1—C2—H2	111.4	C16—C15—C14	113.7 (4)
O2—C2—C3	106.2 (3)	C16—C15—H15A	108.8
O2—C2—C1	114.0 (3)	C16—C15—H15B	108.8

O2—C2—H2	111.4	C15—C16—H16A	108.8
C2—O2—C7	112.7 (3)	C15—C16—H16B	108.8
O2—C7—H7A	109.9	C15—C16—C17	113.6 (4)
O2—C7—H7B	109.9	H16A—C16—H16B	107.7
O2—C7—C8	109.2 (3)	C17—C16—H16A	108.8
H7A—C7—H7B	108.3	C17—C16—H16B	108.8
С8—С7—Н7А	109.9	С16—С17—Н17А	108.9
С8—С7—Н7В	109.9	С16—С17—Н17В	108.9
С7—С8—Н8А	109.4	H17A—C17—H17B	107.7
С7—С8—Н8В	109.4	C18—C17—C16	113.5 (4)
C7—C8—C9	111.2 (3)	C18—C17—H17A	108.9
H8A—C8—H8B	108.0	C18—C17—H17B	108.9
С9—С8—Н8А	109.4	C17—C18—H18A	109.5
С9—С8—Н8В	109.4	C17—C18—H18B	109.5
С8—С9—Н9А	109.0	C17—C18—H18C	109.5
С8—С9—Н9В	109.0	H18A—C18—H18B	109.5
H9A—C9—H9B	107.8	H18A—C18—H18C	109.5
С10—С9—С8	112.9 (3)	H18B—C18—H18C	109.5
O4—C5—C6—O3	164.6 (3)	C4	-25.6 (4)
O4—C5—C4—C3	-158.5 (3)	O1—C1—C2—C3	33.7 (4)
O4—C5—C4—O1	-44.1 (5)	O1—C1—C2—O2	-80.2 (4)
C5—C6—O3—C3	-31.0 (4)	C1—C2—O2—C7	-77.0 (4)
C5-C4-O1-C1	-105.9 (4)	C2—C3—C4—C5	132.5 (3)
C6—C5—C4—C3	-32.1 (4)	C2-C3-C4-O1	15.4 (4)
C6-C5-C4-O1	82.3 (4)	C2—O2—C7—C8	-172.5 (3)
C6—O3—C3—C4	10.0 (4)	O2—C7—C8—C9	179.4 (3)
C6—O3—C3—C2	-103.9 (4)	C7—C8—C9—C10	-179.1 (4)
O3—C3—C4—C5	14.7 (4)	C8—C9—C10—C11	-175.0 (3)
O3—C3—C4—O1	-102.4 (3)	C9—C10—C11—C12	178.0 (4)
O3—C3—C2—C1	85.6 (4)	C10-C11-C12-C13	178.2 (3)
O3—C3—C2—O2	-154.8 (3)	C11—C12—C13—C14	179.2 (4)
C3—C4—O1—C1	6.2 (4)	C12-C13-C14-C15	179.9 (4)
C3—C2—O2—C7	171.6 (3)	C13—C14—C15—C16	179.6 (4)
C4—C5—C6—O3	38.9 (4)	C14-C15-C16-C17	178.3 (4)
C4—C3—C2—C1	-29.7 (4)	C15—C16—C17—C18	177.3 (4)
C4—C3—C2—O2	89.9 (4)		

6-(Tetradecyloxy)hexahydrofuro[3,2-b]furan-3-ol (iso-c14)

Crystal data

 $C_{20}H_{38}O_4$ $M_r = 342.50$ Monoclinic, $P2_1$ a = 7.040 (6) Å b = 5.438 (5) Å c = 25.56 (2) Å $\beta = 91.914$ (9)° V = 978.2 (14) Å³ Z = 2 F(000) = 380 $D_x = 1.163 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1866 reflections $\theta = 2.4-23.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.3 \times 0.1 \times 0.02 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer Detector resolution: 8.3 pixels mm ⁻¹ φ and ω scans Absorption correction: numerical (SADABS; Bruker, 2016) $T_{min} = 0.543, T_{max} = 0.746$ 12041 measured reflections	4278 independent reflections 2949 reflections with $I > 2\sigma(I)$ $R_{int} = 0.069$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -9 \rightarrow 9$ $k = -6 \rightarrow 6$ $l = -32 \rightarrow 32$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.140$ S = 1.04 4278 reflections 221 parameters 1 restraint Primary atom site location: dual Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å ⁻³ $\Delta\rho_{min} = -0.23$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 980 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013) Absolute structure parameter: -1.2 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	v	7.	Uise*/Uce
-0.2928(3)	-0.4743(5)	0 52486 (10)	0.0275 (6)
-0.194(6)	-0.559(8)	0.5245(16)	0.041*
-0.3534(3)	-0.4511(5)	0.38374 (9)	0.0296 (6)
-0.3661 (5)	-0.5840(7)	0.43214 (14)	0.0264 (8)
-0.266785	-0.712630	0.435169	0.032*
-0.492403	-0.661957	0.434930	0.032*
-0.3353 (5)	-0.3874 (7)	0.47378 (13)	0.0249 (8)
-0.453999	-0.286998	0.474978	0.030*
-0.1807 (5)	-0.2270 (7)	0.45005 (13)	0.0233 (8)
-0.186530	-0.052784	0.462419	0.028*
0.0060 (3)	-0.3353 (5)	0.45978 (9)	0.0251 (6)
0.0720 (5)	-0.4407 (7)	0.41133 (13)	0.0261 (8)
0.042202	-0.618421	0.409508	0.031*
0.211101	-0.419197	0.408917	0.031*
-0.0320 (5)	-0.3032 (7)	0.36763 (14)	0.0247 (9)
-0.047190	-0.406857	0.335457	0.030*
-0.2239 (5)	-0.2490 (7)	0.39142 (14)	0.0246 (8)
-0.279669	-0.092979	0.377018	0.029*
0.0514 (3)	-0.0703 (5)	0.35619 (10)	0.0267 (6)
0.2197 (5)	-0.0927 (8)	0.32631 (15)	0.0286 (9)
	$\begin{array}{c} x \\ \hline -0.2928 (3) \\ \hline -0.194 (6) \\ \hline -0.3534 (3) \\ \hline -0.3661 (5) \\ \hline -0.266785 \\ \hline -0.492403 \\ \hline -0.3353 (5) \\ \hline -0.453999 \\ \hline -0.1807 (5) \\ \hline -0.186530 \\ 0.0060 (3) \\ 0.0720 (5) \\ \hline 0.042202 \\ 0.211101 \\ \hline -0.0320 (5) \\ \hline -0.047190 \\ \hline -0.2239 (5) \\ \hline -0.279669 \\ 0.0514 (3) \\ 0.2197 (5) \end{array}$	xy $-0.2928(3)$ $-0.4743(5)$ $-0.194(6)$ $-0.559(8)$ $-0.3534(3)$ $-0.4511(5)$ $-0.3661(5)$ $-0.5840(7)$ -0.266785 -0.712630 -0.492403 -0.661957 $-0.3353(5)$ $-0.3874(7)$ -0.453999 -0.286998 $-0.1807(5)$ $-0.2270(7)$ -0.186530 -0.052784 $0.0060(3)$ $-0.3353(5)$ $0.0720(5)$ $-0.4407(7)$ 0.042202 -0.618421 0.211101 -0.406857 $-0.2239(5)$ $-0.2490(7)$ -0.279669 -0.092979 $0.0514(3)$ $-0.0703(5)$	xyz $-0.2928(3)$ $-0.4743(5)$ $0.52486(10)$ $-0.194(6)$ $-0.559(8)$ $0.5245(16)$ $-0.3534(3)$ $-0.4511(5)$ $0.38374(9)$ $-0.3661(5)$ $-0.5840(7)$ $0.43214(14)$ -0.266785 -0.712630 0.435169 -0.492403 -0.661957 0.434930 $-0.3353(5)$ $-0.3874(7)$ $0.47378(13)$ -0.453999 -0.286998 0.474978 $-0.1807(5)$ $-0.2270(7)$ $0.45005(13)$ -0.186530 -0.052784 0.462419 $0.0060(3)$ $-0.3353(5)$ $0.45978(9)$ $0.720(5)$ $-0.4407(7)$ $0.41133(13)$ 0.042202 -0.618421 0.409508 0.211101 -0.419197 0.468917 $-0.0320(5)$ $-0.2490(7)$ 0.35457 $-0.2239(5)$ $-0.2490(7)$ 0.377018 $0.0514(3)$ $-0.0703(5)$ $0.32631(15)$

H7A	0.192742	-0.195626	0.294985	0.034*
H7B	0.321577	-0.173310	0.347733	0.034*
C8	0.2838 (5)	0.1587 (7)	0.30984 (15)	0.0264 (8)
H8A	0.310314	0.260127	0.341405	0.032*
H8B	0.180094	0.239026	0.289060	0.032*
C9	0.4616 (5)	0.1482 (7)	0.27738 (15)	0.0274 (8)
H9A	0.565128	0.069171	0.298453	0.033*
H9B	0.435108	0.043818	0.246248	0.033*
C10	0.5289 (5)	0.3998 (7)	0.25933 (14)	0.0254 (8)
H10A	0.543981	0.509412	0.290107	0.031*
H10B	0.430641	0.472216	0.235393	0.031*
C11	0.7171 (5)	0.3883 (7)	0.23132 (15)	0.0274 (8)
H11A	0.813774	0.309314	0.254778	0.033*
H11B	0.700338	0.283559	0.199816	0.033*
C12	0.7903 (5)	0.6391 (8)	0.21489 (15)	0.0269 (8)
H12A	0.810126	0.742408	0.246494	0.032*
H12B	0.692301	0.719783	0.192145	0.032*
C13	0.9754 (5)	0.6271 (7)	0.18580 (15)	0.0285 (9)
H13A	0.955627	0.523019	0.154311	0.034*
H13B	1.073413	0.546723	0.208622	0.034*
C14	1.0495 (5)	0.8774 (7)	0.16902 (15)	0.0277 (9)
H14A	0.949790	0.960044	0.147198	0.033*
H14B	1.073387	0.979425	0.200626	0.033*
C15	1.2308 (5)	0.8655 (7)	0.13841 (15)	0.0277 (9)
H15A	1.206746	0.763969	0.106733	0.033*
H15B	1.330330	0.782022	0.160177	0.033*
C16	1.3060 (5)	1.1164 (7)	0.12173 (15)	0.0275 (9)
H16A	1.208134	1.197719	0.099038	0.033*
H16B	1.326405	1.219760	0.153298	0.033*
C17	1.4905 (5)	1.1042 (7)	0.09257 (14)	0.0265 (9)
H17A	1.469484	1.002373	0.060793	0.032*
H17B	1.587719	1.020765	0.115103	0.032*
C18	1.5675 (5)	1.3533 (7)	0.07642 (15)	0.0280 (9)
H18A	1.592548	1.453521	0.108237	0.034*
H18B	1.469066	1.439061	0.054693	0.034*
C19	1.7495 (5)	1.3374 (7)	0.04580 (15)	0.0296 (9)
H19A	1.846150	1.245600	0.066956	0.036*
H19B	1.722972	1.242708	0.013287	0.036*
C20	1.8309 (5)	1.5850 (8)	0.03147 (15)	0.0339 (10)
H20A	1.736940	1.676491	0.010062	0.051*
H20B	1.946100	1.560924	0.011619	0.051*
H20C	1.862245	1.677821	0.063460	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
04	0.0230 (12)	0.0320 (16)	0.0280 (14)	0.0053 (12)	0.0071 (11)	0.0039 (12)
03	0.0286 (13)	0.0301 (15)	0.0303 (14)	-0.0067 (12)	0.0027 (11)	0.0013 (12)

C6	0.0262 (18)	0.024 (2)	0.030 (2)	-0.0015 (16)	0.0044 (15)	0.0053 (17)
C5	0.0200 (17)	0.027 (2)	0.028 (2)	0.0023 (15)	0.0039 (14)	0.0032 (17)
C4	0.0237 (18)	0.0194 (18)	0.027 (2)	0.0050 (16)	0.0022 (14)	0.0019 (16)
01	0.0198 (12)	0.0271 (15)	0.0288 (14)	0.0010 (11)	0.0045 (10)	0.0001 (11)
C1	0.0271 (18)	0.025 (2)	0.0265 (19)	-0.0015 (16)	0.0041 (15)	-0.0032 (17)
C2	0.0250 (18)	0.022 (2)	0.027 (2)	-0.0034 (16)	0.0041 (15)	0.0006 (16)
C3	0.0255 (19)	0.0197 (19)	0.029 (2)	0.0009 (16)	0.0031 (15)	0.0018 (16)
O2	0.0261 (13)	0.0242 (15)	0.0305 (15)	-0.0023 (11)	0.0102 (11)	0.0011 (12)
C7	0.0239 (18)	0.031 (2)	0.031 (2)	-0.0005 (17)	0.0083 (15)	0.0042 (18)
C8	0.0256 (18)	0.0230 (19)	0.031 (2)	0.0007 (16)	0.0059 (15)	0.0022 (17)
C9	0.0267 (19)	0.027 (2)	0.028 (2)	0.0012 (17)	0.0065 (15)	0.0039 (17)
C10	0.0237 (18)	0.028 (2)	0.025 (2)	-0.0006 (16)	0.0043 (14)	0.0010 (17)
C11	0.0253 (18)	0.028 (2)	0.029 (2)	0.0004 (17)	0.0066 (15)	0.0036 (17)
C12	0.0237 (18)	0.031 (2)	0.027 (2)	0.0004 (16)	0.0051 (15)	0.0013 (17)
C13	0.0236 (18)	0.033 (2)	0.029 (2)	0.0011 (17)	0.0054 (15)	0.0014 (18)
C14	0.0254 (18)	0.028 (2)	0.030 (2)	-0.0018 (17)	0.0048 (15)	-0.0018 (17)
C15	0.0258 (19)	0.026 (2)	0.032 (2)	0.0011 (16)	0.0040 (15)	0.0016 (17)
C16	0.0242 (19)	0.029 (2)	0.030 (2)	-0.0021 (16)	0.0051 (15)	0.0010 (17)
C17	0.0272 (18)	0.023 (2)	0.030 (2)	0.0006 (16)	0.0046 (15)	0.0037 (17)
C18	0.0261 (19)	0.027 (2)	0.031 (2)	-0.0012 (16)	0.0065 (16)	0.0003 (17)
C19	0.026 (2)	0.029 (2)	0.033 (2)	0.0006 (17)	0.0029 (16)	0.0006 (17)
C20	0.030 (2)	0.033 (3)	0.039 (2)	-0.0057 (18)	0.0091 (17)	0.0007 (19)

O4—H4	0.83 (4)	C10—C11	1.528 (5)
O4—C5	1.411 (4)	C11—H11A	0.9900
O3—C6	1.438 (4)	C11—H11B	0.9900
O3—C3	1.438 (4)	C11—C12	1.522 (5)
С6—Н6А	0.9900	C12—H12A	0.9900
С6—Н6В	0.9900	C12—H12B	0.9900
C6—C5	1.519 (5)	C12—C13	1.523 (5)
С5—Н5	1.0000	C13—H13A	0.9900
C5—C4	1.535 (5)	C13—H13B	0.9900
C4—H4A	1.0000	C13—C14	1.524 (5)
C4—O1	1.454 (4)	C14—H14A	0.9900
C4—C3	1.524 (5)	C14—H14B	0.9900
01—C1	1.455 (4)	C14—C15	1.521 (5)
C1—H1A	0.9900	C15—H15A	0.9900
C1—H1B	0.9900	C15—H15B	0.9900
C1—C2	1.513 (5)	C15—C16	1.529 (5)
С2—Н2	1.0000	C16—H16A	0.9900
C2—C3	1.528 (5)	C16—H16B	0.9900
C2—O2	1.430 (4)	C16—C17	1.520 (5)
С3—Н3	1.0000	C17—H17A	0.9900
O2—C7	1.437 (4)	C17—H17B	0.9900
С7—Н7А	0.9900	C17—C18	1.521 (5)
С7—Н7В	0.9900	C18—H18A	0.9900

С7—С8	1.504 (5)	C18—H18B	0.9900
C8—H8A	0.9900	C18—C19	1.526 (5)
C8—H8B	0.9900	C19—H19A	0.9900
C8—C9	1.526 (5)	C19—H19B	0.9900
С9—Н9А	0.9900	C19—C20	1.513 (6)
С9—Н9В	0.9900	C20—H20A	0.9800
C9—C10	1.525 (5)	C20—H20B	0.9800
C10—H10A	0.9900	C20—H20C	0.9800
C10—H10B	0.9900		010000
	0.9900		
С5—О4—Н4	109 (3)	C11—C10—H10A	109.0
C3—O3—C6	108.9 (3)	C11—C10—H10B	109.0
O3—C6—H6A	111.0	C10-C11-H11A	108.9
O3—C6—H6B	111.0	C10-C11-H11B	108.9
O3—C6—C5	103.7 (3)	H11A—C11—H11B	107.7
H6A—C6—H6B	109.0	C12—C11—C10	113.5 (3)
С5—С6—Н6А	111.0	C12—C11—H11A	108.9
C5—C6—H6B	111.0	C12—C11—H11B	108.9
04	115.7 (3)	C11—C12—H12A	108.9
04—C5—H5	107.8	C11—C12—H12B	108.9
04	115.1 (3)	$C_{11} - C_{12} - C_{13}$	113.5 (3)
C6—C5—H5	107.8	H12A—C12—H12B	107.7
C6-C5-C4	102.1 (3)	C13—C12—H12A	108.9
C4—C5—H5	107.8	C13—C12—H12B	108.9
C5 - C4 - H4A	112.1	C12—C13—H13A	108.8
01-C4-C5	110.5 (3)	C12—C13—H13B	108.8
01 - C4 - H4A	112.1	C_{12} C_{13} C_{14}	113.9(3)
01 - C4 - C3	106.6 (3)	H13A-C13-H13B	107.7
$C_{3}-C_{4}-C_{5}$	102.9(3)	C14—C13—H13A	108.8
C3—C4—H4A	112.1	C14—C13—H13B	108.8
C4-01-C1	109 1 (3)	C13—C14—H14A	108.7
01-C1-H1A	110.6	C13—C14—H14B	108.7
01—C1—H1B	110.6	H14A—C14—H14B	107.6
01-C1-C2	105.9 (3)	C15-C14-C13	114.1 (3)
H1A—C1—H1B	108.7	C15—C14—H14A	108.7
C2—C1—H1A	110.6	C15—C14—H14B	108.7
C2—C1—H1B	110.6	C14—C15—H15A	108.7
C1—C2—H2	111.4	C14—C15—H15B	108.7
C1—C2—C3	102.4 (3)	C14—C15—C16	114.2 (3)
С3—С2—Н2	111.4	H15A—C15—H15B	107.6
O2—C2—C1	113.4 (3)	С16—С15—Н15А	108.7
02—C2—H2	111.4	C16—C15—H15B	108.7
O2—C2—C3	106.6 (3)	C15—C16—H16A	108.7
O3—C3—C4	107.4 (3)	C15—C16—H16B	108.7
03—C3—C2	111.3 (3)	H16A—C16—H16B	107.6
О3—С3—Н3	111.0	C17—C16—C15	114.0 (3)
C4—C3—C2	1040(2)	C17 C16 H16A	108 7
	104.9(3)	CI/=CIO=IIIOA	100.7

С2—С3—Н3	111.0	C16—C17—H17A	108.7
C2—O2—C7	112.7 (3)	C16—C17—H17B	108.7
O2—C7—H7A	109.8	C16—C17—C18	114.3 (3)
O2—C7—H7B	109.8	H17A—C17—H17B	107.6
O2—C7—C8	109.4 (3)	C18—C17—H17A	108.7
H7A—C7—H7B	108.2	C18—C17—H17B	108.7
С8—С7—Н7А	109.8	C17—C18—H18A	108.8
C8—C7—H7B	109.8	C17—C18—H18B	108.8
С7—С8—Н8А	109.2	C17—C18—C19	113.7 (3)
C7—C8—H8B	109.2	H18A—C18—H18B	107.7
C7—C8—C9	112.2 (3)	C19—C18—H18A	108.8
H8A—C8—H8B	107.9	C19—C18—H18B	108.8
С9—С8—Н8А	109.2	C18—C19—H19A	108.8
C9—C8—H8B	109.2	C18—C19—H19B	108.8
С8—С9—Н9А	108.8	H19A—C19—H19B	107.7
С8—С9—Н9В	108.8	C20—C19—C18	113.9 (3)
Н9А—С9—Н9В	107.7	C20—C19—H19A	108.8
C10—C9—C8	113.6 (3)	C20—C19—H19B	108.8
С10—С9—Н9А	108.8	C19—C20—H20A	109.5
С10—С9—Н9В	108.8	C19—C20—H20B	109.5
C9—C10—H10A	109.0	C19—C20—H20C	109.5
C9—C10—H10B	109.0	H20A—C20—H20B	109.5
C9—C10—C11	112.8 (3)	H20A—C20—H20C	109.5
H10A—C10—H10B	107.8	H20B—C20—H20C	109.5
O4—C5—C4—O1	44.5 (4)	C2—O2—C7—C8	172.6 (3)
O4—C5—C4—C3	158.0 (3)	C3—O3—C6—C5	31.2 (3)
O3—C6—C5—O4	-164.6 (3)	C3—C4—O1—C1	-4.8 (4)
O3—C6—C5—C4	-38.8(3)	C3—C2—O2—C7	-171.1(3)
C6—O3—C3—C4	-10.6(3)	O2—C2—C3—O3	154.9 (3)
C6—O3—C3—C2	103.7 (3)	O2—C2—C3—C4	-89.3 (3)
C6—C5—C4—O1	-81.7 (3)	O2—C7—C8—C9	-179.4(3)
C6—C5—C4—C3	31.8 (3)	C7—C8—C9—C10	179.2 (3)
C5—C4—O1—C1	106.3 (3)	C8—C9—C10—C11	174.6 (3)
C5—C4—C3—O3	-14.1(3)	C9—C10—C11—C12	-177.8(3)
C5—C4—C3—C2	-132.6 (3)	C10-C11-C12-C13	-178.6(3)
C4—O1—C1—C2	24.4 (4)	C11—C12—C13—C14	179.8 (3)
O1—C4—C3—O3	102.2 (3)	C12—C13—C14—C15	-178.1(3)
O1—C4—C3—C2	-16.3 (4)	C13—C14—C15—C16	-179.7 (3)
O1—C1—C2—C3	-33.4 (3)	C14—C15—C16—C17	178.3 (3)
O1—C1—C2—O2	81.0 (3)	C15—C16—C17—C18	-179.3 (3)
C1—C2—C3—O3	-85.9 (3)	C16—C17—C18—C19	-178.3(3)
C1—C2—C3—C4	30.0 (4)	C17—C18—C19—C20	-177.7 (3)
C1—C2—O2—C7	77.0 (4)		. ,
	and the second		