

Received 11 May 2020 Accepted 15 May 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; macrocyclic ligand; cyclam; nickel; coordination polymers; hydrogen bonds.

CCDC reference: 2004084

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the one-dimensional coordination polymer formed by the macrocyclic [Ni(cyclam)]²⁺ cation and the dianion of diphenylsilanediylbis(4-benzoic acid)

Sergey P. Gavrish,^a Sergiu Shova,^b Maria Cazacu^b and Yaroslaw D. Lampeka^a*

^aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kyiv 03028, Ukraine, and ^{bu}Petru Poni^u Institute of Macromolecular Chemistry, Department of Inorganic Polymers, Aleea Grigore Ghica Voda 41A, RO-700487 Iasi, Romania. *Correspondence e-mail: lampeka@adamant.net

The asymmetric unit of the title compound, *catena*-poly[[[(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1, N^4, N^8, N^{11}$)nickel(II)]- μ -4,4'-(diphenylsilanediyl)dibenzoato- $\kappa^2 O:O'$] sesquihydrate], {[Ni(C₂₆H₁₈O₄Si)(C₁₀H₂₄N₄)]·1.5H₂O}_n, consists of the halves of the centrosymmetric macrocyclic cation and the C₂-symmetric dicarboxylate dianion and of the water molecule of crystallization. The Ni²⁺ ion is coordinated by the four secondary N atoms of the macrocyclic ligand characterized by the most energetically favourable *trans*-III conformation and two mutually *trans* O atoms of the carboxylate, forming a slightly tetragonally elongated *trans*-N₄O₂ octahedron. The crystals are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] direction. Each polymeric chain is bonded to four neighbouring ones *via* water molecules providing O-H···O hydrogen bonds to the non-coordinated carboxyl O atoms to form a three-dimensional supramolecular network.

1. Chemical context

Aromatic carboxylates are the most popular ligands employed as linkers joining metal-containing fragments (secondary building units, SBUs) in the construction of coordination polymers (Rao et al., 2004). This class of hybrid organicinorganic materials possesses great potential for applications in gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014; Kaskel, 2016). At the same time, carboxylate linkers containing a silicon core are still rare objects of investigation, although it is assumed that the presence of these heteroatoms may affect the topology and properties of the resulting coordination polymers, which are known to be rather sensitive to tiny structural variations in the constituting parts. Besides these structural aspects, carboxylate ligands containing heteroatoms are of current interest as precursors for the preparation of structured heteroatom-doped carbonaceous materials possessing excellent electron conductivity, high porosity and diverse applications, including electrocatalysis and energy storage and conversion (Yang et al., 2019; Zhong et al., 2019).

Diphenylsilanediylbis(4-benzoic acid), a dicarboxylate possessing a characteristic bent shape, has been already utilized for the synthesis of coordination polymers with tetranuclear Zn^{II} (Liu *et al.*, 2009) and dinuclear Zn^{II} and Mn^{II} (Turcan-Trofin *et al.*, 2018) SBUs, as well as a copper(II)

research communications

complex with 1,10-phenanthroline as co-ligand (Cazacu *et al.*, 2014). However, no attempt has been made thus far to combine this linker with macrocyclic complexes, which provide pre-formed SBUs of another type (two vacant *trans* axial positions in the coordination sphere of the metal ion) with an additional benefit of extremely high thermodynamic stability and kinetic inertness (Melson, 1979; Yatsimirskii & Lampeka, 1985). At the same time, such SBUs have been used successfully for the assembly of a number of coordination polymers (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh *et al.*, 2012; Stackhouse & Ma, 2018), including those with some other Si-containing carboxylates (Gavrish *et al.*, 2020*a*; Gavrish *et al.*, 2020*b*).

As part of our research on such compounds, we report herein the synthesis and crystal structure of the coordination polymer built up from the nickel(II) complex of the 14-membered macrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (cyclam, *L*), and the dianion of diphenylsilanediylbis(4-benzoic acid) (H₂A), *viz.*, *catena*-poly[[[(1,4,8,11tetraazacyclotetradecane- $\kappa^4 N^1 N^4 N^8 N^{11}$)nickel(II)]- μ -diphenylsilanediylbis(4-benzoato)- $\kappa^2 O:O'$] sesquihydrate], [Ni(*L*)(A)·1.5H₂O]_n, (**I**).

2. Structural commentary

The molecular structure of the title compound **I** is shown in Fig. 1. It represents a one-dimensional coordination polymer built of the centrosymmetric macrocyclic $[Ni(L)]^{2+}$ cations coordinated in axial positions by the oxygen atoms of the carboxyl groups of the acid.

The macrocyclic ligand in the complex cation adopts the most abundant energetically favourable *trans*-III (R,R,S,S) conformation (Bosnich *et al.*, 1965) with almost equal Ni–N bond lengths (Table 1). The five-membered chelate rings are present in *gauche* and the six-membered in *chair* conformations. The geometric parameters observed are characteristic of high-spin nickel(II) complexes with 14-membered tetraamine ligands (Lampeka & Tsymbal, 2004). The axial Ni–O bond lengths are somewhat longer than the Ni–N ones resulting in a slight tetragonal distortion of the *trans*-N₄O₂ nickel(II) coordination polyhedron. The location of the metal ion on the inversion centre enforces strict planarity of the equatorial Ni(N₄) fragment.

The dianion of the acid in complex I possesses intrinsic twofold axial symmetry, with the Si atom lying on the rotation axis. An analogous C_2 -symmetric conformation was found

Table 1	
Selected bond lengths and angles (Å, °).	

Distances	Bite angles			
Ni1-N1	2.066 (3)	N1-Ni1-N2	86.05 (13)	
Ni1-N2	2.068 (3)	N1-Ni1-N2 ⁱ	93.95 (13)	
Ni1-O1	2.128 (2)			

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

[Cambridge Structural Database (CSD, Version 5.40, last update February 2019; Groom et al., 2016)] for the molecules/ anions of the acid in the structures XOZVIT (Cazacu et al., 2014) and ZIGXEV (Turcan-Trofin et al., 2018). In two cases [XOZWAM (Cazacu et al., 2014) and ZIGXIZ (Turcan-Trofin et al., 2018)], the carboxylate is present in an asymmetric conformation. At the same time, the coordination polymer XOQXIL (Liu et al., 2009) includes dianions of the acid in both C_2 -symmetric and asymmetric conformations. All these data are summarized in Fig. 2, which clearly illustrates the capability of rotation of aromatic rings in the tetraphenylsilane moiety around the Si-Carvl bonds by a wide range of angles. Another feature worth noting is that the symmetric and asymmetric species in fact refer to essentially different types with minor structural variations within each group, with the exception of anion XOQXIL-1.

The carboxyl groups in **I** are coordinated in a monodentate fashion *via* the O1 atom. The non-coordinated O2 atom is involved as proton acceptor in strong hydrogen bonding with the NH group of the macrocycle (Fig. 1, Table 2), a situation that is frequently observed in carboxylate complexes of cyclam-like ligands. Almost identical C–O bond lengths [C6-O1 = 1.254 (4) and C6-O2 = 1.260 (4) Å] support the model of essential electronic delocalization in the carboxylate group. The carboxyl group is tilted with respect to the plane of benzene ring by 23.6 (2)°. In general, this angle is prone to large variations, *e.g.* for the structures presented in Fig. 2 it spans the range $4.1-30.1^{\circ}$.

Figure 1

The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 40% probability level). The atoms obtained by symmetry transformations are shown with 50% transparency. C-bound H atoms are omitted for clarity. Dashed lines represent hydrogen-bonding interactions. [Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (ii) $-x + 1, y, -z + \frac{1}{2}$].

Figure 2

Comparison of the conformations of diphenylsilanediylbis(4-benzoic acid) and its anions. (a) C₂-symmetric structures. H_2A : dark-green – XOZVIT; A^{2-} : red – I (current work), blue – ZIGXEV-1, yellow – XOQXIL-1. (b) Asymmetric structures. HA^{-} : light-green – XOZWAM; A^{2-} : lilac – ZIGXIZ-1, pink – ZIGXIZ-2, orange – XOQXIL-2. Numbers accompanying refcodes refer to two structurally non-equivalent anions in a given compound. The disordered symmetric anion in ZIGXEV-2 is not shown.

3. Supramolecular features

The crystals of **I** are composed of polymeric chains of $[Ni(L)]^{2+}$ cations bridged by the carboxylate ligands, which propagate along the [101] direction. These chains have a distinctive zigzag shape with a chain link length (Si···Si distance) of 17.854 (3) Å and an almost ideal tetrahedral angle (Si···Si···Si) of 109.09 (2)°(Fig. 3). The nickel(II) cations in a

Figure 3 The structure of the polymeric chain in **I**. C-bound H atoms are omitted for clarity.

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H1···O2	0.98	2.02	2.916 (4)	151
$O1W-H1WA\cdots O2^{i}$	0.85	2.05	2.850 (5)	156
$O1W-H1WB\cdots O2$	0.85	1.89	2.744 (5)	177

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

chain are arranged in line with an Ni \cdots Ni separation of 14.543 (2) Å.

In the crystal, each such chain is linked to four neighbouring ones due to formation of water-mediated hydrogen bonds between the non-coordinated O2 atoms of the carboxyl group: $O2\cdots HO1W-H\cdots O2$ (Table 2). In turn, each O2 atom is involved in hydrogen bonding with two H₂O molecules [symmetry codes: $x, y, z; -x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$], which in conjunction with the N1-H···O2 hydrogen bond makes it a triple proton acceptor, while the water molecule serves as a proton donor only. Thus, the water molecules of crystallization play a key role in assembling the one-dimensional polymeric chains into a three-dimensional supramolecular network (Fig. 4).

4. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The macrocyclic nickel(II) complex $Ni(L)(CIO_4)_2$ (Barefield *et al.*, 1976) and diphenylsilanediylbis(4-benzoic acid) (Cazacu *et al.*, 2014) were prepared according to procedures described previously.

{Ni(L)(A)·1.5H₂O}_n, (I). A solution of 100 mg (0.236 mmol) of the acid (H₂A) in 24.5 ml of DMF containing 0.3 ml of triethylamine was thoroughly layered on top of the solution of

The packing in I viewed down the [101] direction with polymeric chains cross-linked by $O2 \cdots H - O1W - H \cdots O2$ hydrogen bonds (dotted lines) to form a three-dimensional supramolecular network. C-bound H atoms are omitted for clarity.

research communications

Table 3Experimental details.

Crystal data	
Chemical formula	$\frac{[Ni(C_{26}H_{18}O_4Si)(C_{10}H_{24}N_4)]}{1.5H_2O}$
M_r	1417.11
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	200
a, b, c (Å)	25.390 (4), 7.3865 (10),
	18.2424 (16)
β (°)	98.161 (10)
$V(\dot{A}^3)$	3386.6 (8)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.66
Crystal size (mm)	$0.35 \times 0.10 \times 0.10$
Data collection	
Diffractometer	Agilent Xcalibur, Eos
Absorption correction	Multi-scan (CrysAlis PRO;
	Agilent, 2014),
T_{\min}, T_{\max}	0.964, 1.000
No. of measured, independent and	7999, 3926, 2512
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.052
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.693
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.066, 0.147, 1.03
No. of reflections	3926
No. of parameters	219
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-5})$	0.51, -0.51

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

120 mg (0.262 mmol) of $[Ni(L)](ClO_4)_2$ in 7.5 ml of water and the tightly closed system was left for two weeks at room temperature. The crystalline precipitate formed was filtered off, washed with DMF, methanol and dried in air. Yield 157 mg (94%). Analysis calculated for $C_{72}H_{90}N_8Ni_2O_{11}Si_2$: C, 61.03; H, 6.40; N, 7.91%. Found: C, 61.16; H, 6.36; N, 8.09%.

Single crystals of I in the form of light-yellow prisms suitable for X-ray diffraction analysis were obtained analogously using *ca* 10 times lower concentration of reagents.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 (ring H atoms) or 0.97 Å (open-chain H atoms), an N—H distance of 0.98 Å and an aqua O—H distance of 0.85 Å with $U_{\rm iso}({\rm H})$ values of 1.2 or 1.5 $U_{\rm eq}$ times that of the parent atoms. Since the water molecule of crystallization at full occupancy exhibited unreasonably high displacement ellipsoids, its occupancy parameter was reduced to 75%.

Funding information

This work was supported by the Romanian Ministry of Research and Innovation, CNCS – UEFISCDI, project No. PN-III-P4-ID-PCCF-2016-0050 (contract 4/2018), within PNCDI III.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.
- Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). *Inorg. Chem.* 4, 1102–1108.
- Cazacu, M., Vlad, A., Zaltariov, M.-F., Shova, S., Novitchi, G. & Train, C. (2014). J. Organomet. Chem. 774, 70–78.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gavrish, S. P., Shova, S., Cazacu, M., Dascalu, M. & Lampeka, Y. D. (2020b). Acta Cryst. E76, 446–451.
- Gavrish, S. P., Shova, S., Cazacu, M. & Lampeka, Y. D. (2020a). Acta Cryst. C76, 419–426.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.
- Lampeka, Ya. D. & Tsymbal, L. V. (2004). *Theor. Exp. Chem.* **40**, 345–371.
- Liu, Z., Stern, C. L. & Lambert, J. B. (2009). Organometallics, 28, 84–93.
- MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. *Metal–Organic Framework Materials*, Hoboken: John Wiley and Sons.
- Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.
- Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
- Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.
- Turcan-Trofin, G.-O., Avadanei, M., Shova, S., Vlad, A., Cazacu, M. & Zaltariov, M.-F. (2018). *Inorg. Chim. Acta*, 483, 454–463.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, W., Li, X., Li, Y., Zhu, R. & Pang, H. (2019). Adv. Mater. 31, 1804740.
- Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)
- Zhong, M., Kong, L., Li, N., Liu, Y.-Y., Zhu, J. & Bu, X.-H. (2019). Coord. Chem. Rev. 388, 172–201.

supporting information

Acta Cryst. (2020). E76, 929-932 [https://doi.org/10.1107/S2056989020006544]

Crystal structure of the one-dimensional coordination polymer formed by the macrocyclic [Ni(cyclam)]²⁺ cation and the dianion of diphenylsilanediylbis(4-benzoic acid)

Sergey P. Gavrish, Sergiu Shova, Maria Cazacu and Yaroslaw D. Lampeka

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N^1$, N^4 , N^8 , N^{11})nickel(II)]- μ -4,4'-(diphenylsilanediyl)dibenzoato- $\kappa^2 O:O'$] sesquihydrate]

Crystal data

Data collection

Agilent Xcalibur, Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1593 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014), $T_{\min} = 0.964$, $T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.147$ S = 1.033926 reflections F(000) = 1500 $D_x = 1.390 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1577 reflections $\theta = 2.6-29.5^{\circ}$ $\mu = 0.66 \text{ mm}^{-1}$ T = 200 KPrism, clear light yellow $0.35 \times 0.10 \times 0.10 \text{ mm}$

7999 measured reflections 3926 independent reflections 2512 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 29.5^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -31 \rightarrow 21$ $k = -10 \rightarrow 9$ $l = -21 \rightarrow 23$

219 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsHydrogen site location: mixedH-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 4.2041P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.250000	0.250000	0.000000	0.0273 (2)	
Si1	0.500000	0.95105 (19)	0.250000	0.0256 (3)	
01	0.30989 (10)	0.3756 (4)	0.07669 (14)	0.0372 (7)	
O2	0.27252 (11)	0.4301 (4)	0.17836 (15)	0.0514 (8)	
N1	0.19897 (12)	0.2120 (5)	0.07732 (17)	0.0377 (8)	
H1	0.214580	0.275668	0.122344	0.045*	
N2	0.27921 (12)	-0.0047 (4)	0.03013 (18)	0.0381 (8)	
H2	0.262042	-0.087426	-0.007954	0.046*	
C1	0.20090 (17)	0.0146 (6)	0.0952 (2)	0.0464 (11)	
H1A	0.177654	-0.051687	0.057721	0.056*	
H1B	0.188941	-0.005714	0.142697	0.056*	
C2	0.25790 (17)	-0.0508 (6)	0.0976 (2)	0.0480 (11)	
H2A	0.279912	0.003615	0.139702	0.058*	
H2B	0.259044	-0.181115	0.104319	0.058*	
C3	0.33655 (17)	-0.0306 (6)	0.0316 (2)	0.0490 (12)	
H3A	0.345186	-0.156556	0.042523	0.059*	
H3B	0.355364	0.042076	0.071235	0.059*	
C4	0.14439 (17)	0.4804 (6)	0.0397 (2)	0.0477 (11)	
H4A	0.108246	0.524309	0.038067	0.057*	
H4B	0.166204	0.543620	0.079585	0.057*	
C5	0.14505 (15)	0.2795 (6)	0.0585 (2)	0.0435 (11)	
H5A	0.125675	0.260021	0.100024	0.052*	
H5B	0.127171	0.212343	0.016526	0.052*	
C6	0.30912 (15)	0.4468 (5)	0.1389 (2)	0.0319 (9)	
C7	0.35609 (14)	0.5657 (5)	0.16868 (18)	0.0247 (8)	
C8	0.40442 (14)	0.5475 (5)	0.14241 (19)	0.0312 (9)	
H8	0.408530	0.458487	0.107630	0.037*	
C9	0.44678 (14)	0.6610 (5)	0.1675 (2)	0.0329 (9)	
H9	0.479200	0.644164	0.150332	0.039*	
C10	0.44174 (14)	0.8002 (5)	0.21810 (18)	0.0264 (8)	
C11	0.39244 (14)	0.8183 (5)	0.24315 (18)	0.0296 (8)	
H11	0.387380	0.911020	0.275947	0.035*	
C12	0.35091 (14)	0.7001 (5)	0.21976 (19)	0.0309 (9)	
H12	0.319013	0.711608	0.238874	0.037*	
C13	0.51508 (14)	1.1037 (5)	0.1735 (2)	0.0285 (8)	
C14	0.55319 (15)	1.2399 (5)	0.1896 (2)	0.0371 (9)	

H14	0.571043	1.249604	0.237641	0.044*		
C15	0.56512 (17)	1.3597 (6)	0.1370 (2)	0.0466 (11)		
H15	0.590586	1.449113	0.149517	0.056*		
C16	0.53943 (17)	1.3472 (6)	0.0658 (2)	0.0458 (11)		
H16	0.547953	1.426763	0.029713	0.055*		
C17	0.50098 (17)	1.2169 (6)	0.0477 (2)	0.0464 (11)		
H17	0.483033	1.210014	-0.000366	0.056*		
C18	0.48907 (15)	1.0964 (5)	0.1009 (2)	0.0361 (9)		
H18	0.463175	1.008505	0.088027	0.043*		
O1W	0.19429 (16)	0.6528 (6)	0.2165 (2)	0.0640 (12)	0.75	
H1WA	0.205149	0.708674	0.256534	0.096*	0.75	
H1WB	0.218579	0.582004	0.206074	0.096*	0.75	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Ni1	0.0236 (4)	0.0255 (4)	0.0312 (4)	-0.0020 (3)	-0.0015 (3)	-0.0022 (3)
Si1	0.0214 (7)	0.0242 (7)	0.0295 (7)	0.000	-0.0019 (6)	0.000
01	0.0313 (15)	0.0442 (17)	0.0345 (14)	-0.0102 (13)	-0.0009 (11)	-0.0133 (14)
O2	0.0425 (19)	0.065 (2)	0.0492 (17)	-0.0234 (16)	0.0151 (14)	-0.0184 (16)
N1	0.0339 (19)	0.043 (2)	0.0352 (18)	-0.0042 (16)	0.0013 (14)	-0.0049 (16)
N2	0.035 (2)	0.0298 (18)	0.047 (2)	0.0013 (15)	-0.0039 (15)	0.0018 (17)
C1	0.046 (3)	0.039 (2)	0.054 (3)	-0.011 (2)	0.005 (2)	0.004 (2)
C2	0.052 (3)	0.041 (3)	0.051 (3)	0.008 (2)	0.006 (2)	0.016 (2)
C3	0.040 (3)	0.046 (3)	0.060 (3)	0.016 (2)	0.003 (2)	0.002 (2)
C4	0.037 (3)	0.050 (3)	0.053 (3)	0.004 (2)	-0.001 (2)	-0.004 (2)
C5	0.028 (2)	0.059 (3)	0.044 (2)	-0.002(2)	0.0067 (18)	-0.009(2)
C6	0.032 (2)	0.025 (2)	0.036 (2)	-0.0021 (17)	-0.0012 (17)	0.0018 (18)
C7	0.0252 (19)	0.0228 (18)	0.0245 (18)	-0.0011 (15)	-0.0023 (14)	0.0033 (16)
C8	0.033 (2)	0.028 (2)	0.031 (2)	0.0018 (17)	-0.0005 (16)	-0.0102 (17)
C9	0.021 (2)	0.033 (2)	0.043 (2)	-0.0005 (17)	0.0023 (16)	-0.0034 (19)
C10	0.0216 (19)	0.0271 (19)	0.0277 (18)	0.0005 (15)	-0.0060 (14)	0.0048 (16)
C11	0.030 (2)	0.034 (2)	0.0238 (18)	-0.0023 (17)	-0.0003 (15)	-0.0045 (17)
C12	0.0223 (19)	0.039 (2)	0.0311 (19)	-0.0028 (17)	0.0026 (15)	-0.0015 (18)
C13	0.024 (2)	0.0255 (19)	0.036 (2)	0.0017 (16)	0.0037 (15)	0.0035 (18)
C14	0.038 (2)	0.032 (2)	0.040 (2)	-0.0025 (19)	0.0004 (17)	0.002 (2)
C15	0.041 (3)	0.032 (2)	0.067 (3)	-0.005 (2)	0.008 (2)	0.004 (2)
C16	0.046 (3)	0.039 (3)	0.054 (3)	0.011 (2)	0.015 (2)	0.017 (2)
C17	0.049 (3)	0.053 (3)	0.036 (2)	0.010 (2)	0.0020 (19)	0.008 (2)
C18	0.028 (2)	0.038 (2)	0.040 (2)	-0.0006 (18)	-0.0031 (17)	0.003 (2)
O1W	0.050 (3)	0.070 (3)	0.072 (3)	0.000 (2)	0.009 (2)	-0.012 (3)

Geometric parameters (Å, °)

Ni1—O1 ⁱ	2.128 (2)	C4—C5	1.523 (6)
Ni1—O1	2.128 (2)	C5—H5A	0.9700
Ni1—N1	2.066 (3)	С5—Н5В	0.9700
Ni1—N1 ⁱ	2.065 (3)	C6—C7	1.518 (5)

supporting information

Ni1—N2 ⁱ	2.068 (3)	C7—C8	1.386 (5)
Ni1—N2	2.068 (3)	C7—C12	1.381 (5)
Si1—C10 ⁱⁱ	1.878 (4)	C8—H8	0.9300
Sil—C10	1.878 (4)	C8—C9	1.389 (5)
Sil—C13 ⁱⁱ	1.875 (4)	С9—Н9	0.9300
Sil—C13	1.875 (4)	C9—C10	1.399 (5)
O1—C6	1.254 (4)	C10—C11	1.399 (5)
O2—C6	1.260 (4)	C11—H11	0.9300
N1—H1	0.9800	C11—C12	1.389 (5)
N1—C1	1.493 (5)	C12—H12	0.9300
N1—C5	1.452 (5)	C13—C14	1.398 (5)
N2—H2	0.9800	C13—C18	1.395 (5)
N2-C2	1 455 (5)	C14—H14	0.9300
N2-C3	1.465(5)	C14-C15	1 371 (5)
C1—H1A	0.9700	C15—H15	0.9300
C1—H1B	0.9700	C15 $C16$	1 372 (6)
C1 - C2	1.520(5)	C16—H16	0.9300
$C_1 = C_2$	0.9700	C_{16} C_{17}	1 377 (6)
$C_2 = H_2 R$	0.9700	C17 H17	0.0300
$C_2 = H_2 \Lambda$	0.9700	C17 C18	1.382(5)
C_{3} H_{3}	0.9700	C1/-C10 C19 $H19$	1.362(3)
$C_3 = C_4^{ii}$	1.407.(6)		0.9300
C_{4}	1.497 (0)		0.8499
C4—H4A C4—H4D	0.9700	От w—нт wв	0.8304
С4—п4В	0.9700		
01 Ni1 01 ⁱ	180.0	C^{2i} C^{4} H^{4A}	108.2
N_{1}^{1} Ni O_{1}^{1}	03.08(11)	$C_3 = C_4 = H_4 R$	108.2
N1 - N1 - O1	95.98 (11) 86.02 (11)	$C_3 = C_4 = \Pi_4 D$	100.2
N1 - N1 = 01	00.02(11)	$C_3 - C_4 - C_5$	10.3 (4)
NI NII Oli	95.96 (11) 86.02 (11)	$H_{A} - C_{4} - H_{4}$	107.4
NI NI NI	00.02 (11) 180.0	C_{3} C_{4} H_{4}	108.2
	100.0	$C_3 - C_4 - \Pi_4 B$	108.2
$\frac{1}{1} \frac{1}{1} \frac{1}$	95.95 (13)	N1 = C5 = U5 A	111.0 (3)
INI-INII-INZ	80.03(13)	NI-C5-H5D	109.5
N1····································	93.95 (13)	NI = C5 = H5B	109.3
NI - NII - N2	80.05 (15)	C4 = C5 = H5R	109.3
$N_2 = N_1 I = O_1^2$	88.51 (11)	C4—C5—H5B	109.3
N2—Nil—Ol	91.49 (11)	HSA—CS—HSB	108.0
N2 N11 O1	88.51 (11)	01 - C6 - 02	125.7 (3)
$N2^{-}N1^{-}O1^{+}$	91.49 (11)	01 - C6 - C/	117.0 (3)
$N2 - N11 - N2^{1}$	180.0	$O_2 - C_6 - C_7$	117.3 (3)
C10—S11—C10 ⁿ	107.2 (2)	C8—C7—C6	120.6 (3)
C13 ⁿ —S11—C10 ⁿ	111.20 (15)	C12—C7—C6	120.8 (3)
C13—Si1—C10	111.20 (15)	C12—C7—C8	118.5 (3)
C13 ^u —Si1—C10	110.63 (16)	С7—С8—Н8	119.7
C13—Si1—C10 ⁱⁱ	110.63 (16)	C7—C8—C9	120.7 (3)
C13—Si1—C13 ⁱⁱ	106.1 (2)	С9—С8—Н8	119.7
C6—O1—Ni1	132.6 (2)	С8—С9—Н9	119.3
Ni1—N1—H1	106.8	C8—C9—C10	121.4 (3)

C1—N1—Ni1	106.1 (2)	С10—С9—Н9	119.3
C1—N1—H1	106.8	C9-C10-Si1	119.9 (3)
C5—N1—Ni1	117.0 (3)	C11—C10—Si1	123.0 (3)
C5—N1—H1	106.8	C11—C10—C9	117.1 (3)
C5—N1—C1	112.8 (3)	C10-C11-H11	119.5
Ni1—N2—H2	105.8	C12—C11—C10	121.0 (3)
C2—N2—Ni1	106.0 (2)	C12—C11—H11	119.5
C2—N2—H2	105.8	C7—C12—C11	121.2 (3)
C2—N2—C3	116.2 (3)	C7—C12—H12	119.4
C3—N2—Ni1	116.2 (3)	C11—C12—H12	119.4
C3—N2—H2	105.8	C14—C13—Si1	119.0 (3)
N1—C1—H1A	110.0	C18—C13—Si1	124.3 (3)
N1—C1—H1B	110.0	C18—C13—C14	116.6 (3)
N1—C1—C2	108.6 (3)	C13—C14—H14	118.9
H1A—C1—H1B	108.4	C15—C14—C13	122.2 (4)
C2—C1—H1A	110.0	C15—C14—H14	118.9
C2—C1—H1B	110.0	C14—C15—H15	120.1
N2—C2—C1	111.6 (3)	C14—C15—C16	119.8 (4)
N2—C2—H2A	109.3	C16—C15—H15	120.1
N2—C2—H2B	109.3	C15—C16—H16	120.0
C1—C2—H2A	109.3	C15—C16—C17	120.0 (4)
C1—C2—H2B	109.3	C17—C16—H16	120.0
H2A—C2—H2B	108.0	C16—C17—H17	120.0
N2—C3—H3A	108.9	C16—C17—C18	120.0 (4)
N2—C3—H3B	108.9	C18—C17—H17	120.0
N2-C3-C4 ⁱ	113.2 (3)	C13—C18—H18	119.3
НЗА—СЗ—НЗВ	107.7	C17—C18—C13	121.4 (4)
C4 ⁱ —C3—H3A	108.9	C17—C18—H18	119.3
C4 ⁱ —C3—H3B	108.9	H1WA—O1W—H1WB	109.5
Ni1—O1—C6—O2	14.6 (6)	C8—C9—C10—Si1	-179.6 (3)
Ni1—O1—C6—C7	-164.5 (2)	C8—C9—C10—C11	0.9 (5)
Ni1—N1—C1—C2	38.6 (4)	C9—C10—C11—C12	1.4 (5)
Ni1—N1—C5—C4	-55.8 (4)	C10 ⁱⁱ —Si1—C10—C9	-51.0 (3)
Ni1—N2—C2—C1	38.2 (4)	C10 ⁱⁱ —Si1—C10—C11	128.4 (3)
Ni1—N2—C3—C4 ⁱ	-54.2 (4)	C10 ⁱⁱ —Si1—C13—C14	-68.5 (3)
Si1—C10—C11—C12	-178.0(3)	C10—Si1—C13—C14	172.6 (3)
Si1—C13—C14—C15	-178.1(3)	C10 ⁱⁱ —Si1—C13—C18	114.3 (3)
Si1—C13—C18—C17	177.9 (3)	C10—Si1—C13—C18	-4.6 (4)
O1—C6—C7—C8	-21.4(5)	C10-C11-C12-C7	-2.8(5)
O1—C6—C7—C12	155.4 (3)	C12—C7—C8—C9	0.6 (5)
O2—C6—C7—C8	159.4 (4)	C13 ⁱⁱ —Si1—C10—C9	-172.4(3)
O2—C6—C7—C12	-23.9(5)	C13—Si1—C10—C9	70.0 (3)
N1—C1—C2—N2	-53.4 (4)	C13 ⁱⁱ —Si1—C10—C11	7.0 (3)
C1—N1—C5—C4	-179.3 (3)	C13—Si1—C10—C11	-110.6 (3)
C2—N2—C3—C4 ⁱ	180.0 (4)	C13 ⁱⁱ —Si1—C13—C14	52.2 (3)
C3—N2—C2—C1	169.0 (3)	C13 ⁱⁱ —Si1—C13—C18	-125.0 (4)
C3 ⁱ —C4—C5—N1	70.1 (5)	C13—C14—C15—C16	-0.3 (6)
	N 2		- \-/

supporting information

C5—N1—C1—C2	168.0 (3)	C14—C13—C18—C17	0.6 (6)
C6—C7—C8—C9	177.4 (3)	C14—C15—C16—C17	1.3 (6)
C6—C7—C12—C11	-175.1 (3)	C15—C16—C17—C18	-1.3 (6)
C7—C8—C9—C10	-2.0 (5)	C16—C17—C18—C13	0.3 (6)
C8—C7—C12—C11	1.8 (5)	C18—C13—C14—C15	-0.7 (6)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*; (ii) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.98	2.02	2.916 (4)	151
O1W—H1 WA ···O2 ⁱⁱⁱ	0.85	2.05	2.850 (5)	156
O1 <i>W</i> —H1 <i>WB</i> ···O2	0.85	1.89	2.744 (5)	177

Symmetry code: (iii) -x+1/2, y+1/2, -z+1/2.