CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 7 February 2020
Accepted 20 May 2020

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; coordination polymers; cadmium(II); bis-bidentate coordination mode; tetrazine.

CCDC reference: 2004950

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of a cadmium sulfate coordination polymer based on the 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine ligand

Suwadee Jiajaroen and Kittipong Chainok*

Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology,, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand. *Correspondence e-mail: kc@tu.ac.th

The polymeric title compound, poly[aquahemi $\left[\mu_{2}-3,6\right.$-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine $]\left(\mu_{3}\right.$-sulfato $)$ cadmium(II) $], \quad\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8}\right)_{0.5}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, (I), represents an example of a three-dimensional coordination polymer resulting from the reaction of $\mathrm{CdSO}_{4} \cdot 8 / 3 \mathrm{H}_{2} \mathrm{O}$ with 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine ($\mathrm{H}_{2} \mathrm{bmtz}, \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8}$) under hydrothermal conditions. The $\mathrm{Cd}^{\mathrm{II}}$ atom has a distorted octahedral coordination environment defined by two nitrogen atoms from one $\mathrm{H}_{2} \mathrm{bmtz}$ ligand, three oxygen atoms from three different sulfate anions, and one oxygen atom from a coordinating water molecule. The 1,4-dihydro-1,2,4,5-tetrazine ring of the H_{2} bmtz ligand is located about an inversion center, with the NH group being equally disordered over two sites. The sulfate anion acts as a μ_{3}-bridging ligand to connect three $\mathrm{Cd}^{\text {II }}$ atoms, resulting in the formation of $\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ sheets propagating parallel to the $b c$ plane. Adjacent sheets are interconnected across the $\mathrm{H}_{2} \mathrm{bmtz}$ ligands, which coordinate the $\mathrm{Cd}^{\mathrm{II}}$ atoms in a bis-bidentate coordination mode, to form a three-dimensional framework structure. The framework is further stabilized by classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the coordinating water molecules and the sulfate groups, and by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the disordered tetrazine NH groups and sulfate oxygen atom, along with $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ stacking [centroid-to-centroid separation $=$ 3.5954 (15) \AA] interactions between parallel pyrimidine rings of the $\mathrm{H}_{2} \mathrm{bmtz}$ ligand.

1. Chemical context

Coordination polymers (CPs) are a class of organic-inorganic hybrid materials formed from metal ions or metal clusters and organic linkers through covalent bonds. The structural organization of CPs can result in chains, sheets or three-dimensional frameworks (Batten et al., 2009). These hybrid materials have received extensive attention over the past three decades owing to their structural features and useful applications in the fields of gas storage and separation, catalysis, chemical sensing, magnetism or proton conduction (Furukawa et al., 2010; Ye \& Johnson, 2016; Espallargas \& Coronado, 2018; Xu et al., 2016; Zhang et al., 2017). Nowadays, many multidimensional CPs with structural and topological diversity have been synthesized through the tremendous possibilities of choices for building blocks, and some of them seem promising as candidate materials, for instance, in gas purification (Duan et al., 2015). In the context of the crystal engineering of CPs, the most feasible strategy for the construction of such infinite hybrid networks is by the careful selection of metal coordination arrangements and suitable organic linkers. Among the
most common ligands, the rigid organic carboxylate- and pyridyl-based ligands have by far been the most widely used to control the structural motifs of these solids (Glöckle et al., 2001).

In this work, to explore the synthesis of novel CPs using 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8}$ or H_{2} bmtz (Kaim \& Fees, 1995; Chainok et al., 2012) as a polydentate nitrogen-donor ligand with cadmium(II) sulfate, a new CP $\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{bmtz}\right)_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (I) was isolated under hydrothermal conditions. The crystal structure and supramolecular interactions of (I) are reported herein.

2. Structural commentary

The asymmetric unit of the title compound consists of one $\mathrm{Cd}^{\mathrm{II}}$ cation, one-half of the $\mathrm{H}_{2} \mathrm{bmtz}$ ligand, one sulfate anion and one coordinating water molecule. The 1,4-dihydro-1,2,4,5tetrazine ring of the $\mathrm{H}_{2} \mathrm{bmtz}$ ligand is located about an inversion centre, with the NH group (N4) being equally disordered over two sites. As shown in Fig. 1, the $\mathrm{Cd}^{\mathrm{II}}$ atom exhibits a distorted octahedral $\left[\mathrm{CdN}_{2} \mathrm{O}_{4}\right]$ coordination environment with two nitrogen atoms from the $\mathrm{H}_{2} \mathrm{bmtz}$ ligand, three oxygen atoms from three different sulfate anions and one oxygen atom from the coordinating water molecule. The bond angles around the central $\mathrm{Cd}^{\mathrm{II}}$ atom range from 69.69 (5) to $168.46(5)^{\circ}$. The $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ bond lengths fall in the range of $2.2321(12)-2.3790$ (13) \AA, which is comparable with those of reported cadmium(II) sulfate compounds containing additional nitrogen donor ligands such as $\left[\mathrm{Cd}_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (GADLON; Harvey et al., 2003), $\quad\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{8}\right)\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (FOMBUF; Díaz de Vivar et al., 2005) and $\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{9}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{SO}_{4}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (DIQCOX; Safin et al., 2013). The complete $\mathrm{H}_{2} \mathrm{bmtz}$ molecule is not planar (r.m.s. deviation $=0.111 \AA$) with the central six-membered ring of the 1,4-dihydro-1,2,4,5-tetrazine moiety in a twist-boat conformation; the $\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 4 A^{\mathrm{i}}-\mathrm{C} 5^{\mathrm{i}}$ torsion angle is $36.4(4)^{\circ}$ [symmetry code: (i) $2-x, 1-y, 1-z$]. The sulfate anion acts

Figure 1
Molecular structure of (\mathbf{I}), showing the atom-labelling scheme. Only one orientation of the disordered $\mathrm{N} 4-\mathrm{H}$ group is shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\left.1-x, 1-y, 1-z\right]$.
as a μ_{3}-bridging ligand to connect three $\mathrm{Cd}^{\mathrm{II}}$ atoms to form a sheet-like structure of $\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ units, propagating parallel to the $b c$ plane, Fig. 2. Adjacent sheets are interconnected across the $\mathrm{H}_{2} \mathrm{bmtz}$ ligands, which exhibit a bisbidentate coordination mode, giving rise to a three-dimensional framework structure, Fig. 3.

3. Supramolecular features

In the crystal, classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exist between the coordinating water molecules and the sulfate groups, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the disordered tetrazine NH group and sulfate oxygen atoms. In this

Figure 2
View of the $\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ sheet in (\mathbf{I}) propagating parallel to the $b c$ plane. Classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions are shown as dashed lines.

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 4$ ring.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.84 (2)	1.92 (2)	2.710 (2)	159 (2)
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {ii }}$	0.84 (2)	1.91 (2)	2.743 (2)	174 (3)
$\mathrm{N} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 3^{\text {iii }}$	0.87 (2)	2.09 (2)	2.889 (3)	153 (2)
$\mathrm{N} 4 B-\mathrm{H} 4 A \cdots \mathrm{O} 3^{\text {iii }}$	0.87 (2)	2.09 (2)	2.828 (3)	143 (2)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	3.34 (2)	4.091 (3)	140 (2)

$$
\begin{aligned}
& \text { Symmetry codes: (i) } \quad-x+1,-y+1,-z+1 \text {; } \quad \text { (ii) } \quad x, y-1, z \text {; } \\
& -x+2,-y+1,-z+1 \text {; (iv) }-x+2, y-\frac{1}{2},-z+\frac{1}{2} \text {. }
\end{aligned}
$$

way, rings with $R_{1}^{1}(8)$ and $R_{4}^{4}(16)$ graph-set motifs are formed, Table 1. Additionally, $\mathrm{C}-\mathrm{H} \cdots \pi[\mathrm{H} \cdots C g=3.34$ (2) \AA; $C g$ is the centroid of the pyrimidine ring] and $\pi-\pi$ stacking [centroid-to-centroid separation $=3.5954(15) \AA$, slippage between parallel pyrimidine rings $=1.131 \AA$] interactions between the pyrimidine rings of the $\mathrm{H}_{2} \mathrm{bmtz}$ ligand are also observed, Fig. 4.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, November 2019 update; Groom et al., 2016) gave only two hits for $\mathrm{H}_{2} \mathrm{bmtz}$ complexes with transition metals ions, viz. with Cu^{I} (QORNAM; Glöckle et al., 2001) and Ag^{I} (ZASTAQ; Chainok et al., 2012). In these structures, the coordination mode of the $\mathrm{H}_{2} \mathrm{bmtz}$ ligands is bis-bidentate through nitrogen atoms.

5. Synthesis and crystallization

All reagents were of analytical grade and were used as received without further purification. The ligand 3,6-bis(-pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine was synthesized according to a literature method (Kaim \& Fees, 1995). A mixture solution of $\mathrm{CdSO}_{4} \cdot 8 / 3 \mathrm{H}_{2} \mathrm{O}(41.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ and the H_{2} bmtz ligand ($36.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in water (5 ml) was added into a 15 ml Teflon-lined reactor, stirred at room

Figure 3
Packing diagram of (\mathbf{I}), showing $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding as dashed lines.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\mathrm{~A}^{3}\right)$
$V\left(\mathrm{~A}^{3}\right)$
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8}\right)_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
346.60

Monoclinic, $P 2_{1} / c$
296
9.3000 (3), 7.9798 (2), 13.2586 (4)
106.872 (1)
941.60 (5)

4
Mo $K \alpha$
2.56
$0.28 \times 0.24 \times 0.18$

Bruker D8 QUEST CMOS
Multi-scan (SADABS; Bruker, 2016)
0.660, 0.746

24280, 2357, 2338
0.020
0.668
$0.014,0.037,1.12$
2357
167
11
H atoms treated by a mixture of independent and constrained refinement
$0.41,-0.37$

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
temperature for 10 min , sealed in a stainless steel autoclave and placed in an oven. The mixture was heated to 383 K under autogenous pressure for 48 h , and then cooled down to room temperature. After filtration, brown block-shaped crystals were obtained in 80% yield $(33.4 \mathrm{mg})$ based on the cadmium(II) source.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Nitrogen atom N4 of the 1,4-di-

Figure 4
Partial packing diagram of (I), showing $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ stacking interactions (dashed lines) between the $\mathrm{H}_{2} \mathrm{bmtz}$ ligands.
hydro-1,2,4,5-tetrazine ring was found to be disordered about an inversion centre; restraints (SADI and RIGU with esd $0.001 \AA^{2}$) were used for its refinement. All hydrogen atoms were found in difference-Fourier maps. H atoms attached to C atoms were refined in the riding-model approximation with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms bound to O or N atoms were refined with distance restraints of $\mathrm{O}-\mathrm{H}$ $=0.84 \pm 0.01 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \pm 0.01 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$ and $1.2 U_{\text {eq }}(\mathrm{N})$, respectively.

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: Thailand Research Fund (contract No. RSA5780056 to KC); The Research Professional Development Project Under the Science Achievement Scholarship of Thailand (SAST) (award to SJ).

References

Batten, S. R., Neville, S. M. \& Turner, D. R. (2009). Coordination polymers: Design, analysis and application. UK: The Royal Society of Chemistry.

Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chainok, K., Neville, S. M., Forsyth, C. M., Gee, W. J., Murray, K. S. \& Batten, S. R. (2012). CrystEngComm, 14, 3717-3726.
Díaz de Vivar, M. E., Harvey, M. A., Garland, M. T., Baggio, S. \& Baggio, R. (2005). Acta Cryst. C61, m240-m244.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Duan, J., Jin, W. \& Krishna, R. (2015). Inorg. Chem. 54, 4279-4284.
Espallargas, G. M. \& Coronado, E. (2018). Chem. Soc. Rev. 47, 533557.

Furukawa, H., Koo, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O'Keeffe, M., Kim, J. \& Yaghi, O. M. (2010). Science, 329, 424-428.

Glöckle, M., Hübler, K., Kümmerer, H.-J., Denninger, G. \& Kaim, W. (2001). Inorg. Chem. 40, 2263-2269.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Harvey, M., Baggio, S., Russi, S. \& Baggio, R. (2003). Acta Cryst. C59, m171-m174.
Kaim, W. \& Fees, J. (1995). Z. Naturforsch. B: Chem. Sci. 50, 123127.

Safin, D. A., Xu, Y., Korobkov, I., Bryce, D. L. \& Murugesu, M. (2013). CrystEngComm, 15, 10419-10422.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Xu, H., Gao, J., Qian, X., Wang, J., He, H., Cui, Y., Yang, Y., Wang, Z. \& Qian, G. (2016). J. Mater. Chem. A, 4, 10900-10905.
Ye, J. \& Johnson, J. K. (2016). Catal. Sci. Technol. 6, 8392-8405.
Zhang, F.-M., Dong, L.-Z., Qin, J.-S., Guan, W., Liu, J., Li, S.-L., Lu, M., Lan, Y.-Q., Su, Z.-M. \& Zhou, H.-C. (2017). J. Am. Chem. Soc. 139, 6183-6189.

supporting information

Acta Cryst. (2020). E76, 958-961 [https://doi.org/10.1107/S2056989020006830]

Crystal structure of a cadmium sulfate coordination polymer based on the 3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine ligand

Suwadee Jiajaroen and Kittipong Chainok

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[aquahemi[μ_{2}-3,6-bis(pyrimidin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine]((%5Cmu_%7B3%7D)-sulfato)cadmium(II)]

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{SO}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8}\right)_{0.5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=346.60$
Monoclinic, $P 2_{1} / c$
$a=9.3000$ (3) A
$b=7.9798(2) \AA$
$c=13.2586(4) \AA$
$\beta=106.872(1)^{\circ}$
$V=941.60(5) \AA^{3}$
$Z=4$

Data collection

Bruker D8 QUEST CMOS
diffractometer
Radiation source: sealed x-ray tube
Graphite monochromator
Detector resolution: 7.39 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
$T_{\min }=0.660, T_{\max }=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.014$
$w R\left(F^{2}\right)=0.037$
$S=1.12$
2357 reflections
167 parameters
11 restraints
Primary atom site location: dual

$$
F(000)=672
$$

$D_{\mathrm{x}}=2.445 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9940 reflections
$\theta=3.4-28.4^{\circ}$
$\mu=2.56 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, brown
$0.28 \times 0.24 \times 0.18 \mathrm{~mm}$

24280 measured reflections
2357 independent reflections
2338 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-17 \rightarrow 17$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0176 P)^{2}+0.6173 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$

supporting information

Extinction correction: SHELXL-2018/3
(Sheldrick 2015b),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0013 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Cd1	$0.61850(2)$	$0.31497(2)$	$0.37692(2)$	$0.01977(5)$	
S1	$0.46994(4)$	$0.71617(4)$	$0.38900(3)$	$0.01921(8)$	
O1	$0.40176(15)$	$0.17176(15)$	$0.34420(10)$	$0.0290(2)$	
H1A	$0.378(3)$	$0.170(3)$	$0.4004(13)$	$0.046(7)^{*}$	
H1B	$0.408(3)$	$0.0706(15)$	$0.329(2)$	$0.049(7)^{*}$	
O2	$0.49134(16)$	$0.55557(15)$	$0.34172(10)$	$0.0389(3)$	
O3	$0.61350(13)$	$0.77844(18)$	$0.45697(10)$	$0.0327(3)$	
O4	$0.40858(15)$	$0.83595(14)$	$0.30158(9)$	$0.0276(2)$	
O5	$0.35993(14)$	$0.70011(18)$	$0.44827(9)$	$0.0338(3)$	
N1	$0.81264(15)$	$0.12667(17)$	$0.37110(10)$	$0.0254(3)$	0.5
N2	$1.07599(16)$	$0.1093(2)$	$0.39678(13)$	$0.0342(3)$	0.5
N3	$0.85731(15)$	$0.44436(17)$	$0.44639(13)$	$0.0321(3)$	$0.0326(6)$
N4A	$1.1157(3)$	$0.4194(4)$	$0.4718(3)$	$0.070(9)^{*}$	$0.0320(6)$
H4A	$1.180(2)$	$0.345(3)$	$0.5064(15)$	$0.0337(4)$	
N4B	$1.1132(3)$	$0.3849(4)$	$0.5340(3)$	0.040^{*}	
C1	$0.7954(2)$	$-0.0244(2)$	$0.32666(14)$	$0.0427(4)$	
H1	0.699820	-0.071019	0.303463	0.051^{*}	
C2	$0.9168(2)$	$-0.1135(3)$	$0.31425(17)$	$0.0410(4)$	0.049^{*}
H2	0.904140	-0.217907	0.281657	$0.0243(3)$	$0.0354(4)$
C3	$1.0573(2)$	$-0.0420(3)$	$0.35194(17)$		
H3	1.140880	-0.100588	0.345972		
C4	$0.95337(18)$	$0.18608(18)$	$0.40350(13)$	$0.45278(17)$	
C5	$0.97378(19)$	$0.3543(2)$			

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.01945(7)$	$0.02157(7)$	$0.01864(7)$	$0.00090(3)$	$0.00607(4)$	$0.00089(3)$
S1	$0.02314(16)$	$0.01938(15)$	$0.01601(15)$	$0.00267(12)$	$0.00708(12)$	$0.00085(12)$
O1	$0.0335(6)$	$0.0267(6)$	$0.0300(6)$	$-0.0058(4)$	$0.0145(5)$	$-0.0068(4)$
O2	$0.0544(8)$	$0.0226(6)$	$0.0341(6)$	$0.0142(5)$	$0.0042(6)$	$-0.0037(5)$
O3	$0.0235(5)$	$0.0464(7)$	$0.0285(6)$	$-0.0025(5)$	$0.0081(5)$	$-0.0066(5)$
O4	$0.0458(7)$	$0.0195(5)$	$0.0182(5)$	$0.0052(5)$	$0.0102(5)$	$0.0032(4)$
O5	$0.0249(6)$	$0.0580(8)$	$0.0200(5)$	$-0.0031(5)$	$0.0090(4)$	$0.0059(5)$
N1	$0.0235(6)$	$0.0253(6)$	$0.0262(6)$	$0.0015(5)$	$0.0053(5)$	$-0.0010(5)$

N 2	$0.0250(6)$	$0.0319(7)$	$0.0456(8)$	$0.0029(6)$	$0.0101(6)$	$-0.0042(6)$
N3	$0.0208(6)$	$0.0213(6)$	$0.0537(9)$	$-0.0026(5)$	$0.0101(6)$	$-0.0076(6)$
N4A	$0.0192(11)$	$0.0255(14)$	$0.0529(19)$	$-0.0017(10)$	$0.0102(12)$	$-0.0135(14)$
N4B	$0.0227(12)$	$0.0210(13)$	$0.0506(18)$	$-0.0004(10)$	$0.0079(11)$	$-0.0084(13)$
C1	$0.0292(8)$	$0.0321(8)$	$0.0356(9)$	$-0.0019(7)$	$0.0025(7)$	$-0.0077(7)$
C2	$0.0421(10)$	$0.0341(9)$	$0.0480(11)$	$0.0047(8)$	$0.0067(8)$	$-0.0178(8)$
C3	$0.0331(9)$	$0.0400(10)$	$0.0498(11)$	$0.0091(8)$	$0.0119(8)$	$-0.0117(8)$
C4	$0.0235(7)$	$0.0233(7)$	$0.0262(7)$	$0.0011(5)$	$0.0072(6)$	$0.0009(5)$
C5	$0.0203(7)$	$0.0228(7)$	$0.0613(11)$	$-0.0022(6)$	$0.0087(7)$	$-0.0069(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

Cd1-O1	2.2472 (12)	N2-C4	1.320 (2)
$\mathrm{Cd} 1-\mathrm{O} 2$	2.2321 (12)	N3-N4A ${ }^{\text {iii }}$	1.505 (3)
$\mathrm{Cd} 1-\mathrm{O} 4^{\text {i }}$	2.3122 (11)	N3-N4B ${ }^{\text {iii }}$	1.399 (3)
Cd1-O5 ${ }^{\text {ii }}$	2.2708 (12)	N3-C5	1.282 (2)
$\mathrm{Cd} 1-\mathrm{N} 1$	2.3674 (13)	N4A - H4A	0.871 (10)
Cd1-N3	2.3790 (13)	N4A-C5	1.372 (3)
S1-O2	1.4653 (12)	N4B-H4A	0.866 (10)
S1-O3	1.4640 (12)	N4B-C5	1.445 (3)
S1-04	1.4828 (11)	C1-H1	0.9300
S1-O5	1.4654 (12)	C1-C2	1.384 (3)
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.835 (10)	C2-H2	0.9300
O1-H1B	0.839 (10)	C2-C3	1.379 (3)
N1-C1	1.331 (2)	C3-H3	0.9300
N1-C4	1.340 (2)	C4-C5	1.481 (2)
N2-C3	1.335 (2)		
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\text {i }}$	90.81 (5)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3$	116.51 (15)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	88.77 (5)	N4A ${ }^{\text {iiii- }}$ - $3-\mathrm{Cd} 1$	122.32 (13)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	108.71 (5)	N4B ${ }^{\text {iii] }}$-N3-Cd1	127.25 (15)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 3$	168.46 (5)	C5-N3-Cd1	117.26 (11)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1$	90.34 (5)	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 4 \mathrm{~A}^{\text {iii }}$	113.35 (17)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4{ }^{\text {i }}$	80.21 (5)	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{N} 4 \mathrm{~B}^{\text {iii }}$	114.67 (17)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	98.25 (5)	N3 ${ }^{\text {iii }}-\mathrm{N} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	99.5 (18)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 1$	154.41 (5)	$\mathrm{C} 5-\mathrm{N} 4 \mathrm{~A}-\mathrm{N} 3{ }^{\text {iii }}$	110.9 (2)
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{N} 3$	94.94 (5)	C5-N4A-H4A	108.3 (19)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{N} 1$	82.54 (5)	N3 ${ }^{\text {iii }}-\mathrm{N} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{~A}$	108.1 (19)
$\mathrm{O} 4-\mathrm{Cd} 1-\mathrm{N} 3$	100.19 (5)	N3 ${ }^{\text {iii }}$-N4B-C5	112.9 (2)
$\mathrm{O} 5^{\text {ii- }}-\mathrm{Cd} 1-\mathrm{O} 4{ }^{\text {i }}$	178.41 (4)	C5-N4B-H4A	102.7 (18)
$\mathrm{O} 5{ }^{\text {ii- }} \mathrm{Cd} 1-\mathrm{N} 1$	99.05 (5)	N1-C1-H1	119.3
$\mathrm{O} 5{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 3$	80.32 (5)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	121.38 (16)
N1-Cd1-N3	69.69 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.3
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	107.38 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.2
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 5$	110.83 (9)	C3-C2-C1	117.63 (17)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	110.33 (8)	C3-C2-H2	121.2
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$	109.74 (8)	N2-C3-C2	121.52 (17)
O3-S1-O5	110.69 (7)	N2-C3-H3	119.2

O5-S1-O4	107.78 (7)
$\mathrm{Cd} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	106.8 (18)
Cd1-O1-H1B	114.6 (17)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B}$	105 (2)
$\mathrm{S} 1-\mathrm{O} 2-\mathrm{Cd} 1$	142.41 (8)
S1-O4-Cd1 ${ }^{\text {iv }}$	131.02 (7)
$\mathrm{S} 1-\mathrm{O} 5-\mathrm{Cd} 1{ }^{\text {ii }}$	133.11 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	126.47 (11)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	116.31 (14)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Cd} 1$	116.63 (10)
Cd1-N1-C1-C2	170.31 (15)
$\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	-172.52 (14)
Cd1-N1-C4-C5	8.10 (19)
$\mathrm{Cd} 1-\mathrm{N} 3-\mathrm{C} 5-\mathrm{N} 4 \mathrm{~A}$	167.1 (2)
$\mathrm{Cd} 1-\mathrm{N} 3-\mathrm{C} 5-\mathrm{N} 4 \mathrm{~B}$	-150.1 (2)
$\mathrm{Cd} 1-\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$	8.5 (2)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4-\mathrm{Cd1}{ }^{\text {iv }}$	-10.01 (13)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 5-\mathrm{Cd} 1^{\text {ii }}$	103.95 (11)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Cd} 1$	38.91 (17)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4-\mathrm{Cd1}{ }^{\text {iv }}$	109.93 (10)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 5-\mathrm{Cd} 1^{\text {ii }}$	-18.81 (14)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Cd} 1$	158.47 (14)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 5-\mathrm{Cd1}^{\text {ii }}$	-138.82 (10)
$\mathrm{O} 5-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Cd} 1$	-84.06 (16)
O5-S1-O4-Cd1 ${ }^{\text {iv }}$	-129.45 (10)
N1-C1-C2-C3	1.5 (3)
N1-C4-C5-N3	-11.3 (3)
N1-C4-C5-N4A	-171.7 (2)
N1-C4-C5-N4B	148.1 (2)

C2-C3-H3	119.2
N1-C4-C5	116.76 (14)
N2-C4-N1	126.64 (15)
N2-C4-C5	116.60 (15)
N3-C5-N4A	123.30 (19)
N3-C5-N4B	120.8 (2)
N3-C5-C4	118.78 (15)
N4A-C5-C4	114.68 (18)
N4B-C5-C4	117.02 (18)
N2-C4-C5-N3	169.24 (18)
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 4 \mathrm{~A}$	8.9 (3)
N2-C4-C5-N4B	-31.3 (3)
N3 ${ }^{\text {iii }}$-N4A-C5-N3	40.7 (4)
N3 ${ }^{\text {iii }}$ - $\mathrm{N} 4 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 4$	-160.0 (2)
N3 ${ }^{\text {iii- }}$-N4B-C5-N3	-38.9 (4)
N3 ${ }^{\text {iii }}$-N4B-C5-C4	162.2 (2)
N4A ${ }^{\text {iii }}$-N3-C5-N4A	-41.6 (4)
N4A ${ }^{\text {iii }}-\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 4$	159.9 (2)
N4B ${ }^{\text {iii }}$-N3-C5-N4B	39.5 (4)
N4B ${ }^{\text {iii] }}$-N3-C5-C4	-161.9 (2)
C1-N1-C4-N2	-0.8 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	179.83 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	-1.5 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1$	0.9 (3)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	-179.74 (18)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.5 (3)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	0.3 (3)

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y+1,-z+1$; (iv) $-x+1, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g 1$ is the centroid of the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 1-\mathrm{C} 4$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{3 i}$	$0.84(2)$	$1.92(2)$	$2.710(2)$	$159(2)$
$\mathrm{O} 1 — \mathrm{H} 1 B \cdots 4^{\mathrm{i}}$	$0.84(2)$	$1.91(2)$	$2.743(2)$	$174(3)$
$\mathrm{N} 4 A-\mathrm{H} 4 A \cdots \mathrm{O}^{\text {iii }}$	$0.87(2)$	$2.09(2)$	$2.889(3)$	$153(2)$
$\mathrm{N} 4 B — \mathrm{H} 4 A \cdots \mathrm{O}^{\text {iii }}$	$0.87(2)$	$2.09(2)$	$2.828(3)$	$143(2)$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots C g 1^{\text {vi }}$	0.93	$3.34(2)$	$4.091(3)$	$140(2)$

Symmetry codes: (ii) $-x+1,-y+1,-z+1$; (iii) $-x+2,-y+1,-z+1$; (v) $x, y-1, z$; (vi) $-x+2, y-1 / 2,-z+1 / 2$.

