

Received 6 April 2020 Accepted 17 April 2020

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; Michael addition products; cyclohexen-1-one ring; envelope conformation; Hirshfeld surface analysis.

CCDC reference: 1983451

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-diphenylcyclohex-2-en-1-one

Farid N. Naghiyev,^a Mehmet Akkurt,^b Rizvan K. Askerov,^a Ibrahim G. Mamedov,^a Rovnag M. Rzayev,^c Taras Chyrka^{d*} and Abel M. Maharramov^a

^aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az, 1063 Baku, Azerbaijan, and ^dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine. *Correspondence e-mail: mustford@ukr.net

In the title compound, $C_{25}H_{20}O_2$, the central cyclohexenone ring adopts an envelope conformation. The mean plane of the cyclohexenone ring makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the two attached phenyl rings, while it is inclined by 69.55 (11)° to the phenyl ring of the benzoyl group. In the crystal, the molecules are linked by $C-H\cdots O$ and $C-H\cdots \pi$ interactions, forming a three-dimensional network.

1. Chemical context

There have been a series of significant examples of enone derivatives used as target products as well as synthetic intermediates (Abdelhamid *et al.*, 2011; Asgarova *et al.*, 2019; Khalilov *et al.*, 2018*a,b*; Thomas, 2007). Moreover, a number of useful compounds containing enone moieties have been found in nature, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, which were the object of a total synthesis (Pfeiffer *et al.*, 2005; Schultz & Wang, 1998; Kawamura *et al.*, 2016; Cuthbertson & Taylor, 2013). As part of a further study on the chemistry of α , β -unsaturated ketones (Naghiyev *et al.*, 2016), we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

2. Structural commentary

In the title compound (Fig. 1), the central cyclohexenone ring adopts an envelope conformation with puckering parameters $Q_{\rm T} = 0.470$ (2) Å, $\theta = 125.3$ (2)° and $\varphi = 300.8$ (3)°. The mean plane of the cyclohexenone ring [maximum deviation = 0.335 (2) Å] makes dihedral angles of 87.66 (11) and 23.76 (12)°, respectively, with the C14–C18 and C20–C25

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

phenyl rings, whereas it is inclined by $69.55 (11)^{\circ}$ to the C8–C13 phenyl ring of the benzoyl group.

3. Supramolecular features and Hirshfeld surface analysis

In the crystal, the molecules are linked by $C-H\cdots O$ and $C-H\cdots \pi$ interactions $(C2-H2A\cdots O2^{i}, C15-H15A\cdots O1^{i}, C22-H22A\cdots O1^{ii}$ and $C11-H11A\cdots Cg3^{iii}$; symmetry codes as given in Table 1; Cg3 is the centroid of the C14-C19 ring), forming layers parallel to the *ab* plane. The layers are further connected by another $C-H\cdots \pi$ interaction (C24-H24A\cdots Cg2^{iv}; Table 1; Cg2 is the centroid of the C8-C13 ring), forming a three-dimensional network (Fig. 2).

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed using *CrystalExplorer* 3.1 (Wolff *et al.*, 2012). The surface of the title compound mapped over d_{norm} is

Figure 2

A packing view of the title compound, formed by C-H···O and C-H··· π interactions (dashed lines). [Symmetry codes: (a) x - 1, y, z; (b) x + 1, y, z; (c) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (d) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (e) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.]

Table 1			
Hvdrogen-bond	geometry	(Å.	°).

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots O2^{i}$	0.98	2.50	3.251 (3)	133
$C15-H15A\cdotsO1^{i}$	0.93	2.55	3.369 (3)	148
$C22-H22A\cdots O1^{ii}$	0.93	2.54	3.472 (3)	175
$C11 - H11A \cdots Cg3^{iii}$	0.93	2.88	3.717 (2)	150
$C24 - H24A \cdots Cg2^{iv}$	0.93	2.78	3.667 (3)	159

Symmetry codes: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (ii) x - 1, y, z; (iii) x + 1, y, z; (iv) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$.

shown in Fig. 3. The dark-red spots on the d_{norm} surface arise as a result of short interatomic contacts, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008; Javatilaka et al., 2005) is shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The overall two-dimensional fingerprint plot (Spackman & McKinnon, 2002), and those delineated into $H \cdot \cdot \cdot H$ (48.8%), $C \cdots H/H \cdots C$ (34.9%) and $O \cdots H/H \cdots O$ (15%) contacts are illustrated in Fig. 5a-d, respectively. The most significant intermolecular contribution is from the H...H contact (48.8%) (Fig. 5b). The other minor contributions to the Hirshfeld surface are by $C \cdots C$ (0.9%), $O \cdots C/C \cdots O$ (0.5%) and $O \cdots O$ (0.1%) contacts. The large number of $H \cdots H$, $C \cdots H/H \cdots C$ and $O \cdots H/H \cdots O$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

4. Database survey

Although a search of the Cambridge Structural Database (CSD, Version 5.41, November 2019; Groom *et al.*, 2016) for 3,5-diphenylcyclohex-2-en-1-one derivatives gave 44 hits, no

The Hirshfeld surface of the title compound plotted over d_{norm} using a standard surface resolution with a fixed colour scale of -0.1582 (red) to 1.4399 a.u. (blue).

Figure 4

The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from -0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

compound having a skeleton of 6-acetyl-3,5-diphenylcyclohex-2-en-1-one was found. As related compounds, nine derivatives of ethyl 2-oxo-4,6-diphenylcyclohex-3-ene carboxylate were reported.

Figure 5

The two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $C \cdots H/H \cdots C$, (d) $O \cdots H/H \cdots O$ interactions. The d_i and d_e values are the closest internal and external distances (Å) from given points on the Hirshfeld surface.

Crystal data	
Chemical formula	$C_{25}H_{20}O_2$
M _r	352.41
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	10.2365 (4), 9.7989 (4), 19.3759 (8)
β (°)	103.333 (2)
$V(Å^3)$	1891.14 (13)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.23 \times 0.20 \times 0.12$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2003)
T_{\min}, T_{\max}	0.660, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	23764, 4102, 2471
R _{int}	0.073
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.059, 0.149, 1.01
No. of reflections	4102
No. of parameters	244
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.19, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2003), SHELXT (Sheldrick, 2015a) and SHELXL2018 (Sheldrick, 2015b).

5. Synthesis and crystallization

Table 2

To a solution of 1,3-diphenyl-2-propen-1-one (1.90 mmol) in benzene (15 ml), 1-phenylbutane-1,3-dione (1.90 mmol) and 0.05 ml of dry piperidine were added in this order, and the mixture was stirred at room temperature for 24 h. After completion of the reaction (as monitored by TLC), the solvent was removed under reduced pressure, and the residue was washed with hot water. Then, the products were recrystallized from ethanol (yield 72%, m.p. 446 K). IR (KBr): 2926, 2966, 3006 and 3062 ν (CH), 1610, 1650 and 1676 ν (C=O) cm⁻¹; ¹H NMR (300.130 MHz, DMSO-d₆): δ 3.12 (*dd*, 2H, CH₂, ²*J*_{H-} H = 16.3 Hz, ³*J*_{H-H} = 8.2 Hz), 3.91 (*t*, 1H, CH, ³*J*_{H-H} = 12.4 Hz), 5.52 (*d*, 1H, CH, ³*J*_{H-H} = 12.4 Hz), 6.56 (*s*, 1H, CH=), 7.1–7.92 (*m*, 15Harom, 3Ar); ¹³C NMR (75.468 MHz, DMSO-d₆): δ 199.4, 197.5, 159.6, 142.7, 138.3, 137.8, 133.7, 130.9, 129.3, 129.1, 128.8, 128.0, 127.2, 126.9, 124.2, 58.2, 43.9, 36.4; MS (ESI): *m*/*z*: 353.15 [*M* + H]⁺.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at calculated positions using a riding model, with C–H = 0.93–0.98 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. Owing to poor agreement between observed and calculated intensities, eighteen outliers ($\overline{2} 2 5$), (3 2 2), ($\overline{1} 2 2$), (5 0 3), (0 1 1), (5 1 3), ($\overline{4} 0 4$), ($\overline{2} 1 7$), ($\overline{5} 2 3$), ($\overline{5} 3 5$), ($\overline{2} 11 2$), (2 4 3), (4 8 7), ($\overline{3} 0 7$), ($\overline{2} 10 5$), (2 5 5), ($\overline{3} 2 15$) and (0 1 2) were omitted in the final cycle of refinement.

References

- Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o2830.
- Asgarova, A. R., Khalilov, A. N., Brito, I., Maharramov, A. M., Shikhaliyev, N. G., Cisterna, J., Cárdenas, A., Gurbanov, A. V., Zubkov, F. I. & Mahmudov, K. T. (2019). *Acta Cryst.* C75, 342– 347.
- Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
- Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). *Nature*, **532**, 90–93.

- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018*a*). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.
- Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.
- Naghiyev, F. N., Gurbanov, A. V., Maharramov, A. M., Mamedov, I. G., Allahverdiyev, M. A. & Mahmudov, K. T. (2016). J. Iran. Chem. Soc. 13, 1–6.
- Pfeiffer, M. W. B. & Phillips, A. J. (2005). J. Am. Chem. Soc. 127, 5334–5335.
- Schultz, A. G. & Wang, A. (1998). J. Am. Chem. Soc. 120, 8259-8260.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). *CrystEngComm*, **10**, 377–388.
- Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Thomas, A. W. (2007). Science of Synthesis, Vol. 31a, pp. 337–401. Stuttgart: Thieme.
- Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). *Crystal Explorer*. University of Western Australia.

supporting information

Acta Cryst. (2020). E76, 720-723 [https://doi.org/10.1107/S2056989020005381]

Crystal structure and Hirshfeld surface analysis of 6-benzoyl-3,5-diphenylcyclohex-2-en-1-one

Farid N. Naghiyev, Mehmet Akkurt, Rizvan K. Askerov, Ibrahim G. Mamedov, Rovnag M. Rzayev, Taras Chyrka and Abel M. Maharramov

Computing details

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015*b*).

6-Benzoyl-3,5-diphenylcyclohex-2-en-1-one

Crystal data

C₂₅H₂₀O₂ $M_r = 352.41$ Monoclinic, $P2_1/n$ a = 10.2365 (4) Å b = 9.7989 (4) Å c = 19.3759 (8) Å $\beta = 103.333$ (2)° V = 1891.14 (13) Å³ Z = 4

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min} = 0.660, \ T_{\max} = 0.746$
23764 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.149$ S = 1.004102 reflections 244 parameters 0 restraints Primary atom site location: difference Fourier map F(000) = 744 $D_x = 1.238 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3243 reflections $\theta = 2.5-25.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, colourless $0.23 \times 0.20 \times 0.12 \text{ mm}$

4102 independent reflections 2471 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -12 \rightarrow 12$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.020P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.84873 (15)	0.4571 (2)	0.84508 (9)	0.0662 (5)	
O2	0.73311 (16)	0.59881 (16)	0.68577 (9)	0.0556 (4)	
C1	0.7327 (2)	0.4250 (2)	0.81963 (11)	0.0432 (5)	
C2	0.68555 (19)	0.3941 (2)	0.74035 (11)	0.0377 (5)	
H2A	0.703396	0.297799	0.732533	0.045*	
C3	0.53461 (19)	0.4203 (2)	0.71377 (10)	0.0380 (5)	
H3A	0.519851	0.518223	0.718969	0.046*	
C4	0.4572 (2)	0.3451 (3)	0.76099 (11)	0.0471 (6)	
H4A	0.362962	0.369151	0.746260	0.056*	
H4B	0.464862	0.247638	0.754221	0.056*	
C5	0.5064 (2)	0.3775 (2)	0.83834 (10)	0.0388 (5)	
C6	0.6339 (2)	0.4151 (2)	0.86315 (11)	0.0442 (5)	
H6A	0.661662	0.436354	0.911083	0.053*	
C7	0.7682 (2)	0.4818 (2)	0.70074 (11)	0.0401 (5)	
C8	0.89014 (19)	0.4261 (2)	0.68142 (11)	0.0403 (5)	
C9	0.9499 (2)	0.5025 (3)	0.63619 (12)	0.0532 (6)	
H9A	0.912888	0.586024	0.619070	0.064*	
C10	1.0629 (2)	0.4558 (3)	0.61664 (13)	0.0612 (7)	
H10A	1.101409	0.507482	0.586302	0.073*	
C11	1.1189 (2)	0.3329 (3)	0.64180 (13)	0.0580 (7)	
H11A	1.194874	0.301126	0.628243	0.070*	
C12	1.0623 (2)	0.2568 (3)	0.68717 (13)	0.0570 (6)	
H12A	1.101121	0.174324	0.704782	0.068*	
C13	0.9480 (2)	0.3026 (2)	0.70664 (12)	0.0486 (6)	
H13A	0.909822	0.250122	0.736835	0.058*	
C14	0.47921 (18)	0.3846 (2)	0.63661 (10)	0.0375 (5)	
C15	0.4852 (2)	0.2530 (3)	0.61136 (12)	0.0515 (6)	
H15A	0.529328	0.185343	0.641574	0.062*	
C16	0.4257 (2)	0.2214 (3)	0.54103 (13)	0.0604 (7)	
H16A	0.429682	0.132362	0.525007	0.073*	
C17	0.3615 (2)	0.3190 (3)	0.49526 (13)	0.0620 (7)	
H17A	0.322732	0.297407	0.448269	0.074*	
C18	0.3552 (3)	0.4496 (3)	0.51981 (13)	0.0625 (7)	
H18A	0.311330	0.516816	0.489171	0.075*	
C19	0.4131 (2)	0.4825 (2)	0.58944 (12)	0.0491 (6)	
H19A	0.407775	0.571668	0.604998	0.059*	
C20	0.4106 (2)	0.3634 (2)	0.88513 (11)	0.0398 (5)	
C21	0.2742 (2)	0.3877 (3)	0.86040 (13)	0.0550 (6)	
H21A	0.241528	0.412364	0.813221	0.066*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

supporting information

C22	0.1862 (2)	0.3760 (3)	0.90421 (15)	0.0667 (8)
H22A	0.095277	0.393434	0.886588	0.080*
C23	0.2324 (3)	0.3389 (3)	0.97356 (15)	0.0662 (7)
H23A	0.173169	0.331066	1.003253	0.079*
C24	0.3663 (3)	0.3132 (3)	0.99904 (14)	0.0625 (7)
H24A	0.397718	0.287297	1.046135	0.075*
C25	0.4553 (2)	0.3253 (3)	0.95566 (12)	0.0516 (6)
H25A	0.545976	0.307812	0.973826	0.062*

Atomic displacement parameters $(Å^2)$)
--	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0359 (9)	0.1016 (15)	0.0586 (10)	-0.0170 (9)	0.0056 (8)	-0.0036 (9)
O2	0.0606 (10)	0.0407 (10)	0.0728 (11)	0.0030 (8)	0.0305 (9)	0.0069 (8)
C1	0.0342 (11)	0.0494 (13)	0.0456 (13)	-0.0024 (10)	0.0084 (9)	0.0009 (10)
C2	0.0310 (10)	0.0410 (12)	0.0426 (12)	-0.0015 (9)	0.0115 (9)	0.0000 (9)
C3	0.0340 (10)	0.0434 (12)	0.0379 (11)	0.0018 (9)	0.0107 (9)	-0.0001 (9)
C4	0.0342 (11)	0.0680 (16)	0.0398 (12)	-0.0073 (10)	0.0101 (9)	0.0004 (11)
C5	0.0367 (11)	0.0434 (13)	0.0376 (12)	0.0024 (9)	0.0112 (9)	0.0001 (9)
C6	0.0398 (12)	0.0545 (14)	0.0378 (12)	0.0003 (10)	0.0074 (9)	-0.0019 (10)
C7	0.0383 (11)	0.0404 (13)	0.0428 (12)	-0.0034 (10)	0.0118 (9)	-0.0003 (9)
C8	0.0354 (11)	0.0432 (12)	0.0434 (12)	-0.0054 (9)	0.0111 (9)	-0.0038 (10)
C9	0.0485 (13)	0.0566 (15)	0.0587 (15)	-0.0081 (11)	0.0211 (11)	0.0045 (12)
C10	0.0459 (14)	0.0793 (19)	0.0643 (17)	-0.0090 (13)	0.0248 (12)	0.0062 (14)
C11	0.0313 (11)	0.082 (2)	0.0644 (16)	-0.0024 (12)	0.0176 (11)	-0.0128 (14)
C12	0.0389 (12)	0.0618 (16)	0.0717 (16)	0.0052 (11)	0.0159 (12)	0.0005 (13)
C13	0.0407 (12)	0.0528 (15)	0.0557 (14)	-0.0018 (10)	0.0183 (10)	0.0054 (11)
C14	0.0298 (10)	0.0491 (13)	0.0365 (11)	-0.0019 (9)	0.0136 (8)	-0.0015 (9)
C15	0.0490 (13)	0.0568 (15)	0.0501 (14)	0.0037 (11)	0.0141 (11)	-0.0028 (12)
C16	0.0615 (16)	0.0654 (17)	0.0603 (16)	-0.0112 (13)	0.0261 (13)	-0.0215 (13)
C17	0.0562 (15)	0.092 (2)	0.0387 (13)	-0.0195 (15)	0.0123 (11)	-0.0051 (14)
C18	0.0600 (16)	0.0763 (19)	0.0468 (14)	-0.0068 (13)	0.0035 (12)	0.0123 (13)
C19	0.0496 (13)	0.0522 (14)	0.0455 (13)	-0.0026 (11)	0.0110 (10)	0.0046 (11)
C20	0.0369 (11)	0.0449 (12)	0.0393 (12)	0.0016 (9)	0.0122 (9)	-0.0039 (9)
C21	0.0421 (12)	0.0775 (18)	0.0470 (14)	0.0041 (12)	0.0137 (11)	-0.0002 (12)
C22	0.0405 (13)	0.099 (2)	0.0657 (18)	0.0000 (13)	0.0214 (12)	-0.0073 (15)
C23	0.0624 (16)	0.083 (2)	0.0653 (18)	0.0023 (14)	0.0404 (14)	-0.0014 (14)
C24	0.0645 (16)	0.0813 (19)	0.0476 (14)	0.0096 (14)	0.0254 (12)	0.0091 (13)
C25	0.0429 (12)	0.0707 (17)	0.0434 (13)	0.0104 (11)	0.0146 (10)	0.0034 (11)

Geometric parameters (Å, °)

01—C1	1.218 (2)	C12—C13	1.384 (3)	
O2—C7	1.217 (2)	C12—H12A	0.9300	
C1—C6	1.461 (3)	C13—H13A	0.9300	
C1—C2	1.530 (3)	C14—C15	1.385 (3)	
С2—С7	1.530 (3)	C14—C19	1.389 (3)	
С2—С3	1.533 (3)	C15—C16	1.393 (3)	

C2—H2A	0.9800	C15—H15A	0.9300
C3—C14	1.513 (3)	C16—C17	1.366 (4)
C3—C4	1.530 (3)	C16—H16A	0.9300
С3—НЗА	0.9800	C17—C18	1.371 (4)
C4—C5	1.501 (3)	C17—H17A	0.9300
C4—H4A	0.9700	C18—C19	1.381 (3)
C4—H4B	0.9700	C18—H18A	0.9300
C5—C6	1.335 (3)	C19—H19A	0.9300
C5—C20	1.487 (3)	C20—C25	1.388 (3)
С6—Н6А	0.9300	C20—C21	1.388 (3)
C7—C8	1.487 (3)	C21—C22	1.378 (3)
C8—C13	1.387 (3)	C21—H21A	0.9300
C8—C9	1.396 (3)	C22—C23	1.367 (4)
C9—C10	1.376 (3)	C22—H22A	0.9300
С9—Н9А	0.9300	C23—C24	1.370 (3)
C10—C11	1.374 (4)	C23—H23A	0.9300
C10—H10A	0.9300	C24—C25	1.379 (3)
C11—C12	1.378 (3)	C24—H24A	0.9300
C11—H11A	0.9300	C25—H25A	0.9300
01—C1—C6	121.6 (2)	C11—C12—C13	120.3 (2)
01-C1-C2	120.64 (19)	C11—C12—H12A	119.8
C6—C1—C2	117.80 (17)	C13—C12—H12A	119.8
C1—C2—C7	108.05 (16)	C12—C13—C8	120.4 (2)
C1—C2—C3	111.34 (16)	C12—C13—H13A	119.8
C7—C2—C3	111.64 (17)	C8—C13—H13A	119.8
C1—C2—H2A	108.6	C15-C14-C19	117.7 (2)
C7—C2—H2A	108.6	C15-C14-C3	121.83 (19)
C3—C2—H2A	108.6	C19—C14—C3	120.35 (19)
C14—C3—C4	110.59 (16)	C14—C15—C16	120.5 (2)
C14-C3-C2	114.35 (16)	C14—C15—H15A	119.7
C4—C3—C2	109.83 (16)	C16—C15—H15A	119.7
C14—C3—H3A	107.2	C17—C16—C15	121.0 (2)
C4—C3—H3A	107.2	C17-C16-H16A	119 5
C^2 — C^3 — H^3A	107.2	C_{15} C_{16} H_{16A}	119.5
$C_{5}-C_{4}-C_{3}$	113 23 (17)	C16-C17-C18	118.8 (2)
C5—C4—H4A	108.9	C_{16} C_{17} H_{17A}	120.6
C3-C4-H4A	108.9	C_{18} C_{17} H_{17A}	120.6
C5—C4—H4B	108.9	C17-C18-C19	120.8(2)
C3-C4-H4B	108.9	C_{17} C_{18} H_{18A}	119.6
H4A—C4—H4B	107.7	C19-C18-H18A	119.6
C6-C5-C20	122 24 (19)	C18-C19-C14	121.1(2)
C6-C5-C4	119 54 (18)	C18-C19-H19A	119 5
$C_{20} - C_{5} - C_{4}$	118.20 (17)	C14—C19—H19A	119.5
C5—C6—C1	124.03 (19)	C_{25} C_{20} C_{21}	117.5 (2)
C5—C6—H6A	118.0	C_{25} C_{20} C_{21} C_{25} C_{20} C_{25}	120.77 (18)
C1—C6—H6A	118.0	$C_{21} - C_{20} - C_{5}$	121.71 (19)
02	120.30 (19)	C22—C21—C20	121.5 (2)
, _,			

O_{2} C_{7} C_{2}	110 7((10)	C22 C21 U21A	110.2
02 - 07 - 02	118.70 (18)	C22—C21—H21A	119.3
(8-(-))	120.94 (19)	C20—C21—H21A	119.3
	118.4 (2)	C23—C22—C21	120.0 (2)
C13—C8—C7	123.14 (19)	C23—C22—H22A	120.0
C9—C8—C7	118.4 (2)	C21—C22—H22A	120.0
C10—C9—C8	120.8 (2)	C22—C23—C24	119.6 (2)
С10—С9—Н9А	119.6	С22—С23—Н23А	120.2
С8—С9—Н9А	119.6	C24—C23—H23A	120.2
C11—C10—C9	120.2 (2)	C23—C24—C25	120.7 (2)
C11—C10—H10A	119.9	C23—C24—H24A	119.6
C9—C10—H10A	119.9	C25—C24—H24A	119.6
C10-C11-C12	119.9 (2)	C24—C25—C20	120.6 (2)
C10-C11-H11A	120.1	С24—С25—Н25А	119.7
C12—C11—H11A	120.1	C20—C25—H25A	119.7
Q1—C1—C2—C7	-31.1(3)	C10-C11-C12-C13	1.0 (4)
C6-C1-C2-C7	148.64 (19)	C11—C12—C13—C8	-0.8(4)
01-C1-C2-C3	-154.1(2)	C9-C8-C13-C12	0.0 (3)
C6-C1-C2-C3	25.7 (3)	C7—C8—C13—C12	-179.4(2)
C1-C2-C3-C14	-176.81(17)	C4-C3-C14-C15	-63.8(2)
C7—C2—C3—C14	62.3 (2)	C_{2} C_{3} C_{14} C_{15}	60.8 (3)
C1-C2-C3-C4	-51.8(2)	C4-C3-C14-C19	112.4(2)
C7-C2-C3-C4	-172.67(17)	C_{2} C_{3} C_{14} C_{19}	-1230(2)
$C_{14} = C_{23} = C_{4} = C_{5}$	-179.34(18)	C19-C14-C15-C16	-0.4(3)
$C_2 C_3 C_4 C_5$	53 5 (2)	$C_3 C_1 A C_{15} C_{16}$	175.84(10)
$C_2 - C_3 - C_4 - C_5$	-27.3(2)	$C_{14} = C_{15} = C_{16} = C_{17}$	173.04(19)
$C_{3} = C_{4} = C_{5} = C_{0}$	27.3(3)	C15 C16 C17 C18	0.7(3)
$C_{3} - C_{4} - C_{5} - C_{20}$	133.97(19) 177.5(2)	C16 C17 C18 C10	-0.0(4)
$C_{20} = C_{3} = C_{0} = C_{1}$	177.3(2)	C17 - C18 - C19	0.3(4)
C4 - C5 - C6 - C1	-1.2(3)	C17 - C18 - C19 - C14	-0.1(4)
01 - 01 - 06 - 05	-1/8.4(2)	C15 - C14 - C19 - C18	0.1 (3)
C2-C1-C6-C5	1.8 (3)		-1/6.2(2)
C1—C2—C7—O2	-83.9 (2)	C6—C5—C20—C25	-30.6 (3)
C3—C2—C7—O2	38.9 (3)	C4—C5—C20—C25	148.1 (2)
C1—C2—C7—C8	95.4 (2)	C6—C5—C20—C21	149.3 (2)
C3—C2—C7—C8	-141.80 (19)	C4—C5—C20—C21	-32.0 (3)
O2—C7—C8—C13	169.2 (2)	C25—C20—C21—C22	0.7 (4)
C2—C7—C8—C13	-10.2 (3)	C5—C20—C21—C22	-179.2 (2)
02—C7—C8—C9	-10.3 (3)	C20—C21—C22—C23	-0.5 (4)
C2—C7—C8—C9	170.39 (19)	C21—C22—C23—C24	-0.1 (4)
C13—C8—C9—C10	0.5 (3)	C22—C23—C24—C25	0.4 (4)
C7—C8—C9—C10	180.0 (2)	C23—C24—C25—C20	-0.2 (4)
C8—C9—C10—C11	-0.3 (4)	C21—C20—C25—C24	-0.4 (4)
C9—C10—C11—C12	-0.5 (4)	C5-C20-C25-C24	179.6 (2)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C14–C19 phenyl rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2A····O2 ⁱ	0.98	2.50	3.251 (3)	133
C15—H15A…O1 ⁱ	0.93	2.55	3.369 (3)	148
C22—H22A···O1 ⁱⁱ	0.93	2.54	3.472 (3)	175
C11—H11 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱⁱ	0.93	2.88	3.717 (2)	150
C24—H24 A ···· $Cg2^{iv}$	0.93	2.78	3.667 (3)	159

Symmetry codes: (i) -*x*+3/2, *y*-1/2, -*z*+3/2; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*-3/2, -*y*-1/2, *z*-1/2.