CRYSTALLOGRAPHIC COMMUNICATIONS

Received 16 April 2020
Accepted 12 May 2020

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: alkaline earth complexes; tetrazolcarboxylate coordination compounds; in situ synthesis; photoluminescence; TGA; FT-IR; topology; crystal structure.

CCDC references: 2003538; 2003537

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di- μ-aqua-diaqua $\left[\mu_{3}-4-(1 H\right.$-tetrazol-1-id-5-yl)benzoato$\left.\kappa^{4} O: O, O^{\prime}: O^{\prime \prime}\right]$ barium(II)] and poly[μ-aquadiaqua $\left[\mu_{3}-4-(1 H\right.$-tetrazol-1-id-5-yl)benzoato$\left.\kappa^{4} O: O, O^{\prime}: O^{\prime}\right]$ strontium(II)]

Mohamed Abdellatif Bensegueni,* Aouatef Cherouana and Hocine Merazig

Environmental, Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria. *Correspondence e-mail: bensegueni.abdellatif@gmail.com

Two alkaline-earth coordination compounds, $\left[\mathrm{Ba}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}$, (I), and $\left[\mathrm{Sr}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$, (II), from the one-pot hydrolysis transformation of benzoyl chloride and the in situ self-assembled [2+3] cycloaddition of nitrile are presented. These coordination compounds are prepared by reacting 4-cyanobenzoyl chloride with divalent alkaline-earth salts $\left(\mathrm{BaCl}_{2}\right.$ and $\left.\mathrm{SrCl}_{2}\right)$ in aqueous solution under hydrothermal conditions. The mononuclear coordination compounds (I) and (II) show the same mode of coordination of the organic ligands. The cohesion of the crystalline structures is provided by hydrogen bonds and π-stacking interactions, thus forming three-dimensional supramolecular networks. The two compounds have a three-dimensional $(3,6)$-connected topology, and the structural differences between them is in the number of water molecules around the alkaline earth metals. Having the same emission frequencies, the compounds exhibit photoluminescence properties with a downward absorption value from (I) to (II).

1. Chemical context

In recent years, studies on a wide variety of tetrazolyl-5substituted coordination compounds have proliferated (Klapötke \& Stierstorfer, 2009; Fischer et al., 2011). The extension from the synthetic approach developed by Demko and Sharpless (2001) to that of Zhao and colleagues (Zhao et al., 2008) is the main reason for this new interest. Chemists have focused on transition-metal compounds, while studies with alkaline-earth metal-tetrazol coordination compounds remain scarce. This led us to further explore this type of compound, and to study their topological and physical properties.

The choice of ligand is essential in the design of new coordination compounds. In our study we selected a (tetrazolcarboxylate) bifunctional ligand, which is able to adopt several coordination modes, resulting in a variety of crystal structures (Ouellette et al., 2012; Sun et al., 2013; Wei et al., 2012).

The complexation and formation of both the tetrazole and carboxylate groups occurred in situ under hydrothermal conditions from a 4-cyano-benzoyl chloride and the alkaline earth salts $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, giving the title compounds poly[di- μ-aqua-diaqua $\left[\mu_{3}-5\right.$-(4-carboxylatophen-yl)-1 H-1,2,3,4-tetrazol-1-ido- $\left.\kappa^{4} O: O, O^{\prime}: O^{\prime \prime}\right]$ barium(II)]
and $\operatorname{poly}\left[\mu\right.$-aqua-diaqua $\left[\mu_{3}-4-(1 H\right.$-tetrazol-1-id- 5 -yl)ben-zoato- $\left.\kappa^{4} O: O, O^{\prime}: O^{\prime}\right]$ strontium(II)] (II). The two compounds form one-dimensional crystalline chains, in which the coordination is ensured by chelating carboxylate groups. The two compounds were characterized by FT-IR, TGA and singlecrystal X-ray diffraction analysis. A topological study was performed and the photoluminescent properties were also studied.

(I)

(II)

2. Structural commentary

Compound (I) crystallizes in the orthorhombic space group Imma while compound (II) crystallizes in Pmna. In these two

coordination compounds, the asymmetric unit comprises half of a crystallographically independent alkaline-earth metal ion, half of a deprotonated 4-(tetrrazol-5-yl)benzoate anion (ttzbenz), and two halves of water molecules in compound (I) and three halves of water molecules in compound (II) (Fig. 1). The bond distances and angles of the ligands are comparable to those found in the literature for similar systems (Zheng et al., 2009; Jiang et al., 2007; Yu et al., 2009).

The crystal structures of compounds (I) and (II) show similar topologies, the main difference being the coordination polyhedron around the metal center. In compound (I), a slightly distorted BaO_{10} sphenocorona coordination geometry (Casanova et al., 2005) is observed (Fig. 2). The geometry deviates by 4.424 compared to the theoretical model as proposed by SHAPE 2.1 software (Casanova et al., 2005; see

Figure 2
Coordinating polyhedra of compounds (I) and (II), the colored polyhedra with open front faces represent the ideal polyhedral shape as calculated by SHAPE 2.1 [Symmetry codes for (I): (i) $1-x, \frac{1}{2}-y, z$; (ii) $1-x, y, z$; (iii) $-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z$; (iv) $\frac{3}{2}-x, y, \frac{1}{2}-z$; (v) $x, \frac{1}{2}-y, z$; and for (II): (i) $2-x, y, z$; (ii) $\frac{5}{2}-x, y, \frac{1}{2}-z$; (iii) $-\frac{1}{2}+x, y, \frac{1}{2}-z$.]

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (I).

Ba1-O1	2.6598 (17)	$\mathrm{Ba} 1-\mathrm{O} 2$	2.8750 (12)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {i }}$	2.6598 (17)	$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.8750 (12)
$\mathrm{Ba} 1-\mathrm{O} 3^{\text {i }}$	2.821 (2)	$\mathrm{Ba} 1-\mathrm{O} 2^{\text {i }}$	2.8750 (12)
$\mathrm{Ba} 1-\mathrm{O} 3$	2.821 (2)	$\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	3.0157 (17)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.8750 (12)	$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	3.0157 (17)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1^{\text {i }}$	137.57 (7)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{iii}}$	142.501 (17)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	75.09 (3)	$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	91.23 (5)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 3$	89.36 (11)	$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	132.46 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ii }}$	134.06 (2)	$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	131.51 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{ii}}$	62.43 (2)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	58.35 (2)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{ii}}$	74.10 (4)	$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	85.73 (2)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ii }}$	136.98 (2)	$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	42.49 (6)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2$	76.81 (4)		

Symmetry codes: (i) $-x+1,-y+\frac{3}{2}, z ; \quad$ (ii) $\quad x, y+\frac{1}{2},-z+1 ; \quad$ (iii)
$-x+1,-y+1,-z+1$.

Table S1 in the supporting information). In (I), the barium cation is decacoordinated by four oxygen atoms from three ttzbenz ligands, two independent oxygen atoms from two terminal water molecules (O 2 and O 3) and four additional oxygens from bridging water molecules. In compound (II), the Sr^{2+} ion is eightfold coordinated, being surrounded by four bridging water molecules and by four oxygen atoms from three symmetry-related ttzbenz ligands (Fig. 2), thus generating a triangular dodecahedral SrO_{8} coordination geometry; this geometry deviates by 3.426 compared to the theoretical model proposed by SHAPE 2.1 software (Casanova et al., 2005; see Table S1 in the supporting information).

The bond angles (Tables 1 and 2) around the $A e^{2+}$ ion $\left(A e^{2+}\right.$ $=\mathrm{Ba}^{2+}$ and Sr^{2+}) range between 42.49 (6) and $142.50(2)^{\circ}$ in compound (I), and between 48.93 (6) and 148.91 (4) ${ }^{\circ}$ in compound (II). The $\mathrm{Ba}-\mathrm{O}$ bond lengths are 2.821 (2) and 2.875 (1) \AA for the coordinated water molecule, and 2.660 (2) and 3.016 (2) \AA for the ttzbenz oxygen atom (Table 2), and these distances are slightly longer than that in an analogous compound (Fu et al., 2010). The $\mathrm{Sr}-\mathrm{O}$ bond lengths are

Figure 3
Coordinating polymers along the b axis.

Table 2
Selected geometric parameters ($\AA^{\circ},^{\circ}$) for (II).

$\mathrm{Sr}-\mathrm{O} 1$	$2.501(2)$	$\mathrm{Sr}-\mathrm{O} 1^{\mathrm{i}}$	$2.6602(14)$
$\mathrm{Sr}-\mathrm{O} 3$	$2.522(2)$	$\mathrm{Sr}-\mathrm{O} 4$	$2.6757(18)$
$\mathrm{Sr}-\mathrm{O} 2$	$2.549(3)$		
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{ii}}$	$140.67(7)$	$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{iii}}$	$148.91(4)$
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 3$	$85.19(4)$	$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 4$	$68.20(5)$
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 2$	$72.67(4)$	$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{O} 4$	$147.71(5)$
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 2$	$103.31(9)$	$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 4$	$83.72(5)$
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{i}}$	$124.21(4)$	$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 4$	$139.50(4)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{i}}$	$77.42(5)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O} 4$	$97.37(4)$
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{i}}$	$148.91(4)$	$\mathrm{O}^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 4$	$66.00(5)$
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{i}}$	$95.91(7)$	$\mathrm{O}^{\mathrm{iii}}-\mathrm{Sr}-\mathrm{O} 4^{\mathrm{i}}$	$97.37(4)$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{O} 1^{\mathrm{iii}}$	$124.21(5)$	$\mathrm{O} 4-\mathrm{Sr}-\mathrm{O} 4^{\mathrm{i}}$	$80.48(7)$

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{1}{2}$; (ii) $-x+1, y, z$; (iii) $-x+\frac{3}{2}, y,-z+\frac{1}{2}$.
2.501 (2) and 2.660 (1) \AA for the ttzbenz oxygen atom, and 2.549 (2) and 2.676 (2) Å for the coordinated water molecule (Table 2). The $\mathrm{Ba}-\mathrm{O}$ bonds are longer than $\mathrm{Sr}-\mathrm{O}$ bonds; this is due not only to the nature of the metal, but also, in part, to the measurement temperature [room temperature for compound (I), but 150 K for compound (II). These bondlength values are close to those observed in similar compounds based on $A e^{2+}$ one-dimensional coordination polymers: $\mathrm{Ba}-\mathrm{O}=2.647-3.179 \AA, \mathrm{Sr}-\mathrm{O}=2.486-2.843 \AA$ in $\left[\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Cl}_{2} \mathrm{CuSr}\right]_{n}$ and $\left[\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Cl}_{2} \mathrm{CuBa}\right]_{n}$ (Hari, et al., 2017), and in the compounds $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{16} \mathrm{O}_{19} \mathrm{Sr}_{4}\right]_{n}$ and $\left[\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}_{16} \mathrm{O}_{18} \mathrm{Sr}_{4}\right]_{n}$ where the $\mathrm{Sr}-\mathrm{O}$ distances range from $2.570-2.700 \AA$ and $2.541-2.633 \AA$, respectively. In the twodimensional coordination compound $\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{BaN}_{4} \mathrm{O}_{5}\right]_{n}$, the $\mathrm{Ba}-\mathrm{O}$ distances are 2.790 and $2.902 \AA$ (Hartdegen et al., 2009), while in the three-dimensional polymers $\left[\mathrm{Ba}_{2} M(\mathrm{H}-\right.$ $\left.(\mathrm{HCOO})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{n}, \mathrm{Ba}-\mathrm{O}=2.801$ (2)-3.6143 (2) \AA for $M=$ $\mathrm{Ni}, \mathrm{Ba}-\mathrm{O}=2.797$ (2) -2.999 (2) \AA for $M=\mathrm{Zn}$, and $\mathrm{Ba}-\mathrm{O}=$ 2.801 (2)-3.004 (2) \AA for $M=$ Co (Baggio et al., 2004), and in the strontium complex $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{SrN}_{6} \mathrm{O}_{10}, \mathrm{Sr}-\mathrm{O}=2.506-2.724 \AA$ (Divya et al., 2017).

The ttzbenz ligand can adopt several coordination modes by involving the tetrazole ring (Yao et al., 2013), or the carboxylate group as in our case, where the two compounds use the ttzbenz anion to coordinate two adjacent $A e^{2+}$ cations in a bidentate chelate manner, thus forming a polyatomic bridge and binding neighboring $A e^{2+}$ ions in a zigzag manner, resulting in the formation of binuclear units [$A e-\mathrm{O} 1-A e-\mathrm{O} 1$] with a Ba…Ba distance of 4.0089 (4) \AA for compound (I) and an $\mathrm{Sr} \cdots \mathrm{Sr}$ distance of 3.866 (2) \AA for compound (II) (Fig. 3).

3. Supramolecular features

In compound (I), hydrogen bonds between two coordinated water molecules and two nitrogen atoms of the tetrazole ring of the ttzbenz ligand are observed (Table 3), ensuring cohesion between the tetrazole rings and the inorganic $\left[\mathrm{Ba}_{2} \mathrm{O}_{2}\right]_{n}$ chains. In addition to hydrogen bonds, π-stacking interactions between phenyl rings are observed (Fig. 4) with a centroidcentroid distance of 4.035 (1) \AA, which enhance the cohesion of the crystal structure.

Table 3
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\text {iv }}$	$0.79(2)$	$2.14(2)$	$2.927(2)$	$175(3)$
O3-H3 $^{\mathrm{V}} \mathrm{N}^{\mathrm{v}}$	$0.79(3)$	$2.29(3)$	$3.069(2)$	$169(3)$

Symmetry codes: (iv) $x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}$; (v) $x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}$.
Table 4
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{N} 1^{\text {iv }}$	$0.85(2)$	$1.96(2)$	$2.800(2)$	$171(3)$
O3-H3 $^{\text {iv }}$	$0.85(2)$	$2.62(2)$	$3.314(3)$	$141(2)$
O2-H2 $^{\text {2 }} \cdots \mathrm{N} 2^{\mathrm{v}}$	$0.77(3)$	$2.53(3)$	$3.270(3)$	$160(3)$
O4-H4 $^{\text {wi }} \mathrm{N}^{\mathrm{vi}}$	$0.87(2)$	$1.93(2)$	$2.784(2)$	$166(2)$

Symmetry codes: (iv) $-x+2,-y+1,-z+1$; (v) $-x+2,-y,-z+1$; (vi)
$x-\frac{1}{2},-y+1, z-\frac{1}{2}$.

In compound (II), as well as the strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 4), weak intramolecular π-stacking interactions are observed, reinforcing the cohesion in the crystal structure between the tetrazole rings (centroid Cg1) and the phenyl rings (centroid Cg 2) with centroid-centroid distances $C g 1 \cdots C g 2=3.622$ (3) \AA and $C g 2 \cdots C g 2=3.897$ (3) \AA (Fig. 4).

4. Topological study

To simplify the crystalline structure of the title compounds, we used the standard representation of valence-bound $\mathrm{CPs}(\mathrm{CP}=$ coordination polymer) to obtain the underlying network. In such models, only metal centers and the centroids of organic ligands are considered as structural units (Alexandrov et al., 2011). The simplification of the crystal structure of the two compounds by this procedure and the topological classification of the two studied compounds led to the same topological network, identified as a 3.6-c net with stoichiometry $(3-C)_{2}(6-$ C), which can be represented by the point symbol $\left\{4^{3}\right\}_{2}\left\{4^{6} \cdot 6^{6} \cdot 8^{3}\right\}$. Thus the two structures consist of planar layers running parallel to (100) (Fig. 5).

Figure 4
Hydrogen bonds (blue dashed lines) and π-stacking interactions (green dashed lines) in the crystal packing of compounds (I) and (II).

Figure 5
Simplification of the coordination framework in the two compounds using standard representation for valence-bonded CPs.

5. Database survey

A search for 4-(tetrazol-5-yl) benzoate in the Cambridge Structural Database (CSD Version 5.40; Groom et al., 2016) gave 81 hits for the ligand, alone or with co-ligands. The ttzbenz ligand has proved to be an excellent component for the assembly of new coordination complexes and polymers, whether through a bridging and/or chelating coordination mode, mono or polydentate, and as an acceptor of hydrogen bonds through the two carboxylate and tetrazolate groups. This has led to structural diversity with interesting physicochemical properties, as seen in the structures with metal ions: copper (Ouellette et al., 2009), cobalt (Ouellette et al., 2012), zinc (Wei et al., 2012; Jiang et al., 2007; Zheng et al., 2009), lead (Sun et al., 2013), manganese and cadmium (Cheng et al., 2016; Yu et al., 2009), europium, terbium (Wang et al., 2011). Finally, with bipyridine co-ligands (Yang et al., 2017; Gao et al., 2016), (terpyridinyl)benzoate (Zhang et al., 2016), phenanthroline (Werrett et al., 2015), 3,5-dimethyl-1,2,4-triazolato (Sheng et al., 2016), and N, N-dimethylacetamide (Wang et al., 2015).

6. Synthesis and crystallization

Colorless crystals suitable for X-ray diffraction were obtained by hydrothermal synthesis in an aqueous solution according to a literature procedure (Demko \& Sharpless, 2001; Zhao et al., 2008), where an aqueous solution (10 ml) of sodium azide $(0.065 \mathrm{~g}, 1 \mathrm{mmol})$ and 4-cyanobenzoyl chloride (0.165 g , 1 mmol) was added dropwise to an aqueous solution (5 ml) of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.244 \mathrm{~g}, 1 \mathrm{mmol})$ for (I) and $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.266 \mathrm{~g}$, 1 mmol) for (II) under constant stirring for a few minutes. The resulting solution was sealed in a 25 ml teflon-lined stainless steel autoclave and heated at 453 K for 3 d .

The FT-IR spectra for compounds (I) and (II) were recorded in the frequency range $4000-400 \mathrm{~cm}^{-1}$ on a Perkin Elmer FT-IR spectrophotometer Spectrum 1000. The ν, γ and δ modes are: stretching, out-of-plane bending, and in-plane bending, respectively. The absence of bands in the two regions: $2200-2280 \mathrm{~cm}^{-1}$ and $2100-2270 \mathrm{~cm}^{-1}$ corresponding to the functions -CN and $\mathrm{N}_{3}{ }^{-}$, respectively, confirms that the [2+3] cycloaddition reaction between the cyano group and the azide anions occurred and the tetrazolate ligand was formed (Hammerl et al., 2002, 2003; Damavarapu et al., 2010; Zhang et al., 2013)

FT-IR of (I) (ATR, $\left.\mathrm{cm}^{-1}\right): 3300 \nu(\mathrm{O}-\mathrm{H})_{\text {water }}, 3100 \nu(\mathrm{C}-$ $\mathrm{H})_{\mathrm{Ph}}, 1435 v_{\text {sym }}(\mathrm{C}-\mathrm{C}), 1523 \nu(\mathrm{~N}-\mathrm{N})_{\text {ring }}, 1603 \nu(\mathrm{C}-\mathrm{N})_{\text {ring }}$, 628-1050 γ, δ (tetrazole).

FT-IR of (II) (ATR, $\left.\mathrm{cm}^{-1}\right): 3600 \nu(\mathrm{O}-\mathrm{H})_{\text {water }}, 3200 \nu(\mathrm{C}-$ $\mathrm{H})_{\mathrm{Ph}}, 1408 v_{\text {sym }}(\mathrm{C}-\mathrm{C}), 1530 \nu(\mathrm{~N}-\mathrm{N})_{\text {ring }}, 1585 \nu(\mathrm{C}-\mathrm{N})_{\text {ring }}$, 654-1009 γ, δ (tetrazole) (see Fig. S1 in the supporting information).

The thermogravimetric analysis (TGA) was performed in the range $25-600^{\circ} \mathrm{C}$ under air atmosphere at a flow rate of $5^{\circ} \mathrm{C} /$ min (Fig. 6). The pyrolytic processes for compound (I) occurs in two main steps. The first step corresponds to the release of four water molecules (2 bridging water molecules and 2 monodentate) (scheme1) between $90^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range of 200 to $600^{\circ} \mathrm{C}$. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (1 bridging water molecule and 2 monodentate) (scheme1) between $100^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand 160 and $600^{\circ} \mathrm{C}$.

7. Thermogravimetric analysis

The thermogravimetric analysis (TGA) was performed in the range $25-600^{\circ} \mathrm{C}$ under an air atmosphere at a flow rate of $5^{\circ} \mathrm{C}$ $\min ^{-1}$ (Fig. 6). The pyrolytic processes for compound (I) occur

Figure 6
Thermogravimetric analysis of compounds (I) and (II).
in two main steps. The first step corresponds to the release of four water molecules (two bridging water molecules and two monodentate) between $90^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range $200-600^{\circ} \mathrm{C}$. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (one bridging water molecule and two monodentate) between $100^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand between 160 and $600^{\circ} \mathrm{C}$.

8. Fluorescence properties

The fluorescence properties of compounds (I) and (II) were determined from the emission spectra at the same excitation wavelength ($e X=322 \mathrm{~nm}$) on an Agilent Cary Eclipse Fluorescence Spectrophotometer at room temperature. Excitation of the two compounds after dissolution in DMSO leads to similar fluorescence emission spectra. The emission maximum of (I) is observed to shift from 368 to 377 nm and from 371 to 378 nm for II (see Fig. S2 in the supporting information), probably corresponding to $\pi^{*} \rightarrow \pi$ or $\pi^{*} \rightarrow \mathrm{n}$ electronic transition of the aromatic ring ttzbenz ligands (Koşar et al., 2012), due to the close resemblance of the emission band of the two compounds. We also note downward absorption values ranging from compound (I) to (II), which may be due to the increase in the atomic number from Sr^{2+} to Ba^{2+}.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The water H atoms were located in a difference-Fourier map and their positions and isotropic displacement parameters were refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

We would like to thank S. Maza and the Fluorescence Spectroscopy staff at the National Biotechnology Research Center, Constantine, Algeria.

Funding information

Funding for this research was provided by: Unité de Recherche de Chimie Moléculaire et Structurale (UR.CHEMS); Direction Générale de la Recherche Scientifique et du Developpement Technologique (DGRSDT) Algérie.

research communications

Table 5
Experimental details.
(I)
(II)

Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$
$\left[\mathrm{Ba}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
397.55

Orthorhombic, Imma
298
7.5012 (1), 7.1444 (1), 24.7457 (5)
1326.16 (4)

4
Mo $K \alpha$
3.02
$0.6 \times 0.5 \times 0.22$

Bruker APEXII CCD
Multi-scan (SADABS; Bruker, 2011)
0.670, 0.747

5216, 952, 920
0.0320 .038
0.667 0.735

$0.016,0.039,1.07$

937
70
0
H atoms treated by a mixture of independent and constrained refinement
$0.91,-0.31$
$\left[\mathrm{Sr}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
329.82

Orthorhombic, Pmna
150
6.914 (6), 7.018 (7), 24.164 (2)
1172.5 (16)

4
Mo $K \alpha$
4.62
$0.20 \times 0.1 \times 0.07$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker, 2011)
0.67, 0.747

9495, 2091, 1740

$0.028,0.062,1.07$

2091
105
1
H atoms treated by a mixture of independent and constrained refinement
$0.65,-0.44$

 2010).

References

Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. \& Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Baggio, R., Stoilova, D., Polla, G., Leyva, G. \& Garland, M. T. (2004). J. Mol. Struct. 697, 173-180.

Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
Casanova, D., Llunell, M., Alemany, P. \& Alvarez, S. (2005). Chem. Eur. J. 11, 1479-1494.
Cheng, M., Ding, Y.-S., Zhang, Z. \& Jia, Q.-X. (2016). Inorg. Chim. Acta, 450, 1-7.
Damavarapu, R., Klapötke, T. M., Stierstorfer, J. \& Tarantik, K. R. (2010). Propellants, Explosives, Pyrotech. 35, 395-406.

Demko, Z. P. \& Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.
Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. \& Babu, K. R. (2017). Physica B, 526, 37-44.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Fischer, N., Klapötke, T. M., Peters, K., Rusan, M. \& Stierstorfer, J. (2011). Z. Anorg. Allg. Chem. 637, 1693-1701.

Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. \& Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.
Gao, J.-X., Xiong, J. B., Xu, Q., Tan, Y. H., Liu, Y., Wen, H. R. \& Tang, Y. Z. (2016). Cryst. Growth Des. 16, 1559-1564.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hammerl, A., Holl, G., Kaiser, M., Klapötke, Th. M. \& Piotrowski, H. (2003). Z. Anorg. Allg. Chem. 629, 2117-2121.

Hammerl, A., Holl, G., Klapötke, Th. M., Mayer, P., Nöth, H., Piotrowski, H. \& Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.
Hari, N., Jana, A. \& Mohanta, S. (2017). Inorg. Chim. Acta, 467, 1120.

Hartdegen, V., Klapötke, T. M. \& Sproll, S. M. (2009). Inorg. Chem. 48, 9549-9556.
Jiang, T., Zhao, Y.-F. \& Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194-1197.
Klapötke, T. M. \& Stierstorfer, J. (2009). J. Am. Chem. Soc. 131, 11221134.

Koşar, B., Albayrak, C., Ersanlı, C. C., Odabaşoğlu, M. \& Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 1-9.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Ouellette, W., Darling, K. \& Zubieta, J. (2012). Inorg. Chim. Acta, 391, 36-43.
Ouellette, W., Liu, H., O’Connor, C. J. \& Zubieta, J. (2009). Inorg. Chem. 48, 4655-4657.
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sheng, D.-H., Dan, W.-Y., Luo, G.-X. \& Deng, M.-L. (2016). Chin. J. Struct. Chem. 35, 264-270.
Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Sun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. \& Song, T.-Y. (2013). CrystEngComm, 15, 3402-3411.

Wang, D., Zhang, L., Li, G., Huo, Q. \& Liu, Y. (2015). RSC Adv. 5, 18087-18091.
Wang, J., Nie, J. \& Dai, C. (2011). J. Coord. Chem. 64, 1645-1653.
Wei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. \& Mattes, B. R. (2012). J. Mater. Chem. 22, 10166-10171.
Werrett, M. V., Huff, G. S., Muzzioli, S., Fiorini, V., Zacchini, S., Skelton, B. W., Maggiore, A., Malicka, J. M., Cocchi, M., Gordon, K. C., Stagni, S. \& Massi, M. (2015). Dalton Trans. 44, 8379-8393. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, H.-Y., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y. \& Zhu, Z. (2017). Dalton Trans. 46, 11722-11727.

Yao, R.-X., Qin, Y.-L., Ji, F., Zhao, Y.-F. \& Zhang, X.-M. (2013). Dalton Trans. 42, 6611-6618.
Yu, Z.-P., Xiong, S.-S., Yong, G.-P. \& Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242-248.
Zhang, T., Li, R. F., Tian, A. Q., Feng, X. \& Tian, P. H. (2016). Chin. J. Struct. Chem. 35, 1122-1128.
Zhang, X. B., Ren, Y. H., Li, W., Zhao, F. Q., Yi, J. H., Wang, B. Z. \& Song, J. R. (2013). J. Coord. Chem. 66, 2051-2064.
Zhao, H., Qu, Z.-R., Ye, H.-Y. \& Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.
Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. \& Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036-18037.

supporting information

Acta Cryst. (2020). E76, 877-883 [https://doi.org/10.1107/S2056989020006386]
In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di- μ-aqua-diaqua[$\mu_{3}-4$-(1 H -tetrazol-1-id-5-yl)benzoato$\left.\kappa^{4} O: O, O^{\prime}: O^{\prime \prime}\right]$ barium(II)] and poly $\left[\mu\right.$-aqua-diaqua $\left[\mu_{3}-4\right.$-(1H-tetrazol-1-id-5-yl)benzoato- $\left.\kappa^{4} O: O, O^{\prime}: O^{\prime}\right]$ strontium(II)]

Mohamed Abdellatif Bensegueni, Aouatef Cherouana and Hocine Merazig

Computing details

For both structures, data collection: APEX2 (Bruker, 2011). Cell refinement: SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II). Data reduction: SAINT (Bruker, 2011) for (I); CrysAlis PRO (Rigaku OD, 2015) for (II).
Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SIR92 (Altomare et al., 1993) for (II). Program(s) used to refine structure: SHELXL (Sheldrick, 2015b) for (I); SHELXL97 (Sheldrick, 2008) for (II). Molecular graphics: OLEX2 (Dolomanov et al., 2009) for (I); ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) for (II). Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for (I); PLATON (Spek, 2020); publCIF (Westrip, 2010) for (II).

Poly[di- μ-aqua-diaqua[μ_{3}-5-(4-carboxylatophenyl)-1 H-1,2,3,4-tetrazol-1-ido- $\left.\kappa^{4} O: O, O^{\prime}: O^{\prime}\right]$ barium(II)] (I)

Crystal data

$\left[\mathrm{Ba}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=397.55$
Orthorhombic, Imma
Hall symbol: -I 2b 2
$a=7.5012$ (1) \AA
$b=7.1444$ (1) \AA
$c=24.7457(5) \AA$
$V=1326.16(4) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
$T_{\min }=0.670, T_{\max }=0.747$
5216 measured reflections

$$
\begin{aligned}
& F(000)=768 \\
& D_{\mathrm{x}}=1.991 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9092 \text { reflections } \\
& \theta=4.3-51.0^{\circ} \\
& \mu=3.02 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.6 \times 0.5 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

952 independent reflections
920 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=4.9^{\circ}$
$h=-10 \rightarrow 7$
$k=-9 \rightarrow 7$
$l=-30 \rightarrow 32$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.039$
$S=1.07$
937 reflections
70 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: mixed
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0155 P)^{2}+1.5691 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.002$
> $\Delta \rho_{\text {max }}=0.91 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba1	0.5000	0.7500	$0.462655(6)$	$0.02050(7)$
O2	$0.7739(2)$	0.5000	0.5000	$0.0309(3)$
O1	0.5000	$0.4029(2)$	$0.42376(7)$	$0.0385(4)$
O3	$0.2356(3)$	0.7500	$0.38160(10)$	$0.0458(5)$
N2	0.5000	$0.1584(3)$	$0.08485(7)$	$0.0312(4)$
C1	0.5000	0.2500	$0.39934(11)$	$0.0197(5)$
N1	0.5000	$0.0959(3)$	$0.13588(7)$	$0.0313(4)$
C2	0.5000	0.2500	$0.33851(11)$	$0.0221(5)$
C3	0.5000	$0.0832(3)$	$0.31016(9)$	$0.0343(5)$
H3A	0.5000	-0.0298	0.3288	0.041^{*}
C5	0.5000	0.2500	$0.22580(12)$	$0.0243(6)$
C6	0.5000	0.2500	$0.16639(12)$	$0.0233(5)$
C4	0.5000	$0.0829(3)$	$0.25423(9)$	$0.0369(6)$
H4	0.5000	-0.0302	0.2356	0.044^{*}
H3	$0.175(4)$	$0.665(4)$	$0.3725(13)$	$0.072(9)^{*}$
H2	$0.834(3)$	$0.464(4)$	$0.4761(9)$	$0.046(7)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.02865(11)$	$0.01345(10)$	$0.01940(11)$	0.000	0.000	0.000
O2	$0.0294(7)$	$0.0369(9)$	$0.0265(8)$	0.000	0.000	$-0.0053(7)$
O1	$0.0744(12)$	$0.0226(8)$	$0.0184(7)$	0.000	0.000	$-0.0041(6)$
O3	$0.0508(11)$	$0.0293(9)$	$0.0571(13)$	0.000	$-0.0202(10)$	0.000
N2	$0.0469(11)$	$0.0283(10)$	$0.0183(8)$	0.000	0.000	$-0.0020(7)$
C1	$0.0246(12)$	$0.0172(12)$	$0.0173(13)$	0.000	0.000	0.000
N1	$0.0527(11)$	$0.0240(9)$	$0.0171(8)$	0.000	0.000	$-0.0010(7)$
C2	$0.0319(14)$	$0.0213(13)$	$0.0132(12)$	0.000	0.000	0.000
C3	$0.0659(15)$	$0.0190(9)$	$0.0180(10)$	0.000	0.000	$0.0022(8)$

C5	$0.0337(14)$	$0.0231(14)$	$0.0162(13)$	0.000	0.000	0.000
C6	$0.0298(13)$	$0.0223(13)$	$0.0179(13)$	0.000	0.000	0.000
C4	$0.0718(17)$	$0.0193(9)$	$0.0196(10)$	0.000	0.000	$-0.0033(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba}-\mathrm{O} 1$	2.6598 (17)	N2-N1	1.339 (3)
$\mathrm{Ba}-\mathrm{Ol}^{\text {i }}$	2.6598 (17)	$\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	1.249 (2)
$\mathrm{Ba}-\mathrm{O3}^{\text {i }}$	2.821 (2)	C1-C2	1.505 (4)
$\mathrm{Ba} 1-\mathrm{O} 3$	2.821 (2)	N1-C6	1.335 (2)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.8750 (12)	C2-C3 ${ }^{\text {iv }}$	1.383 (3)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.8750 (12)	C2-C3	1.383 (3)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.8750 (12)	C3-C4	1.384 (3)
$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	2.8750 (12)	C3-H3A	0.9300
$\mathrm{Ba}-\mathrm{Ol}^{\text {ii }}$	3.0157 (17)	C5-C4	1.386 (3)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	3.0157 (17)	$\mathrm{C} 5-\mathrm{C} 4{ }^{\text {iv }}$	1.386 (3)
$\mathrm{O} 2-\mathrm{H} 2$	0.78 (2)	C5-C6	1.470 (4)
$\mathrm{O} 1-\mathrm{C} 1$	1.249 (2)	C6-N1 ${ }^{\text {iv }}$	1.335 (2)
$\mathrm{O} 3-\mathrm{H} 3$	0.80 (3)	C4-H4	0.9300
$\mathrm{N} 2-\mathrm{N} 2^{\text {iv }}$	1.308 (4)		
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 1^{\mathrm{i}}$	137.57 (7)	$\mathrm{Ba} 1{ }^{\text {iii- }}$ - 2 2- Ba 1	88.77 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	75.09 (3)	$\mathrm{Ba} 1^{v}-\mathrm{O} 2-\mathrm{H} 2$	117 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	75.09 (3)	$\mathrm{Ba} 1^{\text {vi }}-\mathrm{O} 2-\mathrm{H} 2$	117 (2)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 3$	75.09 (3)	$\mathrm{Ba} 1{ }^{\text {vii- }} \mathrm{O} 2-\mathrm{H} 2$	117 (2)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O} 3$	75.09 (3)	$\mathrm{Ba} 1^{\text {iii- }}$ - 2 2- H 2	117 (2)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O} 3$	89.36 (11)	$\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{H} 2$	111.5 (19)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{2 i}$	134.06 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1$	172.27 (16)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{2 i}$	62.43 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba}^{\text {v }}$	97.70 (14)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2^{\text {ii }}$	74.10 (4)	$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{v}$	90.03 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O}^{2 i}$	136.98 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vii }}$	97.70 (14)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2$	62.43 (2)	$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vii }}$	90.03 (5)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 2$	134.06 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {iii }}$	97.70 (14)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O} 2$	74.10 (4)	$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {iii }}$	90.03 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2$	136.98 (2)	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vi }}$	97.70 (14)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Ba} 1-\mathrm{O} 2$	76.81 (4)	$\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vi }}$	90.03 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	62.43 (2)	$\mathrm{Ba} 1-\mathrm{O} 3-\mathrm{H} 3$	127 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	134.06 (2)	$\mathrm{N} 2{ }^{\text {iv }}-\mathrm{N} 2-\mathrm{N} 1$	109.49 (12)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	136.98 (2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O}^{\text {iv }}$	122.1 (3)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	74.10 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.95 (13)
$\mathrm{O} 22^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {iii }}$	142.501 (17)	$\mathrm{Ol}^{\text {iv }}-\mathrm{C} 1-\mathrm{C} 2$	118.95 (13)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iii }}$	91.23 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ba} 1^{\text {vii }}$	61.05 (13)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	134.06 (2)	$\mathrm{Ol}^{\text {iv }}-\mathrm{C} 1-\mathrm{Ba} 1^{\text {vii }}$	61.05 (13)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	62.43 (2)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ba} 1^{\text {vii }}$	180.0
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {i }}$	136.98 (2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ba} 1^{\text {iii }}$	61.05 (13)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	74.10 (4)	$\mathrm{Ol}^{\text {iv }}-\mathrm{C} 1-\mathrm{Ba} 1^{\text {iii }}$	61.05 (13)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {i }}$	91.23 (5)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ba} 1^{\text {iii }}$	180.0
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	142.501 (17)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ba}^{\text {vi }}$	61.05 (13)

$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{i}}$	76.81 (4)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O}^{\text {ii }}$	132.46 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O} 1^{\text {ii }}$	89.97 (5)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	131.51 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O}^{\text {ii }}$	131.51 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	58.35 (2)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O}^{\text {ii }}$	85.73 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	85.73 (2)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	58.35 (2)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	89.97 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	132.46 (5)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O}^{\text {iii }}$	131.51 (5)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	131.51 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	85.73 (2)
$\mathrm{O} 2-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	58.35 (2)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	58.35 (2)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	85.73 (2)
$\mathrm{O} 1^{\text {iii- }} \mathrm{Ba}-\mathrm{O} 1^{\text {iii }}$	42.49 (6)
$\mathrm{Ba}{ }^{\mathrm{v}}-\mathrm{O} 2-\mathrm{Ba} 1$	88.77 (5)
$\mathrm{Ba} 1^{\text {vi }}-\mathrm{O} 2-\mathrm{Ba} 1$	88.77 (5)
$\mathrm{Ba} 1{ }^{\text {vii }}-\mathrm{O} 2-\mathrm{Ba} 1$	88.77 (5)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {v }}$	-57.76 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}^{\mathrm{i}}$	171.44 (5)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}^{v}$	-138.96 (4)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{v}$	-67.75 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}^{v}$	144.096 (12)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{v}$	69.71 (4)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{v}$	85.62 (2)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}^{v}$	50.97 (3)
$\mathrm{O} 1-\mathrm{Ba}-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	-57.76 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\mathrm{vi}}$	171.44 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}^{\mathrm{vi}}$	-138.96 (4)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	-67.75 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	144.096 (12)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	69.71 (4)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	85.62 (2)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vi }}$	50.97 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	-57.76 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	171.44 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	-138.96 (4)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba}{ }^{\text {vii }}$	-67.75 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	144.096 (12)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	69.71 (4)

$\mathrm{O} 1^{\text {iv }}-\mathrm{C} 1-\mathrm{Ba} 1^{\text {vi }}$	61.05 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ba} 1^{\text {vi }}$	180.0
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Ba}{ }^{\text {v }}$	61.05 (13)
$\mathrm{O1}^{\text {iv }}-\mathrm{C} 1-\mathrm{Ba} 1^{v}$	61.05 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ba} 1^{\text {v }}$	180.0
C6-N1-N2	104.94 (19)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 3$	119.0 (3)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 1$	120.48 (13)
C3-C2-C1	120.48 (13)
C2-C3-C4	120.6 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 4{ }^{\text {iv }}$	119.0 (3)
C4-C5-C6	120.50 (14)
C4 ${ }^{\text {iv }}$ - $\mathrm{C} 5-\mathrm{C} 6$	120.50 (14)
N1 ${ }^{\text {iv }}-\mathrm{C} 6-\mathrm{N} 1$	111.1 (3)
N1 ${ }^{\text {iv }}-\mathrm{C} 6-\mathrm{C} 5$	124.44 (13)
N1-C6-C5	124.44 (13)
C3-C4-C5	120.4 (2)
C3-C4-H4	119.8
C5-C4-H4	119.8
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	85.62 (2)
$\mathrm{O}_{1} \mathrm{iii}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {vii }}$	50.97 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	-57.76 (3)
$\mathrm{O} 1-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	171.44 (5)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	-138.96 (4)
$\mathrm{O} 3-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	-67.75 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	144.096 (12)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	69.71 (4)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1{ }^{\text {iii }}$	85.62 (2)
$\mathrm{O}_{1} \mathrm{iii}-\mathrm{Ba} 1-\mathrm{O} 2-\mathrm{Ba} 1^{\text {iii }}$	50.97 (3)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O} 1-\mathrm{Ba}^{\text {v }}$	133.31 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{v}$	84.02 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{v}$	53.73 (3)
$\mathrm{O} 3-\mathrm{Ba}-\mathrm{O} 1-\mathrm{Ba}{ }^{\text {vii }}$	133.31 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vii }}$	84.02 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vii }}$	53.73 (3)
O3--Bal-O1-Ba1 ${ }^{\text {iii }}$	133.31 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {iii }}$	84.02 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {iii }}$	53.73 (3)
$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vi }}$	133.31 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vi }}$	84.02 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1-\mathrm{Ba} 1^{\text {vi }}$	53.73 (3)

[^0] $-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{~N} 2^{\text {viii }}$	$0.79(2)$	$2.14(2)$	$2.927(2)$	$175(3)$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 1^{\text {ix }}$	$0.79(3)$	$2.29(3)$	$3.069(2)$	$169(3)$

Symmetry codes: (viii) $x+1 / 2,-y+1 / 2,-z+1 / 2$; (ix) $x-1 / 2,-y+1 / 2,-z+1 / 2$.

Poly[μ-aqua-diaqua[$\mu_{3}-5$-(4-carboxylatophenyl)-1H-1,2,3,4-tetrazol-1-ido- $\left.\kappa^{4} O: O, O^{\prime}: O^{\prime}\right]$ strontium(II)] (II)

Crystal data

$\left[\mathrm{Sr}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$
$M_{r}=329.82$
Orthorhombic, Pmna
Hall symbol: -P 2ac 2
$a=6.914$ (6) \AA
$b=7.018$ (7) \AA
$c=24.164$ (2) \AA
$V=1172.5(16) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
$T_{\text {min }}=0.67, T_{\text {max }}=0.747$

$$
F(000)=656
$$

$$
D_{\mathrm{x}}=1.874 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA
$$

$$
\text { Cell parameters from } 10707 \text { reflections }
$$

$$
\theta=4.9-34.3^{\circ}
$$

$$
\mu=4.62 \mathrm{~mm}^{-1}
$$

$$
T=150 \mathrm{~K}
$$

Prism, colorless
$0.20 \times 0.1 \times 0.07 \mathrm{~mm}$

9495 measured reflections
2091 independent reflections
1740 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=31.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-10 \rightarrow 8$
$k=-10 \rightarrow 8$
$l=-34 \rightarrow 35$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.07$
2091 reflections
105 parameters

$$
\begin{aligned}
& \text { H atoms treated by a mixture of independent } \\
& \text { and constrained refinement } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0253 P)^{2}+0.7105 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.65 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sr	0.5000	$0.41161(3)$	$0.285826(9)$	$0.01071(7)$
O 4	0.7500	$0.6752(3)$	0.2500	$0.0148(4)$
O 2	0.5000	$0.0703(3)$	$0.32193(13)$	$0.0341(6)$
O 3	0.5000	$0.6090(3)$	$0.37304(8)$	$0.0201(4)$

O1	$0.84065(19)$	$0.3310(2)$	$0.31160(5)$	$0.0157(3)$
C2	1.0000	$0.2947(3)$	$0.39842(10)$	$0.0112(5)$
N1	$1.1596(2)$	$0.1898(2)$	$0.60389(6)$	$0.0155(3)$
C4	$0.8268(3)$	$0.2547(3)$	$0.48414(7)$	$0.0166(4)$
H4A	0.7101	0.2459	0.5031	0.020^{*}
C5	1.0000	$0.2407(4)$	$0.51296(10)$	$0.0120(5)$
N2	$1.0952(2)$	$0.1577(2)$	$0.65534(6)$	$0.0167(3)$
C6	1.0000	$0.2079(3)$	$0.57327(10)$	$0.0120(5)$
C3	$0.8269(3)$	$0.2818(3)$	$0.42714(7)$	$0.0166(4)$
H3A	0.7102	0.2912	0.4082	0.020^{*}
C1	1.0000	$0.3206(4)$	$0.33702(10)$	$0.0113(5)$
H3	$0.600(3)$	$0.668(4)$	$0.3839(10)$	$0.037(7)^{*}$
H4	$0.709(4)$	$0.743(4)$	$0.2212(9)$	$0.036(8)^{*}$
H2	$0.584(4)$	$0.014(5)$	$0.3353(12)$	$0.058(10)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr	$0.00658(11)$	$0.01630(11)$	$0.00923(10)$	0.000	0.000	$0.00006(10)$
O 4	$0.0141(10)$	$0.0173(8)$	$0.0131(9)$	0.000	$-0.0015(7)$	0.000
O 2	$0.0211(13)$	$0.0223(12)$	$0.0590(18)$	0.000	0.000	$0.0144(12)$
O 3	$0.0102(10)$	$0.0302(11)$	$0.0200(10)$	0.000	0.000	$-0.0087(9)$
O 1	$0.0088(6)$	$0.0258(7)$	$0.0124(6)$	$0.0014(6)$	$-0.0017(5)$	$0.0045(5)$
C 2	$0.0120(12)$	$0.0107(10)$	$0.0107(11)$	0.000	0.000	$0.0017(9)$
N 1	$0.0144(8)$	$0.0215(8)$	$0.0106(7)$	$-0.0015(6)$	$-0.0014(6)$	$0.0002(6)$
C 4	$0.0101(9)$	$0.0251(9)$	$0.0146(8)$	$0.0019(8)$	$0.0022(7)$	$0.0017(7)$
C 5	$0.0140(12)$	$0.0126(11)$	$0.0093(11)$	0.000	0.000	$-0.0019(9)$
N 2	$0.0186(8)$	$0.0206(7)$	$0.0110(7)$	$-0.0015(7)$	$-0.0010(6)$	$0.0000(6)$
C 6	$0.0134(12)$	$0.0112(10)$	$0.0114(11)$	0.000	0.000	$-0.0019(9)$
C 3	$0.0102(9)$	$0.0260(9)$	$0.0137(8)$	$0.0023(7)$	$-0.0009(7)$	$0.0026(7)$
C 1	$0.0084(12)$	$0.0124(11)$	$0.0132(11)$	0.000	0.000	$0.0007(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Sr}-\mathrm{O} 1$	2.501 (2)	C2-C3	1.387 (2)
$\mathrm{Sr}-\mathrm{Ol}^{\text {i }}$	2.501 (2)	C2-C1	1.495 (3)
$\mathrm{Sr}-\mathrm{O} 3$	2.522 (2)	N1-C6	1.335 (2)
$\mathrm{Sr}-\mathrm{O} 2$	2.549 (3)	N1-N2	1.340 (2)
$\mathrm{Sr}-\mathrm{O} 1^{\text {ii }}$	2.6602 (14)	C4-C5	1.389 (2)
$\mathrm{Sr}-\mathrm{O} 1^{\text {iii }}$	2.6602 (14)	C4-C3	1.390 (2)
$\mathrm{Sr}-\mathrm{O} 4$	2.6757 (18)	C4-H4A	0.9300
$\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	2.6757 (18)	C5-C4 ${ }^{\text {iv }}$	1.389 (2)
O4-H4	0.89 (2)	C5-C6	1.475 (3)
$\mathrm{O} 2-\mathrm{H} 2$	0.77 (3)	$\mathrm{N} 2-\mathrm{N} 2^{\text {iv }}$	1.316 (4)
$\mathrm{O} 3-\mathrm{H} 3$	0.846 (16)	C6-N1 ${ }^{\text {iv }}$	1.335 (2)
O1-C1	1.2635 (19)	C3-H3A	0.9300
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {iv }}$	1.387 (2)	$\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	1.2635 (19)

$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 1^{\text {i }}$	140.67 (7)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 3$	85.19 (4)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O} 3$	85.20 (4)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 2$	72.67 (4)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O} 2$	72.67 (4)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 2$	103.31 (9)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 1^{\text {ii }}$	124.21 (4)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O} 1^{\text {ii }}$	77.42 (5)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{Ol}^{\text {ii }}$	148.91 (4)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O}^{1 i}$	95.91 (7)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 1^{\text {iii }}$	77.42 (5)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O}{ }^{\text {iii }}$	124.21 (5)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 1^{\text {iii }}$	148.91 (4)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 1^{\text {iii }}$	95.91 (7)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 1^{\text {iii }}$	48.93 (6)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 4$	68.20 (5)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Sr}-\mathrm{O} 4$	147.71 (5)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 4$	83.72 (5)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 4$	139.50 (4)
$\mathrm{O1}^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 4$	97.37 (4)
$\mathrm{O} 1{ }^{\text {iii- }}$ - $\mathrm{Sr}-\mathrm{O} 4$	66.00 (5)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	147.71 (5)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	68.20 (5)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	83.72 (5)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 44^{\text {ii }}$	139.50 (4)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	66.00 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	97.37 (4)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{O} 4{ }^{\text {ii }}$	80.48 (7)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{Cl}^{1 i}$	101.29 (3)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Sr}-\mathrm{C} 1^{\text {ii }}$	101.29 (3)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{Cl}^{1 i}$	158.83 (7)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{Cl}^{1 i}$	97.87 (9)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Sr}-\mathrm{C} 1^{\text {ii }}$	24.50 (3)
$\mathrm{O} 1^{\text {iiii }}$ - $\mathrm{Sr}-\mathrm{C} 1^{\text {ii }}$	24.50 (3)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{Cl}^{1 i}$	80.16 (4)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Sr}-\mathrm{C} 1^{\text {ii }}$	80.16 (4)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{Sr}^{\text {ri }}$	162.46 (3)
$\mathrm{O} 1^{\text {i }}-\mathrm{Sr}-\mathrm{Sr}^{\text {rii }}$	43.07 (4)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{Sr}^{\text {ri }}$	111.97 (2)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{Sr}^{\text {rii }}$	98.82 (3)
$\mathrm{O1}{ }^{\text {iii }} \mathrm{Sr}-\mathrm{Sr}^{\text {ii }}$	39.95 (3)
$\mathrm{O1}{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{Sr}^{\text {ii }}$	88.51 (4)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{Sr}^{\text {ri }}$	115.64 (3)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	43.94 (4)
$\mathrm{O}{ }^{1}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-158.12 (6)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	131.27 (4)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	28.11 (11)

$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{Sr}^{\text {ii }}$	43.74 (4)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{Sr}-\mathrm{Sr}^{\text {ii }}$	64.037 (19)
$\mathrm{O} 1-\mathrm{Sr}-\mathrm{Sr}^{v}$	43.07 (4)
$\mathrm{O1}{ }^{\mathrm{i}}-\mathrm{Sr}-\mathrm{Sr}^{v}$	162.46 (3)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{Sr}^{v}$	111.97 (2)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{Sr}^{v}$	98.82 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr}-\mathrm{Sr}^{v}$	88.51 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr}-\mathrm{Sr}^{v}$	39.95 (3)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{Sr}^{v}$	43.74 (4)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{Sr}^{v}$	115.64 (3)
$\mathrm{C} 1{ }^{\text {ii- }}$ - $\mathrm{Sr}-\mathrm{Sr}^{v}$	64.037 (19)
Srii- ${ }^{\text {in }}-\mathrm{Sr}^{v}$	126.79 (4)
$\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	92.52 (8)
$\mathrm{Sr}-\mathrm{O} 4-\mathrm{H} 4$	114.6 (18)
$\mathrm{Sr}^{\mathrm{v}}-\mathrm{O} 4-\mathrm{H} 4$	108.9 (17)
$\mathrm{Sr}-\mathrm{O} 2-\mathrm{H} 2$	129 (2)
$\mathrm{Sr}-\mathrm{O} 3-\mathrm{H} 3$	121.9 (18)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sr}$	162.79 (14)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Sr}^{v}$	94.66 (12)
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	96.98 (5)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 3$	119.4 (2)
$\mathrm{C} 3{ }^{\text {iv }}-\mathrm{C} 2-\mathrm{C} 1$	120.32 (11)
C3-C2-C1	120.32 (11)
C6-N1-N2	104.81 (16)
C5-C4-C3	120.41 (18)
C5-C4-H4A	119.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.8
C4-C5-C4 ${ }^{\text {iv }}$	119.1 (2)
C4-C5-C6	120.42 (11)
C4 ${ }^{\text {iv }}$ - $\mathrm{C} 5-\mathrm{C} 6$	120.42 (11)
$\mathrm{N} 2{ }^{\text {iv }}$ - $\mathrm{N} 2-\mathrm{N} 1$	109.42 (10)
N1 ${ }^{\text {iv }}$ - $\mathrm{C} 6-\mathrm{N} 1$	111.5 (2)
N1 ${ }^{\text {iv }}$ - $\mathrm{C} 6-\mathrm{C} 5$	124.22 (11)
N1-C6-C5	124.22 (11)
C2-C3-C4	120.34 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.8
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	121.4 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	119.31 (11)
$\mathrm{O} 1^{\text {iv }}-\mathrm{C} 1-\mathrm{C} 2$	119.31 (11)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Sr}^{v}$	60.84 (11)
$\mathrm{O} 1^{\text {iv }}-\mathrm{C} 1-\mathrm{Sr}^{v}$	60.84 (11)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sr}^{v}$	174.84 (17)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	-59.57 (8)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	29.86 (6)
Srii- $\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	61.70 (12)
C3-C4-C5-C4 ${ }^{\text {iv }}$	0.2 (4)

$\mathrm{O} 1^{\text {ii }}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-80.03 (4)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-41.54 (3)
$\mathrm{O} 4{ }^{\text {ii }}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-144.08 (2)
$\mathrm{C} 1{ }^{1 i}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-62.52 (4)
$\mathrm{Sr}^{\text {rii }}-\mathrm{Sr}-\mathrm{O} 4-\mathrm{Sr}^{v}$	-117.34 (3)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	-74.0 (5)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	2.4 (5)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	-103.1 (5)
$\mathrm{O}{ }^{\text {iii- }} \mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	171.6 (5)
O1 ${ }^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	156.5 (5)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	87.6 (5)
$\mathrm{O} 4{ }^{\mathrm{ii}}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Cl}$	72.7 (5)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	162.1 (5)
Srii- ${ }^{\text {ir }}$ - $\mathrm{O} 1-\mathrm{C} 1$	-166.1 (4)
$\mathrm{Sr}^{v}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1$	132.2 (5)
$\mathrm{O1}{ }^{\text {i }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	153.83 (6)
$\mathrm{O} 3-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	-129.77 (7)
$\mathrm{O} 2-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	124.67 (8)
$\mathrm{O}{ }^{1 i}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	39.36 (9)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	24.29 (6)
$\mathrm{O} 4-\mathrm{Sr}-\mathrm{O} 1-\mathrm{Sr}^{v}$	-44.63 (4)

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-178.7(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 2^{\text {iv }}$	$-0.35(16)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{N} 1^{\text {iv }}$	$0.6(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-178.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1^{\text {iv }}$	$-0.1(4)$
$\mathrm{C} 4{ }^{\text {iv }}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1^{\text {iv }}$	$-179.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$179.0(2)$
$\mathrm{C} 4^{\mathrm{iv}}-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$0.1(4)$
$\mathrm{C} 3 \mathrm{iv}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.5(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.0(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$0.1(3)$
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	$-138.6(3)$
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	$-6.2(3)$
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$41.6(6)$
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$174.1(2)$
$\mathrm{Sr}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{Sr}$	$-132.5(5)$
$\mathrm{C} 3{ }^{\mathrm{iv}}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$179.6(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$0.1(4)$
$\mathrm{C} 3^{\mathrm{iv}}-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	$-0.1(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1^{\text {iv }}$	$-179.6(2)$

Symmetry codes: (i) $-x+1, y, z$; (ii) $x-1 / 2, y,-z+1 / 2$; (iii) $-x+3 / 2, y,-z+1 / 2$; (iv) $-x+2, y, z$; (v) $x+1 / 2, y,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\text {vi }}$	0.85 (2)	1.96 (2)	2.800 (2)	171 (3)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 2^{\text {vi }}$	0.85 (2)	2.62 (2)	3.314 (3)	141 (2)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 2^{\text {vii }}$	0.77 (3)	2.53 (3)	3.270 (3)	160 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{~N} 2^{\text {viii }}$	0.87 (2)	1.93 (2)	2.784 (2)	166 (2)

Symmetry codes: (vi) $-x+2,-y+1,-z+1$; (vii) $-x+2,-y,-z+1$; (viii) $x-1 / 2,-y+1, z-1 / 2$.

[^0]: Symmetry codes: (i) $-x+1,-y+3 / 2, z$; (ii) $x, y+1 / 2,-z+1$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+1,-y+1 / 2, z$; (v) $-x+1, y-1 / 2,-z+1$; (vi) $x, y-1 / 2,-z+1$; (vii) x,

