

Received 30 March 2020 Accepted 6 April 2020

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; cyclam; chloride; formamide; *trans-*isomer; chromium(III) complex; synchrotron radiation.

CCDC reference: 1995114

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *trans*-dichlorido(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis(formamide- κO)(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis[tetrachloridozincate(II)]

Dohyun Moon^a and Jong-Ha Choi^{b*}

^aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title compound, $[CrCl_2(C_{10}H_{24}N_4)][Cr(HCONH_2)_2 (C_{10}H_{24}N_4)$][ZnCl₄]₂ ($C_{10}H_{24}N_4 = 1,4,8,11$ -tetraazacyclotetradecane, cyclam; $HCONH_2$ = formamide, fa), has been determined from synchrotron X-ray data. The asymmetric unit contains two independent halves of the [CrCl₂(cyclam]⁺ and $[Cr(fa)(cyclam)]^{3+}$ cations, and one tetrachloridozincate anion. In each complex cation, the Cr^{III} ion is coordinated by the four N atoms of the cyclam ligand in the equatorial plane and two Cl ligands or two O-bonded formamide molecules in a *trans* axial arrangement, displaying a distorted octahedral geometry with crystallographic inversion symmetry. The Cr-N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, while the Cr-Cl and Cr-O(fa) bond distances are 2.3194 (7) and 1.9953 (19) Å, respectively. The macrocyclic cyclam moieties adopt the centrosymmetric trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The crystal structure is stabilized by intermolecular hydrogen bonds involving the NH or CH groups of cyclam and the NH₂ group of coordinated formamide as donors, and Cl atoms of the $ZnCl_4^{2-}$ anion as acceptors.

1. Chemical context

The 14-membered cyclam (1,4,8,11-tetraazacyclotetradecane, $C_{10}H_{24}N_4$) has a moderately flexible structure, and its metal complexes can form either *trans* or *cis*- $[ML_2(cyclam)]^{n+}$ (L = a monodentate ligand) geometric isomers (Poon & Pun, 1980). Furthermore, the *trans* isomer can adopt five conformers, viz. trans-I (++++), trans-II (+-++), trans-III (+--+), trans-IV (+ + - -) and *trans*-V (+ - + -), which differ in the chirality of the sec-NH centres (Choi, 2009), and where the plus sign indicates the hydrogen atom of the NH group is above the plane of the macrocycle and the minus sign indicates that it is below. The trans-I, trans-II and trans-V conformations can also fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011). Recently, it has been shown that cyclam derivatives and their metal complexes exhibit stem-cell mobilization and anti-HIV activity (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). The conformation of the macrocycle and the orientations of the N-H bonds in the complex are very important factors for coreceptor recognition. Therefore, knowledge of the conformation and the crystal packing in transition-metal compounds containing cyclam has become important in the development of new highly effective anti-HIV drugs (De Clercq, 2010). In

addition, the formamide group can be coordinated to a metal ion through the oxygen or nitrogen atoms (Balahura & Jordan, 1970). It should be noted that the geometric assignment and determination of the coordination mode based on spectroscopic properties is not always conclusive. We describe here the synthesis and structural characterization of a new double complex, [CrCl₂(cyclam)][Cr(fa-O)₂(cyclam)][ZnCl₄]₂, (I), which was performed to elucidate and confirm its molecular structure unambiguously.

2. Structural commentary

Fig. 1 shows a displacement ellipsoid plot of (I) with the atomnumbering scheme. The crystallographic asymmetric unit of (I) is composed of two halves of independent [CrCl₂(cyclam)]⁺ and [Cr(fa)(cyclam)]³⁺ cations and one tetrachloridozincate anion. The two Cr atoms are located on crystallographic centers of symmetry, so these complex cations both have molecular C_i symmetry. Each cyclam molecular in the two Cr^{III} complex cations adopts the most stable trans-III conformation. The Cr^{III} ions are six-coordinated in a distorted octahedral geometry with the four N atoms of the macrocyclic ligand in equatorial positions and two Cl ligands or two O atoms of formamide molecules in axial positions (Fig. 1). The Cr-N(cyclam) bond lengths are in the range 2.061 (2) to 2.074 (2) Å, in good agreement with those observed in *trans*-[Cr(ONO)₂)(cyclam)]BF₄ [2.064 (4)–2.073 (4) Å; De Leo et al., 2000], trans-[Cr(NH₃)₂(cyclam)][ZnCl₄]Cl·H₂O [2.0501 (15)-2.0615 (15) Å; Moon & Choi, 2016a], trans-

Figure 1

Molecular structure of (I), drawn with displacement ellipsoids at the 50% probability level. The primed and double-primed atoms are related by symmetry operations (-x + 1, -y + 1, -z + 1) and (-x + 1, -y + 1, -z), respectively. Hydrogen bonds are shown as dashed lines.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots Cl4^{i}$	0.99	2.46	3.346 (2)	149
$N2-H2\cdots Cl3$	0.99	2.31	3.255 (2)	159
N3−H3AN····Cl5 ⁱⁱ	0.87	2.65	3.505 (3)	167
$N3-H3BN \cdot \cdot \cdot Cl2^{iii}$	0.87	2.61	3.334 (3)	141
$C2-H2A\cdots Cl2^{i}$	0.98	2.65	3.606 (3)	165
$N4-H4\cdots Cl3^{iv}$	0.99	2.56	3.493 (2)	157
$N5-H5\cdots Cl4^{v}$	0.99	2.76	3.549 (2)	137
$C3-H3A\cdots Cl1^{vi}$	0.98	2.71	3.650 (3)	160
$C4-H4A\cdots Cl5^{ii}$	0.98	2.78	3.555 (3)	136
$C7-H7AB\cdots Cl2^{iv}$	0.98	2.81	3.738 (3)	159

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$ (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2};$ (vi) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2};$ (vi)

 $[Cr(NCS)_2(cvclam)]_2[ZnCl_4]$ [2.0614 (10)-2.0700 (10) Å; Moon et al., 2015], trans-[Cr(NCS)₂(cyclam)]ClO₄ [2.046 (2)-2.060 (2) Å; Friesen et al., 1997], trans-[Cr(nic-O)₂(cyclam)]-ClO₄ [2.057 (4)–2.064 (4) Å; Choi, 2009], [Cr(ox)(cyclam)]ClO₄ [2.062 (4)–2.085 (5) Å; Choi *et al.*, 2004*b*], $[Cr(acac)(cyclam)](ClO_4)_2 \cdot 0.5H_2O$ [2.065 (5)–2.089 (5) Å; Subhan et al., 2011] and cis-[Cr(ONO)₂(cyclam)]NO₂ [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a]. However, the Cr-N bond lengths for the secondary amine of cyclam in the trans isomer are slightly shorter than those of the primary amine found in trans-[CrCl₂(Me₂tn)₂]Cl [2.0861 (18)-2.1076 (18) Å; Choi et al., 2007] and trans-[CrCl₂(Me₂tn)₂]₂-ZnCl₄ [2.0741 (19)–2.0981 (18) Å; Choi et al., 2011]. The Cr– Cl and Cr-O (fa) bond lengths are 2.3194 (7) and 1.9953 (19) Å, respectively. The Cr–Cl distance is comparable to the values in trans-[CrCl₂(cyclam)]Cl [2.3295 (6) Å; Solano-Peralta et al.. 2004], trans-[CrCl₂(cvclam)]₂[ZnCl₄] [2.3472 (9) Å; Flores-Vélez et al., 1991] and [CrCl₂(cyclam)][- $Cr(ox)(cyclam)](ClO_4)_2$ [2.3358 (14) Å; Moon & Choi, 2016b]. As expected, the five-membered chelate rings adopt a gauche conformation, and the six-membered ring is in the chair conformation. The average bond angles of the five- and sixmembered chelate rings around chromium(III) are 85.03 (9) and 94.97 (9)°, respectively. The uncoordinated $ZnCl_4^{2-}$ counter-anion remains outside the coordination sphere of the two Cr^{III} ions and has a distorted tetrahedral geometry as a result of its involvement in hydrogen-bonding interactions. It exhibits Zn-Cl bond distances in the range 2.2555 (8) to 2.3035 (8) Å and Cl-Zn-Cl angles ranging from 104.84 (4)-114.54 (3)°.

3. Supramolecular features

Extensive $C-H\cdots Cl$ and $N-H\cdots Cl$ hydrogen-bonding interactions occur between the NH or CH groups of cyclam and the NH_2 group of formamide, the Cl ligand and the Cl atoms of the tetrachlorozincate anion (Table 1). The $ZnCl_4^{2-}$ anion is linked to two $[CrCl_2(cyclam)]^+$ and $[Cr(fa)(cyclam)]^{3+}$ cations *via* a series of $N-H\cdots Cl$ and $C-H\cdots Cl$ hydrogen bonds. In addition, two Cr^{III} complex cations are interconnected to each other *via* a C3 $-H3A\cdots Cl1^{vi}$ [symmetry

research communications

Crystal packing of (I), viewed along the *a* axis. Dashed lines represent hydrogen-bonding interactions $[N-H\cdots Cl (pink)]$ and $C-H\cdots Cl (green)]$.

code: (vi) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$] hydrogen bond. The extensive array of these contacts generates a three-dimensional network and helps to consolidate the crystal structure. The crystal packing diagram of (I) viewed perpendicular to the *bc* plane is shown in Fig. 2.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom et al., 2016) indicated 76 hits for a $[CrL_2(C_{10}H_{24}N_4)]^{n+}$ unit. More than 30 different ligand types L including halogenides, cyanide, azide, thiocvanate, oxalate, ammonia, sulfate, nitrite, DMSO and esters have been reported. It has been found that trans- $[Cr(NCS)_2(C_{10}H_{24}N_4)]ClO_4$ (RAVGEA; Friesen et al., 1997), *trans*- $[Cr(nic-O)_2(C_{10}H_{24}N_4)]ClO_4$ (NUKMUC; Choi, 2009) and trans-[Cr(ONO)₂)(C₁₀H₂₄N₄)]BF₄ (MEMHAN; De Leo et al., 2000) adopt the trans-III conformations. On the other hand, cis-[Cr(NCS)₂(C₁₀H₂₄N₄)]ClO₄ (RAVGOK; Friesen et al., 1997), [Cr(C₂O₄)(C₁₀H₂₄N₄)]ClO₄ (IHAFOM; Choi et al., 2004b), $[Cr(CH_3COCHCOCH_3)(C_{10}H_{24}N_4)](ClO_4)_2 \cdot 0.5H_2O$ (SAYSES; Subhan et al., 2011) and cis-[Cr(NCS)₂-(C10H24N4)]NCS (ADUXOO; Moon et al., 2013) have the folded cis-V conformations. A search of the CSD gave 698 hits for cyclam $(C_{10}H_{24}N_4)$ with any metal but no hit for uncomplexed cyclam. In addition, no compounds containing $[Cr(HCONH_2)_2(C_{10}H_{24}N_4)]^{3+}$ were known until now.

5. Synthesis and crystallization

The free ligand cyclam and formamide were purchased from Sigma–Aldrich. The formamide was purified and dried by standard methods. All other chemicals were reagent-grade materials and used without further purification. The starting material, *trans*-[Cr(CN)₂(cyclam)]ClO₄, was prepared according to the literature (Kane-Maguire *et al.*, 1983). The yellow solid, *trans*-[Cr(CN)₂(cyclam)]ClO₄ (0.08 g) was

Table 2	
Experimental details.	

Crystal data	
Chemical formula	[CrCl ₂ (C ₁₀ H ₂₄ N ₄)][Cr(CH ₃ NO) ₂ -
	$(C_{10}H_{24}N_4)][ZnCl_4]_2$
M _r	1079.99
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	220
a, b, c (Å)	10.406 (2), 13.212 (3), 15.011 (3)
β (°)	95.85 (3)
$V(Å^3)$	2053.0 (7)
Ζ	2
Radiation type	Synchrotron, $\lambda = 0.610 \text{ Å}$
$\mu \text{ (mm}^{-1})$	1.53
Crystal size (mm)	$0.13 \times 0.11 \times 0.08$
Data collection	
Diffractometer	detector detector
Absorption correction	Empirical (using intensity measurements) (<i>HKL3000sm</i>
	SCALEPACK; Otwinowski & Minor, 1997)
T_{\min}, T_{\max}	0.856, 1.000
No. of measured, independent and	20797, 5718, 5424
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.065
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.693
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.120, 1.08
No. of reflections	5718
No. of parameters	220
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.02, -1.05

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2018 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), DIAMOND 4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

dissolved in 5 mL of 0.01 M HCl, and heated for 2 h at 333 K. The solution was added to 3 mL of 6 M HCl containing 0.2 g of solid ZnCl₂, and then 2 mL of formamide were added dropwise under magnetic stirring. The resulting solution was filtered, and allowed to stand at room temperature for a few weeks to give purple crystals of (I) suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.94–0.98 Å and N-H = 0.87–0.99 Å and with $U_{iso}(H) = 1.2U_{ed}(C,N)$.

Funding information

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

References

Balahura, R. J. & Jordan, R. B. (1970). J. Am. Chem. Soc. 92, 1533– 1539.

research communications

- Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.
- Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801.
- Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
- Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K. M. (2004a). Acta Cryst. C60, m238–m240.
- Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.
- De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.
- De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.
- Flores-Vélez, L. M., Sosa-Rivadeneyra, J., Sosa-Torres, M. E., Rosales-Hoz, M. J. & Toscano, R. A. (1991). J. Chem. Soc. Dalton Trans. pp. 3243–3247.
- Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Kane-Maguire, N. A. P., Bennett, J. A. & Miller, P. K. (1983). Inorg. Chim. Acta, 76, L123–L125.
- Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 456-459.
- Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 1417-1420.

- Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.
- Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540-543.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Poon, C.-K. & Pun, K.-C. (1980). *Inorg. Chem.* **19**, 568–569.
- Putz, H. & Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.
- Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). *Dalton Trans.* 41, 6408–6418.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.
- Solano-Peralta, A., Sosa-Torres, M. E., Flores-Alamo, M., El-Mkami, H., Smith, G. M., Toscano, R. A. & Nakamura, T. (2004). *Dalton Trans.* pp. 2444–2449.
- Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2020). E76, 656-659 [https://doi.org/10.1107/S2056989020004910]

Crystal structure of *trans*-dichlorido(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis(formamide- κO)(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis[tetrachloridozincate(II)]

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: *PAL BL2D-SMDC* (Shin *et al.*, 2016); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXT2018* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *DIAMOND 4* (Putz & Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

trans-Dichlorido(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis(formamide- κO)(1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$)chromium(III) bis[tetrachloridozincate(II)]

Crystal data

 $[CrCl_{2}(C_{10}H_{24}N_{4})][Cr(CH_{3}NO)_{2}(C_{10}H_{24}N_{4})]$ $[ZnCl_{4}]_{2}$ $M_{r} = 1079.99$ Monoclinic, P2₁/n a = 10.406 (2) Å b = 13.212 (3) Å c = 15.011 (3) Å \beta = 95.85 (3)° V = 2053.0 (7) Å^{3} Z = 2

Data collection

Rayonix MX225HS CCD area detector diffractometer Radiation source: PLSII 2D bending magnet ω scan Absorption correction: empirical (using intensity measurements) (*HKL3000sm Scalepack*; Otwinowski & Minor, 1997) $T_{min} = 0.856, T_{max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.120$ F(000) = 1100 $D_x = 1.747 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.610 \text{ Å}$ Cell parameters from 71380 reflections $\theta = 0.4-33.7^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 220 KPlate, purple $0.13 \times 0.11 \times 0.08 \text{ mm}$

20797 measured reflections 5718 independent reflections 5424 reflections with $I > 2\sigma(I)$ $R_{int} = 0.065$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -14 \rightarrow 14$ $k = -18 \rightarrow 18$ $l = -20 \rightarrow 20$

S = 1.085718 reflections 220 parameters 0 restraints

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_r^2) + (0.0579P)^2 + 2.3444P]$
neighbouring sites	where $P = (F_0^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta ho_{ m max} = 1.02 \ m e \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.05 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cr1	0.500000	0.500000	0.500000	0.01905 (11)	
01	0.40779 (18)	0.59415 (14)	0.57570 (12)	0.0304 (4)	
N1	0.6599 (2)	0.50926 (16)	0.59314 (13)	0.0263 (4)	
H1	0.733309	0.478812	0.565654	0.032*	
N2	0.5477 (2)	0.62362 (15)	0.42632 (14)	0.0270 (4)	
H2	0.612781	0.600675	0.387054	0.032*	
N3	0.2731 (3)	0.6910 (2)	0.64216 (15)	0.0381 (5)	
H3AN	0.332356	0.736628	0.655071	0.046*	
H3BN	0.195781	0.699839	0.657996	0.046*	
C1	0.6336 (3)	0.4436 (2)	0.66990 (16)	0.0335 (5)	
H1A	0.576230	0.478762	0.707614	0.040*	
H1AB	0.714487	0.427910	0.706529	0.040*	
C2	0.6985 (3)	0.6141 (2)	0.62080 (19)	0.0352 (6)	
H2A	0.776779	0.611563	0.662933	0.042*	
H2AB	0.629729	0.645040	0.651654	0.042*	
C3	0.7237 (3)	0.6793 (2)	0.5405 (2)	0.0399 (6)	
H3A	0.768805	0.740799	0.562773	0.048*	
H3AB	0.781941	0.642161	0.504919	0.048*	
C4	0.6046 (3)	0.7105 (2)	0.4789 (2)	0.0362 (6)	
H4A	0.539889	0.738832	0.514956	0.043*	
H4AB	0.628599	0.763302	0.437894	0.043*	
C5	0.4294 (3)	0.6526 (2)	0.36674 (17)	0.0343 (5)	
H5A	0.452908	0.695465	0.317621	0.041*	
H5AB	0.369790	0.690444	0.400752	0.041*	
C6	0.3001 (3)	0.60960 (19)	0.59923 (15)	0.0280 (5)	
H6	0.235060	0.561016	0.585794	0.034*	
Cr2	0.500000	0.500000	0.000000	0.02063 (12)	
Cl1	0.53785 (6)	0.37596 (5)	-0.10350 (4)	0.03271 (14)	
N4	0.3223 (2)	0.52342 (16)	-0.07214 (13)	0.0249 (4)	
H4	0.312441	0.470207	-0.118767	0.030*	
N5	0.4335 (2)	0.38790 (16)	0.08048 (13)	0.0259 (4)	
H5	0.431725	0.324363	0.045410	0.031*	
C7	0.3340 (2)	0.62148 (19)	-0.11970 (16)	0.0289 (5)	
H7A	0.326491	0.677919	-0.078176	0.035*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7AB	0.264587	0.627579	-0.168695	0.035*	
C8	0.2067 (2)	0.5165 (2)	-0.02153 (17)	0.0307 (5)	
H8A	0.128505	0.524049	-0.063273	0.037*	
H8AB	0.208634	0.572239	0.021703	0.037*	
C9	0.2009 (3)	0.4161 (2)	0.02812 (19)	0.0342 (5)	
H9A	0.210352	0.361121	-0.014533	0.041*	
H9AB	0.114986	0.409655	0.048899	0.041*	
C10	0.3022 (3)	0.4014 (2)	0.10863 (17)	0.0319 (5)	
H10A	0.301640	0.460400	0.148121	0.038*	
H10B	0.279482	0.341775	0.142624	0.038*	
C11	0.5356 (3)	0.3751 (2)	0.15662 (16)	0.0297 (5)	
H11A	0.524570	0.310127	0.186461	0.036*	
H11B	0.529597	0.429393	0.200469	0.036*	
Znl	0.96538 (3)	0.56371 (2)	0.28510 (2)	0.02620 (9)	
Cl2	0.98118 (7)	0.39522 (5)	0.26256 (6)	0.04267 (17)	
C13	0.74908 (6)	0.60423 (6)	0.27489 (4)	0.03418 (15)	
Cl4	1.06521 (7)	0.61932 (6)	0.41833 (4)	0.03892 (16)	
C15	1.04313 (8)	0.64946 (6)	0.17226 (5)	0.04333 (17)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.0141 (2)	0.0235 (2)	0.0203 (2)	-0.00100 (17)	0.00503 (17)	-0.00244 (16)
O1	0.0269 (9)	0.0323 (8)	0.0318 (8)	-0.0007 (7)	0.0021 (7)	-0.0048 (7)
N1	0.0193 (9)	0.0342 (10)	0.0252 (9)	0.0019 (8)	0.0023 (7)	-0.0054 (7)
N2	0.0258 (9)	0.0278 (9)	0.0290 (9)	-0.0009 (8)	0.0112 (8)	-0.0015 (7)
N3	0.0382 (12)	0.0437 (12)	0.0337 (11)	0.0089 (11)	0.0106 (9)	-0.0063 (9)
C1	0.0319 (13)	0.0465 (14)	0.0219 (10)	0.0058 (11)	0.0012 (9)	-0.0015 (9)
C2	0.0252 (12)	0.0393 (13)	0.0396 (13)	-0.0027 (11)	-0.0040 (10)	-0.0118 (11)
C3	0.0270 (12)	0.0382 (13)	0.0551 (16)	-0.0124 (11)	0.0073 (12)	-0.0071 (12)
C4	0.0354 (14)	0.0298 (11)	0.0448 (14)	-0.0075 (11)	0.0120 (11)	-0.0030 (10)
C5	0.0367 (13)	0.0367 (12)	0.0302 (11)	0.0044 (11)	0.0076 (10)	0.0056 (10)
C6	0.0286 (11)	0.0343 (11)	0.0216 (9)	0.0002 (10)	0.0045 (8)	0.0011 (8)
Cr2	0.0185 (2)	0.0252 (2)	0.0181 (2)	0.00430 (18)	0.00144 (18)	-0.00252 (16)
Cl1	0.0330 (3)	0.0374 (3)	0.0274 (3)	0.0097 (3)	0.0014 (2)	-0.0065 (2)
N4	0.0218 (9)	0.0307 (9)	0.0218 (8)	0.0056 (8)	0.0000 (7)	-0.0043 (7)
N5	0.0242 (9)	0.0311 (9)	0.0224 (8)	0.0015 (8)	0.0022 (7)	-0.0003 (7)
C7	0.0258 (11)	0.0338 (11)	0.0264 (10)	0.0108 (10)	-0.0003 (8)	0.0010 (9)
C8	0.0189 (10)	0.0417 (13)	0.0313 (11)	0.0054 (10)	0.0024 (9)	-0.0029 (10)
С9	0.0216 (11)	0.0435 (13)	0.0375 (13)	-0.0062 (11)	0.0029 (10)	-0.0013 (11)
C10	0.0261 (11)	0.0406 (13)	0.0297 (11)	-0.0020 (10)	0.0066 (9)	0.0008 (10)
C11	0.0301 (12)	0.0351 (12)	0.0235 (10)	0.0041 (10)	0.0011 (9)	0.0028 (9)
Znl	0.02112 (15)	0.03240 (16)	0.02530 (14)	0.00089 (11)	0.00344 (11)	0.00152 (10)
C12	0.0293 (3)	0.0332 (3)	0.0636 (4)	0.0034 (3)	-0.0047 (3)	-0.0042(3)
C13	0.0233 (3)	0.0487 (4)	0.0312 (3)	0.0076 (3)	0.0060 (2)	0.0028 (2)
C14	0.0373 (3)	0.0493 (4)	0.0288 (3)	0.0094 (3)	-0.0033 (2)	-0.0059 (3)
C15	0.0461 (4)	0.0509 (4)	0.0353 (3)	-0.0029(3)	0.0155 (3)	0.0100 (3)

Geometric parameters (Å, °)

Cr1-01	1.9953 (19)	Cr2—N4	2.069 (2)
Cr1-O1 ⁱ	1.9954 (19)	Cr2—N4 ⁱⁱ	2.069 (2)
Cr1—N2	2.061 (2)	Cr2—N5 ⁱⁱ	2.074 (2)
Cr1—N2 ⁱ	2.061 (2)	Cr2—N5	2.074 (2)
Cr1—N1 ⁱ	2.065 (2)	Cr2—Cl1	2.3194 (7)
Cr1—N1	2.065 (2)	Cr2—Cl1 ⁱⁱ	2.3194 (7)
O1—C6	1.226 (3)	N4—C8	1.490 (3)
N1—C1	1.489 (3)	N4—C7	1.490 (3)
N1—C2	1.490 (3)	N4—H4	0.9900
N1—H1	0.9900	N5-C10	1.482 (3)
N2—C4	1.482 (3)	N5—C11	1.488 (3)
N2—C5	1.495 (3)	N5—H5	0.9900
N2—H2	0.9900	C7—C11 ⁱⁱ	1.519 (4)
N3—C6	1.299 (3)	C7—H7A	0.9800
N3—H3AN	0.8700	С7—Н7АВ	0.9800
N3—H3BN	0.8700	C8—C9	1.526 (4)
C1—C5 ⁱ	1.509 (4)	C8—H8A	0.9800
C1—H1A	0.9800	C8—H8AB	0.9800
C1—H1AB	0.9800	C9—C10	1.533 (4)
C2—C3	1.525 (4)	С9—Н9А	0.9800
C2—H2A	0.9800	С9—Н9АВ	0.9800
C2—H2AB	0.9800	C10—H10A	0.9800
C3—C4	1.525 (4)	C10—H10B	0.9800
С3—НЗА	0.9800	C11—H11A	0.9800
С3—НЗАВ	0.9800	C11—H11B	0.9800
C4—H4A	0.9800	Zn1—Cl5	2.2555 (8)
C4—H4AB	0.9800	Zn1—Cl2	2.2602 (9)
C5—H5A	0.9800	Zn1—Cl4	2.2792 (9)
C5—H5AB	0.9800	Zn1—Cl3	2.3035 (8)
С6—Н6	0.9400		
$01-Cr1-01^{i}$	180.0	N4—Cr2—N4 ⁱⁱ	180.0
01—Cr1—N2	88.14 (8)	N4—Cr2—N5 ⁱⁱ	85.50 (8)
O1 ⁱ —Cr1—N2	91.86 (8)	N4 ⁱⁱ —Cr2—N5 ⁱⁱ	94.49 (8)
O1-Cr1-N2 ⁱ	91.86 (8)	N4—Cr2—N5	94.49 (8)
O1 ⁱ —Cr1—N2 ⁱ	88.14 (8)	N4 ⁱⁱ —Cr2—N5	85.51 (8)
N2-Cr1-N2 ⁱ	180.00 (7)	N5 ⁱⁱ —Cr2—N5	180.0
O1-Cr1-N1 ⁱ	91.23 (8)	N4—Cr2—Cl1	87.64 (6)
Ol ⁱ —Crl—Nl ⁱ	88.77 (8)	N4 ⁱⁱ —Cr2—Cl1	92.36 (6)
N2-Cr1-N1 ⁱ	84.54 (9)	N5 ⁱⁱ —Cr2—Cl1	91.43 (6)
N2 ⁱ —Cr1—N1 ⁱ	95.46 (9)	N5—Cr2—Cl1	88.57 (6)
01—Cr1—N1	88.77 (8)	N4—Cr2—Cl1 ⁱⁱ	92.36 (6)
O1 ⁱ —Cr1—N1	91.23 (8)	N4 ⁱⁱ —Cr2—Cl1 ⁱⁱ	87.64 (6)
N2—Cr1—N1	95.45 (9)	N5 ⁱⁱ —Cr2—Cl1 ⁱⁱ	88.57 (6)
N2 ⁱ —Cr1—N1	84.54 (9)	N5—Cr2—Cl1 ⁱⁱ	91.43 (6)
N1 ⁱ —Cr1—N1	180.0	Cl1—Cr2—Cl1 ⁱⁱ	180.0

C6—O1—Cr1	140.79 (18)	C8—N4—C7	114.01 (19)
C1—N1—C2	113.0 (2)	C8—N4—Cr2	116.69 (15)
C1—N1—Cr1	106.88 (16)	C7—N4—Cr2	105.58 (15)
C2—N1—Cr1	114.80 (16)	C8—N4—H4	106.6
C1—N1—H1	107.3	C7—N4—H4	106.6
C2—N1—H1	107.3	Cr2—N4—H4	106.6
Cr1—N1—H1	107.3	C10—N5—C11	113.65 (19)
C4—N2—C5	112.3 (2)	C10—N5—Cr2	116.90 (16)
C4—N2—Cr1	115.64 (16)	C11—N5—Cr2	105.93 (15)
C5—N2—Cr1	107.20 (15)	C10—N5—H5	106.6
C4—N2—H2	107.1	$C_{11} = N_{5} = H_{5}$	106.6
C_{5} N_{2} H_{2}	107.1	Cr2—N5—H5	106.6
$Cr1_N2_H2$	107.1	$N4-C7-C11^{ii}$	108.69 (19)
$C6 N3 H3 \Delta N$	120.0	N4 = C7 = H7A	110.0
C6 N3 H3RN	120.0	$C11^{ii}$ C7 H7A	110.0
HIAN NI HIRN	120.0	M = C7 = H7AB	110.0
N1 C1 C5i	120.0	M = C / = M / A D	110.0
NI = CI = UIA	108.4 (2)	UII - C/ - H/AB	110.0
NI-CI-HIA	110.0	H/A - C/-H/AB	108.5
C5-CI-HIA	110.0	N4-C8-C9	112.1 (2)
NI-CI-HIAB	110.0	N4—C8—H8A	109.2
C5 ⁻ —C1—HIAB	110.0	С9—С8—Н8А	109.2
H1A—C1—H1AB	108.4	N4—C8—H8AB	109.2
N1—C2—C3	111.6 (2)	С9—С8—Н8АВ	109.2
N1—C2—H2A	109.3	H8A—C8—H8AB	107.9
C3—C2—H2A	109.3	C8—C9—C10	115.9 (2)
N1—C2—H2AB	109.3	С8—С9—Н9А	108.3
C3—C2—H2AB	109.3	С10—С9—Н9А	108.3
H2A—C2—H2AB	108.0	С8—С9—Н9АВ	108.3
C4—C3—C2	115.9 (2)	С10—С9—Н9АВ	108.3
С4—С3—НЗА	108.3	Н9А—С9—Н9АВ	107.4
С2—С3—НЗА	108.3	N5—C10—C9	111.7 (2)
С4—С3—НЗАВ	108.3	N5-C10-H10A	109.3
С2—С3—НЗАВ	108.3	C9—C10—H10A	109.3
НЗА—СЗ—НЗАВ	107.4	N5-C10-H10B	109.3
N2—C4—C3	111.7 (2)	С9—С10—Н10В	109.3
N2—C4—H4A	109.3	H10A—C10—H10B	107.9
C3—C4—H4A	109.3	N5-C11-C7 ⁱⁱ	108.09 (19)
N2—C4—H4AB	109.3	N5-C11-H11A	110.1
C3-C4-H4AB	109.3	$C7^{ii}$ — $C11$ — $H11A$	110.1
H_{4A} C_{4} H_{4AB}	107.9	N5-C11-H11B	110.1
N_{2} C_{5} C_{1i}	107.6 (2)	$C7^{ii}$ $-C11$ $-H11B$	110.1
N2_C5_H5A	110.2	H11A_C11_H11B	108.4
$C1^{i}$ $C5$ $H5\Lambda$	110.2	C_{15} Z_{p1} C_{12}	100.4
$N_2 C_5 H_{5AB}$	110.2	$C_{15} - Z_{n1} - C_{12}$	10.19(3) 100.31(3)
$C_{1i} C_{5} H_{5AD}$	110.2	$C_{13} - Z_{11} - C_{14}$	107.31(3) 11454(2)
$U_1 - U_2 - \Pi_2 A D$	110.2	C_{12} $- C_{14}$ C_{15} C_{15} C_{12} C_{12} C_{13} C_{12} C_{13} C_{14} C_{14} C_{15}	114.34(3)
$\Pi JA - UJ - \Pi JAB$	100.3	$C_{12} = Z_{11} = C_{12}$	104.64 (4)
	122.1 (3)	C12— $Zn1$ — $C13$	107.75 (3)
UI-C6-H6	118.9	C14— $Zn1$ — $C13$	109.78 (4)

118.9		
168.9 (2)	C8—N4—C7—C11 ⁱⁱ	171.66 (19)
41.6 (2)	Cr2—N4—C7—C11 ⁱⁱ	42.3 (2)
-179.6 (2)	C7—N4—C8—C9	-178.4 (2)
-56.6 (3)	Cr2—N4—C8—C9	-54.8 (2)
72.1 (3)	N4-C8-C9-C10	70.3 (3)
179.0 (2)	C11—N5—C10—C9	179.0 (2)
55.5 (3)	Cr2—N5—C10—C9	55.1 (3)
-71.2 (3)	C8—C9—C10—N5	-70.4 (3)
-169.7 (2)	C10—N5—C11—C7 ⁱⁱ	-171.3 (2)
-41.6 (2)	Cr2-N5-C11-C7 ⁱⁱ	-41.7 (2)
-170.2 (2)		
	118.9 168.9 (2) 41.6 (2) -179.6 (2) -56.6 (3) 72.1 (3) 179.0 (2) 55.5 (3) -71.2 (3) -169.7 (2) -41.6 (2) -170.2 (2)	118.9 $168.9 (2)$ $C8-N4-C7-C11^{ii}$ $41.6 (2)$ $Cr2-N4-C7-C11^{ii}$ $-179.6 (2)$ $C7-N4-C8-C9$ $-56.6 (3)$ $Cr2-N4-C8-C9$ $72.1 (3)$ $N4-C8-C9-C10$ $179.0 (2)$ $C11-N5-C10-C9$ $55.5 (3)$ $Cr2-N5-C10-C9$ $-71.2 (3)$ $C8-C9-C10-N5$ $-169.7 (2)$ $C10-N5-C11-C7^{ii}$ $-41.6 (2)$ $Cr2-N5-C11-C7^{ii}$

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1····Cl4 ⁱⁱⁱ	0.99	2.46	3.346 (2)	149
N2—H2…Cl3	0.99	2.31	3.255 (2)	159
N3—H3 <i>AN</i> ····Cl5 ^{iv}	0.87	2.65	3.505 (3)	167
N3—H3 <i>BN</i> ····Cl2 ⁱ	0.87	2.61	3.334 (3)	141
C2—H2A····Cl2 ⁱⁱⁱ	0.98	2.65	3.606 (3)	165
N4—H4····Cl3 ⁱⁱ	0.99	2.56	3.493 (2)	157
N5—H5···Cl4 ^v	0.99	2.76	3.549 (2)	137
C3—H3A···Cl1 ^{vi}	0.98	2.71	3.650 (3)	160
C4—H4A····Cl5 ^{iv}	0.98	2.78	3.555 (3)	136
C7—H7AB···Cl2 ⁱⁱ	0.98	2.81	3.738 (3)	159

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*-1/2, -*y*+3/2, *z*+1/2; (v) -*x*+3/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+3/2, *y*-1/2, -*z*+1/2; (vi) -*x*+3/2, -*z*+1/2; (vi) -*x*+3/2; (vi) -*x*+3/2; (vi) -*x*+3/2; (vi) -*x*+3/2;