

877

https://doi.org/10.1107/S2056989020006386

In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di-*µ*-aqua-di $agua[u_3-4-(1H-tetrazol-1-id-5-yl)benzoato \kappa^4 O:O,O':O''$]barium(II)] and poly[*u*-aquadiaqua[µ₃-4-(1*H*-tetrazol-1-id-5-yl)benzoato- $\kappa^4 O: O. O': O'$ [strontium(II)]

Mohamed Abdellatif Bensegueni,* Aouatef Cherouana and Hocine Merazig

Environmental, Molecular and Structural Chemistry Research Unit, University of Constantine-1, 25000, Constantine, Algeria. *Correspondence e-mail: bensegueni.abdellatif@gmail.com

Two alkaline-earth coordination compounds, $[Ba(C_8H_4N_4O_2)(H_2O)_4]_n$, (I), and $[Sr(C_8H_4N_4O_2)(H_2O_3]_n, (II),$ from the one-pot hydrolysis transformation of benzoyl chloride and the *in situ* self-assembled [2+3] cycloaddition of nitrile are presented. These coordination compounds are prepared by reacting 4-cyanobenzoyl chloride with divalent alkaline-earth salts (BaCl₂ and SrCl₂) in aqueous solution under hydrothermal conditions. The mononuclear coordination compounds (I) and (II) show the same mode of coordination of the organic ligands. The cohesion of the crystalline structures is provided by hydrogen bonds and π -stacking interactions, thus forming three-dimensional supramolecular networks. The two compounds have a three-dimensional (3,6)-connected topology, and the structural differences between them is in the number of water molecules around the alkaline earth metals. Having the same emission frequencies, the compounds exhibit photoluminescence properties with a downward absorption value from (I) to (II).

1. Chemical context

In recent years, studies on a wide variety of tetrazolyl-5substituted coordination compounds have proliferated (Klapötke & Stierstorfer, 2009; Fischer et al., 2011). The extension from the synthetic approach developed by Demko and Sharpless (2001) to that of Zhao and colleagues (Zhao et al., 2008) is the main reason for this new interest. Chemists have focused on transition-metal compounds, while studies with alkaline-earth metal-tetrazol coordination compounds remain scarce. This led us to further explore this type of compound, and to study their topological and physical properties.

The choice of ligand is essential in the design of new coordination compounds. In our study we selected a (tetrazolcarboxylate) bifunctional ligand, which is able to adopt several coordination modes, resulting in a variety of crystal structures (Ouellette et al., 2012; Sun et al., 2013; Wei et al., 2012).

The complexation and formation of both the tetrazole and carboxylate groups occurred in situ under hydrothermal conditions from a 4-cyano-benzoyl chloride and the alkaline earth salts BaCl₂·2H₂O and SrCl₂·6H₂O, giving the title compounds poly[di- μ -aqua-diaqua[μ_3 -5-(4-carboxylatophenyl)-1*H*-1,2,3,4-tetrazol-1-ido- $\kappa^4 O:O,O':O''$]barium(II)] (I)

Received 16 April 2020 Accepted 12 May 2020

Edited by B. Therrien, University of Neuchâtel, Switzerland

Keywords: alkaline earth complexes; tetrazolcarboxylate coordination compounds; in situ synthesis: photoluminescence: TGA: FT-IR: topology; crystal structure.

CCDC references: 2003538; 2003537

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

and poly[μ -aqua-diaqua[μ_3 -4-(1*H*-tetrazol-1-id-5-yl)benzoato- $\kappa^4 O: O, O': O'$]strontium(II)] (II). The two compounds form one-dimensional crystalline chains, in which the coordination is ensured by chelating carboxylate groups. The two compounds were characterized by FT–IR, TGA and singlecrystal X-ray diffraction analysis. A topological study was performed and the photoluminescent properties were also studied.

2. Structural commentary

Compound (I) crystallizes in the orthorhombic space group *Imma* while compound (II) crystallizes in *Pmna*. In these two

The coordination environment of the Ae^{2+} ion in compounds (I) and (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes for (I): (i) $2 - x, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} - z$; (iv) 2 - x, y, z; (v) $\frac{1}{2} + x, y, \frac{1}{2} - z$; (vi) $x - \frac{1}{2}, -y, z$; (vii) $-x - \frac{1}{2}, y, \frac{1}{2} - z$; and for (II): (i) 2 - x, y, z; (ii) $\frac{3}{2} - x, y, \frac{1}{2} - z$; (iii) $x + \frac{1}{2}, y, \frac{1}{2} - z$.]

coordination compounds, the asymmetric unit comprises half of a crystallographically independent alkaline-earth metal ion, half of a deprotonated 4-(tetrrazol-5-yl)benzoate anion (ttzbenz), and two halves of water molecules in compound (I) and three halves of water molecules in compound (II) (Fig. 1). The bond distances and angles of the ligands are comparable to those found in the literature for similar systems (Zheng *et al.*, 2009; Jiang *et al.*, 2007; Yu *et al.*, 2009).

The crystal structures of compounds (I) and (II) show similar topologies, the main difference being the coordination polyhedron around the metal center. In compound (I), a slightly distorted BaO_{10} sphenocorona coordination geometry (Casanova *et al.*, 2005) is observed (Fig. 2). The geometry deviates by 4.424 compared to the theoretical model as proposed by *SHAPE 2.1* software (Casanova *et al.*, 2005; see

Coordinating polyhedra of compounds (I) and (II), the colored polyhedra with open front faces represent the ideal polyhedral shape as calculated by *SHAPE 2.1* [Symmetry codes for (I): (i) $1 - x, \frac{1}{2} - y, z$; (ii) 1 - x, y, z; (iii) $-\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} - z$; (iv) $\frac{3}{2} - x, y, \frac{1}{2} - z$; (v) $x, \frac{1}{2} - y, z$; and for (II): (i) 2 - x, y, z; (ii) $\frac{5}{2} - x, y, \frac{1}{2} - z$; (iii) $-\frac{1}{2} + x, y, \frac{1}{2} - z$.]

Table 1Selected geometric parameters (Å, $^{\circ}$) for (I).

Ba1-O1	2.6598 (17)	Ba1-O2	2.8750 (12)
Ba1-O1 ⁱ	2.6598 (17)	Ba1-O2 ⁱⁱⁱ	2.8750 (12)
Ba1-O3 ⁱ	2.821 (2)	Ba1-O2 ⁱ	2.8750 (12)
Ba1-O3	2.821 (2)	Ba1-O1 ⁱⁱ	3.0157 (17)
Ba1-O2 ⁱⁱ	2.8750 (12)	Ba1-O1 ⁱⁱⁱ	3.0157 (17)
$O1-Ba1-O1^{i}$	137.57 (7)	$O2^{ii}$ -Ba1- $O2^{iii}$	142.501 (17)
O1-Ba1-O3 ⁱ	75.09 (3)	O2-Ba1-O2 ⁱⁱⁱ	91.23 (5)
O3 ⁱ -Ba1-O3	89.36 (11)	O1-Ba1-O1 ⁱⁱ	132.46 (5)
O1-Ba1-O2 ⁱⁱ	134.06 (2)	O3 ⁱ -Ba1-O1 ⁱⁱ	131.51 (5)
O1 ⁱ -Ba1-O2 ⁱⁱ	62.43 (2)	O2 ⁱⁱ -Ba1-O1 ⁱⁱ	58.35 (2)
O3 ⁱ -Ba1-O2 ⁱⁱ	74.10 (4)	O2-Ba1-O1 ⁱⁱ	85.73 (2)
O3-Ba1-O2 ⁱⁱ	136.98 (2)	O1 ⁱⁱ -Ba1-O1 ⁱⁱⁱ	42.49 (6)
O2 ⁱⁱ -Ba1-O2	76.81 (4)		

-x+1, -y+1, -z+1.

Table S1 in the supporting information). In (I), the barium cation is decacoordinated by four oxygen atoms from three ttzbenz ligands, two independent oxygen atoms from two terminal water molecules (O2 and O3) and four additional oxygens from bridging water molecules. In compound (II), the Sr^{2+} ion is eightfold coordinated, being surrounded by four bridging water molecules and by four oxygen atoms from three symmetry-related ttzbenz ligands (Fig. 2), thus generating a triangular dodecahedral SrO_8 coordination geometry; this geometry deviates by 3.426 compared to the theoretical model proposed by *SHAPE 2.1* software (Casanova *et al.*, 2005; see Table S1 in the supporting information).

The bond angles (Tables 1 and 2) around the Ae^{2+} ion $(Ae^{2+}$ = Ba²⁺ and Sr²⁺) range between 42.49 (6) and 142.50 (2)° in compound (I), and between 48.93 (6) and 148.91 (4)° in compound (II). The Ba–O bond lengths are 2.821 (2) and 2.875 (1) Å for the coordinated water molecule, and 2.660 (2) and 3.016 (2) Å for the ttzbenz oxygen atom (Table 2), and these distances are slightly longer than that in an analogous compound (Fu *et al.*, 2010). The Sr–O bond lengths are

Figure 3 Coordinating polymers along the *b* axis.

0	1 ()	/ (/	
Sr-O1	2.501 (2)	Sr-O1 ⁱ	2.6602 (14)
Sr-O3	2.522 (2)	Sr-O4	2.6757 (18)
Sr-O2	2.549 (3)		
$O1-Sr-O1^{ii}$	140.67 (7)	O3-Sr-O1 ⁱⁱⁱ	148.91 (4)
O1-Sr-O3	85.19 (4)	O1-Sr-O4	68.20 (5)
O1-Sr-O2	72.67 (4)	$O1^{ii}$ -Sr-O4	147.71 (5)
O3-Sr-O2	103.31 (9)	O3-Sr-O4	83.72 (5)
$O1-Sr-O1^{i}$	124.21 (4)	O2-Sr-O4	139.50 (4)
$O1^{ii}$ -Sr- $O1^{i}$	77.42 (5)	$O1^{i}$ -Sr-O4	97.37 (4)
$O3-Sr-O1^{i}$	148.91 (4)	O1 ⁱⁱⁱ -Sr-O4	66.00 (5)
$O2-Sr-O1^{i}$	95.91 (7)	O1 ⁱⁱⁱ -Sr-O4 ⁱ	97.37 (4)
$O1^{ii}$ -Sr- $O1^{iii}$	124.21 (5)	$O4-Sr-O4^{i}$	80.48 (7)

Symmetry codes: (i) $x - \frac{1}{2}$, y, $-z + \frac{1}{2}$; (ii) -x + 1, y, z; (iii) $-x + \frac{3}{2}$, y, $-z + \frac{1}{2}$.

2.501 (2) and 2.660 (1) Å for the ttzbenz oxygen atom, and 2.549 (2) and 2.676 (2) Å for the coordinated water molecule (Table 2). The Ba-O bonds are longer than Sr-O bonds; this is due not only to the nature of the metal, but also, in part, to the measurement temperature [room temperature for compound (I), but 150K for compound (II). These bondlength values are close to those observed in similar compounds based on Ae^{2+} one-dimensional coordination polymers: Ba - O = 2.647 - 3.179 Å, Sr - O = 2.486 - 2.843 Å in $[C_{24}H_{28}N_2O_{13}Cl_2CuSr]_n$ and $[C_{24}H_{28}N_2O_{13}Cl_2CuBa]_n$ (Hari, et al., 2017), and in the compounds $[C_8H_{16}N_{16}O_{19}Sr_4]_n$ and $[C_8H_{20}N_{16}O_{18}Sr_4]_n$ where the Sr-O distances range from 2.570-2.700 Å and 2.541-2.633 Å, respectively. In the twodimensional coordination compound $[C_2H_6BaN_4O_5]_n$, the Ba-O distances are 2.790 and 2.902 Å (Hartdegen et al., 2009), while in the three-dimensional polymers $[Ba_2M(H (HCOO)_6(H_2O)_4]_n$, Ba-O = 2.801 (2)-3.6143 (2) Å for M =Ni, Ba-O = 2.797 (2)-2.999 (2) Å for M = Zn, and Ba-O =2.801 (2)–3.004 (2) Å for M = Co (Baggio *et al.*, 2004), and in the strontium complex $C_6H_{12}SrN_6O_{10}$, Sr-O = 2.506-2.724 Å (Divya et al., 2017).

The ttzbenz ligand can adopt several coordination modes by involving the tetrazole ring (Yao *et al.*, 2013), or the carboxylate group as in our case, where the two compounds use the ttzbenz anion to coordinate two adjacent Ae^{2+} cations in a bidentate chelate manner, thus forming a polyatomic bridge and binding neighboring Ae^{2+} ions in a zigzag manner, resulting in the formation of binuclear units [Ae-O1-Ae-O1] with a Ba···Ba distance of 4.0089 (4) Å for compound (I) and an Sr···Sr distance of 3.866 (2) Å for compound (II) (Fig. 3).

3. Supramolecular features

In compound (I), hydrogen bonds between two coordinated water molecules and two nitrogen atoms of the tetrazole ring of the ttzbenz ligand are observed (Table 3), ensuring cohesion between the tetrazole rings and the inorganic $[Ba_2O_2]_n$ chains. In addition to hydrogen bonds, π -stacking interactions between phenyl rings are observed (Fig. 4) with a centroid–centroid distance of 4.035 (1) Å, which enhance the cohesion of the crystal structure.

research communications

$D - H \cdot \cdot \cdot A$	D - H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots N2^{iv}$	0.79 (2)	2.14 (2)	2.927 (2)	175 (3)
$O3-H3\cdots N1^{v}$	0.79 (3)	2.29 (3)	3.069 (2)	169 (3)

Symmetry codes: (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$.

Table 4Hydrogen-bond geometry (Å, °) for (II).

Table 2

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O3-H3\cdots N1^{iv}$	0.85 (2)	1.96 (2)	2.800 (2)	171 (3)
$O3-H3\cdots N2^{iv}$	0.85 (2)	2.62 (2)	3.314 (3)	141 (2)
$O2-H2\cdots N2^{v}$	0.77 (3)	2.53 (3)	3.270 (3)	160 (3)
$O4-H4\cdots N2^{vi}$	0.87(2)	1.93 (2)	2.784 (2)	166 (2)

Symmetry codes: (iv) -x + 2, -y + 1, -z + 1; (v) -x + 2, -y, -z + 1; (vi) $x - \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

In compound (II), as well as the strong $O-H\cdots N$ hydrogen bonds (Table 4), weak intramolecular π -stacking interactions are observed, reinforcing the cohesion in the crystal structure between the tetrazole rings (centroid Cg1) and the phenyl rings (centroid Cg2) with centroid–centroid distances $Cg1\cdots Cg2 = 3.622$ (3) Å and $Cg2\cdots Cg2 = 3.897$ (3) Å (Fig. 4).

4. Topological study

To simplify the crystalline structure of the title compounds, we used the standard representation of valence-bound CPs (CP = coordination polymer) to obtain the underlying network. In such models, only metal centers and the centroids of organic ligands are considered as structural units (Alexandrov *et al.*, 2011). The simplification of the crystal structure of the two compounds by this procedure and the topological classification of the two studied compounds led to the same topological network, identified as a 3.6-*c* net with stoichiometry $(3-C)_2(6-C)$, which can be represented by the point symbol $\{4^3\}_2[4^6.6^6.8^3\}$. Thus the two structures consist of planar layers running parallel to (100) (Fig. 5).

Figure 4

Hydrogen bonds (blue dashed lines) and π -stacking interactions (green dashed lines) in the crystal packing of compounds (I) and (II).

Figure 5 Simplification of the coordination framework in the two compounds using standard representation for valence-bonded CPs.

5. Database survey

A search for 4-(tetrazol-5-yl) benzoate in the Cambridge Structural Database (CSD Version 5.40; Groom et al., 2016) gave 81 hits for the ligand, alone or with co-ligands. The ttzbenz ligand has proved to be an excellent component for the assembly of new coordination complexes and polymers, whether through a bridging and/or chelating coordination mode, mono or polydentate, and as an acceptor of hydrogen bonds through the two carboxylate and tetrazolate groups. This has led to structural diversity with interesting physicochemical properties, as seen in the structures with metal ions: copper (Ouellette et al., 2009), cobalt (Ouellette et al., 2012), zinc (Wei et al., 2012; Jiang et al., 2007; Zheng et al., 2009), lead (Sun et al., 2013), manganese and cadmium (Cheng et al., 2016; Yu et al., 2009), europium, terbium (Wang et al., 2011). Finally, with bipyridine co-ligands (Yang et al., 2017; Gao et al., 2016), (terpyridinyl)benzoate (Zhang et al., 2016), phenanthroline (Werrett et al., 2015), 3,5-dimethyl-1,2,4-triazolato (Sheng et al., 2016), and N,N-dimethylacetamide (Wang et al., 2015).

6. Synthesis and crystallization

Colorless crystals suitable for X-ray diffraction were obtained by hydrothermal synthesis in an aqueous solution according to a literature procedure (Demko & Sharpless, 2001; Zhao *et al.*, 2008), where an aqueous solution (10 ml) of sodium azide (0.065 g, 1 mmol) and 4-cyanobenzoyl chloride (0.165 g, 1 mmol) was added dropwise to an aqueous solution (5 ml) of BaCl₂·2H₂O (0.244 g, 1mmol) for (I) and SrCl₂·6H₂O (0.266g, 1 mmol) for (II) under constant stirring for a few minutes. The resulting solution was sealed in a 25ml teflon-lined stainless steel autoclave and heated at 453 K for 3 d.

The FT–IR spectra for compounds (I) and (II) were recorded in the frequency range 4000–400 cm⁻¹ on a Perkin Elmer FT–IR spectrophotometer Spectrum 1000. The v, γ and δ modes are: stretching, out-of-plane bending, and in-plane bending, respectively. The absence of bands in the two regions: 2200–2280 cm⁻¹ and 2100–2270 cm⁻¹ corresponding to the functions –CN and N₃⁻, respectively, confirms that the [2 + 3] cycloaddition reaction between the cyano group and the azide anions occurred and the tetrazolate ligand was formed (Hammerl *et al.*, 2002, 2003; Damavarapu *et al.*, 2010; Zhang *et al.*, 2013) FT-IR of (I) (ATR, cm⁻¹): 3300 ν (O–H)_{water}, 3100 ν (C–H)_{Ph}, 1435 ν _{sym} (C–C), 1523 ν (N–N)_{ring}, 1603 ν (C–N)_{ring}, 628–1050 γ , δ (tetrazole).

FT–IR of (II) (ATR, cm⁻¹): 3600 ν (O–H)_{water}, 3200 ν (C–H)_{Ph}, 1408 ν _{sym} (C–C), 1530 ν (N–N)_{ring}, 1585 ν (C–N)_{ring}, 654–1009 γ , δ (tetrazole) (see Fig. S1 in the supporting information).

The thermogravimetric analysis (TGA) was performed in the range 25–600°C under air atmosphere at a flow rate of 5° C/ min (Fig. 6). The pyrolytic processes for compound (I) occurs in two main steps. The first step corresponds to the release of four water molecules (2 bridging water molecules and 2 monodentate) (scheme1) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range of 200 to 600°C. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (1 bridging water molecule and 2 monodentate) (scheme1) between 100°C and 160°C, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand 160 and 600°C.

7. Thermogravimetric analysis

The thermogravimetric analysis (TGA) was performed in the range 25–600°C under an air atmosphere at a flow rate of 5°C min⁻¹ (Fig. 6). The pyrolytic processes for compound (I) occur

Figure 6 Thermogravimetric analysis of compounds (I) and (II).

in two main steps. The first step corresponds to the release of four water molecules (two bridging water molecules and two monodentate) between 90°C and 200°C, which corresponds to approximately 18% of the weight of (I). Subsequently, the ligands undergo pyrolysis to result in decomposition (32% by weight) in the range 200–600°C. In compound (II), the pyrolytic processes also go through two stages. The first step corresponds to the release of three water molecules (one bridging water molecule and two monodentate) between 100° C and 160° C, which corresponds to approximately 16% of the weight of (II). The second step corresponding to a weight loss of 44% of (II) is attributed to the decomposition of the ligand between 160 and 600°C.

8. Fluorescence properties

The fluorescence properties of compounds (I) and (II) were determined from the emission spectra at the same excitation wavelength (eX = 322 nm) on an Agilent Cary Eclipse Fluorescence Spectrophotometer at room temperature. Excitation of the two compounds after dissolution in DMSO leads to similar fluorescence emission spectra. The emission maximum of (I) is observed to shift from 368 to 377 nm and from 371 to 378 nm for II (see Fig. S2 in the supporting information), probably corresponding to $\pi^* \to \pi$ or $\pi^* \to n$ electronic transition of the aromatic ring ttzbenz ligands (Koşar *et al.*, 2012), due to the close resemblance of the emission band of the two compounds. We also note downward absorption values ranging from compound (I) to (II), which may be due to the increase in the atomic number from Sr²⁺ to Ba²⁺.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The water H atoms were located in a difference-Fourier map and their positions and isotropic displacement parameters were refined. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C-H = 0.93 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$.

Acknowledgements

We would like to thank S. Maza and the Fluorescence Spectroscopy staff at the National Biotechnology Research Center, Constantine, Algeria.

Funding information

Funding for this research was provided by: Unité de Recherche de Chimie Moléculaire et Structurale (UR.CHEMS); Direction Générale de la Recherche Scientifique et du Developpement Technologique (DGRSDT) Algérie.

research communications

Table 5 Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[Ba(C_8H_4N_4O_2)(H_2O)_4]$	$[Sr(C_8H_4N_4O_2)(H_2O)_3]$
$M_{ m r}$	397.55	329.82
Crystal system, space group	Orthorhombic, Imma	Orthorhombic, Pmna
Temperature (K)	298	150
a, b, c (Å)	7.5012 (1), 7.1444 (1), 24.7457 (5)	6.914 (6), 7.018 (7), 24.164 (2)
$V(Å^3)$	1326.16 (4)	1172.5 (16)
Z	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	3.02	4.62
Crystal size (mm)	$0.6 \times 0.5 \times 0.22$	$0.20 \times 0.1 \times 0.07$
Data collection		
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2011)	Multi-scan (SADABS; Bruker, 2011)
T_{\min}, T_{\max}	0.670, 0.747	0.67, 0.747
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5216, 952, 920	9495, 2091, 1740
R _{int}	0.032	0.038
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.667	0.735
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.016, 0.039, 1.07	0.028, 0.062, 1.07
No. of reflections	937	2091
No. of parameters	70	105
No. of restraints	0	1
H-atom treatment	H atoms treated by a mixture of independent	H atoms treated by a mixture of independent
	and constrained refinement	and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.91, -0.31	0.65, -0.44

Computer programs: APEX2 and SAINT (Bruker, 2011), CrysAlis PRO (Rigaku OD, 2015), SHELXT (Sheldrick, 2015a), SIR92 (Altomare et al., 1993), SHELXL (Sheldrick, 2015b), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

References

- Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Baggio, R., Stoilova, D., Polla, G., Leyva, G. & Garland, M. T. (2004). J. Mol. Struct. 697, 173–180.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
- Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). *Chem. Eur. J.* **11**, 1479–1494.
- Cheng, M., Ding, Y.-S., Zhang, Z. & Jia, Q.-X. (2016). *Inorg. Chim.* Acta, **450**, 1–7.
- Damavarapu, R., Klapötke, T. M., Stierstorfer, J. & Tarantik, K. R. (2010). Propellants, Explosives, Pyrotech. 35, 395–406.
- Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.
- Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). *Physica B*, **526**, 37–44.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fischer, N., Klapötke, T. M., Peters, K., Rusan, M. & Stierstorfer, J. (2011). Z. Anorg. Allg. Chem. 637, 1693–1701.
- Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285.
- Gao, J.-X., Xiong, J. B., Xu, Q., Tan, Y. H., Liu, Y., Wen, H. R. & Tang, Y. Z. (2016). Cryst. Growth Des. 16, 1559–1564.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hammerl, A., Holl, G., Kaiser, M., Klapötke, Th. M. & Piotrowski, H. (2003). Z. Anorg. Allg. Chem. 629, 2117–2121.

- Hammerl, A., Holl, G., Klapötke, Th. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). *Eur. J. Inorg. Chem.* pp. 834–845.
- Hari, N., Jana, A. & Mohanta, S. (2017). Inorg. Chim. Acta, 467, 11– 20.
- Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). *Inorg. Chem.* **48**, 9549–9556.
- Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197.
- Klapötke, T. M. & Stierstorfer, J. (2009). J. Am. Chem. Soc. 131, 1122– 1134.
- Koşar, B., Albayrak, C., Ersanlı, C. C., Odabaşoğlu, M. & Büyükgüngör, O. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 1–9.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Ouellette, W., Darling, K. & Zubieta, J. (2012). *Inorg. Chim. Acta*, **391**, 36–43.
- Ouellette, W., Liu, H., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chem. 48, 4655–4657.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sheng, D.-H., Dan, W.-Y., Luo, G.-X. & Deng, M.-L. (2016). Chin. J. Struct. Chem. 35, 264–270.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Sun, J.-Y., Wang, L., Zhang, D.-J., Li, D., Cao, Y., Zhang, L.-Y., Zeng, S.-L., Pang, G.-S., Fan, Y., Xu, J.-N. & Song, T.-Y. (2013). *CrystEngComm*, **15**, 3402–3411.

- Wang, D., Zhang, L., Li, G., Huo, Q. & Liu, Y. (2015). RSC Adv. 5, 18087–18091.
- Wang, J., Nie, J. & Dai, C. (2011). J. Coord. Chem. 64, 1645-1653.
- Wei, Q., Yang, D., Larson, T. E., Kinnibrugh, T. L., Zou, R., Henson, N. J., Timofeeva, T., Xu, H., Zhao, Y. & Mattes, B. R. (2012). J. Mater. Chem. 22, 10166–10171.
- Werrett, M. V., Huff, G. S., Muzzioli, S., Fiorini, V., Zacchini, S., Skelton, B. W., Maggiore, A., Malicka, J. M., Cocchi, M., Gordon, K. C., Stagni, S. & Massi, M. (2015). *Dalton Trans.* 44, 8379–8393.
 Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, H.-Y., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y. & Zhu, Z. (2017). *Dalton Trans.* 46, 11722–11727.

- Yao, R.-X., Qin, Y.-L., Ji, F., Zhao, Y.-F. & Zhang, X.-M. (2013). Dalton Trans. 42, 6611–6618.
- Yu, Z.-P., Xiong, S.-S., Yong, G.-P. & Wang, Z.-Y. (2009). J. Coord. Chem. 62, 242–248.
- Zhang, T., Li, R. F., Tian, A. Q., Feng, X. & Tian, P. H. (2016). *Chin. J. Struct. Chem.* **35**, 1122–1128.
- Zhang, X. B., Ren, Y. H., Li, W., Zhao, F. Q., Yi, J. H., Wang, B. Z. & Song, J. R. (2013). J. Coord. Chem. 66, 2051–2064.
- Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.
- Zheng, S.-L., Wang, Y., Yu, Z., Lin, Q. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 18036–18037.

Acta Cryst. (2020). E76, 877-883 [https://doi.org/10.1107/S2056989020006386]

In situ synthesis, crystal structures, topology and photoluminescent properties of poly[di- μ -aqua-diaqua[μ_3 -4-(1*H*-tetrazol-1-id-5-yl)benzoato- $\kappa^4 O:O,O':O''$]barium(II)] and poly[μ -aqua-diaqua[μ_3 -4-(1*H*-tetrazol-1-id-5yl)benzoato- $\kappa^4 O:O,O':O'$]strontium(II)]

Mohamed Abdellatif Bensegueni, Aouatef Cherouana and Hocine Merazig

Computing details

For both structures, data collection: *APEX2* (Bruker, 2011). Cell refinement: *SAINT* (Bruker, 2011) for (I); *CrysAlis PRO* (Rigaku OD, 2015) for (II). Data reduction: *SAINT* (Bruker, 2011) for (I); *CrysAlis PRO* (Rigaku OD, 2015) for (II).
Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); *SIR92* (Altomare *et al.*, 1993) for (II). Program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b) for (I); *SHELXL97* (Sheldrick, 2008) for (II). Molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) for (I); *ORTEP-3 for Windows* (Farrugia, 2012), *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2020) for (II). Software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009), for (I); *PLATON* (Spek, 2020); *publCIF* (Westrip, 2010) for (II).

F(000) = 768

 $\theta = 4.3 - 51.0^{\circ}$

 $\mu = 3.02 \text{ mm}^{-1}$ T = 298 K

Block, colorless

 $0.6 \times 0.5 \times 0.22 \text{ mm}$

 $D_{\rm x} = 1.991 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9092 reflections

Poly[di- μ -aqua-diaqua[μ_3 -5-(4-carboxylatophenyl)-1*H*-1,2,3,4-tetrazol-1-ido- $\kappa^4 O:O,O':O'$]barium(II)] (I)

Crystal data [Ba(C₈H₄N₄O₂)(H₂O)₄] $M_r = 397.55$ Orthorhombic, *Imma* Hall symbol: -I 2b 2 a = 7.5012 (1) Å b = 7.1444 (1) Å c = 24.7457 (5) Å V = 1326.16 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD	952 independent reflections
diffractometer	920 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.032$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 4.9^{\circ}$
(SADABS; Bruker, 2011)	$h = -10 \rightarrow 7$
$T_{\min} = 0.670, \ T_{\max} = 0.747$	$k = -9 \longrightarrow 7$
5216 measured reflections	$l = -30 \rightarrow 32$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.016$	Hydrogen site location: mixed
$wR(F^2) = 0.039$	H atoms treated by a mixture of independent
S = 1.07	and constrained refinement
937 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0155P)^2 + 1.5691P]$
70 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.91 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Ba1	0.5000	0.7500	0.462655 (6)	0.02050 (7)	
O2	0.7739 (2)	0.5000	0.5000	0.0309 (3)	
01	0.5000	0.4029 (2)	0.42376 (7)	0.0385 (4)	
03	0.2356 (3)	0.7500	0.38160 (10)	0.0458 (5)	
N2	0.5000	0.1584 (3)	0.08485 (7)	0.0312 (4)	
C1	0.5000	0.2500	0.39934 (11)	0.0197 (5)	
N1	0.5000	0.0959 (3)	0.13588 (7)	0.0313 (4)	
C2	0.5000	0.2500	0.33851 (11)	0.0221 (5)	
C3	0.5000	0.0832 (3)	0.31016 (9)	0.0343 (5)	
H3A	0.5000	-0.0298	0.3288	0.041*	
C5	0.5000	0.2500	0.22580 (12)	0.0243 (6)	
C6	0.5000	0.2500	0.16639 (12)	0.0233 (5)	
C4	0.5000	0.0829 (3)	0.25423 (9)	0.0369 (6)	
H4	0.5000	-0.0302	0.2356	0.044*	
Н3	0.175 (4)	0.665 (4)	0.3725 (13)	0.072 (9)*	
H2	0.834 (3)	0.464 (4)	0.4761 (9)	0.046 (7)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.02865 (11)	0.01345 (10)	0.01940 (11)	0.000	0.000	0.000
O2	0.0294 (7)	0.0369 (9)	0.0265 (8)	0.000	0.000	-0.0053 (7)
O1	0.0744 (12)	0.0226 (8)	0.0184 (7)	0.000	0.000	-0.0041 (6)
O3	0.0508 (11)	0.0293 (9)	0.0571 (13)	0.000	-0.0202 (10)	0.000
N2	0.0469 (11)	0.0283 (10)	0.0183 (8)	0.000	0.000	-0.0020(7)
C1	0.0246 (12)	0.0172 (12)	0.0173 (13)	0.000	0.000	0.000
N1	0.0527 (11)	0.0240 (9)	0.0171 (8)	0.000	0.000	-0.0010(7)
C2	0.0319 (14)	0.0213 (13)	0.0132 (12)	0.000	0.000	0.000
C3	0.0659 (15)	0.0190 (9)	0.0180 (10)	0.000	0.000	0.0022 (8)

C5	0.0337 (14)	0.0231 (14)	0.0162 (13)	0.000	0.000	0.000
C6	0.0298 (13)	0.0223 (13)	0.0179 (13)	0.000	0.000	0.000
C4	0.0718 (17)	0.0193 (9)	0.0196 (10)	0.000	0.000	-0.0033 (8)

Geometric parameters (Å,	9)		
Ba1—O1	2.6598 (17)	N2—N1	1.339 (3)
Ba1—O1 ⁱ	2.6598 (17)	C1—O1 ^{iv}	1.249 (2)
Ba1—O3 ⁱ	2.821 (2)	C1—C2	1.505 (4)
Ba1—O3	2.821 (2)	N1—C6	1.335 (2)
Ba1—O2 ⁱⁱ	2.8750 (12)	C2-C3 ^{iv}	1.383 (3)
Ba1—O2	2.8750 (12)	C2—C3	1.383 (3)
Ba1—O2 ⁱⁱⁱ	2.8750 (12)	C3—C4	1.384 (3)
Ba1—O2 ⁱ	2.8750 (12)	С3—НЗА	0.9300
Ba1—O1 ⁱⁱ	3.0157 (17)	C5—C4	1.386 (3)
Ba1—O1 ⁱⁱⁱ	3.0157 (17)	$C5-C4^{iv}$	1.386 (3)
O2—H2	0.78 (2)	C5—C6	1.470 (4)
01—C1	1.249 (2)	C6	1.335 (2)
О3—Н3	0.80 (3)	C4—H4	0.9300
N2—N2 ^{iv}	1.308 (4)		
O1—Ba1—O1 ⁱ	137.57 (7)	Ba1 ⁱⁱⁱ —O2—Ba1	88.77 (5)
O1-Ba1-O3 ⁱ	75.09 (3)	Ba1 ^v —O2—H2	117 (2)
O1 ⁱ —Ba1—O3 ⁱ	75.09 (3)	Ba1 ^{vi} —O2—H2	117 (2)
O1—Ba1—O3	75.09 (3)	Ba1 ^{vii} —O2—H2	117 (2)
O1 ⁱ —Ba1—O3	75.09 (3)	Ba1 ⁱⁱⁱ —O2—H2	117 (2)
O3 ⁱ —Ba1—O3	89.36 (11)	Ba1—O2—H2	111.5 (19)
O1—Ba1—O2 ⁱⁱ	134.06 (2)	C1—O1—Ba1	172.27 (16)
O1 ⁱ —Ba1—O2 ⁱⁱ	62.43 (2)	C1—O1—Ba1 ^v	97.70 (14)
O3 ⁱ —Ba1—O2 ⁱⁱ	74.10 (4)	Ba1—O1—Ba1 ^v	90.03 (5)
O3—Ba1—O2 ⁱⁱ	136.98 (2)	C1-O1-Ba1 ^{vii}	97.70 (14)
O1—Ba1—O2	62.43 (2)	Ba1—O1—Ba1 ^{vii}	90.03 (5)
O1 ⁱ —Ba1—O2	134.06 (2)	C1—O1—Ba1 ⁱⁱⁱ	97.70 (14)
O3 ⁱ —Ba1—O2	74.10 (4)	Ba1—O1—Ba1 ⁱⁱⁱ	90.03 (5)
O3—Ba1—O2	136.98 (2)	C1—O1—Ba1 ^{vi}	97.70 (14)
O2 ⁱⁱ —Ba1—O2	76.81 (4)	Ba1—O1—Ba1 ^{vi}	90.03 (5)
O1—Ba1—O2 ⁱⁱⁱ	62.43 (2)	Ba1—O3—H3	127 (2)
O1 ⁱ —Ba1—O2 ⁱⁱⁱ	134.06 (2)	N2 ^{iv} —N2—N1	109.49 (12)
O3 ⁱ —Ba1—O2 ⁱⁱⁱ	136.98 (2)	01-C1-01 ^{iv}	122.1 (3)
O3—Ba1—O2 ⁱⁱⁱ	74.10 (4)	O1—C1—C2	118.95 (13)
O2 ⁱⁱ —Ba1—O2 ⁱⁱⁱ	142.501 (17)	O1 ^{iv} —C1—C2	118.95 (13)
O2—Ba1—O2 ⁱⁱⁱ	91.23 (5)	O1—C1—Ba1 ^{vii}	61.05 (13)
O1-Ba1-O2 ⁱ	134.06 (2)	O1 ^{iv} —C1—Ba1 ^{vii}	61.05 (13)
O1 ⁱ —Ba1—O2 ⁱ	62.43 (2)	C2-C1-Ba1 ^{vii}	180.0
O3 ⁱ —Ba1—O2 ⁱ	136.98 (2)	O1—C1—Ba1 ⁱⁱⁱ	61.05 (13)
O3—Ba1—O2 ⁱ	74.10 (4)	O1 ^{iv} —C1—Ba1 ⁱⁱⁱ	61.05 (13)
O2 ⁱⁱ —Ba1—O2 ⁱ	91.23 (5)	C2—C1—Ba1 ⁱⁱⁱ	180.0
O2—Ba1—O2 ⁱ	142.501 (17)	O1—C1—Ba1 ^{vi}	61.05 (13)

$O2^{m}$ —Ba1— $O2^{r}$	76.81 (4)	O1 ^{iv} —C1—Ba1 ^{vi}	61.05 (13)
O1—Ba1—O1 ⁱⁱ	132.46 (5)	C2—C1—Ba1 ^{vi}	180.0
O1 ⁱ —Ba1—O1 ⁱⁱ	89.97 (5)	O1—C1—Ba1 ^v	61.05 (13)
O3 ⁱ —Ba1—O1 ⁱⁱ	131.51 (5)	$O1^{iv}$ — $C1$ — $Ba1^{v}$	61.05 (13)
O3—Ba1—O1 ⁱⁱ	131.51 (5)	C2—C1—Ba1 ^v	180.0
O2 ⁱⁱ —Ba1—O1 ⁱⁱ	58.35 (2)	C6—N1—N2	104.94 (19)
O2—Ba1—O1 ⁱⁱ	85.73 (2)	C3 ^{iv} —C2—C3	119.0 (3)
O2 ⁱⁱⁱ —Ba1—O1 ⁱⁱ	85.73 (2)	C3 ^{iv} —C2—C1	120.48 (13)
O2 ⁱ —Ba1—O1 ⁱⁱ	58.35 (2)	C3—C2—C1	120.48 (13)
O1—Ba1—O1 ⁱⁱⁱ	89.97 (5)	C2—C3—C4	120.6 (2)
O1 ⁱ —Ba1—O1 ⁱⁱⁱ	132.46 (5)	С2—С3—НЗА	119.7
O3 ⁱ —Ba1—O1 ⁱⁱⁱ	131.51 (5)	С4—С3—НЗА	119.7
O3—Ba1—O1 ⁱⁱⁱ	131.51 (5)	$C4$ — $C5$ — $C4^{iv}$	119.0 (3)
O2 ⁱⁱ —Ba1—O1 ⁱⁱⁱ	85.73 (2)	C4—C5—C6	120.50 (14)
O2—Ba1—O1 ⁱⁱⁱ	58.35 (2)	C4 ^{iv} —C5—C6	120.50 (14)
O2 ⁱⁱⁱ —Ba1—O1 ⁱⁱⁱ	58.35 (2)	N1 ^{iv} —C6—N1	111.1 (3)
O2 ⁱ —Ba1—O1 ⁱⁱⁱ	85.73 (2)	N1 ^{iv} —C6—C5	124.44 (13)
O1 ⁱⁱ —Ba1—O1 ⁱⁱⁱ	42.49 (6)	N1—C6—C5	124.44 (13)
Ba1 ^v —O2—Ba1	88.77 (5)	C3—C4—C5	120.4 (2)
Ba1 ^{vi} —O2—Ba1	88.77 (5)	C3—C4—H4	119.8
Ba1 ^{vii} —O2—Ba1	88.77 (5)	C5—C4—H4	119.8
O1—Ba1—O2—Ba1 ^v	-57.76 (3)	O1 ⁱⁱ —Ba1—O2—Ba1 ^{vii}	85.62 (2)
O1 ⁱ —Ba1—O2—Ba1 ^v	171.44 (5)	O1 ⁱⁱⁱ —Ba1—O2—Ba1 ^{vii}	50.97 (3)
$O1^{i}$ —Ba1—O2—Ba1 ^v $O3^{i}$ —Ba1—O2—Ba1 ^v	171.44 (5) -138.96 (4)	O1 ⁱⁱⁱ —Ba1—O2—Ba1 ^{vii} O1—Ba1—O2—Ba1 ⁱⁱⁱ	50.97 (3) -57.76 (3)
O1 ⁱ —Ba1—O2—Ba1 ^v O3 ⁱ —Ba1—O2—Ba1 ^v O3—Ba1—O2—Ba1 ^v	171.44 (5) -138.96 (4) -67.75 (7)	O1 ⁱⁱⁱ —Ba1—O2—Ba1 ^{vii} O1—Ba1—O2—Ba1 ⁱⁱⁱ O1 ⁱ —Ba1—O2—Ba1 ⁱⁱⁱ	50.97 (3) -57.76 (3) 171.44 (5)
O1 ⁱ —Ba1—O2—Ba1 ^v O3 ⁱ —Ba1—O2—Ba1 ^v O3—Ba1—O2—Ba1 ^v O2 ⁱⁱ —Ba1—O2—Ba1 ^v	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12)	O1 ⁱⁱⁱ —Ba1—O2—Ba1 ^{vii} O1—Ba1—O2—Ba1 ⁱⁱⁱ O1 ⁱ —Ba1—O2—Ba1 ⁱⁱⁱ O3 ⁱ —Ba1—O2—Ba1 ⁱⁱⁱ	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \end{array}$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4)	O1 ⁱⁱⁱ —Ba1—O2—Ba1 ^{vii} O1—Ba1—O2—Ba1 ⁱⁱⁱ O1 ⁱ —Ba1—O2—Ba1 ⁱⁱⁱ O3 ⁱ —Ba1—O2—Ba1 ⁱⁱⁱ O3—Ba1—O2—Ba1 ⁱⁱⁱ	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \end{array}$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2)	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \end{array}$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{v} \end{array}$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3)	$\begin{array}{l} O1^{iii} & Ba1 & O2 & Ba1^{vii} \\ O1 & Ba1 & O2 & Ba1^{iii} \\ O1^{i} & Ba1 & O2 & Ba1^{iii} \\ O3^{i} & Ba1 & O2 & Ba1^{iii} \\ O3 & Ba1 & O2 & Ba1^{iii} \\ O2^{ii} & Ba1 & O2 & Ba1^{iii} \\ O2^{ii} & Ba1 & O2 & Ba1^{iii} \\ O2^{ii} & Ba1 & O2 & Ba1^{iii} \\ \end{array}$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{v} \\ O1 - Ba1 - O2 - Ba1^{vi} \end{array}$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) -57.76 (3)	$\begin{array}{c} O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \end{array}$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{v} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) -57.76 (3) 171.44 (5)	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{ii} \\ O1^{ii} - Ba1 - O2 - Ba$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O1$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4)	$\begin{array}{c} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O1 - Ba1^{v} \end{array}$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3 - Ba$	171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7)	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \end{array}$	$50.97 (3) \\ -57.76 (3) \\ 171.44 (5) \\ -138.96 (4) \\ -67.75 (7) \\ 144.096 (12) \\ 69.71 (4) \\ 85.62 (2) \\ 50.97 (3) \\ 133.31 (5) \\ 84.02 (4)$
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{i} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1 - O$	$171.44 (5) \\ -138.96 (4) \\ -67.75 (7) \\ 144.096 (12) \\ 69.71 (4) \\ 85.62 (2) \\ 50.97 (3) \\ -57.76 (3) \\ 171.44 (5) \\ -138.96 (4) \\ -67.75 (7) \\ 144.096 (12) \\ $	$\begin{array}{c} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2 - Ba1 - O1 - Ba1^{v} \\ O1 - Ba1 - O1 - Ba1 - O1 - Ba1^{v} \\ O1 - Ba1 - O$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1 - O2 - Ba1^{vi} \\ O2^{ii} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba$	$171.44 (5) \\ -138.96 (4) \\ -67.75 (7) \\ 144.096 (12) \\ 69.71 (4) \\ 85.62 (2) \\ 50.97 (3) \\ -57.76 (3) \\ 171.44 (5) \\ -138.96 (4) \\ -67.75 (7) \\ 144.096 (12) \\ 69.71 (4) \\ $	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3 - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ \end{array}$	50.97(3) -57.76(3) 171.44(5) -138.96(4) -67.75(7) 144.096(12) 69.71(4) 85.62(2) 50.97(3) 133.31(5) 84.02(4) 53.73(3) 133.31(5)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O2^{ii} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1$	171.44 (5) $-138.96 (4)$ $-67.75 (7)$ $144.096 (12)$ $69.71 (4)$ $85.62 (2)$ $50.97 (3)$ $-57.76 (3)$ $171.44 (5)$ $-138.96 (4)$ $-67.75 (7)$ $144.096 (12)$ $69.71 (4)$ $85.62 (2)$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{Ba1} - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O1 - Ba1^{vi} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{Ba1} - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O3^{ii} - Ba1 - O1 - Ba1^{vii} \\ O3^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O1^{ii} - Ba1 - O1 - Ba1^{vii} \\ O1^{ii}$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O2^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^$	171.44 (5) $-138.96 (4)$ $-67.75 (7)$ $144.096 (12)$ $69.71 (4)$ $85.62 (2)$ $50.97 (3)$ $-57.76 (3)$ $171.44 (5)$ $-138.96 (4)$ $-67.75 (7)$ $144.096 (12)$ $69.71 (4)$ $85.62 (2)$ $50.97 (3)$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{Ba1 - O2 - Ba1^{iii}} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O1 - Ba1^{v} \\ O2^{2ii} - Ba1 - O1 - Ba1^{v} \\ O2^{Ba1 - O1 - Ba1^{vii}} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{Ba1 - O1 - Ba1^{vii}} \\ O1^{Ba1^{vii}} \\ O1^{B$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba $	$\begin{array}{c} 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ \end{array}$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{iii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1^{ii} - Ba1 - O2 - Ba1$	$\begin{array}{c} 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ \end{array}$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{-} Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{vi} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{-} Ba1 - O1 - Ba1^{vi} \\ O2^{-} Ba1 - O1 - Ba1^{vii} \\ O2^{-} Ba1 - O1 - Ba1^{iii} \\ O2^{-} Ba1 - O1 - Ba1^{ii} \\ O1^{-} Ba1^{-} \\ O1$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O2^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vii} \\ $	$\begin{array}{c} 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ \end{array}$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O1 - Ba1^{vi} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{vii} \\ O3^{i} - Ba1 - O1 - Ba1^{iii} \\ O3^{i} - Ba1 - O1 - Ba1^{iii} \\ O2^{ii} - Ba1 - O1 - Ba1^{iii} \\ O3^{ii} - Ba1 - O1 - Ba1^{ii} \\ O3^{ii} - Ba$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3)
$\begin{array}{l} O1^{i} - Ba1 - O2 - Ba1^{v} \\ O3^{i} - Ba1 - O2 - Ba1^{v} \\ O3 - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O2^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{v} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1 - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{i} - Ba1 - O2 - Ba1^{vi} \\ O3^{ii} - Ba1 - O2 - Ba1^{vi} \\ O2^{ii} - Ba1 - O2 - Ba1^{vi} \\ O1^{ii} - Ba1 - O2 - Ba1^{vii} \\ O1^{ii} - Ba1 - O2 - Ba1^{vii} \\ O1^{ii} - Ba1 - O2 - Ba1^{vii} \\ O3^{i} - $	$\begin{array}{c} 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ \end{array}$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{iii} \\ O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{iii} \\ O3^{ii} - Ba1 - O1 - Ba1^{ii} \\ O3^{ii$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5)
$O1^{i}$ —Ba1—O2—Ba1 ^v $O3^{i}$ —Ba1—O2—Ba1 ^v O3—Ba1—O2—Ba1 ^v $O2^{ii}$ —Ba1—O2—Ba1 ^v $O2^{ii}$ —Ba1—O2—Ba1 ^v $O1^{ii}$ —Ba1—O2—Ba1 ^v $O1^{iii}$ —Ba1—O2—Ba1 ^{vi} O1—Ba1—O2—Ba1 ^{vi} $O1^{i}$ —Ba1—O2—Ba1 ^{vi} $O3^{i}$ —Ba1—O2—Ba1 ^{vi} $O3^{i}$ —Ba1—O2—Ba1 ^{vi} $O2^{ii}$ —Ba1—O2—Ba1 ^{vi} $O1^{iii}$ —Ba1—O2—Ba1 ^{vi} $O1^{iii}$ —Ba1—O2—Ba1 ^{vi} $O1^{iii}$ —Ba1—O2—Ba1 ^{vii} $O1^{iii}$ —Ba1—O2—Ba1 ^{vii} $O1^{iii}$ —Ba1—O2—Ba1 ^{vii} $O1^{ii}$ —Ba1—O2—Ba1 ^{vii} $O1^{ii}$ —Ba1—O2—Ba1 ^{vii} $O3^{i}$ —Ba1—O2—Ba1 ^{vii} $O3^{i}$ —Ba1—O2—Ba1 ^{vii} $O3^{i}$ —Ba1—O2—Ba1 ^{vii} $O3^{i}$ —Ba1—O2—Ba1 ^{vii}	$\begin{array}{c} 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ 69.71\ (4)\\ 85.62\ (2)\\ 50.97\ (3)\\ -57.76\ (3)\\ 171.44\ (5)\\ -138.96\ (4)\\ -67.75\ (7)\\ 144.096\ (12)\\ \end{array}$	$\begin{array}{l} O1^{iii} - Ba1 - O2 - Ba1^{vii} \\ O1 - Ba1 - O2 - Ba1^{iii} \\ O1^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O3^{i} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O2^{ii} - Ba1 - O2 - Ba1^{iii} \\ O1^{ii} - Ba1 - O2 - Ba1^{vii} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{v} \\ O2^{ii} - Ba1 - O1 - Ba1^{vii} \\ O1^{ii} - Ba1^{vi} \\ O1^{ii} - Ba1^{vii} \\ O1^{ii} - Ba1^{v$	50.97 (3) -57.76 (3) 171.44 (5) -138.96 (4) -67.75 (7) 144.096 (12) 69.71 (4) 85.62 (2) 50.97 (3) 133.31 (5) 84.02 (4) 53.73 (3) 133.31 (5) 84.02 (4)

Symmetry codes: (i) -*x*+1, -*y*+3/2, *z*; (ii) *x*, *y*+1/2, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*+1, -*y*+1/2, *z*; (v) -*x*+1, *y*-1/2, -*z*+1; (vi) *x*, *y*-1/2, -*z*+1; (vii) *x*, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O2—H2···N2 ^{viii}	0.79 (2)	2.14 (2)	2.927 (2)	175 (3)
O3—H3····N1 ^{ix}	0.79 (3)	2.29 (3)	3.069 (2)	169 (3)

Symmetry codes: (viii) x+1/2, -y+1/2, -z+1/2; (ix) x-1/2, -y+1/2, -z+1/2.

Poly[μ -aqua-diaqua[μ_3 -5-(4-carboxylatophenyl)-1*H*-1,2,3,4-tetrazol-1-ido- κ^4 O:O,O':O']strontium(II)] (II)

Crystal data F(000) = 656 $[Sr(C_8H_4N_4O_2)(H_2O)_3]$ $M_r = 329.82$ $D_{\rm x} = 1.874 {\rm Mg} {\rm m}^{-3}$ Orthorhombic, Pmna Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: -P 2ac 2 Cell parameters from 10707 reflections a = 6.914 (6) Å $\theta = 4.9 - 34.3^{\circ}$ $\mu = 4.62 \text{ mm}^{-1}$ b = 7.018 (7) Å c = 24.164(2) Å T = 150 K $V = 1172.5 (16) Å^3$ Prism, colorless Z = 4 $0.20 \times 0.1 \times 0.07 \text{ mm}$ Data collection Bruker APEXII CCD 9495 measured reflections 2091 independent reflections diffractometer Radiation source: fine-focus sealed tube 1740 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.038$ $\theta_{\rm max} = 31.5^\circ, \ \theta_{\rm min} = 3.4^\circ$ φ and ω scans $h = -10 \rightarrow 8$ Absorption correction: multi-scan $k = -10 \rightarrow 8$ (SADABS; Bruker, 2011) $l = -34 \rightarrow 35$ $T_{\rm min} = 0.67, T_{\rm max} = 0.747$ Refinement Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.028$ $w = 1/[\sigma^2(F_o^2) + (0.0253P)^2 + 0.7105P]$

$wR(F^2) = 0.062$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
2091 reflections	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
105 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
1 restraint	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sr	0.5000	0.41161 (3)	0.285826 (9)	0.01071 (7)	
04	0.7500	0.6752 (3)	0.2500	0.0148 (4)	
02	0.5000	0.0703 (3)	0.32193 (13)	0.0341 (6)	
03	0.5000	0.6090 (3)	0.37304 (8)	0.0201 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

01	0.84065 (19)	0.3310 (2)	0.31160 (5)	0.0157 (3)
C2	1.0000	0.2947 (3)	0.39842 (10)	0.0112 (5)
N1	1.1596 (2)	0.1898 (2)	0.60389 (6)	0.0155 (3)
C4	0.8268 (3)	0.2547 (3)	0.48414 (7)	0.0166 (4)
H4A	0.7101	0.2459	0.5031	0.020*
C5	1.0000	0.2407 (4)	0.51296 (10)	0.0120 (5)
N2	1.0952 (2)	0.1577 (2)	0.65534 (6)	0.0167 (3)
C6	1.0000	0.2079 (3)	0.57327 (10)	0.0120 (5)
C3	0.8269 (3)	0.2818 (3)	0.42714 (7)	0.0166 (4)
H3A	0.7102	0.2912	0.4082	0.020*
C1	1.0000	0.3206 (4)	0.33702 (10)	0.0113 (5)
Н3	0.600 (3)	0.668 (4)	0.3839 (10)	0.037 (7)*
H4	0.709 (4)	0.743 (4)	0.2212 (9)	0.036 (8)*
H2	0.584 (4)	0.014 (5)	0.3353 (12)	0.058 (10)*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr	0.00658 (11)	0.01630 (11)	0.00923 (10)	0.000	0.000	0.00006 (10)
O4	0.0141 (10)	0.0173 (8)	0.0131 (9)	0.000	-0.0015 (7)	0.000
O2	0.0211 (13)	0.0223 (12)	0.0590 (18)	0.000	0.000	0.0144 (12)
03	0.0102 (10)	0.0302 (11)	0.0200 (10)	0.000	0.000	-0.0087 (9)
01	0.0088 (6)	0.0258 (7)	0.0124 (6)	0.0014 (6)	-0.0017 (5)	0.0045 (5)
C2	0.0120 (12)	0.0107 (10)	0.0107 (11)	0.000	0.000	0.0017 (9)
N1	0.0144 (8)	0.0215 (8)	0.0106 (7)	-0.0015 (6)	-0.0014 (6)	0.0002 (6)
C4	0.0101 (9)	0.0251 (9)	0.0146 (8)	0.0019 (8)	0.0022 (7)	0.0017 (7)
C5	0.0140 (12)	0.0126 (11)	0.0093 (11)	0.000	0.000	-0.0019 (9)
N2	0.0186 (8)	0.0206 (7)	0.0110 (7)	-0.0015 (7)	-0.0010 (6)	0.0000 (6)
C6	0.0134 (12)	0.0112 (10)	0.0114 (11)	0.000	0.000	-0.0019 (9)
C3	0.0102 (9)	0.0260 (9)	0.0137 (8)	0.0023 (7)	-0.0009 (7)	0.0026 (7)
C1	0.0084 (12)	0.0124 (11)	0.0132 (11)	0.000	0.000	0.0007 (9)

Geometric parameters (Å, °)

Sr-01	2.501 (2)	C2—C3	1.387 (2)
Sr—O1 ⁱ	2.501 (2)	C2—C1	1.495 (3)
Sr—O3	2.522 (2)	N1—C6	1.335 (2)
Sr—O2	2.549 (3)	N1—N2	1.340 (2)
Sr—O1 ⁱⁱ	2.6602 (14)	C4—C5	1.389 (2)
Sr—O1 ⁱⁱⁱ	2.6602 (14)	C4—C3	1.390 (2)
Sr—O4	2.6757 (18)	C4—H4A	0.9300
Sr—O4 ⁱⁱ	2.6757 (18)	C5—C4 ^{iv}	1.389 (2)
O4—H4	0.89 (2)	C5—C6	1.475 (3)
O2—H2	0.77 (3)	N2—N2 ^{iv}	1.316 (4)
О3—Н3	0.846 (16)	C6—N1 ^{iv}	1.335 (2)
01—C1	1.2635 (19)	С3—НЗА	0.9300
C2-C3 ^{iv}	1.387 (2)	C1—O1 ^{iv}	1.2635 (19)

01 —Sr— 01^{i}	140 67 (7)	O4 ⁱⁱ —Sr—Sr ⁱⁱ	43 74 (4)
01—Sr— 03	85 19 (4)	$C1^{ii}$ Sr Sr	64 037 (19)
01^{i} Sr 03	85 20 (4)	$01 - Sr - Sr^{v}$	43 07 (4)
01 - Sr - 02	72.67(4)	$O1^{i}$ Sr Sr	162 46 (3)
$O1^{i}$ Sr $O2$	72.07(4)	$O_3 = Sr = Sr^{v}$	102.40(3) 111.07(2)
01 - 51 - 02	103 21 (0)	$O_2 = S_1 = S_1$	111.97(2)
03 - 31 - 02	103.31(9) 124.21(4)	$O_2 - S_1 - S_1$	90.02 (3)
01 - Sr - 01	124.21 (4)	Olim Gran	88.51 (4)
OI - Sr - OI	//.42 (5)	$O1^{m}$ Sr Sr	39.95 (3)
O3—Sr—OI ⁿ	148.91 (4)	O4—Sr—Sr ^v	43.74 (4)
$O2$ —Sr— $O1^n$	95.91 (7)	$O4^{n}$ —Sr—Sr ^v	115.64 (3)
O1— Sr — $O1$ ⁱⁱⁱ	77.42 (5)	$C1^{ii}$ —Sr—Sr ^v	64.037 (19)
$O1^{i}$ —Sr— $O1^{iii}$	124.21 (5)	Sr^{ii} — Sr — Sr^{v}	126.79 (4)
O3—Sr—O1 ⁱⁱⁱ	148.91 (4)	$Sr - O4 - Sr^{v}$	92.52 (8)
O2—Sr—O1 ⁱⁱⁱ	95.91 (7)	Sr—O4—H4	114.6 (18)
O1 ⁱⁱ —Sr—O1 ⁱⁱⁱ	48.93 (6)	Sr ^v —O4—H4	108.9 (17)
O1—Sr—O4	68.20 (5)	Sr—O2—H2	129 (2)
O1 ⁱ —Sr—O4	147.71 (5)	Sr—O3—H3	121.9 (18)
03—Sr—O4	83.72 (5)	C1	162.79 (14)
02—Sr—04	13950(4)	$C1 - O1 - Sr^{v}$	94 66 (12)
01^{ii} Sr 04	97 37 (4)	sr_{1}	96.98 (5)
01^{iii} Sr 04	66 00 (5)	$C3^{iv}$ $C2$ $C3$	1194(2)
$O1$ Sr $O4^{ii}$	147.71(5)	C_{3}^{iv} C_{2}^{iv} C_{1}^{iv}	119.4(2) 120.32(11)
$O_1 = S_1 = O_4$	147.71(3)	$C_{3} = C_{2} = C_{1}$	120.32(11) 120.32(11)
$01 - 31 - 04^{\circ}$	00.20(3)	C_{3}	120.32(11)
03—Sr—04"	83.72 (5)	C_{0} NI N2	104.81 (16)
$O2$ —Sr— $O4^{n}$	139.50 (4)	C5—C4—C3	120.41 (18)
$O1^n$ —Sr— $O4^n$	66.00 (5)	C5—C4—H4A	119.8
$O1^{n}$ —Sr— $O4^{n}$	97.37 (4)	C3—C4—H4A	119.8
O4—Sr—O4 ⁱⁱ	80.48 (7)	$C4-C5-C4^{iv}$	119.1 (2)
O1—Sr—C1 ⁱⁱ	101.29 (3)	C4—C5—C6	120.42 (11)
$O1^{i}$ —Sr— $C1^{ii}$	101.29 (3)	C4 ^{iv} —C5—C6	120.42 (11)
O3—Sr—C1 ⁱⁱ	158.83 (7)	N2 ^{iv} —N2—N1	109.42 (10)
O2—Sr—C1 ⁱⁱ	97.87 (9)	N1 ^{iv} —C6—N1	111.5 (2)
O1 ⁱⁱ —Sr—C1 ⁱⁱ	24.50 (3)	N1 ^{iv} —C6—C5	124.22 (11)
$O1^{iii}$ —Sr— $C1^{ii}$	24.50 (3)	N1—C6—C5	124.22 (11)
O4—Sr—C1 ⁱⁱ	80.16 (4)	C2—C3—C4	120.34 (18)
$O4^{ii}$ —Sr—C1 ⁱⁱ	80.16 (4)	С2—С3—НЗА	119.8
01—Sr—Sr ⁱⁱ	162.46 (3)	C4—C3—H3A	119.8
$O1^{i}$ Sr Sr	43.07 (4)	$01 - C1 - O1^{iv}$	1214(2)
3 Sr Sr ⁱⁱ	111.97(2)	01-C1-C2	121.1(2) 11931(11)
$O_2 Sr Sr^{ii}$	(2)	$O_1 = O_1 = O_2$	119.31(11) 110.31(11)
02 - 51 - 51	20.02(3)	O1 - C1 - C2	(119.31(11))
	59.95 (5) 99.51 (4)	$OI - CI - SI^{\prime}$	00.84(11)
Ol-Sr—Sr	88.51 (4)	$OI^{*} - CI - Sr^{*}$	60.84 (11)
04—Sr—Sr ⁿ	115.64 (3)	$C2-C1-Sr^{v}$	174.84 (17)
O1—Sr—O4—Sr ^v	43.94 (4)	O4 ⁱⁱ —Sr—O1—Sr ^v	-59.57 (8)
$O1^{i}$ —Sr—O4—Sr ^v	-158.12 (6)	$C1^{ii}$ — Sr — $O1$ — Sr^{v}	29.86 (6)
$O3$ — Sr — $O4$ — Sr^{v}	131.27 (4)	Sr ⁱⁱ —Sr—O1—Sr ^v	61.70 (12)
O2—Sr—O4—Sr ^v	28.11 (11)	C3-C4-C5-C4 ^{iv}	0.2 (4)

$O1^{ii}$ —Sr—O4—Sr ^v	-80.03 (4)	C3—C4—C5—C6	-178.7 (2)
$O1^{iii}$ —Sr—O4—Sr ^v	-41.54 (3)	C6-N1-N2-N2 ^{iv}	-0.35 (16)
$O4^{ii}$ — Sr — $O4$ — Sr^{v}	-144.08 (2)	N2-N1-C6-N1 ^{iv}	0.6 (3)
$C1^{ii}$ — Sr — $O4$ — Sr^{v}	-62.52 (4)	N2—N1—C6—C5	-178.6 (2)
Sr^{ii} — Sr — $O4$ — Sr^{v}	-117.34 (3)	C4-C5-C6-N1 ^{iv}	-0.1 (4)
$O1^{i}$ —Sr— $O1$ — $C1$	-74.0 (5)	$C4^{iv}$ — $C5$ — $C6$ — $N1^{iv}$	-179.0 (2)
O3—Sr—O1—C1	2.4 (5)	C4—C5—C6—N1	179.0 (2)
O2—Sr—O1—C1	-103.1 (5)	C4 ^{iv} —C5—C6—N1	0.1 (4)
O1 ⁱⁱ —Sr—O1—C1	171.6 (5)	C3 ^{iv} —C2—C3—C4	-0.5 (4)
$O1^{iii}$ —Sr— $O1$ — $C1$	156.5 (5)	C1—C2—C3—C4	179.0 (2)
O4—Sr—O1—C1	87.6 (5)	C5—C4—C3—C2	0.1 (3)
O4 ⁱⁱ —Sr—O1—C1	72.7 (5)	$Sr - O1 - C1 - O1^{iv}$	-138.6 (3)
C1 ⁱⁱ —Sr—O1—C1	162.1 (5)	Sr^v — $O1$ — $C1$ — $O1^{iv}$	-6.2 (3)
Sr ⁱⁱ —Sr—O1—C1	-166.1 (4)	Sr—O1—C1—C2	41.6 (6)
Sr ^v —Sr—O1—C1	132.2 (5)	Sr ^v	174.1 (2)
$O1^{i}$ Sr $O1$ Sr^{v}	153.83 (6)	Sr—O1—C1—Sr ^v	-132.5 (5)
$O3$ — Sr — $O1$ — Sr^{v}	-129.77 (7)	C3 ^{iv} —C2—C1—O1	179.6 (2)
$O2$ — Sr — $O1$ — Sr^{v}	124.67 (8)	C3-C2-C1-O1	0.1 (4)
$O1^{ii}$ —Sr— $O1$ — Sr^{v}	39.36 (9)	$C3^{iv}$ — $C2$ — $C1$ — $O1^{iv}$	-0.1 (4)
O1 ⁱⁱⁱ —Sr—O1—Sr ^v	24.29 (6)	C3-C2-C1-O1 ^{iv}	-179.6 (2)
O4—Sr—O1—Sr ^v	-44.63 (4)		

Symmetry codes: (i) -x+1, y, z; (ii) x-1/2, y, -z+1/2; (iii) -x+3/2, y, -z+1/2; (iv) -x+2, y, z; (v) x+1/2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O3—H3····N1 ^{vi}	0.85 (2)	1.96 (2)	2.800 (2)	171 (3)
O3—H3···N2 ^{vi}	0.85 (2)	2.62 (2)	3.314 (3)	141 (2)
O2—H2···N2 ^{vii}	0.77 (3)	2.53 (3)	3.270 (3)	160 (3)
O4—H4…N2 ^{viii}	0.87 (2)	1.93 (2)	2.784 (2)	166 (2)

Symmetry codes: (vi) -x+2, -y+1, -z+1; (vii) -x+2, -y, -z+1; (viii) x-1/2, -y+1, z-1/2.