

Received 3 March 2020 Accepted 3 April 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; organic crystal; piperine; hydrogen bond.

CCDC references: 1994582; 1994581

Supporting information: this article has supporting information at journals.iucr.org/e

Syntheses and crystal structures of two piperine derivatives

Toshinari Ezawa,^a Yutaka Inoue,^a* Isamu Murata,^a Mitsuaki Suzuki,^b Koichi Takao,^a Yoshiaki Sugita^a and Ikuo Kanamoto^a

^aFaculty of Pharmacy and Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan, and ^bFaculty of Science, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 3500295, Japan. *Correspondence e-mail: yinoue@josai.ac.jp

The title compounds, 5-(2*H*-1,3-benzodioxol-5-yl)-*N*-cyclohexylpenta-2,4-dienamide, $C_{18}H_{21}NO_3$ (I), and 5-(2*H*-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one $C_{16}H_{17}NO_3$ (II), are derivatives of piperine, which is known as a pungent component of pepper. Their geometrical parameters are similar to those of the three polymorphs of piperine, which indicate conjugation of electrons over the length of the molecules. The extended structure of (I) features $N-H \cdots O$ amide hydrogen bonds, which generate C(4) [010] chains. The crystal of (II) features aromatic π - π stacking, as for two of three known piperine polymorphs.

1. Chemical context

Piperine [(2E,4E)-1-[5-(1,3-benzodioxol-5vl)-1-oxo-2,4-pentadienyl]piperidine, C₁₇H₁₉NO₃, is the major pungent ingredient of Piperaceae pepper (Piper nigrum). Piperine is an amide having a methylenedioxyphenyl grouping as a characteristic of its chemical structure (Fig. 1). Interestingly, when the amide group is in a near planar conformation, the conjugated state of the pentadiene chain of piperine has the property that electrons are easily donated and the stretching vibration of the amide carbonyl group is affected (Pfund et al., 2015). As part of our studies in this area, we have already reported a complex using the poorly water-soluble piperine (log P = 2.25) and the cyclic polysaccharide cyclodextrin (Szejtli, 1998; Ezawa et al., 2016). In addition, piperine has been evaluated for its inclusion mechanism and dissolution properties using various cyclodextrins (Ezawa et al., 2018, 2019). The synthesis of piperine derivatives was necessary to understand the inclusion mechanism of piperine and cyclodextrin and the detailed molecular behaviour of piperine.

Figure 1 The chemical structure of piperine.

Therefore, the aim of this study was to synthesize the title compounds (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-*N*-cyclo-hexylpenta-2,4-dienamide, C₁₈H₂₁NO₃, (I), and (2E,4E)-5-(2H-1,3-benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one, C₁₆H₁₇NO₃, (II), from piperine and to determine their X-ray crystal structures. The log *P* of (I) is 3.36 and that of (II) is 2.36. Assessing the structural properties of the title compounds (crystal structure, geometry, intermolecular interactions, *etc.*) will help to evaluate the inclusion behaviour of piperine with cyclodextrin.

2. Structural commentary

Compound (I) (Fig. 2) crystallizes in the monoclinic space group $P2_1/c$ with four molecules per unit cell. The C1–C6 cyclohexyl ring adopts a chair conformation with the exocyclic C5–N1 bond in an equatorial orientation. The C7–C12/O2/ O3 fused-ring system is almost planar (r.m.s. deviation = 0.020 Å) and subtends a dihedral angle of 21.57 (4)° with the cyclohexyl ring. The bond distances and angles (amide, pentadiene and methylenedioxyphenyl moieties) of (I) are not significantly different from the equivalent data for the three polymorphs of piperine (Pfund *et al.*, 2015) (Table 1).

Table 1				
Key geometrical parameters (Å)	for the title	compounds and	d piperine	polymorphs

Figure 2

Displacement ellipsoid drawing at a 50% probability level of the asymmetric unit of (I).

Compound (II) (Fig. 3), also known as piperilyn, crystallizes in the orthorhombic space group *Pbca* with eight molecules per unit cell. The C13–C16/N1 ring is well described as being twisted with C14 and C15 deviating from C13/N1/C16 by 0.205 (2) and -0.382 (2) Å, respectively. The C9/O2/C10/O3/ C11 ring has a clear tendency towards an envelope conformation [deviation of C10 from the other four atoms = -0.216 (2) Å]. The dihedral angle between the C13–C16/N1 and C6–C12/O2/O3 rings (all atoms) is 12.29 (10)°. As with (I), the key bond-distance data for (II) are comparable to those of piperine (Table 1).

Thus, we may conclude that the title compounds show intramolecular resonance from the amide group to the ether O

	(I)	(II)	PIPINE10	PIPINE12	PIPINE13
Amide	C18-N1 (1.344)	C1-N1 (1.350)	C1-N1 (1.331)	C1-N1 (1.363)	C1-N1 (1.353)
	C18-O1 (1.242)	C1 - O1(1.243)	C1 - O1 (1.218)	C1 - O1 (1.235)	C1 - O1(1.482)
	C14 - C15(1.346)	C4-C5(1.345)	C4 - C5(1.312)	C4 - C5(1.330)	C4-C5 (1.347)
Pentadiene	C15-C16 (1.444)	C3-C4(1.441)	C3 - C4(1.437)	C3 - C4(1.440)	C3-C4 (1.442)
	C16 - C17(1.342)	C2-C3(1.341)	C2-C3(1.311)	C2-C3(1.332)	C2-C3(1.341)
	C17-C18 (1.479)	C1 - C2 (1.480)	C1 - C2 (1.473)	C1 - C2(1.477)	C1 - C2(1.482)
	C8-C9 (1.390)	C6 - C7(1.397)	C6 - C7 (1.387)	C6 - C7 (1.399)	C6 - C7(1.403)
	C8 - C13(1.371)	C6-C12(1.412)	C6 - C12 (1.396)	C6 - C12(1.414)	C6 - C12(1.412)
	C9 - C10(1.374)	C7 - C8(1.403)	C7 - C8 (1.393)	C7-C8 (1.395)	C7-C8 (1.393)
Methylenedioxyphenyl	C10 - C11(1.402)	C8-C9 (1.369)	C8 - C9(1.343)	C8 - C9 (1.360)	C8-C9 (1.371)
	C11-C12 (1.399)	C9-C11 (1.385)	C9-C11 (1.357)	C9-C11 (1.377)	C9-C11 (1.381)
	C12-C13 (1.412)	C11-C12 (1.364)	C11-C12 (1.364)	C11 - C12(1.370)	C11-C12 (1.367)
	C8-O2 (1.371)	C9-O2 (1.378)	C9-O2 (1.373)	c9-O2 (1.383)	C9-O2 (1.378)
	C9 - O3(1.370)	C11-O3 (1.376)	C11-O3 (1.362)	C11-O3 (1.383)	C11–O3 (1.383)
π -stacking close contacts		C9···C9 (3.268)		C8···C8 (3.110)	$C9 \cdot \cdot \cdot C12 (3.327)$
-		C9···C12 (3.322)		C8···C8 (3.303)	
		C11···C12 (3.287)		. ,	

research communications

A view along the *c*-axis direction of the crystal packing of (I). The $N-H \cdots O$ hydrogen bonds are drawn as dashed lines.

Figure 5

The unit-cell packing for (I) viewed down [100] with hydrogen bonds drawn as dashed lines.

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O1^i$	0.874 (16)	2.086 (16)	2.9547 (12)	172.8 (14)

Symmetry code: (i) x, y + 1, z.

atoms of the methylenedioxyphenyl moiety, similar to piperine.

3. Supramolecular features

Piperine crystallizes in three polymorphs: form I [CCDC (Groom *et al.*, 2016) refcode: PIPINE10] and form II (PIPINE12) in space group $P2_1/n$ and form III (PIPINE13) in space group C2/c (Table 1) (Pfund *et al.*, 2015). The packing for forms II and III features aromatic π - π stacking interactions, while that of form I does not.

The crystal structure of (I) does not feature π - π stacking interactions, which is similar to piperine form I. Compound (I) possesses an N-H grouping, which forms a classical N1-H···O1 hydrogen bond (Table 2) between the amide-bond sites, generating [010] C(4) chains (Fig. 4) with adjacent molecules related by simple translation. The unit-cell packing for (I) is illustrated in Fig. 5.

The structure of (II) does feature π - π stacking with the closest intermolecular contacts being C9...C9 = 3.268 (3), C9...C12 = 3.322 (3) and C11...C12 = 3.287 (3) Å (Fig. 6). The overall packing for (II) can be described as undulating sheets propagating in the (010) plane (Fig. 7).

4. Synthesis and crystallization

Piperine was purchased from Fujifilm Wako Pure Chemical Co., Ltd. The synthesis of piperine derivatives was performed using a previously reported procedure (Takao *et al.*, 2015). After dissolving piperine in ethanol, hydrolysis was performed by stirring for 20 h in the presence of KOH. After evaporating the solvent under vacuum, the resulting reaction mixture was suspended in water and acidified with 4 M HCl to pH < 1. The resultant pale-brown precipitate was collected by filtration, washed with cold water and recrystallized from methanol

Figure 6 Fragment of the crystal of (II) showing close $C \cdots C$ contacts due to $\pi - \pi$ stacking.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$C_{18}H_{21}NO_2$	C16H17NO2
М.	299.36	271.30
Crystal system, space group	Monoclinic, $P2_1/c$	Orthorhombic, Pbca
Temperature (K)	90	90
a, b, c (Å)	11.4982 (7), 5.0086 (3), 26.7240 (16)	11.8747 (10), 7.2485 (6), 30.392 (2)
α, β, γ (°)	90, 97.683 (2), 90	90, 90, 90
$V(\dot{A}^3)$	1525.22 (16)	2616.0 (4)
Z	4	8
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.09	0.10
Crystal size (mm)	$0.58 \times 0.07 \times 0.07$	$0.28 \times 0.06 \times 0.06$
Data collection		
Diffractometer	Bruker D8 goniometer	Bruker D8 goniometer
Absorption correction	Multi-scan (SADABS; Bruker, 2018)	Multi-scan (SADABS; Bruker, 2018)
T_{\min}, T_{\max}	0.580, 0.747	0.666, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	27741, 4862, 4204	41504, 3506, 2193
R _{int}	0.066	0.128
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.725	0.685
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.121, 1.07	0.050, 0.143, 1.05
No. of reflections	4862	3506
No. of parameters	202	182
H-atom treatment	H atoms treated by a mixture of independent	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.42, -0.26	0.28, -0.26

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011).

solution to give piperic acid. The piperic acid (1.0 mmol) was dissolved in CH_2Cl_2 (5 ml) and oxalyl chloride (10 mmol) was added and the mixture was stirred at room temperature for 3 h. The solvent and excess oxalyl chloride were then evaporated under reduced pressure.

To prepare (I), the crude acid chloride generated was dissolved in CH₂Cl₂ (2 ml) and cyclohexylamine (1.2 mmol) and Et₃N (8 mmol) were added, and the mixture was stirred at 273 K for 5 h. Ice-cold water was added to the mixture, followed by extraction with chloroform (5 ml). The organic layer was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (eluent hexane:etyl acetate 1:1 ν/ν) to give (I) in the form of a yellow powder. Light-yellow needles of (I) were recrystallized from ethyl acetate solution.

Compound (II) was prepared by the same procedure with pyrrolidine (1.2 mmol) replacing the cyclohexylamine to give (II) in the form of a white powder. Colourless needles of (II) were recrystallized from ethyl acetate solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms for carbon atom were included in their calculated positions and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydrogen atom attached to N1 in (I) was located in a difference-Fourier map and its position freely refined with $U_{iso}(H) = 1.2U_{eq}(N)$.

The unit-cell packing for (II) viewed down [100].

Funding information

This research was supported by Josai University.

References

- Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2018). AAPS PharmSciTech, **19**, 923–933.
- Ezawa, T., Inoue, Y., Murata, I., Takao, K., Sugita, Y. & Kanamoto, I. (2019). *Int. J. Med. Chem.* **2019**, 1–14.

- Ezawa, T., Inoue, Y., Tunvichien, S., Suzuki, R. & Kanamoto, I. (2016). Int. J. Med. Chem. 2016, 1–9.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Pfund, L. Y., Chamberlin, B. L. & Matzger, A. J. (2015). Cryst. Growth Des. 15, 2047–2051.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Szejtli, J. (1998). Chem. Rev. 98, 1743-1754.
- Takao, K., Miyashiro, T. & Sugita, Y. (2015). Chem. Pharm. Bull. 63, 326–333.

Acta Cryst. (2020). E76, 646-650 [https://doi.org/10.1107/S2056989020004648]

Syntheses and crystal structures of two piperine derivatives

Toshinari Ezawa, Yutaka Inoue, Isamu Murata, Mitsuaki Suzuki, Koichi Takao, Yoshiaki Sugita and Ikuo Kanamoto

Computing details

For both structures, data collection: *APEX3* (Bruker, 2018); cell refinement: *SAINT* (Bruker, 2018); data reduction: *SAINT* (Bruker, 2018); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: *ShelXle* (Hübschle *et al.*, 2011); software used to prepare material for publication: *Generate Report* (Bruker, 2018).

5-(2H-1,3-Benzodioxol-5-yl)-N-cyclohexylpenta-2,4-dienamide (I)

Crystal data

C₁₈H₂₁NO₃ $M_r = 299.36$ Monoclinic, $P_{1/c}$ a = 11.4982 (7) Å b = 5.0086 (3) Å c = 26.7240 (16) Å $\beta = 97.683$ (2)° V = 1525.22 (16) Å³ Z = 4

Data collection

Bruker D8 goniometer diffractometer Radiation source: microfocus X-ray tube Multilayered conforacal mirror monochromator Detector resolution: 7.391 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2018) $T_{\min} = 0.580, T_{\max} = 0.747$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.121$ S = 1.074862 reflections 202 parameters 0 restraints Primary atom site location: dual F(000) = 640 $D_x = 1.304 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9948 reflections $\theta = 2.5-33.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 90 KNeedle, light-yellow $0.58 \times 0.07 \times 0.07 \text{ mm}$

27741 measured reflections 4862 independent reflections 4204 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 31.0^\circ, \ \theta_{min} = 2.2^\circ$ $h = -16 \rightarrow 16$ $k = -7 \rightarrow 7$ $l = -38 \rightarrow 38$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0455P)^2 + 0.7464P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.42$ e Å⁻³ $\Delta\rho_{min} = -0.26$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.96864 (7)	0.23821 (16)	0.65434 (3)	0.01577 (17)
O2	0.26072 (7)	0.95788 (18)	0.47532 (3)	0.01982 (18)
O3	0.09239 (7)	0.7586 (2)	0.49784 (4)	0.0246 (2)
N1	1.02983 (8)	0.66732 (19)	0.66764 (4)	0.01464 (18)
H1	1.0072 (13)	0.834 (3)	0.6656 (6)	0.018*
C1	1.35763 (10)	0.7868 (2)	0.69502 (4)	0.0179 (2)
H1A	1.387593	0.633931	0.677037	0.021*
H1AB	1.404140	0.946479	0.688562	0.021*
C2	1.37316 (10)	0.7289 (2)	0.75164 (4)	0.0177 (2)
H2A	1.456652	0.689410	0.763536	0.021*
H2AB	1.350298	0.887869	0.770054	0.021*
C3	1.29754 (11)	0.4914 (2)	0.76259 (4)	0.0184 (2)
H3A	1.306633	0.458942	0.799445	0.022*
H3AB	1.324548	0.329830	0.746168	0.022*
C4	1.16802 (10)	0.5412 (2)	0.74321 (4)	0.0174 (2)
H4A	1.121475	0.381401	0.749567	0.021*
H4AB	1.139004	0.693282	0.761708	0.021*
C5	1.15165 (9)	0.6024 (2)	0.68667 (4)	0.01204 (19)
Н5	1.174757	0.440743	0.668389	0.014*
C6	1.22876 (10)	0.8346 (2)	0.67461 (4)	0.0156 (2)
H6A	1.201602	1.000303	0.689604	0.019*
H6AB	1.220984	0.859459	0.637563	0.019*
C7	0.13448 (10)	0.9561 (2)	0.46564 (4)	0.0178 (2)
H00F	0.103160	1.134167	0.472821	0.021*
H00G	0.108313	0.912274	0.429779	0.021*
C8	0.29070 (10)	0.7663 (2)	0.51139 (4)	0.0146 (2)
С9	0.19016 (9)	0.6451 (2)	0.52444 (4)	0.0157 (2)
C10	0.19552 (10)	0.4395 (2)	0.55871 (4)	0.0172 (2)
H10	0.126694	0.356487	0.567425	0.021*
C11	0.30804 (10)	0.3586 (2)	0.58014 (4)	0.0154 (2)
H11	0.315407	0.213891	0.603318	0.018*
C12	0.40980 (9)	0.4841 (2)	0.56850 (4)	0.0135 (2)
C13	0.40115 (9)	0.6936 (2)	0.53284 (4)	0.0142 (2)
H13	0.469038	0.780458	0.524074	0.017*
C14	0.52399 (9)	0.3949 (2)	0.59388 (4)	0.0151 (2)
H14	0.528504	0.219194	0.607404	0.018*
C15	0.62312 (9)	0.5413 (2)	0.59963 (4)	0.0153 (2)
H15	0.618873	0.720765	0.588024	0.018*
C16	0.73553 (9)	0.4407 (2)	0.62246 (4)	0.0144 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16	0.741526	0.256496	0.630909	0.017*	
C17	0.83199 (9)	0.5927 (2)	0.63240 (4)	0.0147 (2)	
H17	0.825437	0.779183	0.626212	0.018*	
C18	0.94810 (9)	0.4819 (2)	0.65259 (4)	0.01252 (19)	

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0151 (4)	0.0087 (3)	0.0230 (4)	0.0010 (3)	0.0008 (3)	0.0012 (3)
O2	0.0130 (4)	0.0226 (4)	0.0237 (4)	0.0022 (3)	0.0019 (3)	0.0074 (3)
O3	0.0116 (4)	0.0333 (5)	0.0284 (5)	0.0015 (4)	0.0014 (3)	0.0109 (4)
N1	0.0124 (4)	0.0082 (4)	0.0228 (5)	0.0014 (3)	0.0006 (3)	0.0001 (3)
C1	0.0146 (5)	0.0186 (5)	0.0199 (5)	-0.0044 (4)	0.0007 (4)	0.0004 (4)
C2	0.0181 (5)	0.0134 (5)	0.0201 (5)	0.0006 (4)	-0.0034 (4)	-0.0003 (4)
C3	0.0222 (5)	0.0137 (5)	0.0181 (5)	0.0006 (4)	-0.0016 (4)	0.0024 (4)
C4	0.0191 (5)	0.0176 (5)	0.0160 (5)	-0.0002 (4)	0.0037 (4)	0.0016 (4)
C5	0.0112 (4)	0.0089 (4)	0.0158 (5)	0.0010 (3)	0.0012 (3)	0.0004 (3)
C6	0.0160 (5)	0.0119 (5)	0.0181 (5)	-0.0033 (4)	-0.0007 (4)	0.0031 (4)
C7	0.0140 (5)	0.0196 (5)	0.0195 (5)	0.0029 (4)	0.0010 (4)	0.0003 (4)
C8	0.0149 (5)	0.0148 (5)	0.0144 (5)	0.0007 (4)	0.0035 (4)	-0.0001 (4)
C9	0.0106 (4)	0.0198 (5)	0.0167 (5)	0.0007 (4)	0.0020 (4)	-0.0022 (4)
C10	0.0128 (5)	0.0208 (5)	0.0183 (5)	-0.0038 (4)	0.0035 (4)	-0.0010 (4)
C11	0.0148 (5)	0.0160 (5)	0.0156 (5)	-0.0028 (4)	0.0031 (4)	0.0003 (4)
C12	0.0121 (4)	0.0134 (5)	0.0153 (5)	-0.0005 (4)	0.0030 (3)	-0.0015 (4)
C13	0.0117 (4)	0.0145 (5)	0.0169 (5)	-0.0008(4)	0.0037 (4)	0.0006 (4)
C14	0.0137 (5)	0.0148 (5)	0.0169 (5)	0.0016 (4)	0.0030 (4)	0.0016 (4)
C15	0.0138 (5)	0.0138 (5)	0.0183 (5)	0.0025 (4)	0.0027 (4)	0.0006 (4)
C16	0.0144 (5)	0.0129 (5)	0.0162 (5)	0.0023 (4)	0.0029 (4)	0.0011 (4)
C17	0.0138 (5)	0.0110 (4)	0.0194 (5)	0.0030 (4)	0.0023 (4)	0.0020 (4)
C18	0.0127 (4)	0.0108 (4)	0.0143 (5)	0.0006 (4)	0.0027 (3)	0.0010 (3)

Geometric parameters (Å, °)

01—C18	1.2429 (13)	С6—Н6А	0.9900
O2—C8	1.3710 (14)	C6—H6AB	0.9900
O2—C7	1.4400 (14)	C7—H00F	0.9900
О3—С9	1.3705 (14)	C7—H00G	0.9900
O3—C7	1.4372 (15)	C8—C13	1.3710 (15)
N1—C18	1.3440 (14)	C8—C9	1.3909 (15)
N1—C5	1.4614 (13)	C9—C10	1.3741 (16)
N1—H1	0.874 (16)	C10—C11	1.4028 (15)
C1—C2	1.5275 (16)	C10—H10	0.9500
C1—C6	1.5279 (16)	C11—C12	1.3991 (15)
C1—H1A	0.9900	C11—H11	0.9500
C1—H1AB	0.9900	C12—C13	1.4120 (15)
C2—C3	1.5246 (17)	C12—C14	1.4648 (15)
C2—H2A	0.9900	C13—H13	0.9500
C2—H2AB	0.9900	C14—C15	1.3468 (15)

$C_3 C_4$	1 5305 (16)	C14 H14	0.9500
C_{3} H_{2} Λ	0.0000	C_{14}	1.4442(15)
$C_3 = H_3 \wedge B$	0.9900	C15_H15	0.9500
C4 C5	1.5284 (15)	C16 C17	1.3423(15)
$C_4 = C_5$	0.0000	C16_U16	1.3423(13)
	0.9900	C10—H10	0.9300
C4—H4AB	0.9900	C17 - C18	1.4/93 (15)
C5—C6	1.5228 (15)	C1/—H1/	0.9500
С5—Н5	1.0000		
C ² C ² C ⁷	105.04 (0)		107.0
$C_8 = 0_2 = C_7$	105.94 (9)	HOA—CO—HOAB	107.9
(9-03-07)	106.11 (9)	03 - 02	107.98 (9)
C18 - N1 - C5	123.36 (9)	$O_3 - C_7 - HOOF$	110.1
CI8—NI—HI	116.8 (10)	02—C7—H00F	110.1
C5—NI—HI	119.9 (10)	03—C/—H00G	110.1
C2—C1—C6	111.27 (9)	O2—C7—H00G	110.1
C2—C1—H1A	109.4	H00F—C7—H00G	108.4
C6—C1—H1A	109.4	C13—C8—O2	127.72 (10)
C2—C1—H1AB	109.4	C13—C8—C9	122.25 (10)
C6—C1—H1AB	109.4	O2—C8—C9	110.03 (10)
H1A—C1—H1AB	108.0	O3—C9—C10	128.10 (10)
C3—C2—C1	110.13 (9)	O3—C9—C8	109.91 (10)
С3—С2—Н2А	109.6	С10—С9—С8	121.98 (10)
C1—C2—H2A	109.6	C9—C10—C11	116.43 (10)
С3—С2—Н2АВ	109.6	С9—С10—Н10	121.8
C1—C2—H2AB	109.6	C11—C10—H10	121.8
H2A—C2—H2AB	108.1	C12—C11—C10	122.19 (11)
C2—C3—C4	111.23 (9)	C12—C11—H11	118.9
С2—С3—НЗА	109.4	C10-C11-H11	118.9
С4—С3—НЗА	109.4	C11—C12—C13	119.88 (10)
С2—С3—НЗАВ	109.4	C11—C12—C14	118.98 (10)
C4—C3—H3AB	109.4	C13—C12—C14	121.13 (10)
H3A-C3-H3AB	108.0	C8-C13-C12	117 22 (10)
$C_5 - C_4 - C_3$	110.66 (9)	C8-C13-H13	121.4
C_{5} C_{4} H_{4A}	109.5	C12_C13_H13	121.1
$C_3 - C_4 - H_4 A$	109.5	$C_{12} = C_{13} = M_{13}$	121.1 125.40(10)
C_{5} C_{4} H_{4AB}	109.5	C_{15} C_{14} C_{12} C_{15} C_{14} H_{14}	117.3
$C_3 = C_4 = H_{AAB}$	109.5	C_{12} C_{14} H_{14}	117.3
	109.5	$C_{12} = C_{14} = I_{114}$	117.5
$M_{A} = C_{A} = M_{A} D$	108.34 (0)	$C_{14} = C_{15} = C_{16}$	123.03 (11)
N1 = C5 = C0	100.34(9)	$C_{14} = C_{15} = H_{15}$	110.2
N1 - C3 - C4	111.98 (9)		110.2
$C_{0} - C_{3} - C_{4}$	111.37 (9)	C17 - C16 - C15	123.70 (10)
	108.5	$U_1/-U_10-H_10$	118.1
	108.3	C15-C16-H16	118.1
U4—U5—H5	108.3		122.76 (10)
C5—C6—C1	111.66 (9)	C16—C17—H17	118.6
С5—С6—Н6А	109.3	C18—C17—H17	118.6
C1—C6—H6A	109.3	O1—C18—N1	123.06 (10)
C5—C6—H6AB	109.3	O1—C18—C17	122.66 (10)

С1—С6—Н6АВ	109.3	N1—C18—C17 114.26		4.26 (9)	
Hydrogen-bond geometry (Å, °)	1				
D—H···A		D—H	H···A	D··· A	D—H···A
N1—H1···O1 ⁱ		0.874 (16)	2.086 (16)	2.9547 (12)	172.8 (14)

Symmetry code: (i) x, y+1, z.

5-(2H-1,3-Benzodioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (II)

C ₁₆ H ₁₇ NO ₃ $M_r = 271.30$ Orthorhombic, <i>Pbca</i> a = 11.8747 (10) Å b = 7.2485 (6) Å c = 30.392 (2) Å $V = 2616.0 (4) \text{ Å}^3$ Z = 8 F(000) = 1152	$D_{\rm x} = 1.378 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3874 reflections $\theta = 2.7-25.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 90 K Needle, colorless $0.28 \times 0.06 \times 0.06 \text{ mm}$
Data collection	41504 management reflections
bluker Ds gomonieter diffractometer Radiation source: microfocus X-ray tube Multilayered conforacal mirror monochromator Detector resolution: 7.391 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (SADABS; Bruker, 2018) $T_{min} = 0.666, T_{max} = 0.746$	3506 independent reflections 2193 reflections with $I > 2\sigma(I)$ $R_{int} = 0.128$ $\theta_{max} = 29.1^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -16 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -41 \rightarrow 41$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.143$ S = 1.05 3506 reflections 182 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 1.9223P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0038 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.90586 (12)	0.3421 (2)	0.67241 (5)	0.0219 (3)
O2	0.77314 (12)	0.9757 (2)	0.35830 (4)	0.0239 (4)
O3	0.62806 (12)	0.8589 (2)	0.40118 (5)	0.0238 (3)
N1	0.72232 (13)	0.3304 (2)	0.69173 (5)	0.0178 (4)
C1	0.80525 (16)	0.3650 (3)	0.66249 (6)	0.0179 (4)
C2	0.77084 (17)	0.4355 (3)	0.61881 (6)	0.0200 (4)
H2	0.693195	0.435608	0.611273	0.024*
C3	0.84580 (17)	0.4994 (3)	0.58954 (6)	0.0195 (4)
Н3	0.923497	0.493700	0.596862	0.023*
C4	0.81458 (18)	0.5762 (3)	0.54755 (6)	0.0202 (4)
H4	0.737486	0.571321	0.539278	0.024*
C5	0.88758 (17)	0.6543 (3)	0.51932 (6)	0.0204 (4)
Н5	0.964674	0.654787	0.527665	0.024*
C6	0.85964 (17)	0.7386 (3)	0.47701 (6)	0.0189 (4)
C7	0.94619 (18)	0.8085 (3)	0.45072 (7)	0.0233 (5)
H7	1.021461	0.801352	0.461170	0.028*
C8	0.92613 (18)	0.8889 (3)	0.40946 (7)	0.0238 (5)
H8	0.985763	0.934891	0.391755	0.029*
C9	0.81622 (17)	0.8975 (3)	0.39603 (6)	0.0197 (4)
C10	0.65583 (18)	0.9250 (3)	0.35806 (7)	0.0243 (5)
H10A	0.608744	1.033210	0.350559	0.029*
H10B	0.642106	0.827357	0.335911	0.029*
C11	0.72958 (17)	0.8288 (3)	0.42176 (6)	0.0192 (4)
C12	0.74749 (17)	0.7485 (3)	0.46174 (6)	0.0194 (4)
H12	0.686800	0.701056	0.478668	0.023*
C13	0.74989 (17)	0.2759 (3)	0.73696 (6)	0.0191 (4)
H13A	0.803365	0.364049	0.750477	0.023*
H13B	0.783182	0.150743	0.737737	0.023*
C14	0.63666 (17)	0.2799 (3)	0.76059 (7)	0.0214 (4)
H14A	0.633146	0.183869	0.783722	0.026*
H14B	0.622901	0.401963	0.774158	0.026*
C15	0.55179 (17)	0.2411 (3)	0.72417 (7)	0.0229 (5)
H15A	0.476464	0.289608	0.731974	0.028*
H15B	0.545712	0.107030	0.718398	0.028*
C16	0.59994 (16)	0.3421 (3)	0.68437 (7)	0.0202 (4)
H16A	0.578131	0.280454	0.656583	0.024*
H16B	0.574336	0.472052	0.683550	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0160 (7)	0.0250 (8)	0.0247 (7)	0.0012 (6)	-0.0006 (6)	0.0005 (6)
02	0.0236 (8)	0.0286 (8)	0.0195 (7)	-0.0012 (6)	-0.0007 (6)	0.0050 (6)
03	0.0196 (8)	0.0307 (8)	0.0209 (7)	0.0019 (6)	-0.0009 (6)	0.0048 (6)
N1	0.0134 (8)	0.0218 (9)	0.0181 (8)	-0.0001 (7)	-0.0008 (6)	0.0024 (7)

C1	0.0177 (10)	0.0158 (9)	0.0204 (10)	-0.0005 (8)	-0.0011 (8)	-0.0021 (8)
C2	0.0186 (10)	0.0206 (10)	0.0208 (10)	0.0005 (8)	-0.0025 (8)	-0.0014 (8)
C3	0.0199 (10)	0.0194 (10)	0.0191 (10)	0.0002 (8)	-0.0009 (8)	-0.0017 (8)
C4	0.0201 (10)	0.0201 (10)	0.0203 (10)	0.0012 (8)	-0.0022 (8)	-0.0017 (8)
C5	0.0181 (10)	0.0214 (10)	0.0216 (10)	0.0014 (8)	-0.0003 (8)	-0.0002 (8)
C6	0.0187 (10)	0.0197 (10)	0.0184 (10)	0.0013 (8)	0.0002 (8)	-0.0022 (8)
C7	0.0185 (10)	0.0283 (11)	0.0230 (10)	-0.0001 (9)	0.0006 (8)	0.0003 (9)
C8	0.0214 (11)	0.0265 (11)	0.0236 (10)	-0.0015 (9)	0.0048 (8)	0.0028 (9)
C9	0.0232 (11)	0.0204 (10)	0.0156 (9)	-0.0011 (8)	0.0008 (8)	0.0006 (8)
C10	0.0218 (11)	0.0308 (12)	0.0204 (10)	0.0001 (9)	-0.0006 (8)	0.0026 (9)
C11	0.0180 (10)	0.0197 (10)	0.0200 (10)	0.0009 (8)	-0.0011 (8)	-0.0004 (8)
C12	0.0182 (10)	0.0202 (10)	0.0197 (9)	-0.0001 (8)	0.0025 (8)	-0.0001 (8)
C13	0.0198 (10)	0.0196 (10)	0.0180 (9)	0.0017 (8)	-0.0007 (8)	0.0008 (8)
C14	0.0206 (10)	0.0218 (10)	0.0218 (10)	0.0007 (9)	0.0021 (8)	0.0008 (8)
C15	0.0171 (10)	0.0266 (11)	0.0251 (10)	-0.0011 (9)	0.0018 (8)	-0.0016 (9)
C16	0.0144 (9)	0.0241 (11)	0.0221 (10)	0.0011 (8)	-0.0007 (8)	0.0000 (8)

Geometric parameters (Å, °)

01—C1	1.243 (2)	С7—Н7	0.9500
O2—C9	1.377 (2)	C8—C9	1.369 (3)
O2—C10	1.441 (2)	C8—H8	0.9500
O3—C11	1.376 (2)	C9—C11	1.385 (3)
O3—C10	1.434 (2)	C10—H10A	0.9900
N1—C1	1.350 (2)	C10—H10B	0.9900
N1—C13	1.467 (2)	C11—C12	1.364 (3)
N1-C16	1.473 (2)	C12—H12	0.9500
C1—C2	1.480 (3)	C13—C14	1.525 (3)
С2—С3	1.341 (3)	C13—H13A	0.9900
С2—Н2	0.9500	C13—H13B	0.9900
C3—C4	1.441 (3)	C14—C15	1.523 (3)
С3—Н3	0.9500	C14—H14A	0.9900
C4—C5	1.345 (3)	C14—H14B	0.9900
C4—H4	0.9500	C15—C16	1.525 (3)
C5—C6	1.462 (3)	C15—H15A	0.9900
С5—Н5	0.9500	C15—H15B	0.9900
C6—C7	1.397 (3)	C16—H16A	0.9900
C6—C12	1.412 (3)	C16—H16B	0.9900
С7—С8	1.403 (3)		
C9—O2—C10	104.98 (15)	O2C10H10A	110.2
C11-O3-C10	105.50 (15)	O3—C10—H10B	110.2
C1—N1—C13	120.26 (16)	O2-C10-H10B	110.2
C1-N1-C16	127.52 (16)	H10A—C10—H10B	108.5
C13—N1—C16	112.21 (15)	C12—C11—O3	127.55 (19)
01—C1—N1	121.10 (18)	C12—C11—C9	122.74 (19)
O1—C1—C2	121.93 (18)	O3—C11—C9	109.69 (17)
N1-C1-C2	116.95 (17)	C11—C12—C6	117.50 (19)

C3—C2—C1	122.08 (19)	C11—C12—H12	121.3
C3—C2—H2	119.0	C6—C12—H12	121.3
C1—C2—H2	119.0	N1-C13-C14	103.86 (16)
C2—C3—C4	123.4 (2)	N1—C13—H13A	111.0
С2—С3—Н3	118.3	C14—C13—H13A	111.0
С4—С3—Н3	118.3	N1—C13—H13B	111.0
C5—C4—C3	124.2 (2)	C14—C13—H13B	111.0
С5—С4—Н4	117.9	H13A—C13—H13B	109.0
С3—С4—Н4	117.9	C15—C14—C13	103.75 (16)
C4—C5—C6	126.23 (19)	C15—C14—H14A	111.0
С4—С5—Н5	116.9	C13—C14—H14A	111.0
С6—С5—Н5	116.9	C15—C14—H14B	111.0
C7—C6—C12	119.16 (18)	C13—C14—H14B	111.0
C7—C6—C5	119.19 (18)	H14A—C14—H14B	109.0
C12—C6—C5	121.64 (18)	C14—C15—C16	103.87 (16)
C6—C7—C8	122.5 (2)	C14—C15—H15A	111.0
С6—С7—Н7	118.8	C16—C15—H15A	111.0
С8—С7—Н7	118.8	C14—C15—H15B	111.0
C9—C8—C7	116.59 (19)	C16—C15—H15B	111.0
С9—С8—Н8	121.7	H15A—C15—H15B	109.0
С7—С8—Н8	121.7	N1-C16-C15	102.81 (16)
C8—C9—O2	128.41 (18)	N1—C16—H16A	111.2
C8—C9—C11	121.54 (19)	C15—C16—H16A	111.2
O2—C9—C11	110.01 (18)	N1—C16—H16B	111.2
O3—C10—O2	107.62 (16)	C15—C16—H16B	111.2
O3—C10—H10A	110.2	H16A—C16—H16B	109.1