Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of (Z)-4-hexyl-2-(4-methylbenzylidene)-2Hbenzo[b][1,4]thiazin-3(4H)-one

Ghizlane Sebbar,^a* Brahim Hni,^b Tuncer Hökelek,^c Joel T. Mague,^d Nada Kheira Sebbar,^{b,e} Bouchra Belkadi^a and El Mokhtar Essassi^b

^aLaboratory of Microbiology and Molecular Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco, ^bLaboratoire de Chimie Organique Heterocyclique URAC 21, Pôle de Competence Pharmacochimie, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ^dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^eLaboratoire de Chimie Appliquée et Environnement, Equipe de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco. *Correspondence e-mail: sebbar.ghizlane@um5s.net.ma

The title compound, C₂₂H₂₅NOS, consists of methylbenzylidene and benzothiazine units linked to a hexyl moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, inversion dimers are formed by weak C-HMthn ··· ·OBnzthz hydrogen bonds and are linked into chains extending along the *a*-axis direction by weak $C-H_{Bnz} \cdots O_{Bnzthz}$ (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine) hydrogen bonds. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from $H \cdots H$ (59.2%) and $H \cdots C/C \cdots H$ (27.9%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the $C-H_{Bnz}\cdots O_{Bnzthz}$ and $C-H_{Mthn}\cdots O_{Bnzthz}$ hydrogenbond energies are 75.3 and 56.5 kJ mol⁻¹, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6-311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound was evaluated against gram-positive and gram-negative bacteria.

1. Chemical context

1,4-Benzothiazine derivatives constitute an important class of heterocyclic compounds which, even when part of a complex molecule, possess a wide spectrum of biological activities (Sebbar et al., 2016a; Gupta et al., 2009). Various 1,4-benzothiazine derivatives have been synthesized by several methods (Parai & Panda, 2009; Barange et al., 2007; Saadouni et al., 2014). 1,4-Benzothiazine derivatives are important because of their interesting biological properties such as anti-bacterial (Olayinka, 2012; Bhikan et al., 2012), anti-fungal (Schiaffella et al., 2006; Gupta & Wagh, 2006), antiproliferative (Zieba et al., 2010), antimalarial (Barazarte et al., 2009) and anti-inflammatory (Kaneko et al., 2002) activities. The biological activities of some 1,4-benzothiazines are similar to those of phenothiazines, featuring the same structural specificity (Hni et al., 2019a,b; Ellouz et al., 2017a,b; Sebbar et al., 2019a,b).

In a continuation of our research devoted to the development of substituted 1,4-benzothiazine derivatives (Ellouz et al., 2015, 2019; Sebbar et al., 2015, 2017a; Ellouz et al.), we have

CRYSTALLOGRAPHIC

COMMUNICATIONS

Edited by J. Ellena, Universidade de Sâo Paulo,

Keywords: crystal structure; hydrogen bond; benzothiazine; antibacterial activity; Hirshfeld

Supporting information: this article has

supporting information at journals.iucr.org/e

ISSN 2056-9890

Received 7 April 2020 Accepted 15 May 2020

CCDC reference: 2004559

Brazil

surface

OPEN O ACCESS

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

synthesized the title compound, I, by reaction of hexyl chloride with 2-(4- methylbenzylidene)-3,4-dihydro-2H-1,4benzothiazin-3 -one and potassium carbonate in the presence of tetra-n-butylammonium bromide (as catalyst). We report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis and interaction energy calculation [using CE-B3LYP/6-31G(d,p) energy model] and the density functional theory (DFT) computational calculation carried out at the B3LYP/6-311 G(d,p) level for comparing with the experimentally determined molecular structure in the solid state of the title compound. Moreover, the antibacterial activity of I is evaluated against gram-positive and gram-negative bacteria (viz., Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus fasciens).

Table 1 Hydrogen-bond ge	ometry (Å,	°).		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$

2.42

2.45

3.349 (2)

168

148

 $C15-H15\cdots O1^{ii}$ 0.95 3.2977 (17)

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1.

0.95

2. Structural commentary

 $C4-H4\cdots O1^i$

The title compound, I, consists of methylbenzylidene and benzothiazine units linked to a hexyl moiety, where the thiazine ring adopts a screw-boat conformation (Fig. 1). The heterocyclic portion of the benzothiazine moiety is folded about the S1 \cdot ·N1 axis with the dihedral angle between the planes defined by N1/C7/C8/S1 and S1/C1/C6/N1 being 30.28 (6)°. A puckering analysis of the thiazine, B (N1/S1/C1/ C6–C8), ring conformation gave the parameters $Q_{\rm T}$ = 0.4853 (12) Å, $\theta = 69.48$ (15)° and $\varphi = 329.03$ (18)°, indicating a screw-boat conformation. The dihedral angle between the benzene rings A (C1–C6) and C (C16–C21) is 75.64 (5)°. The base of the *n*-hexyl chain is approximately perpendicular to the mean plane of the benzothiazine unit, as indicated by the C6-N1-C9-C10 torsion angle of $-96.2(1)^{\circ}$. The remainder of this chain, with the exception of the terminal methyl group, is in an extended conformation (Fig. 1).

3. Supramolecular features

In the crystal, inversion dimers are formed by weak C- H_{Mthn} ···O_{Bnzthz} hydrogen bonds (Table 1) and are linked into chains extending along the a-axis direction by weak C- $H_{Bnz} \cdots O_{Bnzthz}$ hydrogen bonds (Table 1, Figs. 2 and 3) (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine).

Figure 2

Detail of the chain of dimers viewed down the *b*-axis direction with the weak $C-H_{Mthn} \cdots O_{Bnzthz}$ and $C-H_{Bnz} \cdots O_{Bnzthz}$ (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine) hydrogen bonds depicted by dashed lines.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} in the range -0.2415 to 1.4195 a.u.

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d_{norm} (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The brightred spots appearing near O1 and hydrogen atoms H4 and H15 indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Javatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Hirshfeld surface of the title compound plotted over shape-index.

tool to visualize the π - π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π - π interactions. Fig. 6 clearly suggests that there are no π - π interactions in (I).

The overall two-dimensional fingerprint plot, Fig. 7a, and those delineated into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots S/S \cdots H$, $H \cdots O/O \cdots H$ and $H \cdots N/N \cdots H$ contacts (McKinnon *et al.*, 2007) are illustrated in Fig. 7 b--f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H...H, contributing 59.2% to the overall crystal packing, which is reflected in Fig. 7b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at $d_e = d_i = 1.14$ Å. In the absence of $C-H\cdots\pi$ interactions, the pair of characteristic wings in the fingerprint plot delineated into $H \cdots C/C \cdots H$ contacts (Fig. 7c, 27.9% contribution to the HS) has the tips at $d_{\rm e} + d_{\rm i} = 2.77$ Å. The pair of spikes in the fingerprint plot delineated into $H \cdots S/S \cdots H$ (Fig. 7d, 5.6% contribution) has the tips at $d_e + d_i = 2.98$ Å. The H···O/O···H contacts (Fig. 7e, 5.5% contribution) have a symmetrical distribution of points with the tips at $d_e + d_i = 2.27$ Å. Finally, the H···N/N···H

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots S/S \cdots H$, (e) $H \cdots O/O \cdots H$ and (f) $H \cdots N/N \cdots H$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2	
Comparison of the selected (X-ray and DFT) geometric data (Å, $^{\circ}$).	

Bonds/angles	X-ray	B3LYP/6-311G(d,p)
S1-C8	1.7552 (13)	1.83796
S1-C1	1.7560 (14)	1.83324
O1-C7	1.2310 (15)	1.25561
N1-C7	1.3687 (17)	1.39823
N1-C6	1.4207 (17)	1.42632
N1-C9	1.4756 (17)	1.48630
C1-C2	1.3928 (19)	1.39451
C1-C6	1.3976 (19)	1.40423
C2-C3	1.380 (2)	1.39431
C3-C4	1.379 (2)	1.39578
C4-C5	1.387 (2)	1.39431
C8-S1-C1	99.20 (6)	99.87
C7-N1-C6	124.55 (11)	124.76
C7-N1-C9	115.97 (11)	116.02
C6-N1-C9	119.35 (11)	119.89
C2-C1-C6	120.33 (13)	120.89
C2-C1-S1	117.86 (11)	118.13
C6-C1-S1	121.81 (10)	121.30
C3-C2-C1	120.67 (14)	120.36
C4-C3-C2	119.39 (14)	120.16

contacts (Fig. 7*f*), make only a 0.8% contribution to the HS with the tips at $d_e + d_i = 3.28$ Å.

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface are shown for the H···H, H···C/C···H, H···S/S···H and H···O/O···H interactions in Fig. 8*a*--*d*, respectively.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H···H and H···C/C···H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

5. Interaction energy calculations

The intermolecular interaction energies are calculated using CE-B3LYP/6-31G(d,p) energy model available in *Crystal*

Figure 8

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface for (a) $\text{H} \cdots \text{H}$, (b) $\text{H} \cdots \text{C/C} \cdots \text{H}$, (c) $\text{H} \cdots \text{S/S} \cdots \text{H}$ and (d) $\text{H} \cdots \text{O/O} \cdots \text{H}$ interactions.

Table 3 Calculated energies.	
Molecular Energy (a.u.) (eV)	Compound I
Total Energy, TE (eV)	-37591.8507
$E_{\rm HOMO} (eV)$	-5.8458
$E_{\rm LUMO}$ (eV)	-1.8269
Gap, ΔE (eV)	4.0189
Dipole moment, μ (Debye)	2.5702
Ionization potential, I (eV)	5.8458
Electron affinity, A	1.8269
Electronegativity, χ	3.8363
Hardness, η	2.0095
Electrophilicity index, ω	3.6621
Softness, σ	0.4976
Fraction of electron transferred, ΔN	0.7872

Explorer 17.5 (Turner *et al.*, 2017), where a cluster of molecules is generated by applying crystallographic symmetry operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner *et al.*, 2014). The total intermolecular energy (E_{tot}) is the sum of electrostatic (E_{ele}), polarization (E_{pol}), dispersion (E_{dis}) and exchange-repulsion (E_{rep}) energies (Turner *et al.*, 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie *et al.*, 2017). Hydrogen-bonding interaction energies (in kJ mol⁻¹) are -15.5 (E_{ele}), -2.9 (E_{pol}), -109.6 (E_{dis}), 62.8 (E_{rep}) and -75.3 (E_{tot}) for C4–H4···O1 and -24.8 (E_{ele}), -9.3 (E_{pol}), -60.1 (E_{dis}), 46.9 (E_{rep}) and -56.5 (E_{tot}) for C15–H15···O1.

6. DFT calculations

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6-311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 2). The highest-occupied molecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied molecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the molecular framework. E_{HOMO} and E_{LUMO} clarify the inevitable charge-exchange collaboration inside the studied material, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are recorded in Table 3. The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole (Z)-2-(4-methylbenzylidene)-4-hexyl-2H-benzo[b]-[1,4]thiazin-3(4H)-one ring. The energy band gap [$\Delta E =$ $E_{\rm LUMO} - E_{\rm HOMO}$ of the molecule is 4.0189 eV, and the frontier molecular orbital energies, E_{HOMO} and E_{LUMO} are -5.8458 and -1.8269 eV, respectively.

Figure 9 The energy band gap of the title compound.

7. Database survey

A search in the Cambridge Structural Database (Groom *et al.*, 2016), for compounds containing the fragment **II** ($R_1 = Ph$, $R_2 = C$), gave 15 hits, including with $R_1 = 4$ -ClC₆H₄ and $R_2 = CH_2CH_2CH_2CH_3$ (**IIa**) (Ellouz *et al.*, 2017*b*), $R_1 = 2$,4-Cl₂C₆H₃ and $R_2 = CH_2Ph2$ (**IIb**) (Sebbar *et al.*, 2019*b*), and $R_1 = 2$ -ClC₆H₄, $R_2 = CH_2C$ =CH (**IIc**) (Sebbar *et al.*, 2017*b*), $R_1 = 4$ -FC₆H₄ and $R_2 = CH_2C$ =CH (**IIc**) (Hni *et al.*, 2019*a*), CH₂COOH (Sebbar *et al.*, 2016*a*), $R_1 = 2$,4-Cl₂C₆H₃ and $R_2 = (CH_2)_8CH_3$ (Hni *et al.*, 2020), $R_1 = 4$ -ClC₆H₄ and $R_2 = CH_2Ph2$ (**IIb**) (Ellouz *et al.*, 2016), $R_1 = 4$ -ClC₆H₄ and $R_2 = CH_2Ph2$ (**IIb**) (Ellouz *et al.*, 2016), $R_1 = 4$ -ClC₆H₄ and $R_2 = (IId)$ (Ellouz *et al.*, 2017*a*) or CH₂C=CH (**IIc**) (Sebbar *et al.*, 2019*b*), $R_1 = 2$,4-Cl₂C₆H₃ and $R_2 = CH_2CH_2CN$ (**IIe**) (Sebbar *et al.*, 2019*a*), **IIf** (Sebbar *et al.*, 2016*b*) and **IIg** (Ellouz *et al.*, 2015).

In the majority of these, the thiazine ring is significantly folded about the $S \cdots N$ axis with dihedral angles between the two S/C/C/N planes ranging from *ca* 35° [**IIf** (Sebbar *et al.*, 2016*b*) and **IId** (Ellouz *et al.*, 2017*a*)] to *ca* 27° [**IIc** (Hni *et al.*, 2019*a*) and **IIc** (Sebbar *et al.*, 2014)].

8. Antibacterial activity

To compare and analyse the antibacterial behaviour of the title compound and commercial antibiotics such as Chloramphenicol (Chlor), we have tested **I** against *Escherichia coli*

(ATTC-25922), *Pseudomonas aeruginosa* (ATCC-27853), *Staphylococcus aureus* (ATCC-25923) and *Streptococcus fasciens* (ATCC-29212) strains of bacteria using the diffusion method disk for evaluating the applicability of **I** as an antibacterial agent (Mabkhot *et al.*, 2016; Hoffmann *et al.*, 2017). Fig. 10 summarizes the diameter of inhibition (mm) values of **I** and the commercial antibiotic Chlor. The determination of the minimum inhibition concentration MIC values of **I** against the bacteria are presented in Table 4. The results of the antibacterial activity of the product **I** obtained by the alkylation reaction under the conditions of catalysis by liquid–solid phase transfer of hexyl chloride with 2-(4-methylbenzylidene)-3,4dihydro-2*H*-1,4-benzothiazin-3-one showed increases of MIC = 20 μ g ml⁻¹ for *Staphylococcus aureus*, MIC = 10 μ g ml⁻¹ for *Escherichia coli* and *Pseudomonas aeruginosa* and MIC =

Figure 10

Antibacterial activity of the title compound (I) and commercial antibiotic Chloramphenicol (Chlor) against bacteria *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Streptococcus fasciens*.

Table 4

Minimal inhibitory concentration [MIC ($\mu g/ml$)] of the title compound I.

ATTC-25922 = Escherichia coli, ATCC-27853 = Pseudomonas aeruginosa, ATCC-25923 = Staphylococcus aureus, ATCC-29212 = Streptococcus fasciens and Chlor = Chloramphenicol.

Product	I	Chlor	DMSO
ATCC-25922	10	6.25	0
ATTC-25953	10	6.25	0
ATCC-27823	20	12.5	0
ATCC-29212	5	12.5	0

5 μ g ml⁻¹ for *Streptococcus fasciens*, which corresponds to the best MIC activity as compared to the commercial antibiotic. In addition, the maximum effect of I was recorded against Pseudomonas aeruginosa (diameter of inhibition 12.1 mm). Chlor presents an antibacterial activity diameter of inhibition of between 19 mm and 27 mm and no zone inhibition was observed with dimethylsulfoxide (DMSO) [(1%): 1 mL of DMSO added to 99 mL ofulltra-pure water] [The test samples were first dissolved in DMSO (1%), which did not affect the microbial growth.] On one hand, the chemical structure of I can explain this biological effect. The mechanism of action of I is not attributable to one specific mechanism, but there are several targets in the cell: degradation of the cell wall, damage to membrane proteins, damage to cytoplasmic membrane, leakage of cell contents and coagulation of cytoplasm. On the other hand, it should be noted that the functionalized derivatives by ester groups and benzene rings have the highest antibacterial coefficient (92% of pathogenic bacteria are sensitive). This study is expected to take anti-inflammatory, antifungal, anti-parasitic and anti-cancer activities, because the literature gives a lot of interesting results on these topics. Some other types of bacteria may possibly be tested by employing the same method so as eventually to generalize the suggested investigation method (Alderman & Smith, 2001).

9. Synthesis and crystallization

To a solution of 2-(4-methylbenzylidene)-3,4-dihydro-2*H*-1,4benzothiazin-3-one (0.70 g, 2 mmol), potassium carbonate (4 mmol) and tetra-*n*-butyl ammonium bromide (0.2 mmol) in DMF (15 ml) was added 1-chlorohexane (0.48 g, 4 mmol). Stirring was continued at room temperature for 12 h. The reaction mixture was filtered and the solvent was removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel using the mixture ethyl acetate–hexane (9:1) as eluent. Colourless crystals of the title compound **I**, were isolated when the solvent was allowed to evaporate (yield: 60%), m.p. > 284 K.

¹H NMR (300 MHz, DMSO- d_6) δ ppm: 0.88 (*t*, 3H, -CH₂-CH₃, *J* = 6.3 Hz); 2.37 (*s*, 3H, =CH-C₆H₄-CH₃); 2.37-2.52 (*m*, 8H, 4CH₂); 4.08 (*t*, 2H, N-CH₂, *J* = 7.1 Hz); 7.06–7.57 (*m*, 8H, CH_{arom}); 7.77 (*s*, 1H; =CH-C₆H₄Cl); ¹³C NMR (62.5 MHz, DMSO- d_6) δ ppm: 13.86 (-CH₂-CH3); 20.98 (=CH-C₆H₄-CH₃); 22.02, 25,83 26.48, 30.84, (CH₂); 44.24 (NCH₂); 117.26, 123.47, 126.36, 127.55, 129.15, 129.15, 130.03, 130.03, (CH_{arom});

Table 5	
Experimental	details.

Crystal data	
Chemical formula	C ₂₂ H ₂₅ NOS
$M_{\rm r}$	351.49
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.8581 (19), 9.183 (2), 13.021 (3)
α, β, γ (°)	106.474 (3), 109.398 (3), 93.383 (3)
$V(\dot{A}^3)$	944.2 (4)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.18
Crystal size (mm)	$0.33\times0.26\times0.10$
Data collection	
Diffractometer	Bruker Smart APEX CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
Tmin Tmax	0.83, 0.98
No. of measured, independent and	17663, 4860, 3807
observed $[I > 2\sigma(I)]$ reflections	,,
R _{int}	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.677
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.134, 1.08
No. of reflections	4860
No. of parameters	228
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.54, -0.22

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

133.77 (CH_{allyl}); 118.5, 119.31, 131.39, 135.77, 139.92, (Cq); 160.48 (C=O).

10. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 5. The C-bound H atoms were positioned geometrically, with C-H = 0.95 Å (for aromatic and methine H atoms), 0.99 Å (for methylene H atoms) and 0.98 Å (for methyl H atoms), and constrained to ride on their parent atoms, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 (for methyl H atoms) and k = 1.2 for other H atoms.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

- Alderman, D. & Smith, P. (2001). Aquaculture, 196, 211-243.
- Barange, D. K., Batchu, V. R., Gorja, D., Pattabiraman, V. R., Tatini, L. K., Babu, J. M. & Pal, M. (2007). *Tetrahedron*, **63**, 1775– 1789.
- Barazarte, A., Lobo, G., Gamboa, N., Rodrigues, J. R., Capparelli, M. V., Alvarez-Larena, A., López, S. E. & Charris, J. E. (2009). Eur. J. Med. Chem. 44, 1303–1310.
- Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.

- Bhikan, J. K., Rahul, S. S., Premchand, B. P., Sanjay, A. P., Rajeshwar, J. K., Pravin, S. G. & Bhata, R. C. (2012). *E-J. Chem.* 9, 318–322.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.
- Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017*a*). *IUCrData*, **2**, x170646.
- Ellouz, M., Sebbar, N. K., Elmsellem, H., Lakhrissi, B., Mennane, Z., Charof, R., Urrutigoity, M. & Essassi, E. M. (2019). *Scientific Study* & *Res.* **20**, 563–574.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). *IUCrData*, **1**, x160764.
- Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). *IUCrData*, **2**, x170870.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gupta, G. & Wagh, S. B. (2006). Indian J. Chem. Sect. B, 45, 697-702.
- Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan J. Chem. 4, 209–221.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Hni, B., Sebbar, N. K., Hökelek, T., El Ghayati, L., Bouzian, Y., Mague, J. T. & Essassi, E. M. (2019b). Acta Cryst. E75, 593–599.
- Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 372–377.
- Hni, B., Sebbar, N. K., Hökelek, T., Redouane, A., Mague, J. T., Hamou Ahabchane, N. & Essassi, E. M. (2020). Acta Cryst. E76, 281–287.
- Hoffmann, K., Wiśniewska, J., Wojtczak, A., Sitkowski, J., Denslow, A., Wietrzyk, J., Jakubowski, M. & Łakomska, I. (2017). J. Inorg. Biochem. 172, 34–45.

- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). *TONTO - A System for Computational Chemistry*. Available at: http://hirshfeldsurface.net/
- Kaneko, T., Clark, R. S., Ohi, N., Kawahara, T., Akamatsu, H., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). *Chem. Pharm. Bull.* 50, 922–929.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Kheder, N. A. & Al-Showiman, S. S. (2016). *Molecules*, 21, 1036.
- Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *IUCrJ*, **4**, 575–587.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Olayinka, O. A. (2012). Arch. Pharm. Chem. Life Sci. pp. 1-11.
- Parai, M. K. & Panda, G. A. (2009). *Tetrahedron Lett.* 50, 4703–4705.
 Saadouni, M., Gailane, T., Baukhris, S., Hassikou, A., Habbadi, N. & Gailane, T. (2014). *Org. Commun.* 7, 77–84.
- Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203.
- Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, M. & Mague, J. T. (2016b). *IUCrData*, 1, x161823.
- Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. M. & Mague, J. T. (2017a). *IUCrData*, 2, x170695.
- Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016a). *IUCrData*, 1, x160863.
- Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). *IUCrData*, 2, x170889.
- Sebbar, N. K., Hni, B., Hökelek, T., Jaouhar, A., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019a). Acta Cryst. E75, 721–727.
- Sebbar, N. K., Hni, B., Hökelek, T., Labd Taha, M., Mague, J. T., El Ghayati, L. & Essassi, E. M. (2019b). Acta Cryst. E75, 1650–1656.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.
- Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17*. The University of Western Australia.
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, **153**, 625–636.
- Zięba, A., Sochanik, A., Szurko, A., Rams, M., Mrozek, A. & Cmoch, P. (2010). *Eur. J. Med. Chem.* **45**, 4733–4739.

supporting information

Acta Cryst. (2020). E76, 889-895 [https://doi.org/10.1107/S205698902000657X]

Crystal structure, Hirshfeld surface analysis and interaction energy, DFT and antibacterial activity studies of (*Z*)-4-hexyl-2-(4-methylbenzylidene)-2*H*-benzo[*b*][1,4]thiazin-3(4*H*)-one

Ghizlane Sebbar, Brahim Hni, Tuncer Hökelek, Joel T. Mague, Nada Kheira Sebbar, Bouchra Belkadi and El Mokhtar Essassi

Computing details

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(Z)-4-Hexyl-2-(4-methylbenzylidene)-2H-benzo[b][1,4]thiazin-3(4H)-one

Crystal data

C₂₂H₂₅NOS $M_r = 351.49$ Triclinic, $P\overline{1}$ a = 8.8581 (19) Å b = 9.183 (2) Å c = 13.021 (3) Å $a = 106.474 (3)^{\circ}$ $\beta = 109.398 (3)^{\circ}$ $\gamma = 93.383 (3)^{\circ}$ $V = 944.2 (4) Å^{3}$

Data collection

Bruker Smart APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.83, T_{\max} = 0.98$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.134$ Z = 2 F(000) = 376 $D_x = 1.236 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7052 reflections $\theta = 2.4-28.7^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.33 \times 0.26 \times 0.10 \text{ mm}$

17663 measured reflections 4860 independent reflections 3807 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 28.8^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -17 \rightarrow 17$

S = 1.084860 reflections 228 parameters 0 restraints

Primary atom site location: dual	$w = 1/[\sigma^2(F_o^2) + (0.0868P)^2]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.002$
Hydrogen site location: inferred from	$\Delta ho_{ m max} = 0.54 \ { m e} \ { m \AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00$, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	y	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
S1	0.48853 (4)	0.62268 (4)	0.80836(3)	0.02689 (12)	
01	0.14092 (11)	0.34562 (11)	0.54654 (8)	0.0296 (2)	
N1	0.40988 (13)	0.34294 (13)	0.59158 (9)	0.0230 (2)	
C1	0.62657 (16)	0.53904 (15)	0.74903 (11)	0.0238 (3)	
C2	0.79091 (16)	0.60067 (17)	0.80699 (13)	0.0295 (3)	
H2	0.824726	0.683588	0.877249	0.035*	
C3	0.90511 (17)	0.54252 (18)	0.76340 (14)	0.0344 (3)	
H3	1.017293	0.583176	0.804334	0.041*	
C4	0.85491 (18)	0.42485 (19)	0.65987 (14)	0.0359 (4)	
H4	0.932696	0.386664	0.628234	0.043*	
C5	0.69171 (17)	0.36181 (17)	0.60156 (13)	0.0304 (3)	
Н5	0.658838	0.281107	0.530152	0.037*	
C6	0.57519 (15)	0.41547 (15)	0.64649 (11)	0.0230 (3)	
C7	0.28144 (15)	0.41309 (15)	0.60267 (11)	0.0221 (3)	
C8	0.31493 (15)	0.57412 (15)	0.68247 (11)	0.0229 (3)	
C9	0.36834 (18)	0.18446 (15)	0.51035 (12)	0.0272 (3)	
H9A	0.278067	0.127685	0.519876	0.033*	
H9AB	0.463261	0.131943	0.530044	0.033*	
C10	0.31894 (18)	0.17657 (16)	0.38509 (12)	0.0292 (3)	
H10A	0.222119	0.226310	0.364140	0.035*	
H10B	0.408117	0.234298	0.375094	0.035*	
C11	0.28073 (19)	0.01127 (16)	0.30521 (12)	0.0321 (3)	
H11A	0.381565	-0.033721	0.320101	0.038*	
H11B	0.202450	-0.049348	0.323086	0.038*	
C12	0.2103 (2)	-0.00319 (18)	0.17853 (13)	0.0370 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12A	0.111018	0.044208	0.164526	0.044*
H12B	0.289671	0.056538	0.160940	0.044*
C13	0.1679 (2)	-0.1666 (2)	0.09621 (15)	0.0470 (4)
H13A	0.112018	-0.164616	0.017068	0.056*
H13B	0.090849	-0.227440	0.114929	0.056*
C14	0.3135 (3)	-0.2469 (2)	0.09928 (16)	0.0522 (5)
H14A	0.278359	-0.348108	0.039587	0.078*
H14B	0.362499	-0.259934	0.174847	0.078*
H14C	0.393526	-0.184479	0.085374	0.078*
C15	0.20651 (16)	0.66746 (15)	0.65716 (11)	0.0240 (3)
H15	0.112596	0.621988	0.589786	0.029*
C16	0.21350 (15)	0.82914 (15)	0.71914 (11)	0.0237 (3)
C17	0.28006 (17)	0.89520 (16)	0.83901 (11)	0.0270 (3)
H17	0.320387	0.832386	0.885317	0.032*
C18	0.28781 (18)	1.05119 (16)	0.89087 (12)	0.0299 (3)
H18	0.332476	1.093311	0.972370	0.036*
C19	0.23138 (17)	1.14756 (16)	0.82588 (12)	0.0275 (3)
C20	0.16120 (18)	1.08124 (16)	0.70733 (13)	0.0301 (3)
H20	0.119719	1.144064	0.661268	0.036*
C21	0.15056 (17)	0.92502 (16)	0.65499 (12)	0.0287 (3)
H21	0.099424	0.882241	0.573798	0.034*
C22	0.2467 (2)	1.31839 (17)	0.88163 (14)	0.0363 (4)
H22A	0.172104	1.360783	0.827572	0.054*
H22B	0.358422	1.368479	0.902762	0.054*
H22C	0.219515	1.337033	0.950821	0.054*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
S1	0.02168 (18)	0.0295 (2)	0.02434 (19)	0.00586 (14)	0.00650 (13)	0.00294 (14)
01	0.0212 (5)	0.0261 (5)	0.0333 (5)	0.0031 (4)	0.0066 (4)	0.0017 (4)
N1	0.0227 (5)	0.0209 (6)	0.0238 (5)	0.0061 (4)	0.0084 (4)	0.0044 (4)
C1	0.0223 (6)	0.0248 (7)	0.0268 (7)	0.0070 (5)	0.0094 (5)	0.0109 (5)
C2	0.0237 (7)	0.0299 (7)	0.0330 (8)	0.0035 (6)	0.0068 (6)	0.0118 (6)
C3	0.0198 (6)	0.0420 (9)	0.0450 (9)	0.0073 (6)	0.0106 (6)	0.0203 (7)
C4	0.0270 (7)	0.0445 (9)	0.0459 (9)	0.0153 (7)	0.0198 (7)	0.0193 (8)
C5	0.0292 (7)	0.0334 (8)	0.0321 (7)	0.0123 (6)	0.0145 (6)	0.0103 (6)
C6	0.0213 (6)	0.0248 (7)	0.0254 (6)	0.0067 (5)	0.0084 (5)	0.0112 (5)
C7	0.0217 (6)	0.0214 (6)	0.0230 (6)	0.0049 (5)	0.0088 (5)	0.0060 (5)
C8	0.0200 (6)	0.0222 (6)	0.0249 (6)	0.0025 (5)	0.0088 (5)	0.0048 (5)
C9	0.0327 (7)	0.0200 (6)	0.0293 (7)	0.0083 (5)	0.0121 (6)	0.0070 (5)
C10	0.0353 (7)	0.0238 (7)	0.0276 (7)	0.0090 (6)	0.0109 (6)	0.0067 (6)
C11	0.0399 (8)	0.0255 (7)	0.0291 (7)	0.0072 (6)	0.0134 (6)	0.0050 (6)
C12	0.0375 (8)	0.0348 (8)	0.0310 (8)	0.0102 (7)	0.0074 (6)	0.0042 (6)
C13	0.0450 (10)	0.0445 (10)	0.0371 (9)	-0.0097 (8)	0.0171 (7)	-0.0073 (8)
C14	0.0842 (14)	0.0342 (9)	0.0395 (10)	0.0190 (9)	0.0272 (10)	0.0063 (7)
C15	0.0224 (6)	0.0232 (7)	0.0247 (6)	0.0037 (5)	0.0081 (5)	0.0060 (5)
C16	0.0206 (6)	0.0214 (6)	0.0283 (7)	0.0047 (5)	0.0097 (5)	0.0056 (5)

supporting information

C17	0.0318 (7)	0.0247 (7)	0.0272 (7)	0.0084 (6)	0.0121 (6)	0.0099 (6)
C18	0.0337 (7)	0.0278 (7)	0.0256 (7)	0.0067 (6)	0.0106 (6)	0.0048 (6)
C19	0.0274 (7)	0.0219 (7)	0.0336 (7)	0.0047 (5)	0.0135 (6)	0.0067 (6)
C20	0.0328 (7)	0.0251 (7)	0.0342 (8)	0.0088 (6)	0.0115 (6)	0.0126 (6)
C21	0.0303 (7)	0.0263 (7)	0.0254 (7)	0.0061 (6)	0.0065 (5)	0.0063 (6)
C22	0.0433 (9)	0.0233 (7)	0.0397 (9)	0.0074 (6)	0.0150 (7)	0.0063 (6)

Geometric parameters (Å, °)

S1—C8	1.7552 (13)	C11—H11B	0.9900
S1—C1	1.7560 (14)	C12—C13	1.515 (2)
O1—C7	1.2310 (15)	C12—H12A	0.9900
N1—C7	1.3687 (17)	C12—H12B	0.9900
N1—C6	1.4207 (17)	C13—C14	1.518 (3)
N1—C9	1.4756 (17)	C13—H13A	0.9900
C1—C2	1.3928 (19)	C13—H13B	0.9900
C1—C6	1.3976 (19)	C14—H14A	0.9800
C2—C3	1.380 (2)	C14—H14B	0.9800
C2—H2	0.9500	C14—H14C	0.9800
C3—C4	1.379 (2)	C15—C16	1.4615 (18)
С3—Н3	0.9500	C15—H15	0.9500
C4—C5	1.387 (2)	C16—C21	1.3963 (18)
C4—H4	0.9500	C16—C17	1.4004 (18)
C5—C6	1.3958 (19)	C17—C18	1.3862 (19)
С5—Н5	0.9500	C17—H17	0.9500
C7—C8	1.4922 (18)	C18—C19	1.395 (2)
C8—C15	1.3464 (18)	C18—H18	0.9500
C9—C10	1.5205 (19)	C19—C20	1.387 (2)
С9—Н9А	0.9900	C19—C22	1.5067 (19)
С9—Н9АВ	0.9900	C20—C21	1.3851 (19)
C10—C11	1.5201 (19)	C20—H20	0.9500
C10—H10A	0.9900	C21—H21	0.9500
C10—H10B	0.9900	C22—H22A	0.9800
C11—C12	1.520 (2)	C22—H22B	0.9800
C11—H11A	0.9900	С22—Н22С	0.9800
C8—S1—C1	99.20 (6)	C13—C12—C11	115.01 (14)
C7—N1—C6	124.55 (11)	C13—C12—H12A	108.5
C7—N1—C9	115.97 (11)	C11—C12—H12A	108.5
C6—N1—C9	119.35 (11)	C13—C12—H12B	108.5
C2—C1—C6	120.33 (13)	C11—C12—H12B	108.5
C2-C1-S1	117.86 (11)	H12A—C12—H12B	107.5
C6—C1—S1	121.81 (10)	C12—C13—C14	113.96 (15)
C3—C2—C1	120.67 (14)	C12—C13—H13A	108.8
C3—C2—H2	119.7	C14—C13—H13A	108.8
C1—C2—H2	119.7	C12—C13—H13B	108.8
C4—C3—C2	119.39 (14)	C14—C13—H13B	108.8
С4—С3—Н3	120.3	H13A—C13—H13B	107.7

G2 G2 H2	120.2	C12 C14 11144	100 5
C2—C3—H3	120.3	C13—C14—H14A	109.5
C3—C4—C5	120.51 (13)	C13—C14—H14B	109.5
C3—C4—H4	119.7	H14A—C14—H14B	109.5
C5—C4—H4	119.7	C13—C14—H14C	109.5
C4—C5—C6	120.83 (14)	H14A—C14—H14C	109.5
C4—C5—H5	119.6	H14B—C14—H14C	109.5
С6—С5—Н5	119.6	C8—C15—C16	128.87 (12)
C5—C6—C1	118.17 (12)	C8—C15—H15	115.6
C5—C6—N1	120.84 (12)	C16—C15—H15	115.6
C1—C6—N1	120.95 (12)	C21—C16—C17	117.48 (12)
O1—C7—N1	120.68 (12)	C21—C16—C15	118.10 (12)
O1—C7—C8	120.59 (11)	C17—C16—C15	124.42 (12)
N1—C7—C8	118.71 (11)	C18—C17—C16	120.77 (12)
C15—C8—C7	118.49 (12)	C18—C17—H17	119.6
C15—C8—S1	124.93 (10)	C16—C17—H17	119.6
C7—C8—S1	116.43 (9)	C17—C18—C19	121.36 (13)
N1—C9—C10	113.78 (11)	C17—C18—H18	119.3
N1—C9—H9A	108.8	C19—C18—H18	119.3
С10—С9—Н9А	108.8	C20—C19—C18	117.81 (13)
N1—C9—H9AB	108.8	C20—C19—C22	120.67 (13)
С10—С9—Н9АВ	108.8	C18—C19—C22	121.52 (13)
Н9А—С9—Н9АВ	107.7	C21—C20—C19	121.14 (13)
C11—C10—C9	111.74 (11)	C21—C20—H20	119.4
C11—C10—H10A	109.3	C19—C20—H20	119.4
C9-C10-H10A	109.3	C_{20} C_{21} C_{16}	121 33 (13)
C_{11} C_{10} H_{10B}	109.3	$C_{20} = C_{21} = H_{21}$	1193
C9-C10-H10B	109.3	C_{16} C_{21} H_{21}	119.3
H10A - C10 - H10B	107.9	C19 - C22 - H22A	109.5
C_{12} C_{11} C_{10}	113 46 (12)	C19 $C22$ $H22R$	109.5
$C_{12} = C_{11} = C_{10}$	108.0	H_{22} H	109.5
	108.0	C_{10} C_{22} H_{22} H_{22}	109.5
C_{10} C_{11} H_{11} H	108.9		109.5
C10 C11 H11P	108.9	$H_{22}A = C_{22} = H_{22}C$	109.5
	108.9	H22B-C22-H22C	109.3
нпа—сп—нпв	107.7		
C8—S1—C1—C2	154.11 (11)	N1-C7-C8-S1	-35.27 (15)
C8—S1—C1—C6	-25.32(12)	C1—S1—C8—C15	-139.90 (12)
C6-C1-C2-C3	1.0 (2)	C1—S1—C8—C7	44.53 (11)
<u>\$1-C1-C2-C3</u>	-178.44(11)	C7-N1-C9-C10	79.89 (15)
C1-C2-C3-C4	1.7 (2)	C6—N1—C9—C10	-96.17 (14)
$C_2 - C_3 - C_4 - C_5$	-20(2)	N1 - C9 - C10 - C11	178 84 (12)
C_{3} C_{4} C_{5} C_{6}	-0.3(2)	C9-C10-C11-C12	172 66 (13)
C4 - C5 - C6 - C1	29(2)	C10-C11-C12-C13	-178 97 (14)
C4-C5-C6-N1	-174.94(13)	C11-C12-C13	-64.8(2)
$C_{-} C_{-} C_{-$	-32(2)	C7 - C8 - C15 - C16	$-178\ 20\ (12)$
12 - 01 - 00 - 03	3.2(2) 176 17 (10)	$C_{1} = C_{0} = C_{10} = C_{10}$	63(2)
$C_{1} = C_{1} = C_{0} = C_{3}$	170.17(10) 174.50(12)	$C_{1}^{2} = C_{1}^{2} = C_{1$	(2)
$C_2 - C_1 - C_0 - N_1$	5 00 (12)	$C_{0} = C_{13} = C_{10} = C_{21}$	144.09 (13)
51	-3.99 (18)	Lo-L10-L10-L1/	-35.5 (2)

C7—N1—C6—C5	-156.27 (13)	C21—C16—C17—C18	-2.2 (2)
C9—N1—C6—C5	19.42 (18)	C15—C16—C17—C18	177.39 (13)
C7—N1—C6—C1	25.95 (19)	C16—C17—C18—C19	-0.6 (2)
C9—N1—C6—C1	-158.36 (12)	C17—C18—C19—C20	2.4 (2)
C6—N1—C7—O1	175.34 (12)	C17—C18—C19—C22	-177.10 (14)
C9—N1—C7—O1	-0.48 (18)	C18—C19—C20—C21	-1.3 (2)
C6—N1—C7—C8	-3.51 (19)	C22-C19-C20-C21	178.20 (14)
C9—N1—C7—C8	-179.33 (11)	C19—C20—C21—C16	-1.6 (2)
O1—C7—C8—C15	-30.00 (19)	C17—C16—C21—C20	3.3 (2)
N1—C7—C8—C15	148.85 (13)	C15—C16—C21—C20	-176.31 (13)
O1—C7—C8—S1	145.87 (11)		

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4—H4…O1 ⁱ	0.95	2.42	3.349 (2)	168
C15—H15…O1 ⁱⁱ	0.95	2.45	3.2977 (17)	148

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*, –*y*+1, –*z*+1.