

Received 16 March 2020 Accepted 16 April 2020

Edited by J. T. Mague, Tulane University, USA

Keywords: crystal structure; 2-phenyl-1-*H*-phenanthro[9,10-*d*]imidazole; hydrogen bonding; π - π interactions.

CCDC reference: 1997348

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1*H*-phenanthro[9,10-*d*]imidazol-3-ium benzoate

Ruby Ahmed,^a Onur Erman Doğan,^b Farman Ali,^a Musheer Ahmad,^a Adeeba Ahmed,^a Necmi Dege^c* and Irina A. Golenia^d*

^aDepartment of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, 202002, UP, India, ^bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139 Samsun, Turkey, ^cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun, Turkey, and ^dDepartment of Chemistry, Taras Shecchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine. *Correspondence e-mail: necmid@omu.edu.tr, igolenya@ua.fm

In the title compound, $C_{21}H_{15}N_2^+ C_7H_5O_2^-$, 2-phenyl-1*H*-phenanthro[9,10-*d*]imidazole and benzoic acid form an ion pair complex. The system is consolidated by hydrogen bonds along with π - π interactions and N-H··· π interactions between the constituent units. For a better understanding of the crystal structure and intermolecular interactions, a Hirshfeld surface analysis was performed.

1. Chemical context

When phenanthrene is substituted by a heterocyclic moiety, its intermolecular charge-transfer ability is increased (Xu et al., 2017). Such a donor- π -acceptor (D- π -A) arrangement has tunable properties that can be controlled by suitable substituents (Cao et al., 2017). The presence of a heteroatom such as N, O or S may give electron-rich heterocycles (thiophene, pyrrole, or furan) or electron-deficient heterocycles (pyridine, phenanthroline) (Xu *et al.*, 2017). The dipole moment and λ_{max} can be modulated by the selection of D and A. Thus the photophysical properties can be controlled (Wang et al., 2017). The inclusion of heterocycles enhances the polarizability, thermal and chemical stabilities of such adducts. The π conjugated heterocyclic systems increase delocalization, thus enhancing the stability and photophysical properties (Gu et al., 2017, Zhang et al., 2012). By proper selection of the heterocyclic substituent, good fluorescence with higher sensitivity can be achieved (Li et al., 2016; Huang et al., 2012). The synthesis of selective chromo-fluorogenic sensors for anions, cations and neutral molecules can be achieved (Chou et al., 2012; Zhuang et al., 2012). Herein we report the crystal structure of the title compound, which was synthesized from 2-phenyl-1*H*-phenanthro[9,10-*d*]imidazole and benzoic acid.

phenanthrene-9,10-dione benzaldehyde

2-phenyl-1H-phenanthro[9,10-d]imidazole

Figure 1

The molecular structure of the title compound with atom labelling. The dashed line indicates the N-H···O hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

The structure of the title compound is shown in Fig. 1. The proton from benzoic acid (BA) is completely transferred to the N atom of the imidazole ring of 2-phenyl-1-*H*-phenan-thro[9,10-*d*]imidazole (M1), leading to the formation of a M1⁺BA⁻ co-crystal. The space group is monoclinic, $P_{2_1/n}$ and two asymmetric units, two M1⁺ ions and two benzoate ions, are combined in an inversion dimer of ion pairs (unit *A*, Fig. 2). The benzoate ion and M1⁺ are nearly perpendicular [67.82 (4)°] to one another and the torsional angle C1-O1-N1-C22 is 78.24 (su?)°. Unit *A* is stabilized by hydrogen bonds (N1-H1···O1, 1.77 Å, and N2-H2···O2, 1.83 Å; Fig. 2). Beside the hydrogen bonds, there are weak π interactions between the C23-C28 and C8/C9/C14/C15/C20/C21 rings = 3.4590 (9) Å].

Figure 2

Unit A consisting of two entities each of benzoate ions and M1 moieties, linked by hydrogen bonds and π - π interactions.

Table 1	
Hydrogen-bond geometry (Å, °).	
Cg4 is the centroid of the C15–C20 benzene ring.	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H1 \cdots O1$	0.86	1.77	2.6159 (17)	168
$N2-H2\cdots O2^{i}$	0.86	1.83	2.6523 (16)	158
$C7-H7\cdots Cg4^{ii}$	0.93	2.79	3.585 (2)	145
C10-H10···O1	0.93	2.40	3.265 (2)	155
$C19-H19\cdots O2^{i}$	0.93	2.54	3.372 (2)	150
$C24 - H24 \cdots O2^{i}$	0.93	2.50	3.343 (2)	152
C28−H28···O1	0.93	2.48	3.365 (2)	159

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.

3. Supramolecular features

In the crystal, the *A* units are associated through weak, slipped, π -stacking interactions between the C9–C14 benzene rings and N1/C22/N2/C21/C8 imidazole rings across inversion centers [centroid–centroid distance = 3.5675 (9) Å, dihedral angle = 1.57 (8)°, slippage = 1.532 Å). The stepped stacks thus formed extend alternately in the directions of the normals to (111) and (111) and are connected *via* C7–H7···*Cg*4 interactions (Table 1, Fig. 3).

4. Hirshfeld surface analysis

The Hirshfeld surfaces provide an extended qualitative and quantitative analysis of the interactions between the constituents of the co-crystal. The analysis shows the presence of $C-H\cdots O$ and $N-H\cdots O$ hydrogen bonds leading to multidirectional interactions to form the three-dimensional structure. The red spots in the Hirshfeld surface (Fig. 4) are centered on the N1-H1 \cdots O1, C10-H10 \cdots O1 and C28-H28 \cdots O1 interactions of the benzoate ion with the phenanthrene and with the N-H of the imidazole. Their bond lengths are 1.77, 2.40, and 2.48 Å, respectively. The fingerprint plots (Fig. 5) show the percentage contribution of the various interactions. Those of H \cdots H and H \cdots C dominate at 44.8% and 30.6%, respectively. The H \cdots O interactions involve oxygen atoms from the benzoate anion and the N-H group of the imidazole ring of M1⁺.

Figure 3 Supramolecular structure showing *A* units stacked over adjacent rows of *A* units running perpendicular to each other.

research communications

Figure 4 View of the th

View of the three-dimensional Hirshfeld surface of the title compound plotted over d_{norm} .

5. Database survey

A search of the Cambridge Structural database (CSD, version 5.41, update November 2019; Groom *et al.*, 2016) for the 2,3dihydro-1*H*-phenanthro[9,10-*d*]imidazole moiety revealed 45 hits of which the most similar to the title compound are imidazole derivatives (CEZWEL: Mormul *et al.*, 2013; ODEDAD: Li *et al.*, 2016; QORJUD: Tapu *et al.*, 2009; REKXOX: Akula *et al.*, 2017; YUMTEG: Ullah *et al.*, 2009; ZACSAA: Therrien *et al.*, 2014). The N–C bond lengths of the imidazole ring in these structures vary from 1.312 (2) to 1.365 (2) Å. The molecular conformations of these structures are also planar.

Figure 5

Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.

Table 2 Experimental details.	
Crystal data	
Chemical formula	$C_{21}H_{15}N_{2}^{+}\cdot C_{7}H_{5}O_{2}^{-}$
M_	416.46
Crystal system, space group	Monoclinic. $P2_1/n$
Temperature (K)	100
a, b, c (Å)	9.4693 (4), 8.7384 (3), 24.5049 (9)
β (°)	91.792 (1)
$V(Å^3)$	2026.70 (13)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.39 \times 0.28 \times 0.17$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.708, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25446, 3979, 3269
R _{int}	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.104, 1.10
No. of reflections	3979
No. of parameters	289
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.23, -0.33

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/3 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012) and PLATON (Spek, 2020).

6. Synthesis and crystallization

A condensation reaction was performed between equimolar quantities of phenanthrene-9,10-dione and benzaldehyde. 1 mmol of phenanthrene-9,10-dione, 1 mmol of benzaldehyde, 5 mmol of ammonium acetate and 30 mL of glacial acetic acid were added to single-neck 100 mL round-bottom flask. The mixture was refluxed for 12 h under nitrogen. After completion of the reaction, the reaction mixture was cooled to room temperature and then 50 mL of deionized cold water were added. The product precipitated out as pale-brown solid. The solid product was filtered, washed with deionized water and dried in a vacuum oven to give 2-phenyl-1*H*-phenanthro[9,10-d]midazole (M1) as the final product. Crystals were prepared using 20 mg of M1 and 20 mg of benzoic acid dissolved in 5mL of ethanol. The clear solution was left undisturbed for crystallization. Fine crystals were obtained after 15 days.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH hydrogen atoms were located in difference-Fourier maps and, together with the carbon-bound hydrogen atoms, were included as riding contributions in calculated positions $[N-H = 0.86, C-H = 0.93 \text{ Å}; U_{iso}(H) = 1.2U_{eq}(C,N)].$

research communications

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India, for providing laboratory facilities.

Funding information

Dr Farman Ali acknowledges the DST for INSPIRE Faculty Funding.

References

- Akula, S. B., Chen, H.-S., Su, C., Chen, B.-R., Chiou, J.-J., Shieh, C.-H., Lin, Y.-F. & Li, W.-R. (2017). *Inorg. Chem.* 56, 12987–12995.
- Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, L., Zhang, D., Xu, L., Fang, Z., Jiang, X.-F. & Lu, F. (2017). Eur. J. Org. Chem. 2017, 2495–2500.
- Chou, H. H., Chen, Y. H., Hsu, H. P., Chang, W. H., Chen, Y. H. & Cheng, C. H. (2012). *Adv. Mater.* **24**, 5867–5871.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Gu, P.-Y., Wang, Z., Liu, G., Yao, H., Wang, Z., Li, Y., Zhu, J., Li, S. & Zhang, Q. (2017). Chem. Mater. 29, 4172–4175.

- Huang, H., Wang, Y., Zhuang, S., Yang, X., Wang, L. & Yang, C. (2012). J. Phys. Chem. C, 116, 19458–19466.
- Li, J., Chen, S., Wang, Z. & Zhang, Q. (2016). Chem. Rec. 16, 1518– 1530.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mormul, J., Steimann, M., Maichle-Mössmer, C. & Nagel, U. (2013). Eur. J. Inorg. Chem. pp. 3421-3428.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Tapu, D., Owens, C., VanDerveer, D. & Gwaltney, K. (2009). Organometallics, 28, 270–276.
- Therrien, J. A., Wolf, M. O. & Patrick, B. O. (2014). Inorg. Chem. 53, 12962–12972.
- Ullah, F., Kindermann, M. K., Jones, P. G. & Heinicke, J. (2009). Organometallics, 28, 2441–2449.
- Wang, Z., Gu, P., Liu, G., Yao, H., Wu, Y., Li, Y., Rakesh, G., Zhu, J., Fu, H. & Zhang, Q. (2017). *Chem. Commun.* 53, 7772–7775.
- Xu, L., Zhang, D., Zhou, Y., Zheng, Y., Cao, L., Jiang, X.-F. & Lu, F. (2017). *Opt. Mater.* **70**, 131–137.
- Zhang, Y., Lai, S.-L., Tong, Q.-X., Lo, M.-F., Ng, T.-W., Chan, M.-Y., Wen, Z.-C., He, J., Jeff, K.-S., Tang, X.-L., Liu, W., Ko, C., Wang, P. & Lee, C. (2012). *Chem. Mater.* **24**, 61–70.
- Zhuang, S., Shangguan, R., Jin, J., Tu, G., Wang, L., Chen, J., Ma, D. & Zhu, X. (2012). Org. Electron. 13, 3050–3059.

supporting information

Acta Cryst. (2020). E76, 724-727 [https://doi.org/10.1107/S2056989020005344]

Crystal structure and Hirshfeld surface analysis of 2-phenyl-1*H*-phenanthro[9,10-*d*]imidazol-3-ium benzoate

Ruby Ahmed, Onur Erman Doğan, Farman Ali, Musheer Ahmad, Adeeba Ahmed, Necmi Dege and Irina A. Golenia

Computing details

Data collection: *APEX2* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT2018/3* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2020).

2-Phenyl-1H-phenanthro[9,10-d]imidazol-3-ium benzoate

Crystal data

 $C_{21}H_{15}N_{2}^{+}C_{7}H_{5}O_{2}^{-}$ $M_{r} = 416.46$ Monoclinic, $P2_{1}/n$ a = 9.4693 (4) Å b = 8.7384 (3) Å c = 24.5049 (9) Å $\beta = 91.792$ (1)° V = 2026.70 (13) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2016) $T_{\min} = 0.708$, $T_{\max} = 0.746$ 25446 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.104$ S = 1.103979 reflections 289 parameters 0 restraints Primary atom site location: iterative F(000) = 872 $D_x = 1.365 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9121 reflections $\theta = 3.2-28.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KBlock, pink $0.39 \times 0.28 \times 0.17 \text{ mm}$

3979 independent reflections 3269 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -10 \rightarrow 10$ $l = -30 \rightarrow 30$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0356P)^2 + 1.042P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.23573 (12)	0.35667 (14)	0.39271 (5)	0.0272 (3)	
O2	0.43116 (12)	0.21182 (14)	0.39047 (5)	0.0277 (3)	
N1	0.27589 (13)	0.51384 (15)	0.48272 (5)	0.0174 (3)	
H1	0.259534	0.474240	0.451017	0.021*	
N2	0.36868 (13)	0.65362 (15)	0.54849 (5)	0.0177 (3)	
H2	0.421794	0.718335	0.565817	0.021*	
C1	0.30537 (16)	0.24344 (19)	0.37667 (6)	0.0190 (3)	
C2	0.23159 (16)	0.13699 (18)	0.33666 (6)	0.0174 (3)	
C3	0.30647 (17)	0.0201 (2)	0.31269 (7)	0.0260 (4)	
Н3	0.400888	0.004987	0.322848	0.031*	
C4	0.24293 (19)	-0.0746 (2)	0.27379 (7)	0.0327 (4)	
H4	0.294737	-0.151762	0.257587	0.039*	
C5	0.10194 (18)	-0.0537 (2)	0.25920 (7)	0.0261 (4)	
Н5	0.059013	-0.115598	0.232633	0.031*	
C6	0.02506 (17)	0.05930 (19)	0.28422 (7)	0.0225 (4)	
H6	-0.070461	0.071109	0.275216	0.027*	
C7	0.08921 (16)	0.15524 (18)	0.32262 (6)	0.0194 (3)	
H7	0.037017	0.231785	0.338992	0.023*	
C8	0.20749 (15)	0.47649 (18)	0.52979 (6)	0.0172 (3)	
C9	0.09665 (15)	0.36873 (18)	0.53830 (6)	0.0185 (3)	
C10	0.03891 (16)	0.27684 (18)	0.49600 (7)	0.0214 (4)	
H10	0.070829	0.286745	0.460668	0.026*	
C11	-0.06499 (16)	0.17229 (19)	0.50718 (7)	0.0241 (4)	
H11	-0.102982	0.111124	0.479346	0.029*	
C12	-0.11351 (17)	0.1577 (2)	0.56009(7)	0.0267 (4)	
H12	-0.183127	0.086184	0.567421	0.032*	
C13	-0.05897 (17)	0.2486 (2)	0.60154 (7)	0.0243 (4)	
H13	-0.093418	0.238283	0.636479	0.029*	
C14	0.04783 (15)	0.35686 (18)	0.59221 (7)	0.0201 (3)	
C15	0.10846 (15)	0.45281 (18)	0.63613 (6)	0.0197 (3)	
C16	0.06231 (17)	0.4443 (2)	0.69008 (7)	0.0244 (4)	
H16	-0.010480	0.377451	0.698225	0.029*	
C17	0.12253 (17)	0.5328 (2)	0.73112 (7)	0.0263 (4)	
H17	0.090928	0.523517	0.766521	0.032*	
C18	0.23025 (17)	0.6361 (2)	0.72023 (7)	0.0243 (4)	
H18	0.269913	0.695635	0.748191	0.029*	
C19	0.27759 (16)	0.64963 (19)	0.66800 (6)	0.0213 (4)	
H19	0.348675	0.719290	0.660521	0.026*	
C20	0.21874 (15)	0.55833 (18)	0.62580 (6)	0.0187 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C21	0.26552 (15)	0.56429 (18)	0.57097 (6)	0.0173 (3)	
C22	0.37202 (15)	0.62210 (18)	0.49467 (6)	0.0174 (3)	
C23	0.46252 (15)	0.69837 (18)	0.45586 (6)	0.0180 (3)	
C24	0.55209 (16)	0.81660 (19)	0.47343 (7)	0.0224 (4)	
H24	0.554159	0.846890	0.509828	0.027*	
C25	0.63769 (17)	0.8886 (2)	0.43664 (7)	0.0264 (4)	
H25	0.697088	0.967356	0.448523	0.032*	
C26	0.63607 (17)	0.8448 (2)	0.38243 (7)	0.0264 (4)	
H26	0.695022	0.892778	0.358048	0.032*	
C27	0.54566 (18)	0.7287 (2)	0.36468 (7)	0.0260 (4)	
H27	0.543584	0.699591	0.328159	0.031*	
C28	0.45880 (17)	0.65616 (19)	0.40079 (7)	0.0224 (4)	
H28	0.397852	0.579232	0.388489	0.027*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0306 (6)	0.0247 (6)	0.0259 (6)	-0.0004 (5)	-0.0033 (5)	-0.0090 (5)
O2	0.0214 (6)	0.0332 (7)	0.0279 (6)	-0.0035 (5)	-0.0069 (5)	-0.0051 (5)
N1	0.0161 (6)	0.0172 (7)	0.0185 (7)	0.0026 (5)	-0.0037 (5)	-0.0023 (5)
N2	0.0151 (6)	0.0177 (7)	0.0200 (7)	-0.0006 (5)	-0.0035 (5)	-0.0032 (5)
C1	0.0211 (8)	0.0216 (8)	0.0144 (7)	-0.0032 (7)	0.0002 (6)	0.0011 (6)
C2	0.0184 (7)	0.0192 (8)	0.0146 (7)	-0.0039 (6)	0.0010 (6)	0.0011 (6)
C3	0.0166 (7)	0.0336 (10)	0.0277 (9)	0.0000 (7)	-0.0019 (7)	-0.0089 (8)
C4	0.0264 (9)	0.0371 (11)	0.0343 (10)	0.0034 (8)	-0.0006 (8)	-0.0185 (9)
C5	0.0269 (9)	0.0285 (9)	0.0226 (8)	-0.0054 (7)	-0.0046 (7)	-0.0076 (7)
C6	0.0180 (7)	0.0245 (9)	0.0245 (8)	-0.0022 (7)	-0.0051 (7)	0.0006 (7)
C7	0.0192 (8)	0.0187 (8)	0.0203 (8)	0.0010 (6)	-0.0007 (6)	-0.0003 (6)
C8	0.0145 (7)	0.0173 (8)	0.0197 (8)	0.0042 (6)	-0.0019 (6)	-0.0001 (6)
C9	0.0143 (7)	0.0156 (8)	0.0254 (8)	0.0045 (6)	-0.0036 (6)	0.0004 (6)
C10	0.0177 (8)	0.0183 (8)	0.0281 (9)	0.0042 (6)	-0.0035 (7)	-0.0017 (7)
C11	0.0182 (8)	0.0171 (8)	0.0364 (10)	0.0028 (7)	-0.0075 (7)	-0.0035 (7)
C12	0.0178 (8)	0.0200 (9)	0.0420 (11)	0.0001 (7)	-0.0019 (7)	0.0058 (8)
C13	0.0185 (8)	0.0255 (9)	0.0288 (9)	0.0015 (7)	-0.0009 (7)	0.0054 (7)
C14	0.0141 (7)	0.0181 (8)	0.0278 (9)	0.0046 (6)	-0.0025 (6)	0.0019 (7)
C15	0.0147 (7)	0.0207 (8)	0.0234 (8)	0.0060 (6)	-0.0007 (6)	0.0013 (7)
C16	0.0192 (8)	0.0275 (9)	0.0264 (9)	0.0037 (7)	0.0013 (7)	0.0027 (7)
C17	0.0241 (8)	0.0347 (10)	0.0201 (8)	0.0076 (8)	0.0022 (7)	0.0002 (7)
C18	0.0217 (8)	0.0299 (9)	0.0212 (8)	0.0068 (7)	-0.0044 (7)	-0.0032 (7)
C19	0.0162 (7)	0.0227 (9)	0.0247 (9)	0.0040 (6)	-0.0035 (6)	-0.0023 (7)
C20	0.0152 (7)	0.0190 (8)	0.0217 (8)	0.0064 (6)	-0.0033 (6)	-0.0002 (6)
C21	0.0137 (7)	0.0166 (8)	0.0214 (8)	0.0026 (6)	-0.0032 (6)	0.0000 (6)
C22	0.0150 (7)	0.0157 (8)	0.0214 (8)	0.0051 (6)	-0.0032 (6)	-0.0016 (6)
C23	0.0144 (7)	0.0171 (8)	0.0224 (8)	0.0051 (6)	-0.0021 (6)	0.0009 (6)
C24	0.0190 (8)	0.0243 (9)	0.0236 (8)	0.0014 (7)	-0.0024 (7)	-0.0011 (7)
C25	0.0194 (8)	0.0265 (9)	0.0330 (10)	-0.0021 (7)	-0.0045 (7)	0.0038 (8)
C26	0.0203 (8)	0.0286 (10)	0.0304 (9)	0.0034 (7)	0.0014 (7)	0.0097 (8)
C27	0.0301 (9)	0.0264 (9)	0.0215 (8)	0.0057 (7)	0.0000 (7)	0.0018 (7)

supporting information

C28	0.0234 (8)	0.0191 (8)	0.0243 (8)	0.0021 (7)	-0.0029 (7)	-0.0011 (7)
Geome	tric parameters (A	Å, ^o)				
01—C	1	1.2588	(19)	C12—C13	1	.377 (2)
02—C	1	1.2587	(19)	C12—H12	0	.9300
N1—C	22	1.339	(2)	C13—C14	1	.409 (2)
N1—C	8	1.380	(2)	С13—Н13	0	.9300
N1—H	1	0.8600		C14—C15	1	.467 (2)
N2—C	22	1.349	(2)	C15—C16	1	.407 (2)
N2—C	21	1.379	(2)	C15—C20	1	.422 (2)
N2—H	2	0.8600		C16—C17	1	.378 (2)
C1—C	2	1.507	(2)	C16—H16	0	.9300
C2—C	3	1.384	(2)	C17—C18	1	.394 (2)
C2—C	7	1.390	(2)	C17—H17	0	.9300
C3—C4	4	1.386	(2)	C18—C19	1	.374 (2)
С3—Н	3	0.9300		C18—H18	0	.9300
C4—C	5	1.383	(2)	C19—C20	1	.407 (2)
C4—H	4	0.9300		C19—H19	0	.9300
С5—С	6	1.382	(2)	C20—C21	1	.429 (2)
С5—Н	5	0.9300		C22—C23	1	.461 (2)
C6—C	7	1.386	(2)	C23—C24	1	.396 (2)
С6—Н	6	0.9300		C23—C28	1	.398 (2)
С7—Н	7	0.9300	1	C24—C25	1	.382 (2)
C8—C	21	1.369	(2)	C24—H24	0	.9300
C8—C	9	1.430	(2)	C25—C26	1	.382 (2)
С9—С	10	1.408	(2)	С25—Н25	0	.9300
С9—С	14	1.417	(2)	C26—C27	1	.389 (2)
C10—0	211	1.376	(2)	С26—Н26	0	.9300
C10—I	H10	0.9300	1	C27—C28	1	.381 (2)
C11—0	212	1.395	(2)	С27—Н27	0	.9300
C11—I	H11	0.9300	1	C28—H28	0	.9300
C22—1	N1—C8	108.53	(13)	C13—C14—C9	1	17.21 (15)
C22—1	N1—H1	125.7		C13—C14—C15	1	22.08 (15)
C8—N	1—H1	125.7		C9—C14—C15	1	20.70 (14)
C22—1	N2—C21	108.28	(13)	C16—C15—C20	1	16.92 (15)
C22—1	N2—H2	125.9		C16—C15—C14	1	22.22 (15)
C21—1	N2—H2	125.9		C20—C15—C14	1	20.86 (14)
O2—C	1—01	126.11	(15)	C17—C16—C15	1	21.50 (16)
O2—C	1—C2	117.05	(14)	C17—C16—H16	1	19.3
01—C	1—C2	116.84	(14)	C15—C16—H16	1	19.3
C3—C	2—С7	119.04	(14)	C16—C17—C18	1	20.82 (16)
C3—C	2—C1	119.87	(14)	С16—С17—Н17	1	19.6
C7—C	2—C1	121.09	(14)	C18—C17—H17	1	19.6
C2—C	3—C4	121.02	(15)	C19—C18—C17	1	19.72 (16)
C2—C	3—Н3	119.5		C19—C18—H18	1	20.1
C4—C	3—Н3	119.5		C17-C18-H18	1	20.1

C5—C4—C3	119.58 (16)	C18—C19—C20	120.15 (16)
C5—C4—H4	120.2	C18—C19—H19	119.9
C3—C4—H4	120.2	С20—С19—Н19	119.9
C6—C5—C4	119.83 (15)	C19—C20—C15	120.88 (15)
С6—С5—Н5	120.1	C19—C20—C21	122.89 (15)
C4—C5—H5	120.1	C15—C20—C21	116.23 (14)
C5—C6—C7	120.51 (15)	C8-C21-N2	107.21 (14)
С5—С6—Н6	119.7	C8-C21-C20	122.93 (14)
C7—C6—H6	119.7	N_{2} C21 C20	129.85 (14)
C6-C7-C2	119.97 (15)	N1—C22—N2	108.77 (14)
C6-C7-H7	120.0	N1-C22-C23	126.05(14)
C2—C7—H7	120.0	N_{2} C_{22} C_{23}	125.05(14)
$C_2 = C_3 = N_1$	107 20 (13)	C_{24} C_{23} C_{28}	119 31 (15)
$C_{21} = C_{8} = C_{9}$	122 75 (15)	C_{24} C_{23} C_{20} C_{20}	119.99 (14)
N1 - C8 - C9	130.06(14)	C_{28} C_{23} C_{22} C_{22}	120.69 (14)
C10-C9-C14	120.94(15)	$C_{25} = C_{24} = C_{23}$	119.90 (16)
C10 - C9 - C8	120.94(15) 122.55(15)	$C_{25} = C_{24} = C_{25}$	120.0
$C_{10} = C_{20} = C_{20}$	122.55(15) 116.51(14)	$C_{23} = C_{24} = H_{24}$	120.0
$C_{11} = C_{10} = C_{10}$	110.31(14) 110.71(16)	$C_{25} = C_{24} = 1124$	120.0
$C_{11} = C_{10} = C_{3}$	119.71 (10)	$C_{20} = C_{23} = C_{24}$	120.80 (10)
C_{10} C_{10} H_{10}	120.1	$C_{20} = C_{23} = H_{23}$	119.0
$C_{10} = C_{10} = C_{11} = C_{12}$	120.1 120.25(16)	$C_{24} = C_{23} = M_{23}$	119.0
$C_{10} = C_{11} = C_{12}$	120.23 (10)	$C_{25} = C_{20} = C_{27}$	119.45 (10)
	119.9	C_{23} C_{20} C	120.3
	119.9	$C_2/-C_{20}-H_{20}$	120.5
C13 - C12 - C11	120.41 (16)	$C_{28} = C_{27} = C_{26}$	120.56 (16)
C13—C12—H12	119.8	$C_{28} = C_{27} = H_{27}$	119.7
C11—C12—H12	119.8	$C_{26} = C_{27} = H_{27}$	119.7
C12 - C13 - C14	121.48 (16)	$C_2/-C_28-C_23$	119.98 (16)
С12—С13—Н13	119.3	C27—C28—H28	120.0
C14—C13—H13	119.3	C23—C28—H28	120.0
O2—C1—C2—C3	-6.4 (2)	C15—C16—C17—C18	1.1 (2)
O1—C1—C2—C3	172.81 (15)	C16—C17—C18—C19	-0.3 (2)
O2—C1—C2—C7	174.49 (15)	C17—C18—C19—C20	-0.7 (2)
O1—C1—C2—C7	-6.2 (2)	C18—C19—C20—C15	1.0 (2)
C7—C2—C3—C4	2.3 (3)	C18—C19—C20—C21	-178.48 (15)
C1—C2—C3—C4	-176.81 (16)	C16—C15—C20—C19	-0.2 (2)
C2—C3—C4—C5	-1.0 (3)	C14—C15—C20—C19	-179.56 (14)
C3—C4—C5—C6	-1.2 (3)	C16—C15—C20—C21	179.29 (13)
C4—C5—C6—C7	2.0 (3)	C14—C15—C20—C21	-0.1 (2)
C5—C6—C7—C2	-0.7 (2)	N1—C8—C21—N2	-0.15 (16)
C3—C2—C7—C6	-1.4 (2)	C9—C8—C21—N2	179.75 (13)
C1—C2—C7—C6	177.64 (14)	N1-C8-C21-C20	178.83 (13)
C22—N1—C8—C21	-0.49 (16)	C9—C8—C21—C20	-1.3 (2)
C22—N1—C8—C9	179.62 (15)	C22—N2—C21—C8	0.74 (16)
C21—C8—C9—C10	-178.91 (14)	C22—N2—C21—C20	-178.15 (15)
N1-C8-C9-C10	1.0 (2)	C19—C20—C21—C8	-179.40 (15)
C21—C8—C9—C14	0.3 (2)	C15—C20—C21—C8	1.1 (2)

N1-C8-C9-C14 $C14-C9-C10-C11$ $C8-C9-C10-C11$ $C9-C10-C11-C12$ $C10-C11-C12-C13$ $C11-C12-C13-C14$ $C12-C13-C14-C9$ $C12-C13-C14-C15$ $C10-C9-C14-C13$ $C8-C9-C14-C13$ $C10-C9-C14-C15$ $C8-C9-C14-C15$ $C13-C14-C15-C16$ $C9-C14-C15-C16$	-179.82 (14) -1.0 (2) 178.22 (14) 0.3 (2) 0.6 (2) -0.8 (2) 0.2 (2) -179.05 (15) 0.7 (2) -178.51 (13) 179.95 (14) 0.7 (2) -1.0 (2) 179.84 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.7 (2) 179.84 (14) 0.96 (16) -176.97 (14) -1.05 (16) 176.90 (14) 175.89 (14) -1.7 (2) -3.0 (2) 179.44 (14) -1.2 (2) 179.97 (14) -0.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 179.95 (14) \\ 0.7 (2) \\ -1.0 (2) \\ 179.84 (14) \\ 178.35 (14) \\ -0.8 (2) \\ -0.8 (2) \\ 178.53 (15) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1.2 (2) \\ 179.97 (14) \\ -0.1 (2) \\ 1.0 (2) \\ -0.6 (2) \\ -0.7 (2) \\ 1.5 (2) \\ -179.60 (14) \end{array}$

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C15–C20 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1…O1	0.86	1.77	2.6159 (17)	168
N2—H2···O2 ⁱ	0.86	1.83	2.6523 (16)	158
С7—Н7…Сg4 ^{іі}	0.93	2.79	3.585 (2)	145
C10—H10…O1	0.93	2.40	3.265 (2)	155
C19—H19…O2 ⁱ	0.93	2.54	3.372 (2)	150
C24—H24…O2 ⁱ	0.93	2.50	3.343 (2)	152
C28—H28…O1	0.93	2.48	3.365 (2)	159
С28—п28…01	0.95	2.48	5.505 (2)	139

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.