

Received 29 April 2020 Accepted 30 April 2020

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela

Keywords: crystal structure; piperidine; hydrogen bonding; Hirshfeld surface analysis; energy frameworks.

CCDC reference: 2000223

Supporting information: this article has supporting information at journals.iucr.org/e

Mustapha Tiouabi,^a Raphaël Tabacchi^a and Helen Stoeckli-Evans^{b*}

^aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and ^bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

In the title compound, $C_{17}H_{27}NO_2$, the piperidine ring has a chair conformation and is positioned normal to the benzene ring. In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, forming chains propagating along the *c*-axis direction.

1. Chemical context

During research on phytotoxins produced by the *Ceratocystis fimbriata* species (Tiouabi, 2005), the pathogenic agents responsible for the infections of plane, coffee and elm trees, analytical and spectroscopic studies enabled the isolation of a number of isocoumarins in small quantities. In order to confirm their molecular structures and especially to study their phytotoxicity and pathogenicity it was necessary to develop efficient methods for the total syntheses of these various isocoumarins. The title compound (**3**) was synthesized as a side product during the synthesis of the intermediate, methyl 3,6-dimethoxy-2-(2-methoxy-2-oxoethyl)benzoate (**2**) (see Fig. 1), necessary for the total synthesis of the isocoumarin 5,8-dimethoxy-3-methyl-1*H*-isochromen-1-one (Tiouabi, 2005).

2. Structural commentary

The molecular structure of the title compound, 1-(2,5-dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine (3), is illustrated in Fig. 2. The piperidine ring has a chair conformation with atoms N1 and C11 being displaced by -0.5171 (12) and 0.6876 (15) Å, respectively, from the mean plane of the

The reaction scheme resulting in the formation of the title compound, 3.

remaining four C atoms (C9/C10/C12/C13). This mean plane is normal to the plane of the benzene ring (C1–C6), with a dihedral angle of 88.34 (9)°. Planes C2/O1/C7 and C5/O2/C8, involving the methoxy groups, are inclined to the benzene ring by 13.23 (15) and 10.45 (15)°, respectively.

3. Supramolecular features

In the crystal of **3**, molecules related by the glide plane are linked by $C-H \cdots O$ hydrogen bonds, forming chains propagating along the *c*-axis direction (Fig. 3 and Table 1). There are no other significant intermolecular interactions present in the crystal.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon *et al.*, 2007) were performed with *Crystal-Explorer17.5* (Turner *et al.*, 2017). For an excellent explanation of the use of Hirshfeld surface analysis and other calculations,

Figure 2

The molecular structure of compound 3, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1	
Hydrogen-bond geometry	(Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C8-H8B\cdots O2^{i}$	0.98	2.51	3.495 (2)	180

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Short interatomic contacts $(Å)^a$ in the crystal of compound **3**.

Atom1···Atom2	Length	Length - vdW
$O2 \cdot \cdot \cdot H8B^{ii}$	2.515	-0.205
$C4 \cdot \cdot \cdot H15C^{iii}$	2.830	-0.070
$O2 \cdot \cdot \cdot H15B^{ii}$	2.686	-0.034
$C2 \cdot \cdot \cdot H8A^{iv}$	2.918	0.018
$C3 \cdot \cdot \cdot H14C^{iii}$	2.977	0.077
$H7C \cdot \cdot \cdot H17A^{iv}$	2.484	0.084
$O1 \cdots H16A^{iv}$	2.814	0.094

Note: (a) Calculated using *Mercury* (Macrae *et al.*, 2020). Symmetry codes: (ii) $x, -y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x, y, z - 1; (iv) x - 1, y, z.

such as energy frameworks, to study the molecular packing see the recent article by Tiekink and collaborators (Tan *et al.*, 2019). The Hirshfeld surface is colour-mapped with the normalized contact distance, d_{norm} , from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The energy frameworks (Turner *et al.*, 2015; Tan *et al.*, 2019) are represented by cylinders joining the centroids of molecular pairs using red, green and blue colour codes for the $E_{\text{electrostatic}}$,

Figure 3

A view along the a axis of the crystal packing of compound **3**. The hydrogen bonds (Table 1) are shown as dashed lines.

Figure 4

The Hirshfeld surface of compound **3** mapped over d_{norm} , in the colour range -0.1434 to 1.2136 a.u..

 $E_{\rm dispersion}$ and $E_{\rm total}$ energy components, respectively. The radius of the cylinder is proportional to the magnitude of the interaction energy.

A view of the Hirshfeld surface of **3** mapped over d_{norm} is shown in Fig. 4. The short interatomic $O \cdots H/H \cdots O$ contacts are indicated by the faint red spots. A full list of short interatomic contacts in the crystal of **3** are given in Table 2. The most significant contacts, apart from $H \cdots H$ contacts, are

Figure 5

(a) The full two-dimensional fingerprint plot for compound **3**, and fingerprint plots delineated into (b) $H \cdots H$ at 84.1%, (c) $O \cdots H/H \cdots O$ at 8.3% and (d) $C \cdots H/H \cdots C$ at 7.6% contacts.

Table 3	
Experimental details.	
Crystal data	
Chemical formula	C ₁₇ H ₂₇ NO ₂
$M_{ m r}$	277.39
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	6.8817 (10), 28.249 (4), 8.1369 (13)
β (°)	99.649 (12)
$V(\text{\AA}^3)$	1559.4 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.40 \times 0.10 \times 0.10$
Data collection	
Diffractometer	STOE IPDS 2
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10596, 2770, 1695
R _{int}	0.085
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.599
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.073, 0.83
No. of reflections	2770
No. of parameters	188
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.13, -0.13

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

O···H and C···H contacts as confirmed by the two-dimensional fingerprint plots (Fig. 5). The principal intermolecular contacts for **3**, are delineated into H···H at 84.1% (Fig. 5*b*), O···H/H···O at 8.3% (Fig. 5*c*) and C···H/H···C at 7.6% (Fig. 5*d*) contacts. The intermolecular contacts are therefore dominated by dispersion forces (H···H at 84.1%; Fig. 5*b*). This is confirmed by the energy frameworks shown in Fig. 6. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol⁻¹ within $2 \times 2 \times 2$ unit cells, and obtained using the wave function calculated at the HF/3-21G level of theory.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update March 2020; Groom et al., 2016) for 1-(phenyl)-2,2,6,6-tetramethylpiperidines gave 26 hits (see file S1 in the supporting information). A number of these structures involve heteroaryl and heterocyclic aluminium compounds, see for example CSD refcodes CEGLUY, CEGMF, CEGMEJ, CEGMIN, CEGMOT and CEGMUZ (Chen et al., 2017). They also include a number of borohydride derivatives, see for example CSD refcodes JAKZON, JAKZUT, JALBAC and JALBEG (Chernichenko et al., 2017). Only one compound has a methoxy substituent, viz. 1-(2-iodo-3-methoxyphenyl)-2,2,6,6-tetramethylpiperidine (VAPCUM; Crosbie et al., 2012). In these eleven compounds, the piperidine ring has a chair conformation with the mean plane of the four planar C atoms being inclined to the plane of the benzene ring by dihedral angles varying from ca 83.0 to 90.0°. In compound **3** this dihedral angle is similar at $88.34 (9)^{\circ}$.

research communications

Figure 6

The energy frameworks viewed down the *b*-axis direction comprising (*a*) electrostatic potential forces, (*b*) dispersion forces and (*c*) total energy for a cluster about a reference molecule of **3**. The energy frameworks were adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol⁻¹ within $2 \times 2 \times 2$ unit cells.

6. Synthesis and crystallization

The synthesis of compound 3 is illustrated in Fig. 1. It arises as a result of the condensation of 2-bromo-1,4-dimethoxybenzene (1) with tetramethylpiperidene (HTMP). It is a side product obtained during the synthesis of methyl 3,6-dimethoxy-2-(2-methoxy-2-oxoethyl)benzoate (2) (Tiouabi, 2005). Colourless rod-like crystals of 3 were obtained by slow evaporation at room temperature of a solution in acetone. There are no analytical or spectroscopic data available for compound 3.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were fixed geometrically (C-H = 0.95–0.99 Å) and allowed to ride on their parent atoms with $U_{\rm iso}(\rm H) = 1.5U_{eq}(\rm C\text{-methyl})$ and $1.2U_{eq}(\rm C)$ for other H atoms.

Acknowledgements

RT and HSE are grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation and the University of Neuchâtel.

References

- Chen, S., Li, B., Wang, X., Huang, Y., Li, J., Zhu, H., Zhao, L., Frenking, G. & Roesky, H. W. (2017). *Chem. Eur. J.* 23, 13633– 13637.
- Chernichenko, K., Kótai, B., Nieger, M., Heikkinen, S., Pápai, I. & Repo, T. (2017). *Dalton Trans.* 46, 2263–2269.
- Crosbie, E., Kennedy, A. R., Mulvey, R. E. & Robertson, S. D. (2012). *Dalton Trans.* **41**, 1832–1839.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). *Chem. Commun.* pp. 3814–3816.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Stoe & Cie. (2005). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Tiouabi, M. (2005). PhD Thesis. University of Neuchâtel, Switzerland.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17. University of Western Australia.* http://hirshfeldsurface.net
- Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). *Chem. Commun.* 51, 3735–3738.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2020). E76, 794-797 [https://doi.org/10.1107/S2056989020005952]

The crystal structure and Hirshfeld surface analysis of 1-(2,5-dimethoxy-phenyl)-2,2,6,6-tetramethylpiperidine

Mustapha Tiouabi, Raphaël Tabacchi and Helen Stoeckli-Evans

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2005); cell refinement: *X-AREA* (Stoe & Cie, 2005); data reduction: *X-RED32* (Stoe & Cie, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2020) and *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *SHELXL2018/3* (Sheldrick, 2015), *PLATON* (Spek, 2020) and *publCIF* (Westrip, 2010).

F(000) = 608

 $\theta = 1.4 - 25.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Rod. colourless

 $0.40 \times 0.10 \times 0.10 \text{ mm}$

 $\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 1.4^{\circ}$

1695 reflections with $I > 2\sigma(I)$

T = 173 K

 $R_{\rm int} = 0.085$

 $h = -8 \rightarrow 8$ $k = -33 \rightarrow 33$

 $l = -9 \rightarrow 9$

 $D_{\rm x} = 1.182 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4940 reflections

1-(2,5-Dimethoxyphenyl)-2,2,6,6-tetramethylpiperidine

Crystal data

 $C_{17}H_{27}NO_2$ $M_r = 277.39$ Monoclinic, $P2_1/c$ a = 6.8817 (10) Å b = 28.249 (4) Å c = 8.1369 (13) Å $\beta = 99.649 (12)^{\circ}$ $V = 1559.4 (4) Å^3$ Z = 4

Data collection

STOE IPDS 2 diffractometer Radiation source: fine-focus sealed tube Plane graphite monochromator $\varphi + \omega$ scans 10596 measured reflections 2770 independent reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 0.83	H-atom parameters constrained
2770 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0237P)^2]$
188 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.13$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Extinction correction: (*SHELXL2018/3*; Sheldrick, 2015), Fc^{*}=kFc[1+0.001xFc² λ^3 /sin(2 θ)]^{-1/4} Extinction coefficient: 0.0127 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

-					
	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.15231 (15)	0.11464 (4)	0.48898 (14)	0.0359 (3)	
O2	0.47503 (17)	0.23289 (4)	0.44354 (15)	0.0389 (3)	
N1	0.17336 (17)	0.10517 (4)	0.72612 (15)	0.0239 (3)	
C1	0.1701 (2)	0.14010 (5)	0.59863 (18)	0.0240 (4)	
C2	0.0023 (2)	0.14458 (5)	0.4777 (2)	0.0274 (4)	
C3	-0.0050 (2)	0.17837 (6)	0.3529 (2)	0.0320 (4)	
Н3	-0.120713	0.181465	0.271592	0.038*	
C4	0.1545 (2)	0.20752 (6)	0.3461 (2)	0.0326 (4)	
H4	0.148437	0.230424	0.259885	0.039*	
C5	0.3219 (2)	0.20347 (5)	0.4637 (2)	0.0286 (4)	
C6	0.3285 (2)	0.17020 (5)	0.58934 (19)	0.0264 (4)	
H6	0.443892	0.167808	0.671343	0.032*	
C7	-0.3053 (2)	0.11190 (7)	0.3485 (2)	0.0420 (5)	
H7C	-0.398183	0.086893	0.366432	0.063*	
H7B	-0.248449	0.104630	0.248721	0.063*	
H7A	-0.374711	0.142279	0.333365	0.063*	
C8	0.6384 (3)	0.23518 (6)	0.5748 (2)	0.0407 (5)	
H8A	0.703032	0.204187	0.588607	0.061*	
H8B	0.592985	0.244041	0.678454	0.061*	
H8C	0.732223	0.258909	0.548061	0.061*	
C9	0.1554 (2)	0.12313 (5)	0.89467 (19)	0.0269 (4)	
C10	0.0977 (2)	0.08181 (6)	0.9977 (2)	0.0342 (4)	
H10A	0.103522	0.092378	1.114443	0.041*	
H10B	-0.040201	0.072692	0.954118	0.041*	
C11	0.2287 (2)	0.03873 (6)	0.9958 (2)	0.0381 (5)	
H11A	0.365874	0.046683	1.046272	0.046*	
H11B	0.182345	0.012857	1.061593	0.046*	
C12	0.2215 (3)	0.02299 (6)	0.8172 (2)	0.0364 (4)	
H12B	0.084985	0.013326	0.770843	0.044*	
H12A	0.307259	-0.005084	0.815714	0.044*	
C13	0.2870 (2)	0.06129 (5)	0.7049 (2)	0.0294 (4)	
C14	-0.0136 (2)	0.15863 (6)	0.8748 (2)	0.0352 (4)	
H14C	-0.039727	0.167933	0.985055	0.053*	
H14B	-0.132032	0.144135	0.810935	0.053*	
H14A	0.022371	0.186676	0.815626	0.053*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C15	0.3403 (2)	0.14765 (6)	0.9888 (2)	0.0361 (4)	
H15C	0.316036	0.157724	1.098873	0.054*	
H15B	0.371277	0.175361	0.925566	0.054*	
H15A	0.451420	0.125506	1.002183	0.054*	
C16	0.5112 (2)	0.06636 (6)	0.7429 (2)	0.0350 (4)	
H16C	0.572685	0.036915	0.713805	0.053*	
H16B	0.552574	0.072901	0.861923	0.053*	
H16A	0.552219	0.092519	0.677366	0.053*	
C17	0.2301 (2)	0.04478 (6)	0.5248 (2)	0.0387 (5)	
H17A	0.280543	0.067303	0.450547	0.058*	
H17B	0.086213	0.042978	0.495777	0.058*	
H17C	0.287008	0.013449	0.512256	0.058*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0285 (6)	0.0478 (7)	0.0295 (7)	-0.0066 (5)	-0.0007 (5)	0.0043 (6)
O2	0.0453 (7)	0.0328 (7)	0.0391 (7)	-0.0084 (6)	0.0085 (6)	0.0091 (6)
N1	0.0296 (7)	0.0217 (7)	0.0205 (7)	0.0021 (6)	0.0045 (6)	0.0027 (6)
C1	0.0292 (9)	0.0225 (8)	0.0210 (9)	0.0038 (7)	0.0058 (7)	-0.0006 (7)
C2	0.0276 (9)	0.0319 (9)	0.0233 (9)	0.0011 (7)	0.0063 (8)	-0.0023 (7)
C3	0.0353 (10)	0.0384 (10)	0.0218 (9)	0.0095 (8)	0.0032 (8)	0.0026 (8)
C4	0.0465 (11)	0.0275 (9)	0.0256 (9)	0.0094 (8)	0.0111 (9)	0.0059 (7)
C5	0.0362 (9)	0.0229 (8)	0.0283 (9)	0.0011 (7)	0.0098 (8)	0.0005 (7)
C6	0.0304 (9)	0.0230 (8)	0.0251 (8)	0.0027 (7)	0.0024 (7)	-0.0004 (7)
C7	0.0308 (10)	0.0594 (12)	0.0329 (10)	-0.0019 (9)	-0.0032 (8)	-0.0076 (9)
C8	0.0476 (11)	0.0392 (11)	0.0374 (11)	-0.0115 (9)	0.0136 (10)	-0.0044 (8)
C9	0.0334 (9)	0.0276 (9)	0.0197 (8)	0.0020 (7)	0.0045 (7)	0.0017 (7)
C10	0.0368 (10)	0.0400 (10)	0.0266 (9)	0.0011 (8)	0.0082 (8)	0.0080 (8)
C11	0.0397 (10)	0.0337 (10)	0.0409 (11)	0.0013 (8)	0.0068 (9)	0.0146 (8)
C12	0.0379 (10)	0.0248 (9)	0.0472 (11)	0.0019 (8)	0.0088 (9)	0.0065 (8)
C13	0.0318 (9)	0.0225 (8)	0.0340 (10)	0.0007 (7)	0.0063 (8)	0.0014 (7)
C14	0.0428 (10)	0.0355 (10)	0.0284 (10)	0.0095 (8)	0.0093 (8)	0.0006 (8)
C15	0.0427 (10)	0.0369 (10)	0.0270 (9)	-0.0030 (8)	0.0010 (8)	-0.0032 (8)
C16	0.0343 (9)	0.0309 (9)	0.0403 (10)	0.0064 (8)	0.0076 (8)	0.0036 (8)
C17	0.0426 (11)	0.0301 (9)	0.0437 (11)	0.0007 (8)	0.0085 (9)	-0.0079 (9)

Geometric parameters (Å, °)

01—C2	1.3743 (19)	C9—C15	1.536 (2)	
O1—C7	1.4204 (18)	C10—C11	1.516 (2)	
O2—C5	1.3732 (19)	C10—H10A	0.9900	
O2—C8	1.416 (2)	C10—H10B	0.9900	
N1-C1	1.4293 (19)	C11—C12	1.513 (2)	
N1-C9	1.4867 (19)	C11—H11A	0.9900	
N1-C13	1.4908 (19)	C11—H11B	0.9900	
C1—C2	1.392 (2)	C12—C13	1.532 (2)	
C1—C6	1.394 (2)	C12—H12B	0.9900	

C2—C3	1.388 (2)	C12—H12A	0.9900
C3—C4	1.381 (2)	C13—C17	1.526 (2)
С3—Н3	0.9500	C13—C16	1.529 (2)
C4—C5	1.374 (2)	C14—H14C	0.9800
C4—H4	0.9500	C14—H14B	0.9800
C5—C6	1.384 (2)	C14—H14A	0.9800
С6—Н6	0.9500	C15—H15C	0.9800
С7—Н7С	0.9800	C15—H15B	0.9800
C7—H7B	0.9800	C15—H15A	0.9800
C7—H7A	0.9800	C16—H16C	0.9800
C8—H8A	0.9800	C16—H16B	0.9800
C8—H8B	0.9800	C_{16} H16A	0.9800
	0.9800	C_{17} H_{17}	0.9800
C9-C14	1.524(2)	C17H17B	0.9800
C_{2}	1.524(2)	C17 H17C	0.9800
09-010	1.328 (2)	CI/—HI/C	0.9800
C2—O1—C7	117.22 (13)	C9—C10—H10B	108.9
C5—O2—C8	117.75 (13)	H10A—C10—H10B	107.7
C1—N1—C9	116.13 (11)	C12-C11-C10	108.78 (14)
C1—N1—C13	115.76 (12)	C12—C11—H11A	109.9
C9—N1—C13	121.11 (11)	C10-C11-H11A	109.9
C^2 — C^1 — C^6	118 02 (14)	C12—C11—H11B	109.9
$C_2 - C_1 - N_1$	119.07 (14)	C10-C11-H11B	109.9
C6-C1-N1	122.90 (13)	H11A—C11—H11B	108.3
$01 - C^2 - C^3$	122.50(13) 122.57(14)	C11-C12-C13	113 56 (14)
$01 - C^2 - C^1$	117 18 (14)	$C_{11} - C_{12} - H_{12}B$	108.9
C_{3} C_{2} C_{1}	120.24(15)	C_{13} C_{12} H_{12B}	108.9
$C_{4} - C_{3} - C_{2}^{2}$	120.24(15) 120.51(15)	C_{11} C_{12} H_{12A}	108.9
C4-C3-H3	110 7	C_{12} C_{12} H_{12A}	108.9
C2_C3_H3	119.7	H_{12B} C_{12} H_{12A}	107.7
$C_{2} = C_{3} = C_{4}$	120.13 (15)	N1_C13_C17	107.7 108.08(12)
$C_{5} = C_{4} = C_{5}$	110.0	N1 C13 C16	100.00(12) 115.46(12)
$C_3 = C_4 = H_4$	119.9	C_{17} C_{13} C_{16}	113.40(12) 108.10(14)
$C_{3} = C_{4} = 114$	115.9	N1 C13 C12	107.81(13)
02 - 05 - 04	113.91(14) 124.65(14)	$C_{17} C_{13} C_{12}$	107.81(13) 107.65(13)
$C_{2} = C_{3} = C_{0}$	124.03(14) 110.42(15)	$C_{1}^{-} = C_{1}^{-} = C_{1$	107.03(13) 100.40(13)
$C_{4} = C_{5} = C_{6}$	119.42(13) 121.67(14)	C10 - C13 - C12	109.49 (13)
$C_{5} = C_{6} = U_{6}$	121.07 (14)	C_{9} C_{14} H_{14} C_{0} C_{14} H_{14} $H_{$	109.5
C_{1} C_{6} H_{6}	119.2	H_{14} H	109.5
C1 = C0 = H0	119.2	H14C - C14 - H14B	109.5
$O_1 = C_7 = H_7 C$	109.5	$U_{14} = U_{14} = U_{14}$	109.5
U = C / = H / B	109.5	H14C - C14 - H14A	109.5
H/C - C/ - H/B	109.5	H14B - C14 - H14A	109.5
$UI - U - \Pi / A$	109.5	$C_{1} = C_{1} = C_{1}$	109.5
$\Pi/U - U/ - \Pi/A$	109.5		109.5
H/B - U/- H/A	109.5	HI3C - CI5 - HI5B	109.5
02 - 03 - H8A	109.5		109.5
	109.5	HISC—CIS—HISA	109.5
н8А—С8—Н8В	109.5	H15B—C15—H15A	109.5

O2—C8—H8C	109.5	C13—C16—H16C	109.5
H8A—C8—H8C	109.5	C13—C16—H16B	109.5
H8B—C8—H8C	109.5	H16C—C16—H16B	109.5
N1-C9-C14	107.86 (12)	C13—C16—H16A	109.5
N1-C9-C10	108.36 (12)	H16C—C16—H16A	109.5
C14—C9—C10	107.30 (14)	H16B—C16—H16A	109.5
N1—C9—C15	115.10 (13)	С13—С17—Н17А	109.5
C14—C9—C15	108.04 (13)	С13—С17—Н17В	109.5
C10—C9—C15	109.90 (13)	H17A—C17—H17B	109.5
C11—C10—C9	113.44 (14)	С13—С17—Н17С	109.5
C11—C10—H10A	108.9	H17A—C17—H17C	109.5
C9—C10—H10A	108.9	H17B—C17—H17C	109.5
C11-C10-H10B	108.9		
C9—N1—C1—C2	-106.25 (16)	C1—N1—C9—C14	46.76 (17)
C13—N1—C1—C2	102.61 (16)	C13—N1—C9—C14	-163.75 (13)
C9—N1—C1—C6	73.77 (19)	C1—N1—C9—C10	162.62 (12)
C13—N1—C1—C6	-77.38 (18)	C13—N1—C9—C10	-47.89 (17)
C7—O1—C2—C3	13.5 (2)	C1—N1—C9—C15	-73.91 (16)
C7—O1—C2—C1	-166.84 (14)	C13—N1—C9—C15	75.58 (17)
C6—C1—C2—O1	-179.96 (14)	N1-C9-C10-C11	50.81 (17)
N1—C1—C2—O1	0.1 (2)	C14—C9—C10—C11	167.03 (14)
C6—C1—C2—C3	-0.3 (2)	C15—C9—C10—C11	-75.74 (17)
N1—C1—C2—C3	179.71 (14)	C9—C10—C11—C12	-57.94 (18)
O1—C2—C3—C4	-179.64 (15)	C10-C11-C12-C13	58.42 (18)
C1—C2—C3—C4	0.7 (2)	C1—N1—C13—C17	-46.30 (16)
C2—C3—C4—C5	-0.4 (2)	C9—N1—C13—C17	164.11 (13)
C8—O2—C5—C4	170.51 (15)	C1—N1—C13—C16	74.85 (17)
C8—O2—C5—C6	-11.2 (2)	C9—N1—C13—C16	-74.74 (18)
C3—C4—C5—O2	177.94 (15)	C1—N1—C13—C12	-162.40 (12)
C3—C4—C5—C6	-0.4 (2)	C9—N1—C13—C12	48.01 (17)
O2-C5-C6-C1	-177.36 (15)	C11—C12—C13—N1	-51.42 (17)
C4—C5—C6—C1	0.9 (2)	C11—C12—C13—C17	-167.79 (14)
C2—C1—C6—C5	-0.5 (2)	C11—C12—C13—C16	74.93 (18)
N1-C1-C6-C5	179.49 (14)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C8—H8 <i>B</i> ···O2 ⁱ	0.98	2.51	3.495 (2)	180

Symmetry code: (i) x, -y+1/2, z+1/2.