CRYSTALLOGRAPHIC COMMUNICATIONS

Received 27 March 2020
Accepted 15 April 2020

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; hydroboration; ynamine; push-pull olefin.

CCDC reference: 1997061
Supporting information: this article has supporting information at journals.iucr.org/e

Structure of a push-pull olefin prepared by ynamine hydroboration with a borandiol ester

Joël Gubler and Peter Chen*

Laboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland. *Correspondence e-mail: peter.chen@org.chem.ethz.ch

$N-[(Z)-2-(2 H-1,3,2-B e n z o d i o x a b o r o l-2-y l)-2-p h e n y l e t h e n y l]-N$-(propan-2-yl)aniline, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BNO}_{2}$, contains a $\mathrm{C}=\mathrm{C}$ bond that is conjugated with a donor and an acceptor group. An analysis that included similar push-pull olefins revealed that bond lengths in their $\mathrm{B}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ core units correlate with the perceived acceptor and donor strength of the groups. The two phenyl groups in the molecule are rotated with respect to the plane that contains the BCCN atoms, and are close enough for significant π-stacking. Definite characterization of the title compound demonstrates, for the first time in a reliable way, that hydroboration of ynamines with borandiol esters is feasible. Compared to olefin hydroboration with borane, the ynamine substrate is activated enough to undergo reaction with the less active hydroboration reagent catecholborane.

1. Chemical context

Boronic esters are frequently used to transfer organic groups to transition metals, for example in the transmetallation step of the Suzuki-Miyaura reaction. Hydroboration of ynamines with borandiol esters produces amino-functionalized boronic esters in one step and perfect atom economy.

For true ynamines, to the best of our knowledge, only two attempts of such reactions have been reported so far. These either failed (Witulski et al., 2000) or were reported without reaction details and characterization data (Zhuo et al., 2001). More recently it was found that the exceptionally active Pier's borane, $\mathrm{HB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$, can readily hydroborate l-propynyl-2,2,6,6-tetramethylpiperidine (Wang et al., 2018). Borandiol esters are expected to be less reactive because the electron deficiency at the boron is reduced by π-donation from the oxygen atoms.

Given the limited precedent for ynamine hydroboration, the more comprehensive literature for enamine hydroboration was consulted (Goralski \& Singaram, 2012; Dembitsky et al., 2002), as their reactivity is expected to be controlled by similar effects. Compared to simple olefin substrates, conjugation of the $\mathrm{C}=\mathrm{C}$ bond with nitrogen dictates the regioselectivity and increases the reactivity of enamines. However, the presence of a nitrogen atom in the reactant and product enables the formation of unreactive Lewis acid-base adducts with the

Figure 1
The molecular structures of the two independent molecules of the title compound 1 with displacement ellipsoids drawn at the 50% probability level.
hydroborating reagent. Building on the vast knowledge of the reactivity of different borane-amine adducts in hydroboration (Brown \& Murray, 1984; Brown et al., 1999), a bulky iso-propyl and an phenyl group were selected as substituents for the ynamine nitrogen. The former should weaken adducts for steric reasons, whereas the phenyl group is expected to reduce the nucleophilicity of the nitrogen by conjugation.

Ynamine hydroboration using a borandiol ester was reinvestigated and succeeded for a substrate that follows the developed design principles. The product of such a reaction contains a $\mathrm{C}=\mathrm{C}$ double bond flanked by both an electrondonating group (EDG), the amine, and an electron-withdrawing group (EWG), the boronate. Therefore it belongs to the class of push-pull (captodative) olefins, which are known to have unusual properties such as weak π-bonds or biradical reactivity (Viehe et al., 1985).

2. Structural commentary

The asymmetric unit (Fig. 1) contains two almost identical (r.m.d.s $=0.11 \AA$) independent molecules. As judged by the $\mathrm{B} 1-\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1$ torsion angles of 171.6 (2) and 175.5 (2) ${ }^{\circ}$, the central $\mathrm{C}-\mathrm{C}$ bond is only slightly twisted from planarity. The two phenyl groups in the molecule are rotated, by 43 and 49°, with respect to that plane. The centroids of two phenyl groups in one molecule are on average $3.747 \AA$ apart, which suggests intramolecular π-stacking. The mean distances are $1.521 \AA$ for the $\mathrm{B} 1-\mathrm{C} 11$ bond, $1.365 \AA$ for the $\mathrm{C} 10-\mathrm{N} 1$ bond and $1.369 \AA$ for the central $\mathrm{C} 10-\mathrm{C} 11$ bond.

3. Supramolecular features

There is a short intermolecular contact between the boron atom and an aniline ortho- $\mathrm{H} B 1 B \cdots \mathrm{H} 9 A\left(1-x, 1-y, \frac{1}{2}+z\right)=$ $2.771 \AA$ and $\mathrm{B} 1 A \cdots \mathrm{H} 5 B\left(1-x,-y,-\frac{1}{2}+z\right)=2.856 \AA$ $\left(\Sigma \mathrm{r}_{\mathrm{vdw}}[\mathrm{B}, \mathrm{H}]=3.11 \AA\right)$. The shortest intermolecular distances between the catechol unit and boron are $\mathrm{B} 1 A \cdots \mathrm{C} 21 B^{\mathrm{i}}=$ $3.540(4) \AA, \quad \mathrm{B} 1 A \cdots \mathrm{C} 20 B^{\mathrm{i}}=3.686(4) \AA\left(\Sigma \mathrm{r}_{\mathrm{vdW}}[\mathrm{B}, \mathrm{C}]=\right.$

Table 1
Comparison of bond lengths (in \AA) in $\mathbf{1}$ with those in the similar compounds 2-5.

Average distances and standard deviations are given whenever there is more than one molecule in the asymmetric unit. Typical bond lengths for vinylboranes and conjugated enamines were obtained from statistical analysis.

Compound	$\mathrm{B}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{N}$	CCDC
$\mathbf{1}$	$1.521(3)$	$1.369(3)$	$1.365(3)$	title compound $^{\mathbf{2}}$
$\mathbf{3}$	$1.537(4)$	$1.335(4)$	$1.394(3)$	861787^{a}
$\mathbf{4}$	$1.513(4)$	$1.380(3)$	$1.362(3)$	1529736
$\mathbf{5}$	$1.491(7)$	$1.393(6)$	$1.341(6)$	1843575^{c}
Vinyl boronates	$1.516(2)$	$1.371(2)$	$1.350(2)$	1997665^{d}
Enamines	-	$1.341(12)$	-	-

Notes: (a) Hatayama \& Okuno (2012); (b) Liu et al. (2017); (c) Wang et al. (2018); (d) new.
$3.68 \AA), \mathrm{B} 1 A \cdots \mathrm{H} 21 B^{\mathrm{i}}=3.113 \AA$ and $\mathrm{B} 1 A \cdots \mathrm{H} 20 B^{\mathrm{i}}=3.381 \AA$ [symmetry code: (i) $\frac{1}{2}+x, 1-y, z$]. In addition there is a short contact between one of the other catechol hydrogen atoms and the meta-carbon of the aniline, $\mathrm{H} 22 B \cdots \mathrm{C} 6 B(x, 1+y, z)$ of $2.877 \AA\left(\Sigma \mathrm{r}_{\mathrm{vdw}}[\mathrm{C}, \mathrm{H}]=2.97 \AA\right)$. All of these interactions involve atoms that are part of arenes and could be seen as intermolecular π-stacking.

Methyl hydrogen atoms of the isopropyl group are at van der Waals distances with one of the oxygen atoms $\left[\mathrm{O} 2 A \cdots \mathrm{H} 2 B A\left(1-x,-y,-\frac{1}{2}+z\right)=2.698 \AA, \mathrm{O} 2 B \cdots\right.$ $\left.\mathrm{H} 3 A B\left(1-x, 1-y, \frac{1}{2}+z\right)=2.631 \AA, \Sigma \mathrm{r}_{\mathrm{vdW}}[\mathrm{O}, \mathrm{H}]=2.70 \AA\right]$ and with one of the anilic meta-H atoms $[\mathrm{H} 8 A \cdots \mathrm{H} 2 B C(1-x$, $\left.\left.-y,-\frac{1}{2}+z\right)=2.388 \AA, \Sigma \mathrm{r}_{\mathrm{vdW}}[\mathrm{H}, \mathrm{H}]=2.40 \AA\right]$. The nitrogen atom is sterically shielded by surrounding groups and does not have any close intermolecular neighbours.

4. Database survey

Contributions from the zwitterionic resonance structure ${ }^{-} \mathrm{B}=\mathrm{C}-\mathrm{C}=\mathrm{N}^{+}$are expected to increase with donor and acceptor group strength. This should be observable as a shortening of the $\mathrm{B}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds and an elongation of the $\mathrm{C}-\mathrm{C}$ bond. Following this idea, bond lengths of $\mathbf{1}$ were compared to those in the structurally related compounds $\mathbf{2}-\mathbf{5}$

2

3

4

5

Figure 2
Chemical structure of reference compounds. 9-[(E)-2-(4,4,5,5-Tetra-methyl-1,3,2-dioxaborolan-2-yl)ethenyl]-9H-carbazole, 2 (Hatayama \& Okuno, 2012), 3-(2H-1,3,2-benzodioxaborol-2-yl)-1-methyl-1H-indole, 3 (Liu et al., 2017), 1-\{(Z)-2-[bis(pentafluorophenyl)boranyl]prop-1-en-1-yl\}-2,2,6,6-tetramethylpiperidine, 4 (Wang et al., 2018) and $N-[(Z)-2-(2 H-$ 1,3,2-benzodioxaborol-2-yl)-2-phenylethenyl]- N-(propan-2-yl)propan-2amine, 5 (CCDC 1997665).

B-C distance

$R=C, H$

Figure 3
Statistical analysis of $\mathrm{B}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths in vinyl boronates. The query substructure and restrictions are shown on the left. Problematic or irrelevant structures were removed. The bond distances of reference compounds are marked.
(Table 1, Fig. 2). $\mathrm{C}-\mathrm{N}$ bond lengths are $1.341 \AA$ (4), $1.350 \AA$ (5), $1.362 \AA$ (3), $1.365 \AA$ (1), $1.394 \AA$ (2). These numbers follow the expected N -donor strength, when the latter is estimated by the number of conjugating substituents on the nitrogen: piperidine, diisopropyl $>$ aniline $>$ indole, carbazole. $\mathrm{B}-\mathrm{C}$ lengths are $1.491 \AA$ (4), $1.513 \AA$ (3), $1.516 \AA$ (5), $1.521 \AA$ (1), $1.537 \AA$ (2). Similarly, these numbers follow the Bacceptor strength: $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}>$ catecholboryl $>$ pinacolboryl (Adamczyk-Woźniak et al., 2011). Following this, the zwitterionic resonance structure is most important in $\mathbf{4}$, which has a strong donor and a strong acceptor. On the other end of the scale lies $\mathbf{2}$, which has a weak donor and a weak acceptor. The other molecules, including $\mathbf{1}$, lie between these two extremes.

In order to compare with olefins that either have a donor or an acceptor group, the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) was searched for vinyl boronates and enamines. Bond-length distributions and the exact query structures are shown in Fig. 3 and Fig. 4. The data set for vinyl boronates consists of about 90% of pinacol boronates and contains only a few catechol boronates. Compared with typical bond lengths in this data set, the $\mathrm{B}-\mathrm{C}$ bond is shorter and the $\mathrm{C}=\mathrm{C}$ bond is longer in
$\mathbf{1 - 5}$, which indicates stronger conjugation. The only exception is 2 , whose $\mathrm{C}=\mathrm{C}$ bond is shorter.

For enamines the $\mathrm{C}-\mathrm{C}$ bond length has an average of $1.341 \AA$, which is about $0.025 \AA$ longer than the value of 1.316 (15) A for regular internal olefins (Allen et al., 2006). In $\mathbf{1}, \mathbf{3}, 4$ and 5, the $\mathrm{C}-\mathrm{C}$ bonds are on average $1.378 \AA$, and thereby longer than in enamines. $\mathrm{C}-\mathrm{N}$ bond lengths for enamines are distributed more uniformly than $\mathrm{C}-\mathrm{C}$ lengths. Inspection of the structures in which $\mathrm{C}-\mathrm{N}$ distances are longer than $1.39 \AA$ revealed that these structures typically either have a nitrogen whose lone pair is not coplanar with the $\mathrm{C}=\mathrm{C}$ bond, or a nitrogen that is part of a carbazole or morpholine. As conjugation with the formal double bond between C10 and C11 is absent or reduced in these, only structures with $\mathrm{C}-\mathrm{N}$ bond lengths below $1.39 \AA$ were used for comparison. The average $\mathrm{C}-\mathrm{N}$ bond length of about $1.36 \AA$ for that subset is similar to the $\mathrm{C}-\mathrm{N}$ bond lengths in $\mathbf{1}, \mathbf{3}, 4$ and 5. Overall, comparison with enamines reveals that $\mathrm{C}-\mathrm{C}$ bonds are longer in push-pull olefins, whereas $\mathrm{C}-\mathrm{N}$ bond lengths are unaffected. This suggests that conjugation with the boron affects the $\mathrm{C}-\mathrm{C}$ bond length more than the $\mathrm{C}-\mathrm{N}$ bond length.

C-C distance

$R=C *, H$
C^{*} : carbon atom that is not bound to
any atom by a double or triple bond
any atom by a double or triple bond

C-N distance

Figure 4
Statistical analysis of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths in enamines. The query substructure and restrictions are shown on the left. Problematic or irrelevant structures were removed. The bond distances of reference compounds are marked.

5. Synthesis and crystallization

The title compound was prepared by the multi-step sequence shown in Fig. 5.
\boldsymbol{N}-isopropyl- \boldsymbol{N}-(phenylethynyl)aniline: In a 100 ml Schlenk flask, 5.8 ml of N-isopropyl amine ($40 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were diluted with 40 ml of dry THF. 24.7 ml of a n-BuLi solution in hexanes ($1.62 \mathrm{~mol} \mathrm{l}^{-1}$, $40 \mathrm{mmol}, 1.0$ eq.) were added over 5 min at 195 K . A colourless solid formed and after 15 min the suspension was warmed to room temperature over 30 min . Upon addition of 5.69 g of 2-chloroethynylbenzene (96%, $40 \mathrm{mmol}, 1.0$ eq., prepared according to Li et al., 2014), the reaction mixture turned black. The sealed Schlenk flask was heated in an oil bath at 338 K (caution: the closed flask may burst if this temperature is exceeded). The reaction progress was monitored by GC-FID. After 6 h the reaction mixture was cooled to room temperature. 100 ml of tert-butyl methyl ether were added, the organic phase washed with ice-cold water (3 $\times 50 \mathrm{ml}$), dried with MgSO_{4} and concentrated on the rotavap. 8.25 g of black viscous liquid were obtained and purified by Kugelrohr distillation ($433 \mathrm{~K}, 0.2 \mathrm{mbar}$) to yield 6.34 g (purity $83 \mathrm{wt} \%$, yield 56%) of the colourless liquid N -isopropyl- N (phenylethynyl)aniline. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})$ $=1.40\left(d, 6.5 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 4.10$ (hept, $6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of $i-\mathrm{Pr}), 6.92(t t, 7.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$, para-H of aniline), $7.16-7.33$ ($m, 7 \mathrm{H}$, arene H), 7.38-7.41 ($\mathrm{m}, 2 \mathrm{H}$, ortho- H of phenyl group). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=20.6\left(s, 2 \times \mathrm{CH}_{3}\right)$, 49.6 (s, CH of $i-\operatorname{Pr}$), 72.0 (s, alkynic carbon farther from N), 86.4 (s, alkynic carbon closer to N), 115.5 (s, ortho-C of aniline), 120.8 (s, para-C of aniline), 125.2 (s, ipso-C of phenyl group), 126.2 (s, para-C of phenyl group), 128.4 (s, meta-C of phenyl group), 129.3 (s, meta-C of aniline), 130.2 (s, ortho-C of phenyl group), 144.4 (s,ipso-C of aniline). EI-MS (70 eV) m/z $=236,235\left(M^{+}\right), 220\left(M^{+}-\mathrm{CH}_{3}\right), 194,193,192\left(M^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$, $165,117,115,90,89,77,63,51,43$. ATR-IR $v\left(\mathrm{~cm}^{-1}\right)(\% \mathrm{~T})=$ 534 (70), 629 (61), 688 (22), 745 (18), 783 (82), 865 (87), 881 (87), 904 (87), 996 (80), 1025 (73), 1056 (66), 1129 (70), 1147 (52), 1170 (67), 1254 (41), 1312 (67), 1348 (77), 1367 (76), 1396 (51), 1490 (38), 1594 (46), 1932 (96), 2217 (38, С \equiv Сstretch), 2872 (94), 2932 (91), 2976 (80), 3034 (93), 3057 (93).
\boldsymbol{N}-[(Z)-2-(2H-1,3,2-benzodioxaborol-2-yl)-2-phenylethen$\mathbf{y l}]-\mathrm{N}$-(propan-2-yl)aniline: Under a counterflow of argon, 3.08 g of N -isopropyl- N -(phenylethynyl)aniline $(13.1 \mathrm{mmol}$, 1.0 eq.) were placed in an oven-dried 20 ml Schlenk flask with a Young valve. The flask and its contents were purged three times by applying high vacuum followed by flushing with argon. 6.5 ml dry tert-butyl methyl ether were added and the mixture stirred vigorously to ensure mixing of the two liquids. 2.1 ml of catecholborane ($19.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were added, the flask closed, and the reaction mixture heated to 323 K for 16 h . Cooling to room temperature led to the precipitation of the

Figure 5
Reaction sequence used for the synthesis of the title compound.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BNO}_{2}$
M_{r}	355.22
Crystal system, space group	Orthorhombic, Pca2 2_{1}
Temperature (K)	100
$a, b, c(\AA)$	$17.8540(11), 11.5361(6)$,
$V\left(\AA^{3}\right)$	$18.5366(12)$
Z	$3817.9(4)$
Radiation type	8
$\mu\left(\mathrm{~mm}^{-1}\right)$	Mo $\mathrm{K} \alpha$
Crystal size (mm)	0.08
	$0.38 \times 0.2 \times 0.07$
Data collection	
Diffractometer	Bruker-Nonius Kappa APEXII
Absorption correction	Multi-scan $(S A D A B S ;$ Bruker,
	$2015)$
$T_{\text {min }}, T_{\text {max }}$	$0.703,0.733$
No. of measured, independent and	$60829,8781,7379$
observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.047
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	0.652
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.039,0.086,1.03$
No. of reflections	8781
No. of parameters	491
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.25,-0.24$

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).
product. The supernatant was removed and the precipitate recrystallized from 40 ml of tert-butyl methyl ether. X-ray quality crystals were obtained in a yield of 1.88 g (40%). Notes: (a) Schlenk techniques are necessary because ynamines and catecholborane are moisture-sensitive; (b) the reaction also works well in diethyl ether, 1,4-dioxane or THF.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.34(d, 6.8 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3} of i-Pr), 3.89 (hept, $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ of i-Pr), 6.77-6.80 (m, $2 \mathrm{H}, \mathrm{H} 5 \& \mathrm{H} 9), 6.81-6.85$ ($m, 2 \mathrm{H}, \mathrm{H} 7 \& \mathrm{H} 15$), 6.85-6.92 (m, 6H, H6 \& H8 \& H13 \& H14 \& H16 \& H17), 6.95-6.98 ($m, 2 \mathrm{H}$, $2 \times$ catechol-H), 7.11-7.14 $(m, 2 \mathrm{H}, 2 \times$ catechol-H), $7.53(s$, 1H, H10).
${ }^{13} \mathrm{C}^{1} \mathrm{H}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=22.2(s, \mathrm{C} 1 \&$ $\mathrm{C} 2), 57.4$ ($\mathrm{s}, \mathrm{C} 3$), 98.1 ($\mathrm{br} \mathrm{s}, \mathrm{C} 11$), 111.7 ($s, 2 \times$ catechol-C), 121.8 ($s, 2 \times$ catechol-C), 124.3 ($s, \mathrm{C} 15$), 124.6 ($s, \mathrm{C} 7$), 126.3 (s, C5 \& C9), 126.9 ($s, \mathrm{C} 14 \& \mathrm{C} 16), 128.0$ ($s, \mathrm{C} 6 \& \mathrm{C} 8), 129.4$ (s, C13 \& C17), 138.8 ($s, \mathrm{C} 12$), 143.3 ($s, \mathrm{C} 4$), 144.9 ($s, \mathrm{C} 10$), 148.9 ($s, \mathrm{C} 18 \& \mathrm{C} 23$). Inverse gated $\{13\} \mathrm{C}\{1\} \mathrm{H}\}$ NMR with $D 1=60 \mathrm{~s}$ measured to get integrable ${ }^{13} \mathrm{C}$ NMR.
${ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=33.2(s)$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and refined as riding: $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (C-methyl). The absolute structure was not determined because of unreliable Flack and Hooft parameters.

Acknowledgements

X-ray services were provided by SMoCC - The Small Molecule Crystallography Center of ETH Zurich. The authors acknowledge Kevin Breitwieser and Nils Trapp for proofreading the manuscript.

Funding information

Funding for this research was provided by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

References

Adamczyk-Woźniak, A., Jakubczyk, M., Sporzyński, A. \& Żukowska, G. (2011). Inorg. Chem. Commun. 14, 1753-1755.

Allen, F. H., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (2006). International Tables for Crystallography, Vol C, pp. 796811. Chester: IUCr.

Brown, H. C. \& Murray, L. T. (1984). Inorg. Chem. 23, 27462753.

Brown, H. C., Zaidlewicz, M., Dalvi, P. V., Narasimhan, S. \& Mukhopadhyay, A. (1999). Organometallics, 18, 1305-1309.

Buker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dembitsky, V. M., Tolstikov, G. A. \& Srebnik, M. (2002). Eurasian Chem.-Technol. J. 4, 153-167.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Goralski, C. T. \& Singaram, B. (2012). ARKIVOC, 2012, 88-113.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hatayama, Y. \& Okuno, T. (2012). Acta Cryst. E68, o84.
Li, M., Li, Y., Zhao, B., Liang, F. \& Jin, L.-Y. (2014). RSC Adv. 4, 30046-30049.
Liu, Y.-L., Kehr, G., Daniliuc, C. G. \& Erker, G. (2017). Chem. Eur. J. 23, 12141-12144.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Viehe, H. G., Janousek, Z., Merényi, R. \& Stella, L. (1985). Acc. Chem. Res. 18, 148-154.
Wang, L., Jian, Z., Daniliuc, C. G., Kehr, G. \& Erker, G. (2018). Dalton Trans. 47, 10853-10856.
Witulski, B., Buschmann, N. \& Bergsträsser, U. (2000). Tetrahedron, 56, 8473-8480.
Zhuo, J.-C., Soloway, A. H., Barnum, B. A. \& Tjarks, W. (2001). Frontiers in Neutron Capture Therapy, edited by M. F. Hawthorne, K. Shelly \& R. J. Wiersema, pp. 785-790. New York: Kluwer Academic/Plenum Publishers.

supporting information

Acta Cryst. (2020). E76, 710-714 [https://doi.org/10.1107/S2056989020005289]

Structure of a push-pull olefin prepared by ynamine hydroboration with a borandiol ester

Joël Gubler and Peter Chen

Computing details

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N -[(Z)-2-(2H-1,3,2-Benzodioxaborol-2-yl)-2-phenylethenyl]-N-(propan-2-yl)aniline

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BNO}_{2}$
$M_{r}=355.22$
Orthorhombic, $\mathrm{Pca2}_{1}$
$a=17.8540$ (11) \AA
$b=11.5361$ (6) \AA
$c=18.5366$ (12) \AA
$V=3817.9(4) \AA^{3}$
$Z=8$
$F(000)=1504$

Data collection

Bruker-Nonius Kappa APEXII diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
$T_{\text {min }}=0.703, T_{\text {max }}=0.733$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.086$
$S=1.03$
8781 reflections
491 parameters

1 restraint

Primary atom site location: structure-invariant direct methods
$D_{\mathrm{x}}=1.236 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9981 reflections
$\theta=2.5-26.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, clear light yellow
$0.38 \times 0.2 \times 0.07 \mathrm{~mm}$

60829 measured reflections
8781 independent reflections
7379 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=27.6^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-23 \rightarrow 23$
$k=-14 \rightarrow 14$
$l=-24 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0401 P)^{2}+0.7053 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.25 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$

> Absolute structure: Flack x determined using 3185 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) $249-259)$.

Absolute structure parameter: -0.7 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. 8 reflections were omitted (some are equivalents). These were checked visually and are all results of high background around the beamstop (beginning ice formation or crystalline powder covering the sample). 010 is clearly shadowed by the beamstop. Absolute structure is not claimed due to unreliable Flack and Hooft parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1B	0.18188 (9)	0.59842 (13)	0.60028 (9)	0.0155 (4)
O2B	0.30086 (9)	0.67252 (13)	0.61169 (9)	0.0158 (4)
N1B	0.23745 (11)	0.25154 (16)	0.65127 (11)	0.0159 (4)
C1B	0.10503 (15)	0.2002 (2)	0.62440 (14)	0.0210 (6)
H1BA	0.0874	0.2806	0.6251	0.032*
H1BB	0.0642	0.1485	0.6390	0.032*
H1BC	0.1215	0.1800	0.5756	0.032*
C2B	0.14877 (15)	0.2209 (2)	0.75303 (14)	0.0205 (6)
H2BA	0.1928	0.2152	0.7844	0.031*
H2BB	0.1096	0.1686	0.7707	0.031*
H2BC	0.1301	0.3008	0.7533	0.031*
C3B	0.17032 (14)	0.1869 (2)	0.67659 (13)	0.0160 (5)
H3B	0.1840	0.1028	0.6776	0.019*
C4B	0.30570 (13)	0.18933 (19)	0.64199 (14)	0.0147 (5)
C5B	0.32986 (14)	0.1121 (2)	0.69452 (14)	0.0189 (5)
H5B	0.3009	0.1007	0.7369	0.023*
C6B	0.39606 (14)	0.0518 (2)	0.68521 (16)	0.0230 (6)
H6B	0.4126	-0.0006	0.7214	0.028*
C7B	0.43822 (15)	0.0673 (2)	0.62365 (16)	0.0275 (6)
H7B	0.4841	0.0267	0.6177	0.033*
C8B	0.41341 (15)	0.1423 (2)	0.57066 (15)	0.0238 (6)
H8B	0.4420	0.1522	0.5279	0.029*
C9B	0.34704 (14)	0.2033 (2)	0.57938 (14)	0.0191 (5)
H9B	0.3301	0.2543	0.5426	0.023*
C10B	0.23179 (13)	0.36795 (19)	0.63924 (13)	0.0151 (5)
H10B	0.1820	0.3949	0.6321	0.018*
C11B	0.28538 (13)	0.4526 (2)	0.63563 (13)	0.0156 (5)
C12B	0.36555 (13)	0.4370 (2)	0.65557 (13)	0.0142 (5)
C13B	0.38562 (14)	0.3878 (2)	0.72178 (13)	0.0172 (5)
H13B	0.3476	0.3630	0.7541	0.021*
C14B	0.46041 (15)	0.3748 (2)	0.74087 (14)	0.0209 (5)

H14B	0.4731	0.3410	0.7860	0.025*
C15B	0.51658 (14)	0.4110 (2)	0.69433 (14)	0.0210 (6)
H15B	0.5677	0.4012	0.7071	0.025*
C16B	0.49740 (14)	0.4614 (2)	0.62906 (14)	0.0188 (5)
H16B	0.5356	0.4869	0.5972	0.023*
C17B	0.42288 (14)	0.4749 (2)	0.60995 (14)	0.0169 (5)
H17B	0.4106	0.5103	0.5652	0.020*
C18B	0.18063 (14)	0.71629 (19)	0.58605 (13)	0.0140 (5)
C19B	0.12056 (14)	0.7829 (2)	0.56544 (13)	0.0178 (5)
H19B	0.0715	0.7518	0.5614	0.021*
C20B	0.13606 (15)	0.8997 (2)	0.55079 (14)	0.0198 (5)
H20B	0.0966	0.9492	0.5356	0.024*
C21B	0.20801 (15)	0.9445 (2)	0.55794 (13)	0.0192 (5)
H21B	0.2165	1.0242	0.5478	0.023*
C22B	0.26793 (14)	0.8754 (2)	0.57958 (13)	0.0179 (5)
H22B	0.3171	0.9059	0.5849	0.022*
C23B	0.25211 (13)	0.76087 (19)	0.59287 (13)	0.0151 (5)
B1B	0.25681 (15)	0.5724 (2)	0.61526 (14)	0.0149 (6)
O1A	0.59813 (9)	-0.09865 (13)	0.40292 (10)	0.0176 (4)
O2A	0.71747 (9)	-0.17253 (13)	0.39845 (9)	0.0174 (4)
N1A	0.65302 (11)	0.24387 (17)	0.34366 (11)	0.0161 (4)
C1A	0.52189 (14)	0.2942 (2)	0.37802 (15)	0.0228 (6)
H1AA	0.5416	0.3104	0.4263	0.034*
H1AB	0.5027	0.2146	0.3764	0.034*
H1AC	0.4813	0.3485	0.3671	0.034*
C2A	0.58421 (14)	0.3081 (2)	0.32256 (14)	0.0177 (5)
H2A	0.5976	0.3923	0.3213	0.021*
C3A	0.55869 (14)	0.2754 (2)	0.24731 (15)	0.0227 (6)
H3AA	0.5407	0.1952	0.2473	0.034*
H3AB	0.6008	0.2829	0.2137	0.034*
H3AC	0.5180	0.3272	0.2323	0.034*
C4A	0.72025 (13)	0.3083 (2)	0.35237 (13)	0.0139 (5)
C5A	0.76423 (13)	0.2910 (2)	0.41332 (13)	0.0150 (5)
H5A	0.7496	0.2358	0.4487	0.018*
C6A	0.82952 (14)	0.3543 (2)	0.42245 (14)	0.0199 (5)
H6A	0.8596	0.3423	0.4640	0.024*
C7A	0.85112 (15)	0.4353 (2)	0.37098 (15)	0.0233 (6)
H7A	0.8964	0.4776	0.3768	0.028*
C8A	0.80630 (14)	0.4541 (2)	0.31124 (16)	0.0227 (6)
H8A	0.8204	0.5105	0.2765	0.027*
C9A	0.74113 (14)	0.3912 (2)	0.30178 (14)	0.0182 (5)
H9A	0.7106	0.4047	0.2607	0.022*
C10A	0.64818 (14)	0.1276 (2)	0.35658 (13)	0.0157 (5)
H10A	0.5984	0.1001	0.3624	0.019*
C11A	0.70180 (13)	0.0433 (2)	0.36266 (12)	0.0136 (5)
C12A	0.78275 (13)	0.0582 (2)	0.34518 (13)	0.0143 (5)
C13A	0.83799 (13)	0.0207 (2)	0.39292 (13)	0.0159 (5)
H13A	0.8239	-0.0154	0.4369	0.019*

C14A	$0.91359(14)$	$0.0353(2)$	$0.37700(15)$	$0.0184(5)$
H14A	0.9505	0.0104	0.4105	0.022^{*}
C15A	$0.93517(15)$	$0.0860(2)$	$0.31277(14)$	$0.0209(6)$
H15A	0.9868	0.0967	0.3021	0.025^{*}
C16A	$0.88076(14)$	$0.1212(2)$	$0.26390(14)$	$0.0209(6)$
H16A	0.8952	0.1549	0.2193	0.025^{*}
C17A	$0.80555(14)$	$0.1074(2)$	$0.27994(13)$	$0.0166(5)$
H17A	0.7689	0.1317	0.2460	0.020^{*}
C18A	$0.59638(14)$	$-0.2147(2)$	$0.42114(13)$	$0.0155(5)$
C19A	$0.53579(14)$	$-0.2820(2)$	$0.43916(14)$	$0.0196(5)$
H19A	0.4864	-0.2514	0.4402	0.024^{*}
C20A	$0.55064(15)$	$-0.3974(2)$	$0.45574(14)$	$0.0212(6)$
H20A	0.5102	-0.4469	0.4685	0.025^{*}
C21A	$0.62240(15)$	$-0.4420(2)$	$0.45425(14)$	$0.0221(6)$
H21A	0.6302	-0.5212	0.4661	0.027^{*}
C22A	$0.68384(15)$	$-0.3727(2)$	$0.43561(14)$	$0.0215(6)$
H22A	0.7335	-0.4024	0.4346	0.026^{*}
C23A	$0.66814(14)$	$-0.2591(2)$	$0.41882(13)$	$0.0159(5)$
B1A	$0.67343(15)$	$-0.0740(2)$	$0.38806(15)$	$0.0149(5)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O1B	$0.0139(8)$	$0.0119(8)$	$0.0206(9)$	$0.0005(7)$	$0.0001(7)$	$0.0023(7)$
O2B	$0.0137(8)$	$0.0144(8)$	$0.0194(9)$	$-0.0010(6)$	$-0.0018(7)$	$0.0016(7)$
N1B	$0.0115(10)$	$0.0142(9)$	$0.0218(11)$	$0.0004(8)$	$0.0030(8)$	$0.0028(8)$
C1B	$0.0183(13)$	$0.0203(12)$	$0.0245(15)$	$-0.0017(10)$	$-0.0016(11)$	$-0.0009(11)$
C2B	$0.0194(14)$	$0.0215(13)$	$0.0206(13)$	$-0.0021(11)$	$0.0031(11)$	$0.0012(10)$
C3B	$0.0142(13)$	$0.0135(11)$	$0.0205(13)$	$-0.0017(10)$	$0.0030(10)$	$0.0013(10)$
C4B	$0.0115(12)$	$0.0112(10)$	$0.0213(13)$	$-0.0010(9)$	$-0.0012(10)$	$-0.0023(10)$
C5B	$0.0187(13)$	$0.0162(12)$	$0.0218(14)$	$-0.0021(10)$	$-0.0029(10)$	$0.0006(10)$
C6B	$0.0174(13)$	$0.0157(12)$	$0.0360(16)$	$0.0007(10)$	$-0.0082(12)$	$0.0023(11)$
C7B	$0.0144(13)$	$0.0196(12)$	$0.0487(19)$	$0.0027(11)$	$0.0015(13)$	$-0.0046(12)$
C8B	$0.0196(14)$	$0.0191(13)$	$0.0328(16)$	$-0.0020(11)$	$0.0108(11)$	$-0.0065(11)$
C9B	$0.0173(13)$	$0.0168(12)$	$0.0232(13)$	$-0.0015(10)$	$0.0015(10)$	$-0.0014(10)$
C10B	$0.0132(12)$	$0.0174(11)$	$0.0147(11)$	$0.0022(9)$	$0.0007(9)$	$0.0013(10)$
C11B	$0.0146(12)$	$0.0169(11)$	$0.0152(12)$	$0.0014(10)$	$0.0027(10)$	$0.0006(10)$
C12B	$0.0133(12)$	$0.0120(11)$	$0.0173(12)$	$0.0018(9)$	$0.0002(10)$	$-0.0012(10)$
C13B	$0.0182(13)$	$0.0161(12)$	$0.0172(13)$	$0.0000(10)$	$0.0021(10)$	$-0.0014(10)$
C14B	$0.0217(14)$	$0.0217(13)$	$0.0195(13)$	$0.0023(11)$	$-0.0053(11)$	$0.0007(11)$
C15B	$0.0143(13)$	$0.0208(12)$	$0.0281(15)$	$0.0023(10)$	$-0.0057(11)$	$-0.0022(11)$
C16B	$0.0144(12)$	$0.0178(12)$	$0.0244(14)$	$-0.0007(10)$	$0.0032(10)$	$-0.0005(10)$
C17B	$0.0177(12)$	$0.0163(11)$	$0.0169(12)$	$0.0007(10)$	$0.0008(10)$	$0.0008(10)$
C18B	$0.0171(12)$	$0.0124(11)$	$0.0124(11)$	$-0.0024(10)$	$0.0031(9)$	$0.0000(9)$
C19B	$0.0140(13)$	$0.0202(13)$	$0.0191(13)$	$0.0031(10)$	$0.0011(10)$	$0.0001(10)$
C20B	$0.0236(14)$	$0.0186(12)$	$0.0171(13)$	$0.0061(11)$	$0.0014(11)$	$0.0014(10)$
C21B	$0.0277(14)$	$0.0125(11)$	$0.0172(13)$	$0.0003(11)$	$0.0044(11)$	$-0.0002(10)$
C22B	$0.0217(13)$	$0.0174(11)$	$0.0147(12)$	$-0.0032(10)$	$0.0000(10)$	$-0.0025(9)$

C23B	$0.0158(12)$	$0.0167(11)$	$0.0127(11)$	$0.0028(10)$	$-0.0025(9)$	$-0.0023(10)$
B1B	$0.0128(13)$	$0.0191(13)$	$0.0129(13)$	$-0.0004(11)$	$0.0016(11)$	$-0.0006(11)$
O1A	$0.0134(9)$	$0.0138(8)$	$0.0258(10)$	$-0.0012(7)$	$0.0003(7)$	$0.0027(7)$
O2A	$0.0139(9)$	$0.0146(8)$	$0.0237(10)$	$-0.0005(7)$	$0.0028(7)$	$0.0023(7)$
N1A	$0.0116(10)$	$0.0147(10)$	$0.0220(11)$	$0.0002(8)$	$-0.0036(8)$	$0.0030(8)$
C1A	$0.0161(13)$	$0.0221(13)$	$0.0304(15)$	$0.0042(11)$	$0.0001(11)$	$0.0005(12)$
C2A	$0.0128(12)$	$0.0150(11)$	$0.0251(14)$	$0.0015(10)$	$-0.0032(10)$	$0.0033(10)$
C3A	$0.0154(14)$	$0.0273(14)$	$0.0254(14)$	$0.0027(11)$	$-0.0061(11)$	$0.0047(11)$
C4A	$0.0121(12)$	$0.0119(11)$	$0.0175(12)$	$0.0009(9)$	$0.0005(10)$	$-0.0018(9)$
C5A	$0.0157(12)$	$0.0142(10)$	$0.0151(12)$	$0.0010(9)$	$0.0010(10)$	$-0.0004(9)$
C6A	$0.0160(12)$	$0.0214(12)$	$0.0223(14)$	$0.0021(10)$	$-0.0038(10)$	$-0.0035(11)$
C7A	$0.0155(13)$	$0.0179(12)$	$0.0366(16)$	$-0.0054(11)$	$0.0001(12)$	$-0.0006(11)$
C8A	$0.0198(14)$	$0.0182(12)$	$0.0300(15)$	$-0.0014(11)$	$0.0034(11)$	$0.0066(11)$
C9A	$0.0175(13)$	$0.0173(12)$	$0.0198(13)$	$0.0018(10)$	$-0.0009(10)$	$0.0033(10)$
C10A	$0.0129(12)$	$0.0171(12)$	$0.0172(12)$	$-0.0036(10)$	$-0.0012(9)$	$0.0010(10)$
C11A	$0.0125(12)$	$0.0146(11)$	$0.0138(12)$	$0.0000(9)$	$-0.0014(9)$	$0.0005(9)$
C12A	$0.0143(12)$	$0.0123(11)$	$0.0164(12)$	$-0.0009(9)$	$0.0007(10)$	$-0.0042(10)$
C13A	$0.0162(12)$	$0.0143(11)$	$0.0170(13)$	$0.0002(10)$	$0.0011(10)$	$0.0002(10)$
C14A	$0.0140(12)$	$0.0166(12)$	$0.0247(14)$	$0.0000(10)$	$-0.0032(10)$	$-0.0033(10)$
C15A	$0.0152(13)$	$0.0220(12)$	$0.0255(14)$	$-0.0017(10)$	$0.0056(11)$	$-0.0028(11)$
C16A	$0.0229(14)$	$0.0215(13)$	$0.0182(13)$	$-0.0034(11)$	$0.0064(11)$	$0.0000(11)$
C17A	$0.0165(12)$	$0.0167(12)$	$0.0166(12)$	$-0.0003(10)$	$-0.0014(10)$	$-0.0008(10)$
C18A	$0.0185(13)$	$0.0154(11)$	$0.0127(12)$	$-0.0018(10)$	$-0.0012(9)$	$0.0004(9)$
C19A	$0.0151(13)$	$0.0228(13)$	$0.0211(13)$	$-0.0022(11)$	$-0.0002(10)$	$0.0028(11)$
C20A	$0.0236(14)$	$0.0209(13)$	$0.0190(13)$	$-0.0103(11)$	$-0.0021(11)$	$0.0036(10)$
C21A	$0.0294(15)$	$0.0155(12)$	$0.0215(13)$	$-0.0025(11)$	$-0.0005(11)$	$0.0047(10)$
C22A	$0.0216(14)$	$0.0191(12)$	$0.0237(14)$	$0.0030(11)$	$-0.0002(11)$	$0.0019(11)$
C23A	$0.0137(12)$	$0.0178(12)$	$0.0164(12)$	$-0.0037(10)$	$0.0009(10)$	$0.0009(10)$
B1A	$0.0126(13)$	$0.0177(13)$	$0.0143(13)$	$-0.0006(11)$	$0.0002(11)$	$-0.0026(11)$

Geometric parameters ($A,{ }^{\circ}$)

O1B-C18B	$1.385(3)$	O1A-C18A	$1.382(3)$
O1B-B1B	$1.399(3)$	O1A-B1A	$1.402(3)$
O2B-C23B	$1.385(3)$	O2A-C23A	$1.384(3)$
O2B-B1B	$1.398(3)$	O2A-B1A	$1.396(3)$
N1B-C3B	$1.488(3)$	N1A-C2A	$1.487(3)$
N1B-C4B	$1.425(3)$	N1A-C4A	$1.421(3)$
N1B-C10B	$1.365(3)$	N1A-C10A	$1.365(3)$
C1B-H1BA	0.9800	C1A-H1AA	0.9800
C1B-H1BB	0.9800	C1A-H1AB	0.9800
C1B-H1BC	0.9800	C1A-H1AC	0.9800
C1B-C3B	$1.523(4)$	C1A-C2A	$1.523(4)$
C2B-H2BA	0.9800	C2A-H2A	1.0000
C2B-H2BB	0.9800	C2A-C3A	$1.515(4)$
C2B-H2BC	0.9800	C3A-H3AA	0.9800
C2B-C3B	$1.520(3)$	C3A-H3AB	0.9800
C3B-H3B	1.0000	C3A-H3AC	0.9800

C4B-C5B	1.389 (3)
C4B-C9B	1.385 (4)
C5B-H5B	0.9500
C5B-C6B	1.382 (3)
C6B-H6B	0.9500
C6B-C7B	1.379 (4)
C7B-H7B	0.9500
C7B-C8B	1.382 (4)
C8B-H8B	0.9500
C8B-C9B	1.387 (4)
C9B-H9B	0.9500
C10B-H10B	0.9500
C10B-C11B	1.369 (3)
C11B-C12B	1.489 (3)
C11B-B1B	1.521 (4)
C12B-C13B	1.399 (3)
C12B-C17B	1.398 (3)
C13B-H13B	0.9500
C13B-C14B	1.389 (4)
C14B-H14B	0.9500
C14B-C15B	1.387 (4)
C15B-H15B	0.9500
C15B-C16B	1.385 (4)
C16B-H16B	0.9500
C16B-C17B	1.386 (3)
C17B-H17B	0.9500
C18B-C19B	1.374 (3)
C18B-C23B	1.382 (3)
C19B-H19B	0.9500
C19B-C20B	1.401 (3)
C20B-H20B	0.9500
C20B-C21B	1.391 (4)
C21B-H21B	0.9500
C21B-C22B	1.393 (4)
C22B-H22B	0.9500
C22B-C23B	1.374 (3)
C18B-O1B-B1B	105.28 (18)
C23B-O2B-B1B	105.43 (18)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	118.34 (18)
C10B-N1B-C3B	119.02 (19)
C10B-N1B-C4B	122.6 (2)
H1BA-C1B-H1BB	109.5
H1BA-C1B-H1BC	109.5
$\mathrm{H} 1 \mathrm{BB}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BC}$	109.5
C3B-C1B-H1BA	109.5
C3B-C1B-H1BB	109.5
C3B-C1B-H1BC	109.5

C4A-C5A	$1.390(3)$
C4A-C9A	$1.390(3)$
C5A-H5A	0.9500
C5A-C6A	$1.386(3)$
C6A-H6A	0.9500
C6A-C7A	$1.390(4)$
C7A-H7A	0.9500
C7A-C8A	$1.383(4)$
C8A-H8A	0.9500
C8A-C9A	$1.382(4)$
C9A-H9A	0.9500
C10A-H10A	0.9500
C10A-C11A	$1.370(3)$
C11A-C12A	$1.491(3)$
C11A-B1A	$1.519(3)$
C12A-C13A	$1.394(3)$
C12A-C17A	$1.397(3)$
C13A-H13A	0.9500
C13A-C14A	$1.392(3)$
C14A-H14A	0.9500
C14A-C15A	$1.381(4)$
C15A-H15A	0.9500
C15A-C16A	$1.389(4)$
C16A-H16A	0.9500
C16A-C17A	$1.385(3)$
C17A-H17A	0.9500
C18A-C19A	$1.372(3)$
C18A-C23A	$1.381(3)$
C19A-H19A	0.9500
C20A-H20A	0.9500
C20A-C21A	$1.381(4)$
C21A-H21A	0.9500
C21A-C22A	$1.401(4)$
C22A-H22A	0.9500
C22A-C23A	$1.375(3)$

$\mathrm{C} 18 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}$	$105.46(18)$
$\mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}$	$105.50(18)$
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$117.83(18)$
$\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$118.9(2)$
$\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$123.2(2)$
$\mathrm{H} 1 \mathrm{AA}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AB}$	109.5
$\mathrm{H} 1 \mathrm{AA}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AC}$	109.5
$\mathrm{H} 1 \mathrm{AB}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AC}$	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AA}$	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AB}$	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AC}$	109.5

$\mathrm{H} 2 \mathrm{BA}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	109.5
$\mathrm{H} 2 \mathrm{BA}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BC}$	109.5
$\mathrm{H} 2 \mathrm{BB}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BC}$	109.5
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BA}$	109.5
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	109.5
C3B-C2B-H2BC	109.5
N1B-C3B-C1B	111.5 (2)
N1B-C3B-C2B	111.6 (2)
N1B-C3B-H3B	107.2
C1B-C3B-H3B	107.2
C2B-C3B-C1B	111.9 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	107.2
C5B-C4B-N1B	120.3 (2)
C9B-C4B-N1B	119.9 (2)
C9B-C4B-C5B	119.8 (2)
C4B-C5B-H5B	120.0
C6B-C5B-C4B	120.1 (2)
C6B-C5B-H5B	120.0
C5B-C6B-H6B	119.8
C7B-C6B-C5B	120.3 (2)
C7B-C6B-H6B	119.8
C6B-C7B-H7B	120.2
C6B-C7B-C8B	119.7 (2)
C8B-C7B-H7B	120.2
C7B-C8B-H8B	119.7
C7B-C8B-C9B	120.5 (2)
C9B-C8B-H8B	119.7
C4B-C9B-C8B	119.6 (2)
C4B-C9B-H9B	120.2
C8B-C9B-H9B	120.2
N1B-C10B-H10B	114.4
N1B-C10B-C11B	131.2 (2)
C11B-C10B-H10B	114.4
C10B-C11B-C12B	125.0 (2)
C10B-C11B-B1B	115.2 (2)
C12B-C11B-B1B	119.6 (2)
C13B-C12B-C11B	120.9 (2)
C17B-C12B-C11B	121.1 (2)
C17B-C12B-C13B	118.0 (2)
C12B-C13B-H13B	119.6
C14B-C13B-C12B	120.9 (2)
C14B-C13B-H13B	119.6
C13B-C14B-H14B	119.9
C15B-C14B-C13B	120.3 (2)
C15B-C14B-H14B	119.9
C14B-C15B-H15B	120.3
C16B-C15B-C14B	119.4 (2)
C16B-C15B-H15B	120.3

N1A-C2A-C1A	111.9 (2)
N1A-C2A-H2A	107.0
N1A-C2A-C3A	111.5 (2)
C1A-C2A-H2A	107.0
C3A-C2A-C1A	112.1 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{~A}$	107.0
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	109.5
C2A-C3A-H3AB	109.5
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AC}$	109.5
H3AA-C3A-H3AB	109.5
H3AA-C3A-H3AC	109.5
H3AB-C3A-H3AC	109.5
C5A-C4A-N1A	119.6 (2)
C5A-C4A-C9A	119.7 (2)
C9A-C4A-N1A	120.6 (2)
C4A-C5A-H5A	120.1
C6A-C5A-C4A	119.9 (2)
C6A-C5A-H5A	120.1
C5A-C6A-H6A	119.9
C5A-C6A-C7A	120.3 (2)
C7A-C6A-H6A	119.9
C6A-C7A-H7A	120.2
C8A-C7A-C6A	119.6 (2)
C8A-C7A-H7A	120.2
C7A-C8A-H8A	119.8
C9A-C8A-C7A	120.4 (2)
C9A-C8A-H8A	119.8
C4A-C9A-H9A	120.0
C8A-C9A-C4A	120.1 (2)
C8A-C9A-H9A	120.0
N1A-C10A-H10A	114.0
N1A-C10A-C11A	131.9 (2)
C11A-C10A-H10A	114.0
C10A-C11A-C12A	125.3 (2)
C10A-C11A-B1A	115.1 (2)
C12A-C11A-B1A	119.5 (2)
C13A-C12A-C11A	120.8 (2)
C13A-C12A-C17A	118.0 (2)
C17A-C12A-C11A	121.2 (2)
C12A-C13A-H13A	119.5
C14A-C13A-C12A	120.9 (2)
C14A-C13A-H13A	119.5
C13A-C14A-H14A	119.8
C15A-C14A-C13A	120.3 (2)
C15A-C14A-H14A	119.8
C14A-C15A-H15A	120.3
C14A-C15A-C16A	119.4 (2)
C16A-C15A-H15A	120.3

C15B-C16B-H16B	119.7
C15B-C16B-C17B	120.5 (2)
C17B-C16B-H16B	119.7
C12B-C17B-H17B	119.5
C16B-C17B-C12B	120.9 (2)
C16B-C17B-H17B	119.5
C19B-C18B-O1B	127.9 (2)
C19B-C18B-C23B	122.6 (2)
C23B-C18B-O1B	109.4 (2)
C18B-C19B-H19B	122.0
C18B-C19B-C20B	115.9 (2)
C20B-C19B-H19B	122.0
C19B-C20B-H20B	119.3
C21B-C20B-C19B	121.4 (2)
C21B-C20B-H20B	119.3
C20B-C21B-H21B	119.2
C20B-C21B-C22B	121.6 (2)
$\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{H} 21 \mathrm{~B}$	119.2
$\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{~B}$	121.8
$\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}$	116.4 (2)
$\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{H} 22 \mathrm{~B}$	121.8
C18B-C23B-O2B	109.24 (19)
$\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$	128.6 (2)
C22B-C23B-C18B	122.1 (2)
O1B-B1B-C11B	124.4 (2)
O2B-B1B-O1B	110.6 (2)
O2B-B1B-C11B	125.0 (2)
O1B-C18B-C19B-C20B	-176.7 (2)
O1B-C18B-C23B-O2B	0.0 (3)
O1B-C18B-C23B-C22B	177.9 (2)
N1B-C4B-C5B-C6B	179.9 (2)
N1B-C4B-C9B-C8B	-179.9 (2)
N1B-C10B-C11B-C12B	-9.7 (4)
N1B-C10B-C11B-B1B	175.5 (2)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	-45.6 (3)
C3B-N1B-C4B-C9B	132.5 (2)
C3B-N1B-C10B-C11B	159.6 (3)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-123.7 (2)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	110.3 (2)
C4B-N1B-C10B-C11B	-19.1 (4)
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	-0.4 (4)
C5B-C4B-C9B-C8B	-1.8(4)
C5B-C6B-C7B-C8B	-1.0 (4)
C6B-C7B-C8B-C9B	1.0 (4)
C7B-C8B-C9B-C4B	0.5 (4)
C9B-C4B-C5B-C6B	1.8 (4)
C10B-N1B-C3B-C1B	57.5 (3)

C15A-C16A-H16A	119.9
C17A-C16A-C15A	120.3 (2)
C17A-C16A-H16A	119.9
C12A-C17A-H17A	119.5
C16A-C17A-C12A	121.0 (2)
C16A-C17A-H17A	119.5
C19A-C18A-O1A	128.7 (2)
C19A-C18A-C23A	122.0 (2)
C23A-C18A-O1A	109.3 (2)
C18A-C19A-H19A	121.8
C18A-C19A-C20A	116.4 (2)
C20A-C19A-H19A	121.8
C19A-C20A-H20A	119.0
C21A-C20A-C19A	121.9 (2)
C21A-C20A-H20A	119.0
C20A-C21A-H21A	119.4
C20A-C21A-C22A	121.3 (2)
C22A-C21A-H21A	119.4
$\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	122.0
C23A-C22A-C21A	116.1 (2)
C23A-C22A-H22A	122.0
C18A-C23A-O2A	109.3 (2)
$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$	128.3 (2)
C22A-C23A-C18A	122.4 (2)
O1A-B1A-C11A	124.2 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$	110.4 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	125.5 (2)
O1A-C18A-C19A-C20A	-179.5 (2)
O1A-C18A-C23A-O2A	-0.5 (3)
O1A-C18A-C23A-C22A	178.9 (2)
N1A-C4A-C5A-C6A	-179.4 (2)
N1A-C4A-C9A-C8A	179.4 (2)
N1A-C10A-C11A-C12A	-9.7 (4)
N1A-C10A-C11A-B1A	171.6 (2)
C2A-N1A-C4A-C5A	132.7 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	-45.1 (3)
C2A-N1A-C10A-C11A	165.3 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	-120.9 (2)
C4A-N1A-C2A-C3A	112.7 (2)
C4A-N1A-C10A-C11A	-17.5 (4)
C4A-C5A-C6A-C7A	0.1 (4)
C5A-C4A-C9A-C8A	1.6 (4)
C5A-C6A-C7A-C8A	1.3 (4)
C6A-C7A-C8A-C9A	-1.3 (4)
C7A-C8A-C9A-C4A	-0.1 (4)
C9A-C4A-C5A-C6A	-1.6 (4)
C10A-N1A-C2A-C1A	56.4 (3)

$\left.\begin{array}{ll}\mathrm{C} 10 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B} & -68.4(3) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B} & 133.1(2) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B} & -48.8(3) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B} & -50.5(3) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B} & 131.9(3) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B} & -0.5(4) \\ \mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} & 176.9(2) \\ \mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B} & -179.0(2) \\ \mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B} & 179.3(2) \\ \mathrm{C} 12 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B} & -175.6(2) \\ \mathrm{C} 12 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} & 1.7(4) \\ \mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B} & 0.2(4) \\ \mathrm{C} 13 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B} & 1.6(3) \\ \mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B} & 0.8(4) \\ \mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B} & -0.5(4) \\ \mathrm{C} 15 \mathrm{~B}-\mathrm{C} 16 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B} & -0.6(4) \\ \mathrm{C} 17 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B} & -1.3(3) \\ \mathrm{C} 18 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} & 1.1(3) \\ \mathrm{C} 18 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B} & 178.7(2) \\ \mathrm{C} 18 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B}-\mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B} & -0.9(4) \\ \mathrm{C} 19 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} & -177.8(2) \\ \mathrm{C} 19 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B} & 0.1(4) \\ \mathrm{C} 19 \mathrm{~B}-\mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B} & 0.3(4) \\ \mathrm{C} 20 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B} & 0.5(4) \\ \mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B} & 176.8(2) \\ \mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B} & -0.7(4) \\ \mathrm{C} 23 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B} & -1.1(3) \\ \mathrm{C} 23 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{B} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B} & -178.7(2) \\ \mathrm{C} 23 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B}-\mathrm{C} 20 \mathrm{~B} & 0.7(4) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 19 \mathrm{~B} & 177.0(2) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B} & -0.6(3) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 18 \mathrm{~B} & 0.7(3) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B} & -177.1(2) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B} & 124.1(3) \\ \mathrm{B} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 17 \mathrm{~B} & -53.5(3) \\ \mathrm{Cl}\end{array}\right)$
$\left.\begin{array}{ll}\mathrm{C} 10 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A} & -69.9(3) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A} & -44.5(3) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A} & 137.6(2) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A} & 132.2(3) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A} & -49.3(3) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A} & 1.7(4) \\ \mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A} & -179.8(2) \\ \mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A} & -179.5(2) \\ \mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A} & 179.9(2) \\ \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A} & -177.2(2) \\ \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A} & 1.4(4) \\ \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A} & -1.0(4) \\ \mathrm{C} 13 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A} & -1.6(3) \\ \mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A} & -0.6(4) \\ \mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A} & 1.1(4) \\ \mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A} & 0.1(4) \\ \mathrm{C} 17 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A} & 2.0(3) \\ \mathrm{C} 18 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A} & -1.2(3) \\ \mathrm{C} 18 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A} & 177.5(2) \\ \mathrm{C} 18 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}-\mathrm{C} 20 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A} & 0.1(4) \\ \mathrm{C} 19 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A} & 179.4(2) \\ \mathrm{C} 19 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A} & -1.2(4) \\ \mathrm{C} 19 \mathrm{~A}-\mathrm{C} 20 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A} & -0.2(4) \\ \mathrm{C} 20 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A} & -0.3(4) \\ \mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A} & -179.7(2) \\ \mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A} & 1.0(4) \\ \mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A} & 1.0(3) \\ \mathrm{C} 23 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{B} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A} & -177.8(2) \\ \mathrm{C} 23 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}-\mathrm{C} 20 \mathrm{~A} & 0.6(4) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A} & -178.8(3) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A} & 1.0(3) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A} & -0.3(3) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A} & -179.7(3) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A} & -49.1(3) \\ \mathrm{B} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 17 \mathrm{~A} & 129.4(2) \\ \mathrm{C} & \\ \mathrm{C}\end{array}\right)$

