

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 15 April 2020
Accepted 18 May 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; X-ray powder diffraction; caesium strontium hexaferrocyanate; cryolite-type structure.

CCDC reference: 2004551

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of dicaesium strontium hexacyanidoferrate(II), $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, from laboratory X-ray powder data

Nicolas Massoni, ${ }^{\text {a* }}$ Mícheál P. Moloney, ${ }^{\text {a }}$ Agnès Grandjean, ${ }^{\text {a }}$ Scott T. Misture ${ }^{\text {b }}$ and Hans-Conrad zur Loye ${ }^{\text {c }}$

${ }^{\text {a }}$ CEA, DES, ISEC, DE2D, Univ Montpellier, Marcoule, France, ${ }^{\mathbf{b}}$ Kazuo Inamori School of Engineering, Alfred University, Alfred, NY, 14802, USA, and ${ }^{\text {c }}$ Center for Hierarchical Waste Form Materials, Columbia, SC, 29208, USA.
*Correspondence e-mail: nicolas.massoni@cea.fr

Ferrocyanides with general formula $A^{\mathrm{I}}{ }_{x} B^{\mathrm{II}}{ }_{y}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, where A and B are cations, are thought to accept many substitutions on the A and B positions. In this communication, the synthesis and crystal structure of $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ are reported. The latter was obtained from $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ particles, put in contact with caesium and strontium ions. Hence, a simultaneous ion-exchange mechanism (Cs for K, Sr for Ba) occurs to yield $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$. The synthesis protocol shows that $\mathrm{K}_{2} \mathrm{BaFe}(\mathrm{CN})_{6}$ particles can be used for the simultaneous trapping of radioactive caesium and strontium nuclides in water streams. $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ adopts the cryolite structure type and is isotypic with the known compound $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right.$] [dicaesium sodium hexacyanidomanganate(III)]. The octahedrally coordinated Sr and Fe sites both are located on inversion centres, and the eightfold-coordinated Cs site on a general position.

1. Chemical context

Ferrocyanides (FCN), such as Prussian blue, were discovered almost 300 years ago. The attractive properties of these materials for batteries and decontamination processes have ensured that FCNs remain an active research topic (Haas, 1993; Paolella et al., 2017). In particular, potassium copper FCN is currently being investigated for the purification of ${ }^{137}$ Cs-contaminated water streams through partial exchange with potassium (Haas, 1993; Mimura et al., 1997). To the best of our knowledge, however, using FCNs to extract strontium either alone or with caesium has never been considered before. In the framework of the Center for Hierarchical Waste Forms (CHWM), an Energy Frontier Research Center (EFRC) funded by the US Department of Energy, we have been working on potassium copper FCN as an efficient K-ionic exchanger to capture ${ }^{137} \mathrm{Cs}$ and serve as a waste containment matrix (zur Loye et al., 2018). In this context, we have synthesized a cesium strontium FCN to study its efficiency in immobilizing both ${ }^{90} \mathrm{Sr}$ and ${ }^{137} \mathrm{Cs}$, two radionuclides that are in most cases found together in radioactive water streams. Caesium strontium FCNs appear to be poorly described in the ICDD 2020 PDF4+ powder diffraction database (GatesRector \& Blanton, 2019). Since the synthesized phase $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ did not match with existing entries, we decided to characterize the structure and we report the results herein.

Table 1
Comparison of lattice parameters $\left(\AA,{ }^{\circ}\right)$, selected bond lengths (\AA) and volumes $\left(\AA^{3}\right)$ for $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$.

$\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$			$\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
a, b, c	7.6237 (2), 7.7885 (2), 10.9600 (3)	a, b, c	7.597 (1), 7.806 (1), 10.950 (1)
α, β, γ	90, 90.4165 (19), 90	α, β, γ	90, 90.07 (1), 90
V	650.76 (4)	V	649.36
Cs polyhedron volume*	44.56	Cs polyhedron volume*	44.46
Cs-C1	3.603 (4)	$\mathrm{Cs}-\mathrm{C} 1$	3.6291 (5)
$\mathrm{Cs}-\mathrm{N} 1$	3.348 (4)	$\mathrm{Cs}-\mathrm{N} 1$	3.3688 (5)
$\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	3.628 (3)	$\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	3.5936 (5)
$\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	3.5232 (18)	$\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	3.4920 (5)
$\mathrm{Cs}-\mathrm{C}^{\text {ii }}$	3.592 (6)	$\mathrm{Cs}-\mathrm{C}^{\text {ii }}$	3.5831 (4)
$\mathrm{Cs}-\mathrm{N} 2^{\text {ii }}$	3.367 (6)	$\mathrm{Cs}-\mathrm{N} 2^{\text {ii }}$	3.3839 (3)
$\mathrm{Cs}-\mathrm{C}^{\text {iii }}$	3.711 (5)	$\mathrm{Cs}-\mathrm{C}^{\text {iii }}$	3.7044 (4)
$\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	3.274 (6)	$\mathrm{Cs}-\mathrm{N}{ }^{\text {iiii }}$	3.2840 (3)
Sr octahedron volume*	20.49	Na octahedron volume*	20.45
Fe octahedron volume*	10.49	Mn octahedron volume*	10.47

*Atomic bond lengths were not compared since the positions of C, N, Fe and Sr were not refined. Volumes were calculated by VESTA V3.2.1 (Momma \& Izumi, 2011). [Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.]

2. Structural commentary

$\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is isotypic with $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ (Ziegler et al., 1989). As shown in Table 1, the lattice parameters of $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ are slightly greater than those of $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$, but the cell volumes differ by less than 0.3%. The crystal structure adopts the cryolite structure type and comprises a framework of corner-sharing $\left[\mathrm{Sr}(\mathrm{CN})_{6}\right]$ (dark green in Fig. 1) and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ octahedra (brown in Fig. 1). Both types of octahedra exhibit site symmetry $\overline{1}$, with Sr situated on Wyckoff position $2 c$, and Fe on $2 a$. In the voids of this framework, Cs sites (light green in Fig. 1) have a distorted square-antiprismatic environment with four C and four N atoms as ligands. The substitution of manganese by iron in

Figure 1
Polyhedral plot of the cryolite-type $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ crystal structure.
$\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ can be explained by the similar ionic radii of the two elements: $r_{\mathrm{Mn}(\mathrm{III})}=0.58 \AA$ and $r_{\mathrm{Fe}(\mathrm{II})}=0.61 \AA$ (Shannon, 1976). For the substitution of sodium by strontium, the ionic radii differ more substantially: $r_{\mathrm{Na}(\mathrm{I})}=1.02 \AA$ and $r_{\mathrm{Sr}(\mathrm{II})}=1.18 \AA$. The two crystal structures were compared numerically using COMPSTRU (de la Flor et al., 2016). The structure similarity index Δ was calculated to be 0.009 (Bergerhoff et al., 1999). However, since only a few parameters (11) were refined and many parameters kept fixed in the refinement, the similarity index is not reliable.

3. Database survey

Ferrocyanides have rather complex structures. The ICDD 2020 PDF4+ database (Gates-Rector \& Blanton, 2019) contains records of about 1521 phases with the general $A^{\mathrm{I}}{ }_{x} B^{\mathrm{II}}{ }_{y}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ ferrocyanide formula in which A and B are cations, with no constraints on the $A: B$ ratio. As shown in

Figure 2
(a) and (b) SEM-backscattered electron images of $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$. (c) EDS spectrum of $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.

Figure 3
(a) Pictures of a clear yellow $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 2.6 \mathrm{H}_{2} \mathrm{O}$ dispersion before (left) and immediately after (right) the addition of $\mathrm{Cs} / \mathrm{Sr}$. (b) UV-Vis spectra of $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 2.6 \mathrm{H}_{2} \mathrm{O}$ (black) and $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (red). Both spectra show the characteristic features of the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ moiety (Gray \& Beach, 1963). (c) FT-IR spectra of $\mathrm{K}_{2} \mathrm{BaHCF}$ (black) and $\mathrm{Cs}_{2} \mathrm{SrHCF}$ (red). All peaks shift to higher frequencies after ion exchange. The arrows indicate the $\delta(\mathrm{HOH})$ signal at $1611 \mathrm{~cm}^{-1}$ and $\nu(\mathrm{OH})$ signals at $3527 \mathrm{~cm}^{-1}$ and $3601 \mathrm{~cm}^{-1}$ observed for $\mathrm{K}_{2} \mathrm{BaHCF}$ but not for $\mathrm{Cs}_{2} \mathrm{SrHCF}$. These signals indicate the presence of structural water, which is common in hexacyanidoferrate particles. (d) Enlarged view of the FT-IR spectra in the $400-650 \mathrm{~cm}^{-1}$ range.

Fig. 2, the studied sample contained only $\mathrm{Cs}, \mathrm{Sr}, \mathrm{Fe}, \mathrm{C}$ and N . Hence, we focused on ferrocyanides with $A^{\mathrm{I}}=\mathrm{Cs}$ and $B^{\mathrm{II}}=\mathrm{Sr}$, for which only three phases have been reported, however with poorly described crystal data. The $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ phase studied by Kuznetsov et al. (1970) is reported to crystallize in the tetragonal crystal system with a ranging from 10.72 to $10.89 \AA$ and c from 10.75 to $10.99 \AA$ (PDF00-024-0293 and PDF00-24-0294). The entry for the third phase (PDF00-0481203), the hydrated ferrocyanide $\mathrm{CsSr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ reported by Slivko et al. (1988), is comprised only of reflections without further crystal data given. None of these PDF cards matched the X-ray diffraction pattern of the studied sample. As shown in Fig. 2a,b, the cubic crystal habit revealed by SEM measurements hints at a crystal structure with cubic symmetry, but the number of reflections is not consistent with such a highly symmetrical crystal system. The whole pattern can be described by a monoclinic cell and the experimental data are well reproduced by adjusting the reflections from the $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ phase (Ziegler et al., 1989; PDF 04-0123126). The $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ crystal structure was refined from that of $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ assuming complete substitution of manganese by iron and sodium by strontium. As described above, the ionic radii of the corresponding metals are close enough for these substitutions to be possible.

4. Synthesis and crystallization

All solutions were prepared using Millipore water. $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\left(\mathrm{Cs}_{2} \mathrm{SrHCF}\right)$ particles were not prepared directly by adding Sr and Cs salts to $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Although it was found that $\mathrm{Cs}_{2} \mathrm{SrHCF}$ could be prepared directly by adding aqueous $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ to a $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O} /$ CsNO_{3} solution, the yield was extremely poor ($\leq 1 \%$). Instead, an ion-exchange reaction was initiated by adding a mixed $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} / \mathrm{CsNO}_{3}$ solution to $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ particles, thereby simultaneously substituting barium for strontium and potassium for cesium. This simple approach, using $\mathrm{K}_{2} \mathrm{Ba}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 2.6 \mathrm{H}_{2} \mathrm{O} \quad\left(\mathrm{K}_{2} \mathrm{BaHCF}\right)$ as an intermediate compound, allowed 1:1 amounts of $\mathrm{Cs}_{2} \mathrm{SrHCF}$ to be produced from $\mathrm{K}_{2} \mathrm{BaHCF}$ by ion exchange.

Briefly, the $\mathrm{K}_{2} \mathrm{BaHCF}$ itself was prepared by adding a 1.5 M solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ to a 1 M solution of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ as described by Padigi et al. (2015). Once prepared, $\mathrm{K}_{2} \mathrm{BaHCF}$ was collected by centrifugation, washed and dried. Its chemical composition (K, Fe and Ba) and water content, respectively, were determined by inductively coupled plasma (ICP) analysis and thermogravimetric analysis (TGA). The dried $\mathrm{K}_{2} \mathrm{BaHCF}$ particles redispersed readily in water, producing a clear, slightly yellow dispersion. $\mathrm{Cs}_{2} \mathrm{SrHCF}$ forms immediately as a milky white precipitate (Fig. 3a) upon adding

Figure 4
Observed and calculated X-ray powder diffraction intensities for $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.
the mixed $\mathrm{CsNO}_{3} / \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ solution to the clear yellow $\mathrm{K}_{2} \mathrm{BaHCF}$ dispersion. To ensure complete substitution, 2.2 moles of CsNO_{3} and 1.1 moles of $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ were added for every mole of $\mathrm{K}_{2} \mathrm{BaHCF}$ present. After being left to mix for 1 h , the formed $\mathrm{Cs}_{2} \mathrm{SrHCF}$ was collected by centrifugation, washed and dried. The chemical composition (Fe and Sr) of the powder was determined by ICP analysis while the Cs content was determined by atomic absorption spectroscopy (AAS). An initial characterization of the $\mathrm{Cs}_{2} \mathrm{SrHCF}$ powder was carried out by TGA, UV-Vis and FT-IR spectroscopy. The UV-Vis spectrum of the $\mathrm{Cs}_{2} \operatorname{SrHCF}$ (Fig. 3b) confirmed that the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ moiety was maintained with only slight decreases in the wavelengths of the various absorption peaks (Gray \& Beach, 1963). The FT-IR spectra of $\mathrm{Cs}_{2} \mathrm{SrHCF}$ and $\mathrm{K}_{2} \mathrm{BaHCF}$ are shown in Fig. $3 c$. While a $\delta(\mathrm{HOH})$ signal is observed for $\mathrm{K}_{2} \mathrm{BaHCF}$ at $1611 \mathrm{~cm}^{-1}$ along with $\nu(\mathrm{OH})$ signals at $3527 \mathrm{~cm}^{-1}$ and $3601 \mathrm{~cm}^{-1}$, no such signals were detected for $\mathrm{Cs}_{2} \mathrm{SrHCF}$. This absence of water was confirmed by TGA, which showed no mass loss between 30 and $400^{\circ} \mathrm{C}$ (Fig. S1 in the supporting information. The largest change was in the $\nu(M-\mathrm{N})$ stretching mode, which shifted from $421 \mathrm{~cm}^{-1}$ $\nu(\mathrm{Ba}-\mathrm{N})$ to $439 \mathrm{~cm}^{-1} \nu(\mathrm{Sr}-\mathrm{N})($ Fig. 3d).

5. Refinement

Crystal data and details of the data collection and structure refinement methods are summarized in Table 2. The observed and calculated intensities are shown in Fig. 4 along with the difference pattern. For the refinement of $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, atomic positions of the $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$ phase (Ziegler et al., 1989) and the given individual isotropic displacement parameters were used. All occupancies were set to unity because of the experimentally determined composition. Except for cesium, all displacement parameters were kept fixed because otherwise some became negative. The positions of the nitrogen and carbon atoms were also kept fixed. Since iron and strontium atoms are in special positions, only the lattice parameters, the position of the cesium atom and its $U_{\text {iso }}$ value

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
Specimen shape, size (mm)
Data collection
Diffractometer
Specimen mounting
Data collection mode
Scan method
2θ values $\left({ }^{\circ}\right)$

Refinement
R factors and goodness of fit

No. of parameters
$\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
565.4
Monoclinic, $P 2_{1} / n$
293
$7.6237(2), 7.7885(2), 10.9600(3)$
$90.4165(19)$
$650.76(4)$
2
$\mathrm{Cu} K \alpha_{1}, \lambda=1.540562,1.544390 \AA$
Flat sheet, 25×25

Panalytical XPert MPD Pro
Packed powder pellet
Reflection
Step
$2 \theta_{\min }=10.0232 \theta_{\text {max }}=130.010$
$2 \theta_{\text {step }}=0.017$
$R_{\mathrm{p}}=0.031, R_{\mathrm{wp}}=0.043$,
$R_{\text {exp }}=0.025, R(F)=0.101$, $\chi^{2}=2.993$
11

Coordinates from an isotypic compound. Computer programs: Data Collector (Panalytical, 2011), JANA2006 (Petříček et al., 2014), VESTA (Momma \& Izumi, 2011) and publCIF (Westrip, 2010).
were refined, together with three profile parameters. The residual electron density is about is $6.06 \mathrm{e}^{\AA^{-3}}$ at a distance of $0.71 \AA$ from Cs.

Funding information

Funding for this research was provided by: the Center for Hierarchical Waste Forms (CHWM), an Energy Frontier Research Center funded by the U.S. Department Of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0016574.

References

Bergerhoff, G., Berndt, M., Brandenburg, K. \& Degen, T. (1999). Acta Cryst. B55, 147-156.
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. \& Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.

Gates-Rector, S. \& Blanton, T. (2019). Powder Diffr. 34, 352-360.
Gray, H. B. \& Beach, N. A. (1963). J. Am. Chem. Soc. 85, 2922-2927.
Haas, P. A. (1993). Sep. Sci. Technol. 28, 2479-2506.
Kuznetsov, V. G., Popova, Z. V. \& Seifer, G. B. (1970). Russ. J. Inorg. Chem. 15, 1084-1088.
Loye, H. C. zur, Besmann, T., Amoroso, J., Brinkman, K., Grandjean, A., Henager, C. H., Hu, S., Misture, S. T., Phillpot, S. R., Shustova, N. B., Wang, H., Koch, R. J., Morrison, G. \& Dolgopolova, E. (2018). Chem. Mater. 30, 4475-4488.

Mimura, H., Lehto, J. \& Harjula, R. (1997). J. Nucl. Sci. Technol. 34, 484-489.
Momma, K. \& Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Padigi, P., Goncher, G., Evans, D. \& Solanki, R. (2015). J. Power Sources, 273, 460-464.
Panalytical (2011). X'Pert Data Collector. PANalytical BV, Almelo, The Netherlands.

Paolella, A., Faure, C., Timoshevskii, V., Marras, S., Bertoni, G., Guerfi, A., Vijh, A., Armand, M. \& Zaghib, K. (2017). J. Mater. Chem. A, 5, 18919-18932.
Petříček, V., Dušek, M. \& Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

Slivko, T., Kuligina, T. \& Zimina, G. (1988). Russ. J. Inorg. Chem. 33, 1060.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Ziegler, B., Haegele, R. \& Babel, D. (1989). Z. Naturforsch. B, 44, 896-902.

supporting information

Acta Cryst. (2020). E76, 900-904 [https://doi.org/10.1107/S2056989020006660]

Crystal structure of dicaesium strontium hexacyanidoferrate(II), $\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, from laboratory X-ray powder data

Nicolas Massoni, Mícheál P. Moloney, Agnès Grandjean, Scott T. Misture and Hans-Conrad zur Loye

Computing details

Data collection: Data Collector (Panalytical, 2011); cell refinement: JANA2006 (Petříček et al., 2014); data reduction: JANA2006 (Petříček et al., 2014); program(s) used to solve structure: coordinates from isotypic compound; program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: VESTA (Momma \& Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Dicaesium strontium hexacyanidoferrate

Crystal data

$\mathrm{Cs}_{2} \mathrm{Sr}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
$M_{r}=565.4$
Monoclinic, $P 2_{1} / n$
$a=7.6237$ (2) \AA
$b=7.7885$ (2) \AA
$c=10.9600(3) \AA$
$\beta=90.4165(19)^{\circ}$
$V=650.76(4) \AA^{3}$
$Z=2$
$F(000)=504$

Data collection

Panalytical XPert MPD Pro diffractometer
Radiation source: sealed X-ray tube Specimen mounting: packed powder pellet

Refinement

$R_{\mathrm{p}}=0.031$
$R_{\text {wp }}=0.043$
$R_{\text {exp }}=0.025$
$R(F)=0.101$
6881 data points
Profile function: Lorentzian
y
$D_{\mathrm{x}}=2.885 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha_{1}$ radiation, $\lambda=1.540562$, $1.544390 \AA$
$T=293 \mathrm{~K}$
Particle morphology: plate-like
brown
flat_sheet, $25 \times 25 \mathrm{~mm}$
Specimen preparation: Prepared at 1873 K and 100 kPa , cooled at $30 \mathrm{~K} \mathrm{~min}^{-1}$

Data collection mode: reflection
Scan method: step
$2 \theta_{\min }=10.023^{\circ}, 2 \theta_{\max }=130.010^{\circ}, 2 \theta_{\text {step }}=$
0.017°

11 parameters
0 restraints
26 constraints
Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\text {max }}=0.012$
Background function: Manual background

Special details

Refinement. The Platon test reports 21 Alerts level C. They could be gathered in three groups for explanation : i) 17 C-Alerts (out of 21) are "missing esd on $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates of N and C atoms. This is normal since these positions were not refined. Hence no esd was calculated by Jana2006.
ii)3 C-Alerts (out of 21) are due to a slighlty larger Fourier difference density than allowed by CheckCIF. I can not enhance the quality of the data so no reduction of this value can be done.
iii) The last C-Alert is about a "calc. and reported Sum Formula which differ. I did not find the origin of the Alert.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Cs	$0.5080(4)$	$-0.04022(18)$	$0.2497(7)$	$0.0410(6)^{*}$
Sr	0	0	0.5	0.024^{*}
Fe	0	0	0	0.019^{*}
C 1	0.0488	0.0087	0.178	0.029^{*}
N 1	0.0754	0.0169	0.2809	0.052^{*}
C 2	-0.2128	0.1444	0.022	0.03^{*}
N 2	-0.3347	0.2296	0.0368	0.048^{*}
C 3	0.1449	0.2097	-0.0251	0.09^{*}
N 3	0.2281	0.3301	-0.0406	0.046^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cs	$0.0576(17)$	$0.0343(13)$	$0.0345(16)$	$-0.016(4)$	$0.0050(17)$	$-0.008(4)$

Geometric parameters ($\bar{A},{ }^{\circ}$)

Cs- C 1	3.603 (3)	$\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	2.4965 (1)
Cs- $\mathrm{Cl}^{\text {i }}$	3.628 (2)	$\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	2.4965 (1)
Cs-N1	3.348 (3)	$\mathrm{Fe}-\mathrm{C} 1$	1.9845 (1)
$\mathrm{Cs}-\mathrm{N} 1^{\mathrm{i}}$	3.5232 (18)	$\mathrm{Fe}-\mathrm{C} 1^{\text {vii }}$	1.9845 (1)
Cs-C2 ${ }^{\text {ii }}$	3.592 (6)	$\mathrm{Fe}-\mathrm{C} 2$	1.9901 (1)
$\mathrm{Cs}-\mathrm{N} 2^{\text {ii }}$	3.367 (6)	$\mathrm{Fe}-\mathrm{C} 2{ }^{\text {vii }}$	1.9901 (1)
$\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	3.711 (5)	$\mathrm{Fe}-\mathrm{C} 3$	1.9920 (1)
$\mathrm{Cs}-\mathrm{N} 3^{\text {iii }}$	3.274 (6)	$\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	1.9920 (1)
$\mathrm{Sr}-\mathrm{N} 1$	2.4767 (1)	C1-N1	1.1462 (1)
$\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	2.4767 (1)	C2-N2	1.1543 (1)
$\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	2.4857 (1)	C3-N3	1.1455 (1)
$\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	2.4857 (1)		
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {viii }}$	89.42 (6)	N1-Cs-N3 ${ }^{\text {iii }}$	111.23 (16)
$\mathrm{Cs}-\mathrm{Cs}-\mathrm{Cs}^{\mathrm{ix}}$	88.75 (4)	$\mathrm{N} 1{ }^{\text {i }}$-Cs-C2 $2^{\text {ii }}$	115.67 (16)
Csi $-\mathrm{Cs}-\mathrm{Cs}^{\mathrm{x}}$	178.16 (6)	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Cs}-\mathrm{N} 2^{\mathrm{ii}}$	127.6 (2)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\mathrm{xi}}$	94.04 (12)	$\mathrm{N} 1{ }^{\text {i }}$-Cs- $\mathrm{C}^{\text {iii }}$	142.4 (2)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {xii }}$	93.31 (12)	$\mathrm{N} 1{ }^{\mathrm{i}}$-Cs-N3 ${ }^{\text {iii }}$	130.34 (17)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Sr}$	57.71 (7)	$\mathrm{C} 2{ }^{\text {iii }}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$	18.74 (3)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {ii }}$	128.17 (12)	$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	91.10 (5)
Cs ${ }^{\mathbf{i}}-\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$	55.62 (7)	$\mathrm{C} 2{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	89.11 (6)

Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$	125.77 (11)
Csi-Cs-C1	52.06 (4)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{C} 1^{\text {i }}$	39.87 (4)
Csi-Cs-N1	52.61 (4)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	35.27 (4)
Cs ${ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{C} 2{ }^{\text {ii }}$	135.00 (18)
$\mathrm{Cs}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$	134.15 (18)
Csi- $\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	133.13 (17)
Csi- $\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	135.35 (19)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {ix }}$	178.16 (6)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {x }}$	88.75 (4)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {xi }}$	84.87 (11)
Cs ${ }^{\text {viii- }}$ Cs- $\mathrm{Cs}^{\text {xii }}$	84.16 (11)
Cs ${ }^{\text {viii }}$-Cs-Sr	51.21 (7)
$\mathrm{Cs}^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {rii }}$	121.54 (11)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$	123.59 (12)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$	53.50 (6)
Cs ${ }^{\text {viii }}-\mathrm{Cs}-\mathrm{C} 1$	40.22 (4)
Cs ${ }^{\text {viii- }}$ - $\mathrm{Cs}-\mathrm{Cl}^{1}{ }^{\text {i }}$	126.52 (9)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{N} 1$	37.42 (4)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	124.14 (8)
Cs ${ }^{\text {viii- }}$ Cs- $\mathrm{C}^{\text {ii }}$	98.28 (9)
Cs ${ }^{\text {viii-}} \mathrm{Cs}-\mathrm{N}^{2 i}$	79.54 (8)
Cs ${ }^{\text {viii }}$ - $\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	73.00 (7)
Cs ${ }^{\text {viii- }}$ Cs- $\mathrm{N}^{\text {iii }}$	90.47 (9)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Cs}^{\text {x }}$	93.09 (6)
Cs ${ }^{\text {ix }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\mathrm{xi}}$	95.39 (13)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Cs}^{\text {xii }}$	95.81 (13)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Sr}$	127.44 (12)
Cs ${ }^{\text {ix }}$ - $\mathrm{Cs}-\mathrm{Sr}^{\text {ii }}$	59.69 (7)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$	55.27 (7)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$	127.94 (12)
Cs ${ }^{\text {ix }}$ - $\mathrm{Cs}-\mathrm{C} 1$	138.10 (8)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	51.68 (4)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{N} 1$	140.75 (6)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	54.06 (4)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{C}^{\text {ii }}$	83.13 (9)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$	101.85 (11)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	108.22 (12)
Cs ${ }^{\text {ix }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	90.74 (10)
Cs ${ }^{\text {x }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\mathrm{xi}}$	85.93 (12)
Cs ${ }^{\text {x }}$ - $\mathrm{Cs}-\mathrm{Cs}^{\text {xii }}$	86.37 (12)
$\mathrm{Cs}^{\mathrm{x}}-\mathrm{Cs}-\mathrm{Sr}$	120.84 (11)
Cs ${ }^{\mathrm{x}}-\mathrm{Cs}-\mathrm{Sr}^{\text {ii }}$	52.95 (7)
Cs ${ }^{\mathrm{x}}-\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$	125.72 (13)
$\mathrm{Cs}^{\mathrm{x}}-\mathrm{Cs}-\mathrm{Sr}^{\text {riii }}$	52.97 (6)
Cs ${ }^{\mathrm{x}}-\mathrm{Cs}-\mathrm{C} 1$	126.21 (7)
Cs ${ }^{\mathrm{x}}-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	141.80 (10)

125.77 (11)
52.06 (4)
39.87 (4)
52.61 (4)
35.27 (4)
135.00 (18)
134.15 (18)
133.13 (17)
135.35 (19)
178.16 (6)
88.75 (4)
84.87 (11)
84.16 (11)
51.21 (7)
121.54 (11)
123.59 (12)
53.50 (6)
40.22 (4)
126.52 (9)
37.42 (4)
124.14 (8)
98.28 (9)
79.54 (8)
73.00 (7)
90.47 (9)
93.09 (6)
95.39 (13)
95.81 (13)
127.44 (12)
59.69 (7)
55.27 (7)
127.94 (12)
138.10 (8)
51.68 (4)
140.75 (6)
54.06 (4)
101.85 (11)
108.22 (12)
90.74 (10)
85.93 (12)
86.37 (12)
120.84 (11)
52.95 (7)
125.72 (13)
52.97 (6)
126.21 (7)
141.80 (10)

$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	85.88 (4)
$\mathrm{N} 2{ }^{\text {ii }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	89.50 (5)
C3 ${ }^{\text {iii }}$-Cs- $3^{\text {iii }}$	17.47 (3)
$\mathrm{Cs}^{\text {xiii }}$ - $\mathrm{Sr}-\mathrm{Cs}$	108.15 (11)
$\mathrm{Cs}^{\text {xiii }}$ - $\mathrm{Sr}-\mathrm{Cs}^{\text {i }}$	67.33 (6)
Cs ${ }^{\text {xiii }}$-Sr-Cs ${ }^{\text {viii }}$	71.79 (7)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {iv }}$	71.85 (11)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xii }}$	180
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xiv }}$	108.21 (7)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	112.67 (6)
$\mathrm{Cs}^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 1$	67.84 (8)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	112.16 (8)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	55.97 (3)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	124.03 (3)
$\mathrm{Cs}^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	137.39 (4)
Cs ${ }^{\text {xiii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	42.61 (4)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{Cs}^{\text {i }}$	68.79 (6)
Cs-Sr-Cs ${ }^{\text {viii }}$	73.18 (7)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{Cs}^{\text {iv }}$	180
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{Cs}^{\text {xii }}$	71.85 (11)
Cs-Sr-Cs ${ }^{\text {xiv }}$	106.82 (7)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	111.21 (6)
Cs-Sr-N1	41.51 (8)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	138.49 (8)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	105.29 (4)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{N} 2^{2 i i}$	74.71 (4)
Cs-Sr-N3 ${ }^{\text {i }}$	52.52 (6)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	127.48 (6)
$\mathrm{Cs}^{\mathbf{i}}-\mathrm{Sr}-\mathrm{Cs}^{\text {viii }}$	109.57 (11)
Cs ${ }^{\text {i }}$ - $\mathrm{Sr}-\mathrm{Cs}^{\text {iv }}$	111.21 (6)
Cs ${ }^{\text {i }}$ - $\mathrm{Sr}-\mathrm{Cs}^{\text {xii }}$	112.67 (6)
$\mathrm{Cs}^{\mathbf{i}}-\mathrm{Sr}-\mathrm{Cs}^{\text {xiv }}$	70.43 (11)
Cs ${ }^{\text {i }}$ - $\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	180
Cs ${ }^{\text {i }}$ - $\mathrm{Sr}-\mathrm{N} 1$	61.18 (7)
$\mathrm{Cs}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	118.82 (7)
$\mathrm{Cs}^{\mathbf{i}}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	36.60 (5)
$\mathrm{Cs}^{\mathbf{i}}-\mathrm{Sr}-\mathrm{N} 2{ }^{\text {iii }}$	143.40 (5)
Cs ${ }^{\text {i }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	70.10 (5)
Csi- $\mathrm{Sr}-\mathrm{N} 3^{\text {vi }}$	109.90 (5)
Cs ${ }^{\text {viii- }}$ - $\mathrm{Sr}-\mathrm{Cs}^{\text {iv }}$	106.82 (7)
Cs ${ }^{\text {viii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xii }}$	108.21 (7)
Cs ${ }^{\text {viii }}$-Sr-Cs ${ }^{\text {xiv }}$	180
Cs ${ }^{\text {viii- }} \mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	70.43 (11)
Cs ${ }^{\text {viii }}$-Sr- N 1	51.05 (8)
Cs ${ }^{\text {viii }}-\mathrm{Sr}-\mathrm{N} 1{ }^{\text {iv }}$	128.95 (8)
$\mathrm{Cs}^{\text {viii }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	124.75 (7)
Cs ${ }^{\text {viii- }} \mathrm{Sr}-\mathrm{N} 2{ }^{\text {iii }}$	55.25 (7)
$\mathrm{Cs}^{\text {viii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	122.47 (4)

Cs
Cs^{x} - Cs
$\mathrm{Cs}^{\mathrm{x}}-\mathrm{Cs}-\mathrm{C} 2{ }^{\text {ii }}$
$\mathrm{Cs}^{\mathrm{x}}-\mathrm{Cs}$
Cs^{x} - Cs -
Cs^{x} - C
Cs
$\mathrm{Cs}^{\text {xi }}-\mathrm{Cs}-\mathrm{Sr}$
$\mathrm{Cs}^{\mathrm{xi}}$ - Cs - $\mathrm{Sr}^{\mathrm{ri}}$
Cs
Cs ${ }^{\text {xi}}-\mathrm{C}$
Cs ${ }^{\text {xi }}$ - $\mathrm{Cs}-\mathrm{C} 1$
Cs ${ }^{\text {xi }}-\mathrm{Cs}-\mathrm{C} 1^{\text {i }}$
Cs ${ }^{\text {xi }}$ - $\mathrm{Cs}-\mathrm{N} 1$
Cs ${ }^{\text {xi }}-\mathrm{Cs}-\mathrm{N} 1{ }^{\text {i }}$
Cs ${ }^{\text {xi }}-\mathrm{Cs}-\mathrm{C}^{\text {ii }}$
Cs ${ }^{\text {xi }}$ - $\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$
$\mathrm{Cs}^{\mathrm{xi}}$ - C
Cs ${ }^{\text {xi }}$ - Cs
$\mathrm{Cs}^{\text {xii }}$ - $\mathrm{Cs}-\mathrm{Sr}$
Cs ${ }^{\text {xii }}-\mathrm{Cs}-\mathrm{Sr}^{\text {ii }}$
Cs ${ }^{\text {xii }}$-C
Cs ${ }^{\text {xii }}$-C
Cs ${ }^{\text {x }}$
Cs ${ }^{\text {xii }}-\mathrm{Cs}-\mathrm{C}$
Cs ${ }^{\text {xii }}-\mathrm{Cs}-\mathrm{N} 1$
Cs ${ }^{\text {xii }}-\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$
$\mathrm{Cs}^{\text {xii }}-\mathrm{Cs}-\mathrm{C}^{\text {ii }}$
$\mathrm{Cs}^{\text {xii }}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$
Cs ${ }^{\text {xii }}$ - Cs -
$\mathrm{Cs}^{\text {xii }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{Sr}^{\text {ii }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{C} 1$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{C} 1^{\text {i }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{N} 1$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{C}^{\text {ii }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{N} 2^{2 i}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$
$\mathrm{Sr}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$
$\mathrm{Sr}^{\text {ii }}-\mathrm{Cs}-\mathrm{Sr}^{\text {i }}$
$\mathrm{Sr}^{\text {ii }}-\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$
Srii-Cs-C1
$\mathrm{Sr}^{\text {ii }}-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$
Srii-Cs-N1
$\mathrm{Sr}^{\text {iii }}$ - $\mathrm{Cs}-\mathrm{N} 1{ }^{\text {i }}$

$\mathrm{Cs}^{\text {viii }} \mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	57.53 (4)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xii }}$	108.15 (11)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xiv }}$	73.18 (7)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	68.79 (6)
$\mathrm{Cs}^{\text {iv}}-\mathrm{Sr}-\mathrm{N} 1$	138.49 (8)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	41.51 (8)
$\mathrm{Cs}^{\mathrm{iv}}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	74.71 (4)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	105.29 (4)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 3^{\text {i }}$	127.48 (6)
$\mathrm{Cs}^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	52.52 (6)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {xiv }}$	71.79 (7)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	67.33 (6)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 1$	112.16 (8)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	67.84 (8)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	124.03 (3)
$\mathrm{Cs}^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 2{ }^{\text {iii }}$	55.97 (3)
Cs ${ }^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 3^{\text {i }}$	42.61 (4)
Cs ${ }^{\text {xii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	137.39 (4)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{Cs}^{\text {vi }}$	109.57 (11)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 1$	128.95 (8)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	51.05 (8)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	55.25 (7)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	124.75 (7)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	57.53 (4)
$\mathrm{Cs}^{\text {xiv }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	122.47 (4)
$\mathrm{Cs}^{\text {vi }}-\mathrm{Sr}-\mathrm{N} 1$	118.82 (7)
$\mathrm{Cs}^{\text {vi}}-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	61.18 (7)
$\mathrm{Cs}^{\text {vi }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	143.40 (5)
$\mathrm{Cs}^{\text {vi}}-\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	36.60 (5)
$\mathrm{Cs}^{\text {vi }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	109.90 (5)
$\mathrm{Cs}^{\text {vi}}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	70.10 (5)
$\mathrm{N} 1-\mathrm{Sr}-\mathrm{N} 1^{\text {iv }}$	180
$\mathrm{N} 1-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	90.4970 (12)
$\mathrm{N} 1-\mathrm{Sr}-\mathrm{N} 2{ }^{\text {iii }}$	89.5030 (12)
$\mathrm{N} 1-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	90.1559 (18)
$\mathrm{N} 1-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	89.8441 (18)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 2^{\text {v }}$	89.5030 (12)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 2{ }^{\text {iii }}$	90.4970 (12)
$\mathrm{N} 1^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	89.8441 (18)
$\mathrm{N} 1{ }^{\text {iv }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	90.1559 (18)
$\mathrm{N} 2^{\mathrm{v}}-\mathrm{Sr}-\mathrm{N} 2^{\text {iii }}$	180
$\mathrm{N} 2^{\mathrm{v}}-\mathrm{Sr}-\mathrm{N} 3^{\text {i }}$	89.952 (2)
$\mathrm{N} 2^{\mathrm{v}}$ - $\mathrm{Sr}-\mathrm{N} 3^{\text {vi }}$	90.048 (2)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {i }}$	90.048 (2)
$\mathrm{N} 2{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{N} 3{ }^{\text {vi }}$	89.952 (2)
N3i-Sr-N3 ${ }^{\text {vi }}$	180
$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 1^{\text {vii }}$	180
$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 2$	90.5021 (17)

$\mathrm{Sr}^{\text {ii }}-\mathrm{Cs}-\mathrm{C}^{\text {ii }}$	84.45 (6)
$\mathrm{Sr}^{\text {ii }}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$	94.42 (6)
Srii-Cs-C3 ${ }^{\text {iii }}$	48.54 (6)
Srii- Cs-N3 ${ }^{\text {iii }}$	31.08 (4)
$\mathrm{Sr}^{\text {i }}-\mathrm{Cs}-\mathrm{Sr}^{\text {viii }}$	109.57 (15)
$\mathrm{Sr}^{\mathbf{i}}-\mathrm{Cs}-\mathrm{C} 1$	86.72 (10)
$\mathrm{Sr}^{\text {i}}-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	50.37 (4)
Sri - $\mathrm{Cs}-\mathrm{N} 1$	99.12 (9)
Sri $-\mathrm{Cs}-\mathrm{N} 1^{\mathrm{i}}$	33.14 (5)
$\mathrm{Sr}^{\text {i }}-\mathrm{Cs}-\mathrm{C}^{2 i}$	84.36 (13)
$\mathrm{Sr}^{\text {i }}-\mathrm{Cs}-\mathrm{N} 22^{\text {ii }}$	94.50 (16)
$\mathrm{Sr}^{\text {i }}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	163.24 (9)
$\mathrm{Sr}^{\text {i }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	145.89 (8)
Srriii-Cs-C1	77.56 (8)
Srviii-Cs-C1 ${ }^{\text {i }}$	158.40 (18)
Srriii-Cs-N1	86.35 (7)
Sriii- ${ }^{\text {viii }}$ - $\mathrm{N} 1^{\text {i }}$	140.12 (19)
$\mathrm{Sr}^{\text {viiii }}$ - $\mathrm{Cs}-\mathrm{C} 2{ }^{\text {ii }}$	44.81 (5)
$\mathrm{Sr}^{\text {viii }}-\mathrm{Cs}-\mathrm{N} 2{ }^{\text {ii }}$	26.11 (2)
$\mathrm{Sr}^{\text {viii }}-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	77.49 (3)
$\mathrm{Sr}^{\text {viii] }} \mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	88.16 (4)
$\mathrm{C} 1-\mathrm{Cs}-\mathrm{Cl}^{\text {i }}$	91.87 (6)
C1-Cs-N1	18.52 (2)
$\mathrm{C} 1-\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	84.74 (7)
C1-Cs-C2 ${ }^{\text {ii }}$	112.70 (17)
$\mathrm{C} 1-\mathrm{Cs}-\mathrm{N} 2^{\text {ii }}$	97.66 (14)
$\mathrm{C} 1-\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	109.87 (10)
$\mathrm{C} 1-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	126.34 (13)
C1--Cs-N1	89.26 (7)
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{Cs}-\mathrm{N} 1^{\mathrm{i}}$	18.369 (10)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Cs}-\mathrm{C} 2{ }^{\text {ii }}$	127.70 (13)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Cs}-\mathrm{N} 2^{\text {ii }}$	143.06 (18)
$\mathrm{C} 1{ }^{\text {i }}$ - $\mathrm{Cs}-\mathrm{C} 3{ }^{\text {iii }}$	124.0 (2)
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{Cs}-\mathrm{N} 3{ }^{\text {iii }}$	113.08 (18)
$\mathrm{N} 1-\mathrm{Cs}-\mathrm{N} 1^{\text {i }}$	87.85 (6)
$\mathrm{N} 1-\mathrm{Cs}-\mathrm{C} 2{ }^{\text {ii }}$	127.37 (16)
N1-Cs-N2 ${ }^{\text {ii }}$	110.12 (12)
N1-Cs-C3 ${ }^{\text {iii }}$	96.46 (12)

$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 2{ }^{\text {vii }}$	89.4979 (17)
$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 3$	90.4341 (12)
$\mathrm{C} 1-\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	89.5659 (12)
$\mathrm{C} 1{ }^{\text {vii}}-\mathrm{Fe}-\mathrm{C} 2$	89.4979 (17)
$\mathrm{C} 1^{\text {vii }}-\mathrm{Fe}-\mathrm{C} 2{ }^{\text {vii }}$	90.5021 (17)
$\mathrm{C} 1{ }^{\text {vii }}-\mathrm{Fe}-\mathrm{C} 3$	89.5660 (12)
$\mathrm{C} 1^{\text {vii }}-\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	90.4341 (12)
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 2{ }^{\text {vii }}$	180
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 3$	90.387 (2)
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	89.613 (2)
$\mathrm{C} 2{ }^{\text {vii }}-\mathrm{Fe}-\mathrm{C} 3$	89.613 (2)
$\mathrm{C} 2{ }^{\text {vii }}-\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	90.387 (2)
$\mathrm{C} 3-\mathrm{Fe}-\mathrm{C} 3{ }^{\text {vii }}$	180
$\mathrm{Cs}-\mathrm{C} 1-\mathrm{Cs}^{\text {viii }}$	99.91 (7)
$\mathrm{Cs}-\mathrm{C} 1-\mathrm{Fe}$	112.69 (12)
Cs- $\mathrm{C} 1-\mathrm{N} 1$	68.07 (12)
$\mathrm{Cs}^{\text {viii }}-\mathrm{C} 1-\mathrm{Fe}$	103.06 (12)
Cs ${ }^{\text {viii }}-\mathrm{C} 1-\mathrm{N} 1$	75.62 (12)
$\mathrm{Fe}-\mathrm{C} 1-\mathrm{N} 1$	178.6228 (6)
Cs-N1-Cs ${ }^{\text {viii }}$	107.31 (6)
Cs-N1-Sr	109.13 (13)
Cs-N1-C1	93.41 (13)
Cs ${ }^{\text {viii }}$ - $\mathrm{N} 1-\mathrm{Sr}$	95.82 (12)
Cs ${ }^{\text {viii }}-\mathrm{N} 1-\mathrm{C} 1$	86.01 (12)
$\mathrm{Sr}-\mathrm{N} 1-\mathrm{C} 1$	155.5560 (16)
$\mathrm{Cs}^{\text {xiii }}-\mathrm{C} 2-\mathrm{Fe}$	110.22 (4)
Cs ${ }^{\text {xiii }}$ - $\mathrm{C} 2-\mathrm{N} 2$	69.56 (4)
$\mathrm{Fe}-\mathrm{C} 2-\mathrm{N} 2$	178.6331 (10)
$\mathrm{Cs}^{\text {xiii }}$ - $\mathrm{N} 2-\mathrm{Sr}^{\mathrm{xv}}$	117.29 (5)
Cs ${ }^{\text {xiii }}$ - $\mathrm{N} 2-\mathrm{C} 2$	91.71 (5)
$\mathrm{Sr}^{\mathrm{xv}}-\mathrm{N} 2-\mathrm{C} 2$	150.6891 (7)
Cs ${ }^{\text {xvi }}-\mathrm{C} 3-\mathrm{Fe}$	120.47 (5)
Cs ${ }^{\text {xvi }}-\mathrm{C} 3-\mathrm{N} 3$	59.13 (5)
$\mathrm{Fe}-\mathrm{C} 3-\mathrm{N} 3$	179.4092 (8)
$\mathrm{Cs}^{\text {xvi }}$-N3- $\mathrm{Sr}^{\text {viii }}$	106.31 (4)
Cs ${ }^{\text {xvi }}-\mathrm{N} 3-\mathrm{C} 3$	103.40 (4)
Sr ${ }^{\text {viii- }}$ - $3-\mathrm{C} 3$	150.1635 (8)

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (ii) $x+1, y, z$; (iii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iv) $-x,-y,-z+1$; (v) $-x-1 / 2, y-1 / 2,-z+1 / 2$; (vi) $x-1 / 2,-y+1 / 2$, $z+1 / 2$; (vii) $-x,-y,-z$; (viii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ix) $-x+3 / 2, y-1 / 2,-z+1 / 2$; (x) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (xi) $-x+1,-y,-z$; (xii) $-x+1,-y,-z+1$; (xiii) $x-1, y, z$; (xiv) $x-1 / 2,-y-1 / 2, z+1 / 2$; (xv) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (xvi) $x-1 / 2,-y+1 / 2, z-1 / 2$.

