CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 16 March 2020
Accepted 28 March 2020

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; Nil complex; benzyl-2-(heptan-4-ylidene)hydrazine-1carboxylate ligand; thiocyanato ligands; Hirshfeld surface analysis; simultaneous TGA-DTA analyses.

CCDC reference: 1993291

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-yl-idene)hydrazine-1-carboxylate- $\left.\kappa^{2} N^{2}, O\right]$ bis(thiocyanato)nickel(II)

Palanivelu Nithya, ${ }^{\text {a,b }}$ Subbiah Govindarajan ${ }^{\mathrm{a}}$ and Jim Simpson ${ }^{\mathrm{c} *}$

${ }^{\text {a }}$ Department of Chemistry, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India, ${ }^{\text {b }}$ Department of Chemistry, J. J. College of Arts and Science, Pudukkottai, - 622 422, Tamil Nada, India, and ${ }^{\text {c Department of Chemistry, University of }}$ Otago, PO Box 56, Dunedin 9054, New Zealand. *Correspondence e-mail: jsimpson@alkali.otago.ac.nz

The title centrosymmetric $\mathrm{Ni}^{\text {II }}$ complex, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right]$, crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N -bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The crystal structure features $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds together with $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA-DTA analyses.

1. Chemical context

Investigations of the Schiff base complexes of benzyl carbazate are scarce except for our own reports (Nithya et al., 2016, $2017 a, b, 2018 a, b)$. These complexes are formed by Schiff base carbazate ligands in their keto form with N, O chelation to give complexes with octahedral geometry. The coordination chemistry of benzyl carbazate Schiff base complexes has gained importance not only from the inorganic point of view, but also because of their biological and thermal properties. In the course of our recent studies on such complexes, we reported the cobalt(II) complex of a Schiff base derived from benzyl carbazate and heptan-4-one with thiocyanates as the charge-compensating ligands (Nithya et al., 2019). In this work, we report the synthesis, molecular and crystal structures, Hirshfeld surface analysis and thermal properties of the corresponding nickel complex, bis[benzyl-2-(heptan-4-yl-idene)hydrazine-1-carboxylate]bis(thiocyanato)nickel(II), $\mathbf{1}$.

Figure 1
The molecular structure of $\mathbf{1}$ showing the atom numbering with ellipsoids drawn at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation $-x+1,-y,-z+2$. Intramolecular hydrogen bonds are shown as dashed black lines.

2. Structural commentary

The title compound, $\mathbf{1}$, crystallizes in the space group $P 2_{1} / c$ with one half of the complex in the asymmetric unit as the $\mathrm{Ni}^{\mathrm{II}}$ cation lies on an inversion centre, Fig. 1. This contrasts with the previously determined $\mathrm{Co}^{\mathrm{II}}$ analogue (Nithya et al., 2019) that crystallizes with two unique, centrosymmetric complex molecules in the asymmetric unit. Two inversion-related intramolecular C13-H13AㅇO. hydrogen bonds, Table 1, influence the conformation of the benzyl-2-(heptan-4-yl-idene)hydrazine-1-carboxylate ligands and enclose $R_{2}^{2}(14)$ ring motifs. Two hydrazine-carboxylate ligands chelate the Ni atom with N 1 and O 1 donor atoms; these chelating ligands lie trans to one another in the equatorial plane of the slightly distorted octahedral complex. The axial positions are occupied by two thiocyanato ligands bound to the metal through their N3 atoms. The NCS ligands are kinked away from the alkane chains of the other ligands with $\mathrm{C} 16-\mathrm{N} 3-\mathrm{Ni} 1$ angles of

Figure 2
Chains of molecules of $\mathbf{1}$ along the $b c$ diagonal. Hydrogen bonds are drawn as dashed cyan lines.

Figure 3
Chains of inversion dimers of $\mathbf{1}$ along b.

Figure 4
Chains of molecules of $\mathbf{1}$ along $a . \mathrm{C}-\mathrm{H} \cdots \pi$ contacts are drawn as dashed magenta lines with the centroids $(C g)$ of the $\mathrm{C} 3-\mathrm{C} 8$ rings shown as magenta spheres.
$163.23(11)^{\circ}$. Bond lengths and angles in the closely related Ni and Co complexes are generally similar, although the Ni1-N1 bond [2.1332 (12) \AA] is significantly shorter here than the corresponding $\mathrm{Co} 1-\mathrm{N} 11$ and $\mathrm{Co} 2-\mathrm{N} 21$ vectors $[2.206$ (5) and 2.248 (6) \AA respectively].

3. Supramolecular features

In the crystal structure, atom S 1 acts as a trifurcated acceptor forming $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~S} 1$ and weaker $\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~S} 1$ and $\mathrm{C} 10-$

Figure 5
Overall packing of $\mathbf{1}$ viewed along the b-axis direction.

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.824(17)$	$2.507(17)$	$3.2830(12)$	$157.3(16)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.95	2.94	$3.7080(16)$	139
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.99	3.00	$3.9059(14)$	154
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~S} \mathrm{~S}^{\text {ii }}$	0.99	2.94	$3.8464(15)$	153
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{\text {iii }}$	0.99	2.35	$3.1783(18)$	141
${\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cg}^{\text {iv }}}^{2}$	0.99	2.72	$3.6041(17)$	149

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{5}{2}$; (ii) $x, y-1, z$; (iii) $-x+1,-y,-z+2$; (iv)
$-x,-y,-z+2$.
$\mathrm{H} 10 A \cdots \mathrm{~S} 1$ hydrogen bonds, Table 1, that form chains of complex molecules along the $b c$ diagonal, Fig. 2. Inversionrelated pairs of $\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~S} 1$ hydrogen bonds link adjacent molecules into rows along the b-axis direction, Fig. 3, while rows also form along a, through $\mathrm{C} 2-\mathrm{H} 2 A \cdots C g 3, \mathrm{C}-$

(a)

(b)

Figure 6
Hirshfeld surfaces for opposite faces (a) and (b) of 1 mapped over $d_{\text {norm }}$ in the range -0.3928 to 2.1718 a.u. Cg3 is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ phenyl ring.

Table 2
Percentage contributions to the Hirshfeld surface for 1.

Contacts	Included surface area $\%$
$\mathrm{H} \cdots \mathrm{H}$	55.5
$\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$	18.8
$\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$	16.6
$\mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$	4.3
$\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$	3.2
$\mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O}$	0.7
$\mathrm{O} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{O}$	0.6

$\mathrm{H} \cdots \pi$ contacts, Fig. $4 ; \mathrm{Cg} 3$ is the centroid of the C3-C8 phenyl ring. These contacts combine to stack molecules of the complex in a regular fashion along the b-axis direction, Fig. 5.

4. Hirshfeld surface analysis

Further details of the intermolecular interactions in 1 were obtained using Hirshfeld surface analysis (Spackman \& Jayatilaka, 2009) with Hirshfeld surfaces and two-dimensional fingerprint plots generated with CrystalExplorer 17 (Turner et al., 2017). Hirshfeld surfaces for opposite faces of $\mathbf{1}$ are shown in Fig. 6(a) and (b). Bold red circles on the Hirshfeld surfaces correspond to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds while the weaker $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts appear as faint red circles. Fingerprint plots, Fig. 7, reveal that while H \cdots H interactions make the greatest contributions to the surface contacts, as would be expected for a molecule with such a predominance of H atoms, $\mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}$ contacts are also substantial, Table $2 . \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts are less significant, with the $\mathrm{O} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{O}$ contacts being essentially trivial with contributions of 0.7% and 0.6%, respectively. These are not shown in Fig. 7 but are included in Table 3 for completeness.

Figure 7
A full two-dimensional fingerprint plot for $\mathbf{1},(a)$, together with separate principal contact types for the molecule $(b)-(f)$. These were found to be $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C} / \mathrm{C} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{S} / \mathrm{S} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{N} / \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{O} / \mathrm{O} \cdots \mathrm{H}$ contacts.

Figure 8
Simultaneous TGA-DTA analyses for 1. The heavy (darker) lines show the TGA plot with the DTA behaviour shown by the lighter curve.

5. Thermal properties

Fig. 8 shows the thermal decomposition behaviour of $\mathbf{1}$. Simultaneous TGA-DTA analyses were recorded in air on a Perkin-Elmer SII Thermal Analyser over the temperature range $50-800^{\circ} \mathrm{C}$. With the equipment used here, the TGA curve shows the temperature range but not the individual peak temperatures. However, peak temperatures can be seen in the DTA curve. In the first step of decomposition, the weight loss of 74% occurs over the temperature range 115$260^{\circ} \mathrm{C}$ (TGA). This corresponds to the loss of the Schiff base ligands to form $\mathrm{Ni}^{\mathrm{II}}$ thiocyanate as an intermediate. This was marked by both endothermic $\left(170^{\circ} \mathrm{C}\right)$ and exothermic peaks (190 and $210^{\circ} \mathrm{C}$) in the DTA curve. As the thermal analysis was carried out under a dynamic flowing air atmosphere, the S and N atoms are oxidized to SO_{2} and NO_{2}, while nickel ultimately forms nickel oxide. Similar decomposition processes have been observed in our recent wok on numerous similar complexes, see for example (Nithya et al., 2017a,b, 2018a,b, 2019a,b).

6. Database survey

As mentioned previously, the most closely related structure to the one reported here is that of the $\mathrm{Co}^{\mathrm{II}}$ analogue (Nithya et al. 2019) while we have also reported the structures of 18 other Schiff base complexes of various transition metals with ligands based on benzyl carbazate (Nithya et al. 2016, 2017a,b, 2018a,b). A search in the Cambridge Structural Database (version 5.41, November 2019; Groom et al., 2016) for other related transition-metal complexes produced no additional hits. The novelty of the ligands found in these complexes is reinforced by the fact that a search for organic compounds incorporating the $\mathrm{PhCH}_{2} \mathrm{OC}(\mathrm{O}) \mathrm{NHN}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}$ unit produced only two hits. One was our own report of the ligand benzyl 2-cyclopentylidenehydrazinecarboxylate (JENFAM; Nithya et al., 2017a). The other was (2E)-1-ethyl 8-methyl 7-(2-(benzyloxycarbonyl)hydrazono)oct-2-enedioate, (VEWMOA; Gergely et al., 2006). In both cases, the bond distances and angles in the structures compare very favourably with those reported here.

7. Synthesis and crystallization

Equimolar amounts of ammonium thiocyanate $(0.076 \mathrm{~g}$, $1 \mathrm{mmol})$ and benzyl carbazate $(0.166 \mathrm{~g}, 1 \mathrm{mmol})$ were

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and
observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 2\right)_{2}\right]$
699.56

Monoclinic, $P 2_{1} / c$
100
12.6406 (3), 10.1280 (3),
15.7458 (4)
108.647 (3)
1910.02 (9)

2
Mo K α
0.66
$0.39 \times 0.24 \times 0.16$

Agilent SuperNova, Dual, Cu at zero, Atlas
Multi-scan (CrysAlis PRO; Agilent, 2014)
0.772, 1.000

12439, 4575, 3961
0.027
0.695
$0.031,0.073,1.05$
4575
210
H atoms treated by a mixture of independent and constrained refinement
$0.33,-0.39$

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2018/1 (Sheldrick, 2015b), TITAN (Hunter \& Simpson, 1999), Mercury (Macrae et al., 2020), enCIFer (Allen et al., 2004), PLATON (Spek, 2020) and publCIF (Westrip 2010).
dissolved in methanol $(10 \mathrm{~mL})$. Nickel nitrate, $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O},(0.146 \mathrm{~g}, 0.5 \mathrm{mmol})$ dissolved in 10 mL of doubly distilled water was added to this solution. The resulting blue solution was layered with heptan-4-one (dipropyl ketone) and the solution changed to a green colour. The final solution was left to evaporate at room temperature. After slow evaporation, bluish-green rhombus-shaped crystals suitable for X-ray diffraction analysis were collected, washed with doubly distilled water and air-dried.

Analysis calculated for $\mathrm{NiC}_{32} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}$: $\mathrm{Ni}, 8.40 ; \mathrm{C}, 54.96$; H, 6.30; N, 12.02; S, 9.16\%. Found: Ni, 8.25; C, 54.76; H, 6.13; N, $11.80 ; \mathrm{S}, 9.08 \%$; conductance $=14 S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Yield based on the metal: 80%.

The FT-IR spectrum was recorded on a JASCO-4100 FTIR spectrophotometer from 4000 to $400 \mathrm{~cm}^{-1}$ using KBr pellets: $\mathrm{N}-\mathrm{H}$ stretch $3152 \mathrm{~cm}^{-1} \mathrm{C}=\mathrm{O}$ stretch $1675 \mathrm{~cm}^{-1}$ $\mathrm{C}=\mathrm{N}$ stretch $1524 \mathrm{~cm}^{-1}, \mathrm{~N}-\mathrm{N}$ stretch $1058 \mathrm{~cm}^{-1} .2108 \mathrm{~cm}^{-1}$ $\mathrm{C} \equiv \mathrm{N}$ stretch of the N -bound thiocyanate ligands.

The electronic absorption spectrum was measured on a JASCO V-630 UV-vis spectrophotometer and recorded in methanol at room temperature: intense bands at 392, 678 and 732 nm were assigned to the ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}, 3 A_{2 g} \rightarrow{ }^{3} T_{1 \mathrm{~g}}(F)$ and ${ }^{3} A_{2 g}(F) \rightarrow{ }^{3} T_{1 g}(P)$ transitions, respectively, supporting the sixcoordinate octahedral geometry around the $\mathrm{Ni}^{\mathrm{II}}$ cation (Lever, 1984).

The ${ }^{1} \mathrm{H}$ NMR spectrum was recorded on a Bruker AV 400 $(400 \mathrm{MHz})$ spectrometer using tetramethylsilane as an internal reference. Chemical shifts are expressed in parts per million (ppm): 0.84-0.88 and $1.33-2.20 \mathrm{ppm}: \mathrm{CH}_{3}$ and CH_{2} groups, respectively; $-\mathrm{OCH}_{2}$ proton: 5.08 ppm ; aromatic protons multiplets $7.29-7.34 \mathrm{ppm}$; NH: 9.882 ppm .

Simultaneous TGA-DTA analyses were recorded in air on a PerkinElmer SII Thermal Analyser over the temperature range $50-800^{\circ} \mathrm{C}$.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The $\mathrm{N}-\mathrm{H}$ hydrogen atom was located in a difference-Fourier map and its coordinates refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. All C-bound H atoms were refined using a riding model with $d(\mathrm{C}-\mathrm{H})=0.95 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic $0.99 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and $0.98 \AA, U_{\text {iso }}$ $=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer and the Chemistry Department, University of Otago for support of the work of JS.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Gergely, J., Morgan, J. B. \& Overman, L. E. (2006). J. Org. Chem. 71, 9144-9152.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Lever, A. B. P. (1984). Inorganic Electronic Spectroscopy, 2nd ed. Amsterdam: Elsevier.
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Nithya, P., Govindarajan, S. \& Simpson, J. (2019a). IUCrData, 4, x190812.
Nithya, P., Helena, S., Simpson, J., Ilanchelian, M., Muthusankar, A. \& Govindarajan, S. (2016). J. Photochem. Photobiol. B, 165, 220231.

Nithya, P., Rajamanikandan, R., Simpson, J., Ilanchelian, M. \& Govindarajan, S. (2018b). Polyhedron, 145, 200-217.
Nithya, P., Simpson, J. \& Govindarajan, S. (2017b). Inorg. Chim. Acta, 467, 180-193.
Nithya, P., Simpson, J. \& Govindarajan, S. (2018a). Polyhedron, 141, 5-16.
Nithya, P., Simpson, J., Helena, S., Rajamanikandan, R. \& Govindarajan, S. (2017a). J. Therm. Anal. Calorim. 129, 10011019.

Nithya, P., Simpson, J. \& Govindarajan, S. (2019b). J. Coord. Chem. 72, 1845-1864.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 19-32. Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate- $\kappa^{2} N^{2}, O$ Jbis(thiocyanato)nickel(II)

Palanivelu Nithya, Subbiah Govindarajan and Jim Simpson

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b) and TITAN (Hunter \& Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/1 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2020) and publCIF (Westrip 2010).

Bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate- $\left.\kappa^{2} N^{2}, O\right]$ bis(thiocyanato)nickel(II)

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} 2\right)_{2}\right]$
$M_{r}=699.56$
Monoclinic, $P 2{ }_{1} / c$
$a=12.6406$ (3) \AA
$b=10.1280(3) \AA$
$c=15.7458(4) \AA$
$\beta=108.647(3)^{\circ}$
$V=1910.02(9) \AA^{3}$
$Z=2$

Data collection

Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer
Radiation source: Agilent SuperNova (Mo) Xray Source
Detector resolution: 5.1725 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2014)
$T_{\min }=0.772, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.073$
$S=1.05$
4575 reflections

$$
F(000)=740
$$

$D_{\mathrm{x}}=1.216 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6613 reflections
$\theta=3.6-29.2^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rectangular block, blue
$0.39 \times 0.24 \times 0.16 \mathrm{~mm}$

12439 measured reflections
4575 independent reflections
3961 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=29.6^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-17 \rightarrow 17$
$k=-13 \rightarrow 13$
$l=-21 \rightarrow 21$

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0259 P)^{2}+0.7321 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. One reflection with Fo \ggg Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}^{*} / U_{\mathrm{eq}}$
Ni1	0.500000	0.000000	1.000000	$0.01311(7)$
O1	$0.34390(7)$	$0.04585(10)$	$1.01346(6)$	$0.0166(2)$
C1	$0.33197(11)$	$-0.01165(14)$	$1.07823(9)$	$0.0159(3)$
O2	$0.25009(8)$	$0.01215(11)$	$1.11267(7)$	$0.0210(2)$
C2	$0.16396(11)$	$0.10284(16)$	$1.06322(10)$	$0.0208(3)$
H2A	0.137728	0.078992	0.998872	0.025^{*}
H2B	0.193675	0.194018	1.069115	0.025^{*}
C3	$0.06895(11)$	$0.09413(16)$	$1.10129(10)$	$0.0207(3)$
C4	$-0.00906(14)$	$0.19554(19)$	$1.08242(13)$	$0.0357(4)$
H4	-0.000374	0.268997	1.047719	0.043^{*}
C5	$-0.09990(15)$	$0.1901(2)$	$1.11410(14)$	$0.0428(5)$
H5	-0.153094	0.259680	1.100762	0.051^{*}
C6	$-0.11294(13)$	$0.0844(2)$	$1.16464(12)$	$0.0338(4)$
H6	-0.174835	0.081002	1.186420	0.041^{*}
C7	$-0.03610(13)$	$-0.01634(18)$	$1.18350(11)$	$0.0277(4)$
H7	-0.044911	-0.089213	1.218626	0.033^{*}
C8	$0.05482(12)$	$-0.01236(16)$	$1.15143(10)$	$0.0226(3)$
H8	0.107027	-0.082965	1.164090	0.027^{*}
N2	$0.39863(10)$	$-0.10797(13)$	$1.12383(8)$	$0.0187(3)$
H2N	$0.3879(13)$	$-0.1414(17)$	$1.1681(12)$	0.022^{*}
N1	$0.48528(9)$	$-0.14754(12)$	$1.09226(8)$	$0.0156(2)$
C9	$0.52823(11)$	$-0.26137(15)$	$1.11779(9)$	$0.0170(3)$
C10	$0.48835(12)$	$-0.35599(15)$	$1.17505(10)$	$0.0194(3)$
H10A	0.470958	-0.306629	1.223216	0.023^{*}
H10B	0.548117	-0.420395	1.203426	0.023^{*}
C11	$0.38364(14)$	$-0.42957(18)$	$1.11758(11)$	$0.0308(4)$
H11A	0.321679	-0.365719	1.094963	0.037^{*}
H11B	0.398761	-0.469318	1.065186	0.037^{*}
C12	$0.34816(16)$	$-0.53771(19)$	$1.17007(13)$	$0.0375(4)$
H12A	0.406779	-0.605036	1.188334	0.056^{*}
H12B	0.278687	-0.578254	1.132223	0.056^{*}
H12C	0.336205	-0.499402	1.223428	0.056^{*}
C13	$0.62074(12)$	$-0.30822(16)$	$1.08489(10)$	$0.0209(3)$
H13A	0.618840	-0.257813	1.030547	0.025^{*}
H13B	0.608894	-0.402577	1.068126	0.025^{*}

C14	$0.73513(12)$	$-0.29144(18)$	$1.15569(12)$	$0.0290(4)$
H14A	0.734359	-0.332963	1.212408	0.035^{*}
H14B	0.751004	-0.196209	1.167194	0.035^{*}
C15	$0.82738(14)$	$-0.3542(2)$	$1.12562(14)$	$0.0391(5)$
H15A	0.814383	-0.449445	1.117866	0.059^{*}
H15B	0.899948	-0.338260	1.171121	0.059^{*}
H15C	0.826912	-0.314947	1.068597	0.059^{*}
N3	$0.57102(10)$	$0.12673(13)$	$1.09988(8)$	$0.0189(3)$
C16	$0.61615(11)$	$0.21720(15)$	$1.14054(9)$	$0.0162(3)$
S1	$0.68148(3)$	$0.34303(4)$	$1.19984(3)$	$0.02219(10)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.01222(12)$	$0.01537(14)$	$0.01307(13)$	$-0.00022(9)$	$0.00589(10)$	$-0.00050(10)$
O1	$0.0141(4)$	$0.0200(5)$	$0.0175(5)$	$0.0017(4)$	$0.0076(4)$	$0.0030(4)$
C1	$0.0132(6)$	$0.0193(8)$	$0.0164(7)$	$-0.0004(5)$	$0.0066(5)$	$-0.0015(6)$
O2	$0.0172(5)$	$0.0278(6)$	$0.0224(5)$	$0.0092(4)$	$0.0126(4)$	$0.0091(4)$
C2	$0.0168(7)$	$0.0233(8)$	$0.0227(7)$	$0.0063(6)$	$0.0069(6)$	$0.0052(6)$
C3	$0.0163(7)$	$0.0258(9)$	$0.0207(7)$	$0.0031(6)$	$0.0071(6)$	$-0.0024(6)$
C4	$0.0322(9)$	$0.0337(11)$	$0.0487(11)$	$0.0130(8)$	$0.0233(8)$	$0.0116(9)$
C5	$0.0314(9)$	$0.0460(12)$	$0.0597(13)$	$0.0201(9)$	$0.0269(9)$	$0.0074(10)$
C6	$0.0204(8)$	$0.0495(12)$	$0.0376(9)$	$0.0033(8)$	$0.0177(7)$	$-0.0030(9)$
C7	$0.0189(7)$	$0.0404(11)$	$0.0251(8)$	$-0.0020(7)$	$0.0087(7)$	$0.0017(7)$
C8	$0.0147(7)$	$0.0306(9)$	$0.0229(8)$	$0.0023(6)$	$0.0066(6)$	$0.0004(7)$
N2	$0.0181(6)$	$0.0228(7)$	$0.0201(6)$	$0.0053(5)$	$0.0128(5)$	$0.0060(5)$
N1	$0.0134(5)$	$0.0196(7)$	$0.0161(6)$	$0.0022(5)$	$0.0081(5)$	$-0.0003(5)$
C9	$0.0167(6)$	$0.0184(8)$	$0.0164(6)$	$-0.0002(6)$	$0.0060(5)$	$-0.0006(6)$
C10	$0.0228(7)$	$0.0173(8)$	$0.0209(7)$	$0.0022(6)$	$0.0109(6)$	$0.0010(6)$
C11	$0.0372(9)$	$0.0278(10)$	$0.0280(8)$	$-0.0102(7)$	$0.0110(7)$	$-0.0019(7)$
C12	$0.0428(10)$	$0.0303(10)$	$0.0407(10)$	$-0.0142(8)$	$0.0154(9)$	$-0.0007(8)$
C13	$0.0241(7)$	$0.0185(8)$	$0.0244(7)$	$0.0047(6)$	$0.0139(6)$	$0.0030(6)$
C14	$0.0216(7)$	$0.0288(10)$	$0.0385(9)$	$0.0033(7)$	$0.0124(7)$	$0.0056(8)$
C15	$0.0280(8)$	$0.0395(11)$	$0.0571(12)$	$0.0144(8)$	$0.0237(9)$	$0.0214(9)$
N3	$0.0196(6)$	$0.0213(7)$	$0.0167(6)$	$-0.0013(5)$	$0.0072(5)$	$-0.0016(5)$
C16	$0.0157(6)$	$0.0195(8)$	$0.0162(6)$	$0.0031(6)$	$0.0090(5)$	$0.0028(6)$
S1	$0.02393(19)$	$0.0196(2)$	$0.0279(2)$	$-0.00579(15)$	$0.01512(16)$	$-0.00852(16)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ni} 1-\mathrm{N} 3$	$2.0059(13)$	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.824(17)$
$\mathrm{Ni} 1-\mathrm{N} 3^{\mathrm{i}}$	$2.0059(12)$	$\mathrm{N} 1-\mathrm{C} 9$	$1.2829(19)$
$\mathrm{Ni} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.1028(9)$	$\mathrm{C} 9-\mathrm{C} 13$	$1.4994(18)$
$\mathrm{Ni} 1-\mathrm{O} 1$	$2.1028(9)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.5086(19)$
$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.1332(12)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.536(2)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.1332(12)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9900
$\mathrm{O} 1-\mathrm{C} 1$	$1.2249(17)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{O} 2$	$1.3350(15)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.523(2)$

$\mathrm{C} 1-\mathrm{N} 2$	1.3380 (19)	C11-H11A	0.9900
$\mathrm{O} 2-\mathrm{C} 2$	1.4467 (17)	C11-H11B	0.9900
C2-C3	1.5066 (18)	C12-H12A	0.9800
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C12-H12B	0.9800
C2-H2B	0.9900	C12-H12C	0.9800
C3-C8	1.381 (2)	C13-C14	1.527 (2)
C3-C4	1.389 (2)	C13-H13A	0.9900
C4-C5	1.392 (2)	C13-H13B	0.9900
C4-H4	0.9500	C14-C15	1.530 (2)
C5-C6	1.375 (3)	C14-H14A	0.9900
C5-H5	0.9500	C14-H14B	0.9900
C6-C7	1.374 (2)	C15-H15A	0.9800
C6-H6	0.9500	C15-H15B	0.9800
C7-C8	1.396 (2)	C15-H15C	0.9800
C7-H7	0.9500	N3-C16	1.1582 (19)
C8-H8	0.9500	C16-S1	1.6386 (16)
N2-N1	1.3985 (15)		
N3-Ni1-N3 ${ }^{\text {i }}$	180.00 (7)	N1—N2-H2N	122.8 (12)
N3-Nil-O1 ${ }^{\text {i }}$	91.21 (4)	C9—N1-N2	116.57 (11)
N3i-Nil-O1 ${ }^{\text {i }}$	88.79 (4)	C9-N1-Ni1	136.26 (9)
N3-Ni1-O1	88.79 (4)	N2-N1-Nil	106.86 (8)
N3i-Ni1-O1	91.21 (4)	N1-C9-C13	118.34 (12)
O1- ${ }^{\text {i }}$ Ni1-O1	180.0	N1-C9-C10	124.70 (12)
N3-Nil-N1 ${ }^{\text {i }}$	88.34 (5)	C13-C9-C10	116.88 (13)
N3- ${ }^{\text {- }} \mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	91.66 (5)	C9-C10-C11	110.23 (12)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	78.29 (4)	C9-C10-H10A	109.6
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\text {i }}$	101.71 (4)	C11-C10-H10A	109.6
N3-Ni1-N1	91.66 (5)	C9-C10-H10B	109.6
N3 ${ }^{\text {i }}$-Ni1-N1	88.34 (5)	C11-C10-H10B	109.6
O1- ${ }^{\text {i }}$ - ${ }^{\text {11 }}$	101.71 (4)	H10A-C10-H10B	108.1
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{N} 1$	78.29 (4)	C12-C11-C10	112.14 (14)
N1 ${ }^{\text {i }}$ - Ni1- ${ }^{\text {N1 }}$	180.0	C12-C11-H11A	109.2
C1-O1-Ni1	110.38 (9)	C10-C11-H11A	109.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	124.76 (13)	C12-C11-H11B	109.2
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	124.70 (12)	C10-C11-H11B	109.2
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 2$	110.53 (12)	H11A-C11-H11B	107.9
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	116.34 (11)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	107.88 (12)	C11-C12-H12B	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1	H12B-C12-H12C	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4	C9-C13-C14	111.94 (12)
C8-C3-C4	119.14 (13)	C9-C13-H13A	109.2
C8-C3-C2	122.57 (13)	C14-C13-H13A	109.2
C4-C3-C2	118.26 (14)	C9-C13-H13B	109.2
C3-C4-C5	120.33 (17)	C14-C13-H13B	109.2

C3-C4-H4	119.8	H13A-C13-H13B	107.9
C5-C4-H4	119.8	C13-C14-C15	111.43 (15)
C6-C5-C4	120.24 (16)	C13-C14-H14A	109.3
C6-C5-H5	119.9	C15-C14-H14A	109.3
C4-C5-H5	119.9	C13-C14-H14B	109.3
C7-C6-C5	119.73 (14)	C15-C14-H14B	109.3
C7-C6-H6	120.1	H14A-C14-H14B	108.0
C5-C6- H 6	120.1	C14-C15-H15A	109.5
C6-C7-C8	120.48 (16)	C14-C15-H15B	109.5
C6-C7-H7	119.8	H15A-C15-H15B	109.5
C8-C7-H7	119.8	C14-C15-H15C	109.5
C3-C8-C7	120.07 (15)	H15A-C15-H15C	109.5
C3-C8-H8	120.0	H15B-C15-H15C	109.5
C7-C8- H 8	120.0	C16-N3-Nil	163.23 (11)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	116.66 (11)	N3-C16-S1	178.75 (14)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	120.5 (12)		
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	169.27 (11)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	-2.4 (2)
$\mathrm{Ni} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	-11.39 (18)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	177.07 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	6.7 (2)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 9$	-160.49 (13)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2$	-172.72 (12)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1-\mathrm{Ni} 1$	14.19 (15)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	168.23 (12)	N2-N1-C9-C13	179.49 (12)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	-19.5 (2)	Ni1-N1-C9-C13	6.9 (2)
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	162.63 (15)	N2-N1-C9-C10	3.0 (2)
C8-C3-C4-C5	0.4 (3)	Ni1-N1-C9-C10	-169.67 (10)
C2-C3-C4-C5	178.27 (17)	N1-C9-C10-C11	79.24 (18)
C3-C4-C5-C6	0.2 (3)	C13-C9-C10-C11	-97.34 (15)
C4-C5-C6-C7	-0.3 (3)	C9-C10-C11-C12	173.28 (14)
C5-C6-C7-C8	-0.3 (3)	N1-C9-C13-C14	101.19 (16)
C4-C3-C8-C7	-0.9 (2)	C10-C9-C13-C14	-82.00 (17)
C2-C3-C8-C7	-178.70 (15)	C9-C13-C14-C15	173.33 (13)
C6-C7-C8-C3	0.8 (3)		

Symmetry code: (i) $-x+1,-y,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 3-\mathrm{C} 8$ phenyl ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.824(17)$	$2.507(17)$	$3.2830(12)$	$157.3(16)$
$\mathrm{C} 8 — \mathrm{H} 8 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.95	2.94	$3.7080(16)$	139
$\mathrm{C} 10 — \mathrm{H} 10 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.99	3.00	$3.9059(14)$	154
$\mathrm{C} 10 — \mathrm{H} 10 B \cdots \mathrm{~S} 1^{\mathrm{iii}}$	0.99	2.94	$3.8464(15)$	153
$\mathrm{C} 13 — \mathrm{H} 13 A \cdots 1^{\mathrm{i}}$	0.99	2.35	$3.1783(18)$	141
$\mathrm{C} 2 — \mathrm{H} 2 A \cdots C g 3^{\mathrm{iv}}$	0.99	2.72	$3.6041(17)$	149

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $-x+1, y-1 / 2,-z+5 / 2$; (iii) $x, y-1, z$; (iv) $-x,-y,-z+2$.

