CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 10 December 2019
Accepted 29 January 2020

Edited by M. Zeller, Purdue University, USA

Keywords: diplopyrone; pyranopyran; crystal structure.

CCDC reference: 1980773

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and crystal structure of (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2carboxamide

John Greene, ${ }^{\text {a }}$ Noa Kopplin, ${ }^{\text {a }}$ Jack Roireau, ${ }^{\text {a }}$ Mark Bezpalko, ${ }^{\text {a }}$ Scott Kassel, ${ }^{\text {a }}$ Michael W. Giuliano ${ }^{\text {b }}$ and Robert Giuliano ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, Villanova University, 800 E Lancaster Avenue, Villanova, PA, USA, and ${ }^{\text {b }}$ Department of Chemistry and Biochemistry, College of Charleston, 66 George Street, Charleston, SC, USA. *Correspondence e-mail: robert.giuliano@villanova.edu

The pyranopyran amide ($2 S, 4 \mathrm{a} R, 8 \mathrm{a} R$)-6-oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]-pyran-2-carboxamide, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}, \mathbf{3}$, was prepared by a chemoselective hydration of the corresponding nitrile, $\mathbf{2}$, using a heterogeneous catalytic method based on copper(II) supported on molecular sieves, in the presence of acetaldoxime. Compound $\mathbf{3}$ belongs to a new class of pyranopyrans that possess antibacterial and phytotoxic activity. Crystallographic analysis of $\mathbf{3}$ shows a bent structure for the cis-fused bicyclic pyranopyran, similar to nitrile 2. Evidence of an intramolecular hydrogen bond involving the amide group and ring oxygen was not observed; however, two separate intermolecular hydrogen-bonding interactions were observed between the amide hydrogen atoms and adjacent carbonyl oxygen atoms along the b - and a-axis directions. The latter interaction may also be supported by an intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The lattice is filled out by close-packed layers of this hydrogen-bonded network along the c-axis direction, related from one to the next by a 2_{1} screw axis.

1. Chemical context

The phytotoxin diplopyrone $\mathbf{1}$ was isolated from the fungus Diplodia mutila and reported in 2003 (Evidente et al., 2003). This fungus is considered a causative agent of cork oak decline and diplopyrone is implicated as the main phytotoxin responsible for this disease, the economic and environmental impacts of which are well known (Giorgio et al., 2005). The proposed structure of diplopyrone contains a cis-fused pyranopyran core and four chirality centers, originally assigned as $9 S, 6 R, 8 \mathrm{a} S, 4 \mathrm{a} S$, but revised recently to $9 R, 6 S, 8 \mathrm{a} S, 4 \mathrm{a} S$ (Fusè et al., 2019). In 2019, our laboratory published the synthesis and biological evaluation of pyranopyran analogs based on the structure of diplopyrone (Lazzara et al., 2019). These enantiomeric analogs showed antibacterial and phytotoxic activity, in one case exceeding the activity of a commercially used antibiotic that is used to treat bacterial diseases in pond-raised catfish, which is the largest segment of aquaculture in the United States. Pyranopyran nitrile 2 was approximately 100 times more potent in bioassay than florfenicol against Edwardsiella ictaluri, which causes enteric septicemia (ESC), a disease that can result in losses of tens of millions of dollars to the industry annually. Compound 2 was also phytotoxic in an assay using the aquatic plant Lemna paucicostata (L.) Hegelm. (duckweed). As part of our ongoing efforts to synthesize additional analogs of $\mathbf{1}$ for testing as new antibacterials and herbicides, we have recently
prepared amide 3, by a heterogeneous catalytic method that uses copper(II) supported on molecular sieves, in the presence of acetaldoxime to carry out chemoselective hydration of $\mathbf{2}$ (Kiss \& Hell, 2011).

(+)-Diplopyrone (1)

Pyranopyran Nitrile (2)

Pyranopyran Amide (3)

2. Structural commentary

Pyranopyrans in which the two rings are cis-fused are relatively rare compared to trans-fused pyranopyrans (Giuliano, 2014). A consequence of the cis ring fusion is that the molecule has more of a bent shape than it would if trans-fused, which is demonstrated by the $\mathrm{O} 1-\mathrm{C} 8 A-\mathrm{C} 4 A-\mathrm{O} 5$ torsion angle of $72.95(15)^{\circ}$ versus 177° for a comparable trans-fused pyranopyran (Yu et al., 2017). Both rings adopt half-chair conformations, placing the amide group in a near 1,3-diaxial interaction with $\mathrm{H} 4 A$. These features are consistent with the results in the computational study reported (Evidente et al., 2003). The study suggests the hydroxyethyl side chain is involved in an intramolecular hydrogen bond between the hydroxyl group and the O5 ring oxygen. By contrast, the amide side chain in $\mathbf{3}$ does not exhibit a similar intramolecular hydrogen bond with its amino group in the solid state, as shown in Fig. 1. The overall structure of $\mathbf{3}$ is nearly identical to that of the pyranopyran nitrile $\mathbf{2}$ with obvious deviation at the side chain.

The NMR spectra of the pyranopyran amide $\mathbf{3}$ are similar to those of pyranopyran nitrile 2. The most obvious difference in the ${ }^{13} \mathrm{C}$ spectra is the presence of the additional (amide) carbonyl carbon in $\mathbf{3}$ at $\delta 174.1 \mathrm{ppm}$ and the absence of the nitrile carbon that occurs at $\delta 114.9$ in 2. The ${ }^{1} \mathrm{H}$ spectrum of $\mathbf{3}$ shows slight changes in the chemical shifts of most protons, for example there is a downfield shift of $\mathrm{H} 4 A$ from $\delta 4.45 \mathrm{ppm}$ in the nitrile to $\delta 4.61 \mathrm{ppm}$ in the amide. The vinyl hydrogen H 4 is also further downfield in the amide ($\delta 7.10 \mathrm{ppm} v s 6.91 \mathrm{ppm}$). The torsion angle of 45.8° for $\mathrm{H} 4 A-\mathrm{C} 4 A-\mathrm{C} 8 A-\mathrm{H} 8 A$ in $\mathbf{3}$ is

Figure 1
Molecular structure of $\mathbf{3}$ with displacement ellipsoids at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.86(3)$	$2.08(3)$	$2.8840(18)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots 3^{\text {ii }}$	$0.87(2)$	$2.21(2)$	$3.0462(18)$	$163.1(19)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots 3^{\mathrm{ii}}$	1.00	2.52	$3.2787(19)$	133

Symmetry codes: (i) $x, y+1, z$; (ii) $x+1, y, z$.
consistent with the observed vicinal coupling constant of 4.5 Hz for $\mathrm{H} 4 A-\mathrm{H} 8 A$ in the associated ${ }^{1} \mathrm{H}$ NMR spectrum.

3. Supramolecular features

The amino hydrogen atoms of $\mathbf{3}$ are involved in intermolecular hydrogen bonding with adjacent carbonyl oxygen atoms: $\mathrm{H} 1 A$ with $\mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{H} 1 B$ with $\mathrm{O} 3^{\text {ii }}$ (Fig. 3, Table 1, Symmetry codes: (i) $x, y+1, z$; (ii) $x+1, y, z$.). A packing diagram of 3 (Fig. 2a) shows the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions forming molecular planes defined by the crystallographic a - and b-axes; packing of these hydrogen-bonded layers appears to be a function of solvent exclusion and van der Waals contact alone, lacking any hydrogen bonding.

The hydrogen-bonded network in the $a b$ plane also presents an arrangement of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions that suggests two potential additional forces at play within the lattice of 3. Fig. $2 b$ and Table 1 depict distances between H6 and $\mathrm{O} 3^{\mathrm{ii}}$ and C 6 and $\mathrm{O} 3^{\mathrm{ii}}$ of adjacent copies of 3 . These distances fall within parameters for $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding as has been described in well-characterized membrane proteins and peptidomimetics (Senes et al., 2001; Giuliano et al., 2009); the α-protons implicated in these systems are structurally analogous to the $\mathrm{C} 6-\mathrm{H} 6$ bond of $\mathbf{3}$. While we will not speculate on the energetic significance of this interaction, which can arise as a coincidence of crystal packing (Dunitz \& Gavezzotti, 2005), we note that such interactions have been spectroscopically measured within the core of the dimeric membrane peptide glycophorin A (Arbely \& Arkin, 2004). Further, solid-state NMR studies have observed that ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR shifts change for anomeric $\mathrm{C}-\mathrm{H}$ bonds in crystalline maltose samples, suggesting that such interactions as described in this study (the C6-H6 bond in $\mathbf{3}$ is pseudo-anomeric) are not consequences of an energetically dominant lattice arrangement and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, but rather have some measurable, albeit weak, energetic contribution to intermolecular association (Yates et al., 2005).

Within the $a b$ plane, H4A of one copy of $\mathbf{3}$ comes into close approach with its closest neighbor along the a axis. Fig. $3 c$ depicts these distances, which place the centroid of the $\mathrm{C} 7=\mathrm{C} 8$ double bond within distance parameters similar to those calculated for aliphatic $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Karthikeyan et al., 2013). We investigated this further using a semiempirical protocol to generate partial charges for the atoms of 3. This only allows for qualitative comparison, and, as the color coding in Fig. $2 c$ reveals, the $\mathrm{C} 7=\mathrm{C} 8$ bond (pink, negative) is electrostatically matched with $\mathrm{H} 4 A$ (light blue,
positive). Proper exploration of this would require more advanced QM/MM methods, however, the crystal packing of $\mathbf{3}$
(a)

(b)

(c)

Figure 2
(a) Hydrogen-bonding interactions between copies of $\mathbf{3}$ along the a and b axes. (b) $\mathrm{C}-\mathrm{O}$ and $\mathrm{H}-\mathrm{O}$ distances suggestive of a potential $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond along the a axis. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ distances for the $\mathrm{H} 1 B \cdots \mathrm{O} 3$ hydrogen bond are included for comparison. (c) Measured distances and electrostatic coloring between $\mathrm{H} 4 A, \mathrm{C} 7$, and C 8 used to explore a potential $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction within the $a b$ plane molecular layers. Partial charges were generated within UCSF Chimera (Pettersen et al., 2004) using the Amber ff14SB forcefield in Antechamber (Wang et al., 2006) with the semi-empirical AM1 - BCC method and color coded with pink for negative charges and light blue for positive charges.
is at least suggestive of a favorable geometry and electrostatic environment for $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, November 2019; Groom et al., 2016) using the core fused ring lactone in the search query revealed only three similar structures (Somarathne et al., 2019; Lazzara et al., 2019) in which the pyranopyran ring system is cis-fused and the two double bonds are in the same location as they are in 3. Among the total 40 structures that were found in the search, the pyranopyran core of several were trans-fused, for example, the bergenins and also truncated ladder ethers related to brevitoxin. Some compounds possessed aryl rings fused to the pyranopyran system while others had double bonds at alternate positions including the ring junction.

5. Synthesis and crystallization

(2S,4aR,8aR)-6-Oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2-carboxamide 3:

Compound $\mathbf{3}$ was prepared by the procedure of Kiss \& Hell (2011) with a change of solvent from methanol to tert-butanol. A mixture of ($4 \mathrm{a} R, 6 S, 8 \mathrm{a} R)$-6-cyano-6,8a-dihydropyrano-[3,2b pyran-2-($4 \mathrm{a} H$)-one $2(0.040 \mathrm{~g}, 0.226 \mathrm{mmol}), \mathrm{Cu}^{\mathrm{II}}-4 \AA$ catalyst $(0.022 \mathrm{~g})$, acetaldoxime $(0.040 \mathrm{~g}, 0.678 \mathrm{mmol})$ and tertbutanol (2 mL) was stirred at 343 K for 4 h . The mixture was filtered through a pad of Celite and concentrated to a yellowbrown solid that was purified by cartridge chromatography on a Waters vacuum manifold system using 5\% methanol/ chloroform as eluant (flash chromatography was also successful using 10% methanol/chloroform). Concentration of fractions left a white solid; yield, $0.0227 \mathrm{~g}(51.5 \%)$. Single crystals were obtained from a solution of $\mathbf{3}$ in 10% methanol/ chloroform at 253 K. $R_{f}=0.2$ (10% methanol/ chloroform); mp 433-437 K; $[\alpha]_{\mathrm{D}}^{20}-268$ ($c, 0.8$, methanol); IR (ATR) v 3425, 3325, 3219, 1710, 1670, $1618 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.10\left(d d, 1 \mathrm{H}, J_{3,4}=10.1, J_{4,4 \mathrm{a}}=5.4 \mathrm{~Hz}, \mathrm{H}-4\right), 6.40$ $\left(d d d, 1 \mathrm{H}, J_{7,8}=10.2, J_{6,7}=3.6, J_{7,8 \mathrm{a}}=1.2 \mathrm{~Hz}, \mathrm{H}-7\right), 6.16(d, 1 \mathrm{H}$, $\left.J_{3,4}=10.5, \mathrm{H}-3\right), 6.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8), 4.86\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.80(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-8 \mathrm{a}), 4.61\left(d d d, 1 \mathrm{H}, J_{4 \mathrm{a}, 4}=J_{4 \mathrm{a}, 8 \mathrm{a}}=4.5, J_{4 \mathrm{a}, 8}=1.2 \mathrm{~Hz}\right.$, $\mathrm{H}-4 \mathrm{a}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 174.1, 164.8, 143.7, 131.8, 124.5, 123.3, 74.0, 70.2, 64.4. HRMS (ESI-TOF) m / z calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}$ 196.0610, found 196.0607.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. The absolute configuration was known from the synthetic route and assigned accordingly. The amino hydrogen atoms were found in the electron difference map and refined isotropically, while all other hydrogen atoms were treated as idealized contributions with $\mathrm{C}-\mathrm{H}=0.95-$ $1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
195.17

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
100
4.9279 (1), 10.6350 (3), 15.8788 (4)
832.18 (4)

4
Mo $K \alpha$
0.12
$0.4 \times 0.3 \times 0.18$

Bruker SMART APEXII area detector
Multi-scan (SADABS; Krause et al., 2015)
0.654, 0.746

14252, 2461, 2366
0.031
0.708
$0.032,0.080,1.04$
2461
135
H atoms treated by a mixture of independent and constrained refinement
$0.35,-0.20$
Flack x determined using 928 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
-0.1 (3)

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2015), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Funding information

The authors thank Villanova University for financial support of this work.

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. J. (1994). Appl. Cryst. 27, 435.

Arbely, E. \& Arkin, I. T. (2004). J. Am. Chem. Soc. 126, 53625363.

Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Dunitz, J. D. \& Gavezzotti, A. (2005). Angew. Chem. Int. Ed. 44, 1766-1787.
Evidente, A., Maddau, L., Spanu, E., Franceschini, A., Lazzaroni, S. \& Motta, A. (2003). J. Nat. Prod. 66, 313-315.
Fusè, M., Mazzeo, G., Longhi, G., Abbate, S., Masi, M., Evidente, A., Puzzarini, C. \& Barone, V. (2019). J. Phys. Chem. B, 123, 92309237.

Giorgio, E., Maddau, L., Spanu, E., Evidente, A. \& Rosini, C. (2005). J. Org. Chem. 70, 7-13.

Giuliano, M. W., Horne, W. S. \& Gellman, S. H. (2009). J. Am. Chem. Soc. 131, 9860-9861.
Giuliano, R. M. (2014). Curr. Org. Chem. 18, 1686-1700.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Karthikeyan, S., Ramanathan, V. \& Mishra, B. K. (2013). J. Phys. Chem. A, 117, 6687-6694.
Kiss, A. \& Hell, Z. (2011). Tetrahedron Lett. 52, 6021-6023.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lazzara, N. C., Rosano, R. J., Vagadia, P. P., Giovine, M. T., Bezpalko, M. W., Piro, N. A., Kassel, Wm. S., Boyko, W. J., Zubris, D. L., Schrader, K. K., Wedge, D. E., Duke, S. O. \& Giuliano, R. M. (2019). J. Org. Chem. 84, 666-678.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. \& Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605-1612.
Senes, A., Ubarretxena-Belandia, I. \& Engelman, D. M. (2001). Proc. Natl Acad. Sci. USA, 98, 9056-9061.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Somarathne, K. K., McCone, J. A. J., Brackovic, A., Rivera, J. L. P., Fulton, J., Russell, E., Field, J. J., Orme, C. L., Stirrat, H. L., Riesterer, J., Teesdale-Spittle, P. H., Miller, J. H. \& Harvey, J. E. (2019). Chem. Asian J. 14, 1230-1237.

Wang, J., Wang, W., Kollman, P. A. \& Case, D. A. (2006). J. Mol. Graphics Modell. 25, 247-260.
Yates, J. R., Pham, T. N., Pickard, C. J., Mauri, F., Amado, A. M., Gil, A. M. \& Brown, S. P. (2005). J. Am. Chem. Soc. 127, 1021610220.

Yu, K., Wu, W., Li, S., Dou, L., Liu, L., Li, P. \& Liu, E. (2017). Nat. Prod. Res. 31, 2581-2586.

supporting information

Synthesis and crystal structure of (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetrahydro-pyrano[3,2-b]pyran-2-carboxamide

John Greene, Noa Kopplin, Jack Roireau, Mark Bezpalko, Scott Kassel, Michael W. Giuliano and Robert Giuliano

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
(2S,4aR,8aR)-6-Oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2-carboxamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{4}$
$M_{r}=195.17$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.9279$ (1) \AA
$b=10.6350(3) \AA$
$c=15.8788$ (4) \AA
$V=832.18(4) \AA^{3}$
$Z=4$
$F(000)=408$

Data collection

Bruker SMART APEXII area detector diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 8 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.654, T_{\text {max }}=0.746$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.04$
2461 reflections
135 parameters
0 restraints
$D_{\mathrm{x}}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8408 reflections
$\theta=2.3-30.2^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, colourless
$0.4 \times 0.3 \times 0.18 \mathrm{~mm}$

14252 measured reflections
2461 independent reflections
2366 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=30.2^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-5 \rightarrow 6$
$k=-15 \rightarrow 14$
$l=-22 \rightarrow 22$

Primary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0446 P)^{2}+0.205 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Absolute structure: Flack x determined using 928 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: -0.1 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups 2.a Ternary CH refined with riding coordinates: C4A(H4A), C6(H6), C8A(H8A) 2.b Aromatic/amide H refined with riding coordinates: C3(H3), C4(H4), C7(H7), C8(H8) 3. $\mathrm{N} 1(\mathrm{H} 1 \mathrm{~A})$ and $\mathrm{N} 1(\mathrm{H} 1 \mathrm{~B})$ located from the difference map with refined Uiso

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\mathrm{eq}}$
O1	$0.7129(2)$	$0.30730(10)$	$0.31022(7)$	$0.0145(2)$
C2	$0.5987(3)$	$0.22091(15)$	$0.36070(9)$	$0.0141(3)$
O2	$0.7069(3)$	$0.11890(11)$	$0.36663(8)$	$0.0198(3)$
C3	$0.3563(3)$	$0.25659(15)$	$0.40997(9)$	$0.0155(3)$
H3	0.2482	0.1928	0.4350	0.019^{*}
C4	$0.2869(3)$	$0.37655(14)$	$0.41980(10)$	$0.0154(3)$
H4	0.1413	0.3982	0.4562	0.019^{*}
C4A	$0.4377(3)$	$0.47756(14)$	$0.37369(9)$	$0.0121(3)$
H4A	0.3071	0.5453	0.3574	0.015^{*}
O5	$0.6340(2)$	$0.52880(10)$	$0.43085(6)$	$0.0118(2)$
C6	$0.7796(3)$	$0.63226(13)$	$0.39613(9)$	$0.0107(3)$
H6	0.9519	0.6405	0.4289	0.013^{*}
C7	$0.8579(3)$	$0.61248(14)$	$0.30510(9)$	$0.0126(3)$
H7	0.9754	0.6718	0.2792	0.015^{*}
C8	$0.7700(3)$	$0.51613(14)$	$0.25988(9)$	$0.0140(3)$
H8	0.8362	0.5046	0.2042	0.017^{*}
C8A	$0.5687(3)$	$0.42536(14)$	$0.29495(9)$	$0.0124(3)$
H8A	0.4244	0.4103	0.2518	0.015^{*}
C9	$0.6280(3)$	$0.75809(14)$	$0.40406(8)$	$0.0112(3)$
O3	$0.3793(2)$	$0.76516(11)$	$0.40436(7)$	$0.0163(2)$
N1	$0.7940(3)$	$0.85729(13)$	$0.40610(9)$	$0.0151(3)$
H1A	$0.735(5)$	$0.933(2)$	$0.4068(15)$	$0.033(6)^{*}$
H1B	$0.967(5)$	$0.845(2)$	$0.4125(13)$	$0.017(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0173(5)$	$0.0092(5)$	$0.0170(5)$	$0.0032(4)$	$0.0028(4)$	$-0.0007(4)$
C2	$0.0161(7)$	$0.0111(7)$	$0.0151(6)$	$-0.0009(5)$	$-0.0026(5)$	$-0.0014(5)$
O2	$0.0235(6)$	$0.0102(5)$	$0.0255(6)$	$0.0034(4)$	$0.0003(5)$	$0.0013(4)$
C3	$0.0137(6)$	$0.0138(7)$	$0.0189(7)$	$-0.0026(6)$	$0.0003(5)$	$0.0016(6)$
C4	$0.0121(6)$	$0.0140(7)$	$0.0202(7)$	$-0.0014(5)$	$0.0027(5)$	$-0.0012(5)$
C4A	$0.0104(6)$	$0.0093(6)$	$0.0166(6)$	$0.0006(5)$	$0.0004(5)$	$-0.0011(5)$

O5	$0.0140(5)$	$0.0093(5)$	$0.0121(4)$	$-0.0021(4)$	$0.0006(4)$	$0.0006(4)$
C6	$0.0103(6)$	$0.0087(6)$	$0.0130(6)$	$-0.0001(5)$	$-0.0001(5)$	$0.0005(5)$
C7	$0.0116(6)$	$0.0119(6)$	$0.0145(6)$	$0.0021(5)$	$0.0030(5)$	$0.0029(5)$
C8	$0.0170(7)$	$0.0133(7)$	$0.0117(6)$	$0.0035(6)$	$0.0023(5)$	$0.0018(5)$
C8A	$0.0153(7)$	$0.0088(6)$	$0.0130(6)$	$0.0021(5)$	$-0.0017(5)$	$-0.0005(5)$
C9	$0.0144(6)$	$0.0096(6)$	$0.0097(5)$	$0.0009(5)$	$0.0001(5)$	$-0.0001(5)$
O3	$0.0121(5)$	$0.0128(5)$	$0.0240(5)$	$0.0019(4)$	$0.0016(4)$	$-0.0016(4)$
N1	$0.0155(6)$	$0.0082(6)$	$0.0215(6)$	$0.0000(5)$	$-0.0023(5)$	$0.0015(5)$

Geometric parameters (A, ${ }^{\circ}$)

O1-C2	1.3428 (18)	C6-H6	1.0000
O1-C8A	1.4629 (18)	C6-C7	1.511 (2)
$\mathrm{C} 2-\mathrm{O} 2$	1.2126 (19)	C6-C9	1.538 (2)
C2-C3	1.478 (2)	C7-H7	0.9500
C3-H3	0.9500	C7-C8	1.324 (2)
C3-C4	1.330 (2)	C8-H8	0.9500
C4-H4	0.9500	C8-C8A	1.492 (2)
C4-C4A	1.497 (2)	C8A-H8A	1.0000
C4A-H4A	1.0000	C9-03	1.2280 (19)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5$	1.4343 (18)	C9-N1	1.335 (2)
C4A-C8A	1.513 (2)	N1—H1A	0.86 (3)
O5-C6	1.4243 (17)	N1—H1B	0.87 (2)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}$	118.85 (12)	C7-C6-C9	108.88 (11)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	118.63 (14)	C9-C6-H6	107.1
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{O} 1$	118.31 (14)	C6-C7-H7	118.6
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	122.97 (14)	C8-C7-C6	122.88 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.5	C8-C7-H7	118.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.08 (14)	C7-C8-H8	119.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.5	C7-C8-C8A	121.06 (13)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9	C8A-C8-H8	119.5
C3-C4-C4A	120.23 (14)	O1-C8A-C4A	112.66 (12)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	119.9	O1-C8A-C8	107.10 (12)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	108.9	O1-C8A-H8A	108.7
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	110.65 (12)	C4A-C8A-H8A	108.7
O5-C4A-C4	107.33 (12)	C8-C8A-C4A	110.78 (12)
$\mathrm{O} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{~A}$	108.9	C8-C8A-H8A	108.7
O5-C4A-C8A	112.00 (12)	O3-C9-C6	122.57 (14)
C8A-C4A-H4A	108.9	O3-C9-N1	124.26 (15)
C6-O5-C4A	112.85 (11)	N1-C9-C6	113.09 (13)
O5-C6-H6	107.1	C9-N1-H1A	122.5 (17)
O5-C6-C7	113.04 (12)	C9-N1-H1B	118.8 (14)
O5-C6-C9	113.33 (12)	H1A-N1-H1B	118 (2)
C7-C6-H6	107.1		
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-15.0 (2)	$\mathrm{O} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	-47.00 (16)
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	41.32 (17)	O5-C6-C7-C8	8.0 (2)

supporting information

$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$163.37(12)$	$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 9-\mathrm{O} 3$	$-30.03(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	$6.2(2)$	$\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 9-\mathrm{N} 1$	$153.21(13)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$161.46(16)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}$	$4.7(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5$	$-98.05(16)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9-\mathrm{O} 3$	$96.70(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	$24.4(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9-\mathrm{N} 1$	$-80.06(15)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5-\mathrm{C} 6$	$-176.04(11)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1$	$-108.78(16)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1$	$-46.75(16)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$14.4(2)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	$-166.70(12)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$173.12(13)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 7$	$-41.21(16)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$-10.21(19)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5-\mathrm{C} 6-\mathrm{C} 9$	$83.29(14)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 5-\mathrm{C} 6$	$62.33(15)$
$\mathrm{O} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{O} 1$	$72.95(15)$	$\mathrm{C} 9-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-118.85(16)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(3)$	$2.08(3)$	$2.8840(18)$	$156(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots 3^{\mathrm{ii}}$	$0.87(2)$	$2.21(2)$	$3.0462(18)$	$163.1(19)$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	1.00	2.52	$3.2787(19)$	133

Symmetry codes: (i) $x, y+1, z$; (ii) $x+1, y, z$.

