

Received 22 February 2020 Accepted 30 March 2020

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil

Keywords: crystal structure; gallium; indium; sexadentate ligand; infra-red spectroscopy; IR; NMR.

CCDC references: 1993782; 1993781; 1993780

Supporting information: this article has supporting information at journals.iucr.org/e

Dominic L. Ventura,^a* William W. Brennessel^b and William S. Durfee^c

^aDepartment of Chemistry, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA, ^bDepartment of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY 14627, USA, and ^cDepartment of Chemistry, Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA. *Correspondence e-mail: venturad@dyc.edu

The sexadentate ligand 1,1,1-tris[(salicylideneamino)methyl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with maingroup elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis{[(2-oxidobenzylidene)-amino- $\kappa^2 N$,O]methyl}propyl)imino]methyl}phenololato- $\kappa^2 N$,O)gallium(III) pyridine monosolvate, [Ga(C₂₆H₂₄N₃O3)]·C₃H₅N, the acetonitrile 0.75-solvate, [Ga(C₂₆H₂₄N₃O₃)]·0.75C₂H₃N, and ({[(2,2-bis{[(2-oxidobenzylidene)amino- $\kappa^2 N$,O]methyl}propyl)imino]methyl}phenololato- $\kappa^2 N$,O)indium(III) dichloromethane monosolvate, [In(C₂₆H₂₄N₃O₃)]·CH₂Cl₂. All three metal complexes are pseudo-octahedral and each structure contains multiple weak C–H···O and/or C–H···N intermolecular hydrogen-bonding interactions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and ¹H and ¹³C NMR spectra are also reported.

1. Chemical context

The synthesis of the sexadentate ligand, 1,1,1-tris[(salicylideneamino)methyl]ethane, H₃(sal)₃tame (Fig. 1) was first reported nearly fifty years ago (Johnston, 1974), although its structure was published recently (Yamaguchi et al., 2008b). Complexes of the triply deprotonated ligand, (sal)₃tame, have been reported with transition metals and lanthanides (Sunatsuki et al., 2008; Yamaguchi et al., 2004, 2008a,b; Yokoyama et al., 2010; Kojima, 2000; Kobayashi et al., 2006; Urushigawa et al., 1977), but have received little attention to date with maingroup elements (Katsuta et al., 2012; Kojima et al., 2000). The H₃(sal)₃tame ligand has already been used to synthesize potential technetium radiopharmaceuticals (Marmion et al., 1996). There has also been interest in polydentate ligands in indium and gallium complexes to be used in radiopharmaceuticals, positron emission tomography, and fluorescence imaging (Liu et al., 1993a,b; Green et al., 1984; Liu et al., 1992; Moerlein & Welch, 1981; Evans & Jakubovic, 1988; Zhang et al., 1992; Gut & Holland, 2019; Arrowsmith et al., 2011). Herein we report of the syntheses of the title compounds in good yields along with their respective crystal structures.

Anisotropic displacement ellipsoid plot of 1a drawn at the 50% probability level with hydrogen atoms omitted.

2. Structural commentary

The asymmetric unit of **1a** (Fig. 2) contains the gallium center, the (sal)₃tame ligand, and one co-crystallized pyridine solvent molecule, all in general positions. The geometry is pseudooctahedral, with the smaller angles ranging from 82.13 (6) to 95.97 (6)° (Table 1). The average Ga—N and Ga–O bond lengths are 2.071 (3) and 1.924 (2) Å, respectively, similar to those found in the the structure of the analogous Ga molecule with a (sal)₃tame-O-*iso*-Bu ligand [2.080 (5) and 1.916 (3) Å; Green *et al.*, 1993]. The asymmetric unit of **1b** (Fig. 3) contains two independent [(sal)₃tame]gallium complexes and one cocrystallized acetonitrile solvent molecule in general positions and one-half of a co-crystallized acetonitile solvent molecule

Figure 1

Drawing of 1,1,1-tris((salicylideneamino)methyl)ethane, $H_3(sal)_3$ tame. Deprotonation at the three hydroxyl sites allows for a trianionic, sexadentate ligand.

on a crystallographic inversion center. Analogous bond lengths and angles of the two metal complexes of **1b** are nearly identical with each other (Table 2) and to those of **1a**. The geometry is also pseudo-octahedral with the smaller angles ranging from 82.74 (6) to 95.36 (6)° and 82.12 (7) to 97.10 (6)° for the two molecules. The indium analog **2** (Fig. 4) has the

Figure 3

Anisotropic displacement ellipsoid plot of **1b** drawn at the 50% probability level with hydrogen atoms omitted. Only one position of the solvent molecule N8–C55–C56 is shown. The other position is generated by the inversion-symmetry operation -x, 1 - y, 1 - z.

Table 1Selected geometric parameters (Å, $^{\circ}$) for 1a.

Ga1-O2	1.9177 (13)	Ga1-N1	2.0500 (16)
Ga1-O1	1.9201 (13)	Ga1-N2	2.0700 (16)
Ga1-O3	1.9331 (13)	Ga1-N3	2.0923 (16)
O2-Ga1-O1	90.08 (6)	O3-Ga1-N2	168.56 (6)
O2-Ga1-O3	90.59 (6)	N1-Ga1-N2	86.39 (6)
O1-Ga1-O3	95.47 (6)	O2-Ga1-N3	95.21 (6)
O2-Ga1-N1	175.18 (6)	O1-Ga1-N3	174.34 (6)
O1-Ga1-N1	88.81 (6)	O3-Ga1-N3	86.51 (6)
O3-Ga1-N1	94.19 (6)	N1-Ga1-N3	85.75 (6)
O2-Ga1-N2	89.06 (6)	N2-Ga1-N3	82.13 (6)
O1-Ga1-N2	95.97 (6)		

Table 2

Selected geometric parameters (Å, $^{\circ}$) for **1b**.

Ga1-O3	1.9175 (13)	Ga2-O6	1.9238 (14)
Ga1-O1	1.9215 (13)	Ga2-O5	1.9239 (14)
Ga1-O2	1.9302 (13)	Ga2-O4	1.9296 (13)
Ga1-N1	2.0668 (16)	Ga2-N4	2.0583 (16)
Ga1-N3	2.0719 (16)	Ga2-N5	2.0897 (18)
Ga1-N2	2.0976 (16)	Ga2-N6	2.0984 (16)
O3-Ga1-O1	92.70 (6)	O6-Ga2-O5	91.00 (6)
O3-Ga1-O2	94.28 (6)	O6-Ga2-O4	93.51 (6)
O1-Ga1-O2	91.39 (6)	O5-Ga2-O4	91.22 (6)
O3-Ga1-N1	95.36 (6)	O6-Ga2-N4	96.64 (6)
O1-Ga1-N1	89.77 (6)	O5-Ga2-N4	172.32 (7)
O2-Ga1-N1	170.22 (6)	O4-Ga2-N4	89.15 (6)
O3-Ga1-N3	89.22 (6)	O6-Ga2-N5	169.36 (6)
O1-Ga1-N3	174.65 (6)	O5-Ga2-N5	87.99 (6)
O2-Ga1-N3	93.44 (6)	O4-Ga2-N5	97.10 (6)
N1-Ga1-N3	85.08 (6)	N4-Ga2-N5	84.35 (7)
O3-Ga1-N2	174.19 (6)	O6-Ga2-N6	87.38 (6)
O1-Ga1-N2	92.79 (6)	O5-Ga2-N6	93.86 (6)
O2-Ga1-N2	87.50 (6)	O4-Ga2-N6	174.83 (6)
N1-Ga1-N2	82.74 (6)	N4-Ga2-N6	85.69 (6)
N3-Ga1-N2	85.15 (6)	N5-Ga2-N6	82.12 (7)

Table 3Selected geometric parameters (Å, $^{\circ}$) for 2.

0	1 ()	/	
In1-O1	2.1027 (11)	In1-N1	2.2365 (14)
In1-O2	2.0935 (11)	In1-N2	2.2458 (13)
In1–O3	2.1020 (11)	In1-N3	2.2453 (13)
O1-In1-N1	84.46 (5)	O3-In1-O1	89.18 (4)
O1-In1-N2	105.02 (5)	O3-In1-N1	102.84 (5)
O1-In1-N3	162.70 (5)	O3-In1-N2	165.28 (5)
O2-In1-O1	92.35 (5)	O3-In1-N3	84.66 (5)
O2-In1-O3	91.97 (5)	N1-In1-N2	82.75 (5)
O2-In1-N1	164.77 (5)	N1-In1-N3	81.19 (5)
O2-In1-N2	83.71 (5)	N3-In1-N2	82.75 (5)
O2-In1-N3	103.97 (5)		

metal center, one $(sal)_3$ tame ligand, and one co-crystallized dichloromethane solvent molecule in general positions in its asymmetric unit. The geometry is more distorted from octahedral (Table 3) than found in molecules **1a** and **1b** with angles ranging from 82.19 (5) to 105.02 (5)°, but consistent with those found in known molecules of indium with $(sal)_3$ tame ligands that are substituted at the second ethane carbon atom (Gottschaldt *et al.*, 2009), likely due to the larger effective ionic radius of six-coordinate indium(III) (0.94 Å) *versus* gallium(III) (0.76 Å; Shannon, 1976).

research communications

Figure 4

Anisotropic displacement ellipsoid plot of **2** drawn at the 50% probability level with hydrogen atoms omitted.

3. Supramolecular features

All three structures have multiple weak C-H···O and/or C-H···N hydrogen bonds. These are listed in Tables 4–6, respectively, for the three structures. The ring systems were also examined for possible π - π interactions. In **1a**, the phenyl ring C21–C26 is adjacent to the pyridine solvent molecule, with atom C24 being at a distance of 3.429 (3) Å from the pyridine ring plane; however, the angle between their planes of 26.09 (9)° directs the π orbitals away from the other ring. There is a partial overlap of parallel rings in **1b**. Atoms C24 and C25 overlap their inversion-symmetry equivalents (1 – x,

Anisotropic displacement ellipsoid plot of one Ga molecule of **1b** and its inversion-symmetry equivalent (1 - x, -y, -z) drawn at the 50% probability level. Only one edge of the featured rings are overlapped, with a plane separation of approximately 3.3 Å.

research communications

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for 1a.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C15-H15\cdots O1^{i}$	0.95	2.96	3,540 (2)	121
$C16-H16\cdots O1^{i}$	0.95	2.83	3.462 (2)	125
$C20-H20\cdots O1^{ii}$	0.95	2.78	3.552 (2)	139
$C22-H22\cdots O1^{ii}$	0.95	2.70	3.391 (2)	130
$C20-H20\cdots O3^{ii}$	0.95	2.36	3.233 (2)	153
C8−H8···O2 ⁱⁱⁱ	0.95	2.58	3.502 (2)	164
$C22-H22\cdots O2^{ii}$	0.95	2.87	3.812 (2)	172

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x + 2, -y, -z.

Table 5Hydrogen-bond geometry (Å, $^{\circ}$) for 1b.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C32-H32···O1	0.95	2.51	3.333 (2)	146
C34-H34···O1	0.95	2.88	3.574 (2)	131
$C15-H15\cdots O1^{i}$	0.95	2.65	3.499 (2)	149
$C24-H24\cdots O2^{ii}$	0.95	2.83	3.610(2)	140
$C54-H54B\cdots O2^{iii}$	0.98	2.31	3.282 (3)	171
$C27 - H27A \cdots O3$	0.99	2.89	3.697 (2)	140
$C6-H6\cdots O4^{iv}$	0.95	2.68	3.557 (2)	153
$C8-H8\cdots O4^{iv}$	0.95	2.84	3.642 (3)	143
$C8-H8\cdots O5^{iv}$	0.95	2.91	3.806 (3)	157
$C48-H48\cdots O5^{v}$	0.95	2.55	3.413 (3)	151
$C6-H6\cdots O6^{iv}$	0.95	2.54	3.325 (2)	140
$C22-H22\cdots O6^{ii}$	0.95	2.56	3.502 (2)	173
$C28-H28A\cdots N7$	0.99	2.91	3.680 (4)	135
C29−H29B···N7	0.99	2.72	3.554 (4)	143
C31−H31C···N7	0.98	2.85	3.703 (4)	146
$C10-H10\cdots N8^{vi}$	0.95	2.63	3.508 (7)	154

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y, -z; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x + 2, -y + 1, -z; (vi) -x + 1, -y + 1, -z + 1.

Table 6Hydrogen-bond geometry (Å, °) for 2.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C6-H6\cdots O2^{i}$	0.93	2.65	3.3596 (19)	134
$C8-H8\cdots O2^{i}$	0.93	2.63	3.394 (2)	139
$C27 - H27B \cdots O1$	0.97	2.26	3.193 (2)	160
$C27 - H27B \cdots O2$	0.97	2.82	3.253 (2)	108
$C27 - H27B \cdot \cdot \cdot O3$	0.97	2.73	3.411 (2)	127

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

-y, -z) at a plane-plane distance of approximately 3.3 Å (Fig. 5).

4. Database survey

There are two instances of the unsubstituted $(sal)_3$ tame ligand coordinated to a single metal center in a sexadentate manner found in the Cambridge Structural Database (CSD, Version 5.41, November 2019 update; Groom *et al.*, 2016). One is a manganese cation (refcode YUKCOW; Drew *et al.*, 1995) and the other is a neutral iron complex (refcode NOZJER; Deeney *et al.*, 1998). If substitution is allowed at the second carbon of the ethane moiety, there are six additional structures, two of which contain the main-group elements Ga and In as mentioned above (see *Structural commentary*). If substitution is allowed on the phenyl rings, ten additional structures are found, including one with Ga (refcode CIWXIP; Green *et al.*, 1984). With bridging allowed at the oxygen sites, 24 additional multimetallic structures are found, but none are with main-group metals.

5. Synthesis and crystallization

The H₃(sal)₃tame ligand was synthesized *via* literature procedures [Liu *et al.*, 1993*a*; Kojima *et al.*, 2000; Robards & Patsalides, 1999; Marmion *et al.*, 1996 (¹H NMR spectra); Ohta *et al.*, 2001].

[(Sal)₃tame]gallium(III), **1**. 0.050 g of H₃(sal)₃tame ligand (0.12 mmol) were stirred in 10 mL of methanol under an N₂(g) atmosphere. 0.030 g of gallium(III) nitrate hydrate (0.12 mmol) in 10 mL of degassed methanol was added dropwise to the ligand solution along with 0.5 mL of triethylamine. This was stirred at room temperature under N2 for 45 minutes. The white solid was filtered and washed with water and methanol. Yield: 0.034 g (61%). M.p. 613-618 K (dec.). IR (neat), ν (cm⁻¹): 2907, 1643, 1621, 1598, 1536, 1468, 1445, 1394, 1336, 1308, 1198, 1146, 1024, 893, 761. ¹H NMR (400 MHz, DMSO- d_6 , δ , ppm): 1.09 (s, 3H), 3.46 (d, 3H, J = 14.0 Hz), 4.06 (d, 3H, J = 13.6 Hz), 6.47 (d, 3H, J = 8.0 Hz), 6.55 (t, 3H, J =7.6 Hz), 7.15–7.23 (m, 6H), 8.29 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆, *δ*, ppm): 23.1, 34.9, 65.8, 114.6, 119.2, 122.3, 134.4, 134.6, 168.7, 169.9. Calculated for C₂₆H₂₄N₃O₃GaNa: 518.10. Found: 518.10. The solid material was dissolved in pyridine (1a) or acetonitrile (1b), and hexanes were diffused into the solution to give light-yellow single crystalline blocks.

[(Sal)₃tame]indium(III), **2**. 0.037 g of H₃(sal)₃tame ligand (0.09 mmol) were stirred in 10 mL of methanol under an N₂(g) atmosphere. 0.019 g of indium chloride (0.09 mmol) in 10 mL of degassed methanol was added dropwise to the ligand solution along with 0.5 mL of triethylamine. This was stirred at room temperature under N2 for 45 minutes and allowed to sit overnight. The light-yellow solid was filtered and washed with water and methanol. Yield: 0.0322 g (69%). M.p. 658-663 K. IR (neat), ν (cm⁻¹): 2914, 1617, 1537, 1465, 1441, 1398, 1347, 1306, 1191, 1019, 893, 761. ¹H NMR (400 MHz, DMSO-*d*₆, δ, ppm): 1.09 (s, 3H), 3.83 (s, 6H), 6.56 (t, 3H, J = 8.0 Hz), 6.62 (d, 3H, J = 10.5 Hz), 7.19–7.23 (m, 6H), 8.37 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 24.5, 36.6, 67.4, 114.8, 119.1, 123.1, 134.5, 135.9, 170.6, 173.3. Calculated for C₂₆H₂₄N₃O₃InNa: 564.07. Found: 564.08. The solid material was dissolved in dichloromethane, and hexanes were diffused into the solution to give colorless single crystalline blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. Acetonitrile molecule N8–C55– C56 in **1b** was modeled as disordered over a crystallographic inversion center (0.50:0.50). Analogous bond lengths of the disordered solvent molecule were restrained to be similar to those of the ordered solvent molecule (N7–C53–C54). Anisotropic displacement parameters were heavily restrained

Table 7Experimental details.

	1a	1b	2
Crystal data			
Chemical formula	$[Ga(C_{26}H_{24}N_{3}O_{3})] \cdot C_{5}H_{5}N$	$[Ga(C_{26}H_{24}N_{3}O_{3})] \cdot 0.75C_{2}H_{3}N$	$[In(C_{26}H_{24}N_3O_3)]\cdot CH_2Cl_2$
M_r	575.30	526.99	626.23
Crystal system, space group	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/c$
Temperature (K)	100	173	100
a, b, c (Å)	13.359 (2), 20.413 (3), 9.7470 (15)	10.9053 (6), 14.1157 (8), 16.2324 (9)	10.0704 (2), 16.2514 (4), 16.1749 (4)
α, β, γ (°)	90, 98.326 (3), 90	93.915 (1), 103.120 (1), 97.600 (1)	90, 99.130 (2), 90
$V(\dot{A}^3)$	2629.9 (7)	2399.6 (2)	2613.62 (11)
Z	4	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu \text{ (mm}^{-1})$	1.09	1.18	1.14
Crystal size (mm)	$0.24 \times 0.12 \times 0.10$	$0.24 \times 0.24 \times 0.20$	$0.34 \times 0.14 \times 0.07$
Data collection			
Diffractometer	Bruker SMART APEXII CCD platform	Bruker SMART APEXII CCD platform	XtaLAB Synergy, Dualflex, HyPix
Absorption correction	Multi-scan (SADABS; Sheldrick, 1996)	Multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2019)
T_{\min}, T_{\max}	0.645, 0.748	0.666, 0.748	0.676, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	60216, 12727, 7432	52020, 20841, 12632	31229, 8621, 7401
R _{int}	0.108	0.056	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.833	0.806	0.768
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.120, 1.00	0.048, 0.119, 1.00	0.029, 0.064, 1.06
No. of reflections	12727	20841	8621
No. of parameters	353	653	326
No. of restraints	0	12	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.63, -0.60	0.62, -0.55	0.62, -0.53

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), CrysAlis PRO (Rigaku OD, 2019), SIR97 (Altomare et al., 1999), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

toward the expected, realistic thermal motion of each atom along the solvent molecule (*SHELXL* hard restraint 'RIGU'; Thorn *et al.*, 2012).

All H atoms were refined using riding models. In **1a** and **1b**: aromatic and $sp^2 C-H = 0.95$ Å, methylene C-H = 0.99 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$, and methyl C-H = 0.98 Å, with $U_{iso}(H) = 1.5U_{eq}(C)$. In **2**: aromatic and $sp^2 C-H = 0.93$ Å, methylene C-H = 0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$, and methyl C-H = 0.96 Å, with $U_{iso}(H) = 1.5U_{eq}(C)$.

In **1a** the maximum residual peak of $0.63 \text{ e}^- \text{ Å}^{-3}$ and the deepest hole of $-0.59 \text{ e}^- \text{ Å}^{-3}$ are found 0.94 and 0.65 Å from atoms O2 and Ga1, respectively.

In **1b** the maximum residual peak of $0.62 \text{ e}^- \text{ Å}^{-3}$ and the deepest hole of $-0.55 \text{ e}^- \text{ Å}^{-3}$ are found 0.83 and 0.58 Å from atoms C54 and Ga2, respectively.

In **2** the maximum residual peak of $0.62 \text{ e}^- \text{ Å}^{-3}$ and the deepest hole of $-0.53 \text{ e}^- \text{ Å}^{-3}$ are found 0.73 and 0.56 Å, respectively, from atom Cl2.

Acknowledgements

We thank the X-ray Crystallographic Facility at the University of Rochester, the Department of Chemistry at Buffalo State College, and the Department of Chemistry at D'Youville College for the funding of this project. We would also like to thank the Chemistry Instrumentation Center at the University at Buffalo for their HRMS service.

Funding information

Funding for this research was provided by: NSF (grant No. CHE-1725028).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Arrowsmith, R. L., Waghorn, P. A., Jones, M. W., Bauman, A., Brayshaw, S. K., Hu, Z., Kociok-Köhn, G., Mindt, T. L., Tyrrell, R. M., Botchway, S. W., Dilworth, J. R. & Pascu, S. I. (2011). *Dalton Trans.* 40, 6238–6252.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Deeney, F. A., Harding, C. J., Morgan, G. G., McKee, V., Nelson, J., Teat, S. J. & Clegg, W. (1998). J. Chem. Soc. Dalton Trans. pp. 1837– 1844.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.

research communications

- Evans, D. F. & Jakubovic, D. A. (1988). J. Chem. Soc. Dalton Trans. pp. 2927.
- Gottschaldt, M., Bohlender, C., Pospiech, A., Görls, H., Walther, M., Müller, D., Klette, I., Baum, R. P. & Schubert, U. S. (2009). *Eur. J. Inorg. Chem.* pp. 4298–4307.
- Green, M. A., Mathias, C. J., Neumann, W. L., Fanwick, P. E., Janik, M. & Deutsch, E. A. (1993). J. Nucl. Med. 34, 228–233.
- Green, M. A., Welch, M. J. & Huffman, J. C. (1984). J. Am. Chem. Soc. 106, 3689–3691.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Gut, M. & Holland, J. P. (2019). Inorg. Chem. 58, 12302-12310.
- Johnston, T. E. (1974). (E. I. du Pont de Nemours & Co., Wilmington, Delaware, USA). Metal-Deactivated Organic Compositions and Process Therefor. US Patent 3,843,536, Oct. 22, 1974.
- Katsuta, S., Shimizu, Y., Takahashi, R., Kanaya, N., Imoto, T. & Takeda, Y. (2012). New J. Chem. 36, 1445–1448.
- Kobayashi, T., Yamaguchi, T., Ohta, H., Sunatsuki, Y., Kojima, M., Re, N., Nonoyama, M. & Matsumoto, N. (2006). *Chem. Commun.* pp. 1950–1952.
- Kojima, M. (2000). Mol. Cryst. Liq. Cryst. 342, 39-44.
- Kojima, M., Azuma, S., Hirotsu, M., Nakajima, K., Nonoyama, M. & Yoshikawa, Y. (2000). *Chem. Lett.* 29, 482–483.
- Liu, S., Rettig, S. J. & Orvig, C. (1992). Inorg. Chem. 31, 5400-5407.
- Liu, S., Wong, E., Karunaratne, V., Rettig, S. J. & Orvig, C. (1993a). Inorg. Chem. 32, 1756–1765.
- Liu, S., Wong, E., Rettig, S. J. & Orvig, C. (1993b). Inorg. Chem. 32, 4268–4276.
- Marmion, M. E., Woulfe, S. R., Newmann, W. L., Pilcher, G. & Nosco, D. L. (1996). Nucl. Med. Biol. 23, 567–584.
- Moerlein, S. M. & Welch, M. J. (1981). Int. J. Nucl. Med. Biol. 8, 277–287.

- Ohta, H., Harada, K., Irie, K., Kashino, S., Kambe, T., Sakane, G., Shibahara, T., Takamizawa, S., Mori, W., Nonoyama, M., Hirotsu, M. & Kojima, M. (2001). *Chem. Lett.* **30**, 842–843.
- Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Robards, K. & Patsalides, E. (1999). J. Chromatogr. A, 844, 181– 190.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sunatsuki, Y., Kobayashi, T., Harada, K., Yamaguchi, T., Nonoyama, M. & Kojima, M. (2008). Bull. Chem. Soc. Jpn, 81, 716–725.
- Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.
- Urushigawa, Y., Yuki, M., Ishikita, H., Inazu, T. & Yoshino, T. (1977). Memoirs of the Faculty Science, Kyishu University, Ser. C. 10, 125– 131.
- Yamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008a). Bull. Chem. Soc. Jpn, 81, 598–605.
- Yamaguchi, T., Sunatsuki, Y., Ishida, H., Kojima, M., Akashi, H., Re, N., Matsumoto, N., Pochaba, A. & Mroziński, J. (2008b). *Inorg. Chem.* 47, 5736–5745.
- Yamaguchi, T., Sunatsuki, Y., Kojima, M., Akashi, H., Tsuchimoto, M., Re, N., Osa, S. & Matsumoto, N. (2004). *Chem. Commun.* pp. 1048–1049.
- Yokoyama, T., Okano, M., Yoshise, M., Toda, M., Akashi, H. & Zenki, M. (2010). X-ray Struct. Anal. Online, 26, 37–38.
- Zhang, Z., Lyster, D. M., Webb, G. A. & Orvig, C. (1992). Nucl. Med. Biol. 19, 327–335.

Acta Cryst. (2020). E76, 615-620 [https://doi.org/10.1107/S2056989020004375]

Crystal structures of {1,1,1-tris[(salicylaldimino)methyl]ethane}gallium as both a pyridine solvate and an acetonitrile 0.75-solvate and {1,1,1-tris-[(salicylaldimino)methyl]ethane}indium dichloromethane solvate

Dominic L. Ventura, William W. Brennessel and William S. Durfee

Computing details

Data collection: APEX2 (Bruker, 2011) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Cell refinement: SAINT (Bruker, 2009) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Data reduction: SAINT (Bruker, 2009) for (1a), (1b); CrysAlis PRO (Rigaku OD, 2019) for (2). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (1a), (1b); ShelXT (Sheldrick, 2015a) for (2). Program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b) for (1a), (1b); SHELXL (Sheldrick, 2015b) for (2). Molecular graphics: SHELXTL (Sheldrick, 2015a) for (1a), (1b); OLEX2 (Dolomanov et al., 2009) for (2). Software used to prepare material for publication: SHELXTL (Sheldrick, 2015a) for (1a), (1b); OLEX2 (Dolomanov et al., 2009) for (2).

 $([(2,2-Bis{[(2-oxidobenzylidene)amino-<math>\kappa^2 N, O]$ methyl}propyl)imino]methyl}phenololato- $\kappa^2 N, O$ gallium(III) pyridine monosolvate (1a)

Crystal data

$[Ga(C_{26}H_{24}N_{3}O_{3})]\cdot C_{5}H_{5}N$	F(00)
$M_r = 575.30$	$D_{\rm x} =$
Monoclinic, $P2_1/c$	Mo
a = 13.359 (2) Å	Cell
b = 20.413 (3) Å	$\theta = 2$
c = 9.7470 (15) Å	$\mu = 2$
$\beta = 98.326(3)^{\circ}$	T = 1
V = 2629.9 (7) Å ³	Bloc
Z=4	0.24

Data collection

Bruker SMART APEXII CCD platform diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.108$ Graphite monochromator ω scans $\theta_{\text{max}} = 36.3^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ $h = -22 \rightarrow 22$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $k = -34 \rightarrow 33$ $T_{\rm min} = 0.645, T_{\rm max} = 0.748$ $l = -16 \rightarrow 16$

(0) = 1192 1.453 Mg m^{-3} $K\alpha$ radiation, $\lambda = 0.71073$ Å parameters from 4038 reflections 2.5-29.3° 1.09 mm⁻¹ 100 K k, light yellow-red \times 0.12 \times 0.10 mm

60216 measured reflections 12727 independent reflections 7432 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.00 12727 reflections 353 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0454P)^2]$ where $P = (F_o^2 + 2F_o^2)/3$
0 restraints	$(\Delta/\sigma)_{\text{max}} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{\text{max}} = 0.63 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta\rho_{\text{min}} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Gal	0.77587 (2)	0.11922 (2)	0.10318 (2)	0.01430 (5)
O1	0.65211 (9)	0.16149 (6)	0.02567 (13)	0.0164 (3)
O2	0.76170 (10)	0.05883 (6)	-0.04912 (14)	0.0176 (3)
O3	0.86274 (9)	0.17434 (6)	0.01029 (14)	0.0165 (2)
N1	0.78187 (11)	0.17932 (7)	0.27268 (16)	0.0156 (3)
N2	0.70942 (11)	0.05079 (7)	0.21825 (16)	0.0164 (3)
N3	0.90865 (12)	0.07722 (7)	0.20645 (16)	0.0168 (3)
C1	0.84162 (14)	0.15801 (9)	0.40364 (19)	0.0179 (3)
H1A	0.817473	0.180960	0.482120	0.021*
H1B	0.913552	0.169687	0.403699	0.021*
C2	0.72347 (14)	0.06027 (10)	0.36926 (19)	0.0186 (4)
H2A	0.709864	0.018585	0.415092	0.022*
H2B	0.674714	0.093384	0.393262	0.022*
C3	0.90770 (14)	0.04766 (9)	0.3439 (2)	0.0193 (4)
H3A	0.976258	0.050283	0.398017	0.023*
H3B	0.888897	0.000841	0.332989	0.023*
C4	0.83209 (14)	0.08310 (9)	0.42247 (19)	0.0172 (3)
C5	0.85760 (15)	0.06699 (10)	0.5761 (2)	0.0220 (4)
H5A	0.925490	0.083305	0.611104	0.033*
H5B	0.855577	0.019421	0.588921	0.033*
H5C	0.808143	0.087887	0.627054	0.033*
C6	0.98866 (14)	0.07028 (9)	0.1487 (2)	0.0198 (4)
H6	1.040997	0.043083	0.193998	0.024*
C7	1.00473 (14)	0.10078 (9)	0.0203 (2)	0.0180 (4)
C8	1.08968 (14)	0.08049 (9)	-0.0384 (2)	0.0209 (4)
H8	1.130945	0.046128	0.004245	0.025*
C9	1.11419 (15)	0.10946 (10)	-0.1567 (2)	0.0237 (4)
H9	1.170891	0.094779	-0.196828	0.028*

C10	1.05410 (15)	0.16086 (10)	-0.2165 (2)	0.0219 (4)
H10	1.070829	0.181452	-0.297569	0.026*
C11	0.97104 (14)	0.18234 (9)	-0.1603 (2)	0.0192 (4)
H11	0.932365	0.217933	-0.202536	0.023*
C12	0.94230 (13)	0.15249 (9)	-0.04132 (19)	0.0158 (3)
C13	0.65794 (13)	0.00093 (9)	0.1673 (2)	0.0169 (3)
H13	0.628966	-0.026250	0.230209	0.020*
C14	0.64051 (13)	-0.01719 (9)	0.02280 (19)	0.0166 (3)
C15	0.57195 (14)	-0.06808 (9)	-0.0174 (2)	0.0191 (4)
H15	0.540261	-0.089511	0.051352	0.023*
C16	0.54908 (15)	-0.08796 (10)	-0.1531 (2)	0.0219 (4)
H16	0.502691	-0.122701	-0.178095	0.026*
C17	0.59570 (16)	-0.05586 (10)	-0.2530 (2)	0.0228 (4)
H17	0.579623	-0.068209	-0.347598	0.027*
C18	0.66476 (16)	-0.00649 (10)	-0.2167 (2)	0.0225 (4)
H18	0.695669	0.014241	-0.287057	0.027*
C19	0.69088 (14)	0.01416 (9)	-0.0783 (2)	0.0162 (3)
C20	0.73714 (13)	0.23531 (9)	0.27275 (19)	0.0165 (3)
H20	0.752561	0.261800	0.353170	0.020*
C21	0.66561 (13)	0.26093 (9)	0.16062 (19)	0.0156 (3)
C22	0.62965 (15)	0.32520 (9)	0.1758 (2)	0.0189 (4)
H22	0.659486	0.351438	0.251318	0.023*
C23	0.55173 (15)	0.35035 (10)	0.0823 (2)	0.0215 (4)
H23	0.529102	0.394032	0.091608	0.026*
C24	0.50667 (15)	0.31089 (10)	-0.0259 (2)	0.0215 (4)
H24	0.451558	0.327541	-0.088746	0.026*
C25	0.54059 (14)	0.24816 (10)	-0.0433 (2)	0.0195 (4)
H25	0.508355	0.222334	-0.117986	0.023*
C26	0.62226 (13)	0.22143 (9)	0.04754 (19)	0.0154 (3)
N4	0.27776 (15)	0.38182 (10)	0.0834 (2)	0.0345 (5)
C27	0.31372 (18)	0.33322 (12)	0.1663 (3)	0.0339 (5)
H27	0.356886	0.343928	0.249457	0.041*
C28	0.29220 (19)	0.26779 (12)	0.1390 (3)	0.0364 (5)
H28	0.320603	0.234671	0.201213	0.044*
C31	0.21756 (19)	0.36497 (12)	-0.0326 (3)	0.0350 (5)
H31	0.191992	0.398827	-0.094817	0.042*
C30	0.1903 (2)	0.30137 (13)	-0.0673 (3)	0.0411 (6)
H30	0.145712	0.291911	-0.149997	0.049*
C29	0.2291 (2)	0.25190 (13)	0.0203 (3)	0.0439 (7)
H29	0.212361	0.207478	-0.001198	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gal	0.01435 (9)	0.01324 (9)	0.01559 (9)	0.00030 (8)	0.00307 (6)	-0.00056 (8)
O1	0.0160 (6)	0.0155 (6)	0.0177 (6)	0.0013 (5)	0.0023 (5)	-0.0019 (5)
02	0.0178 (6)	0.0160 (6)	0.0199 (7)	-0.0024 (5)	0.0053 (5)	-0.0026 (5)
O3	0.0151 (6)	0.0151 (6)	0.0199 (6)	0.0016 (5)	0.0045 (5)	0.0002 (5)

Acta Cryst. (2020). E76, 615-620

N1	0.0162 (7)	0.0150 (7)	0.0158 (7)	-0.0006 (5)	0.0026 (6)	0.0005 (6)
N2	0.0161 (7)	0.0159 (7)	0.0171 (7)	0.0004 (6)	0.0019 (6)	0.0008 (6)
N3	0.0177 (7)	0.0143 (7)	0.0183 (8)	0.0005 (6)	0.0020 (6)	-0.0001 (6)
C1	0.0199 (8)	0.0174 (8)	0.0152 (8)	-0.0003 (7)	-0.0010 (7)	-0.0008 (7)
C2	0.0207 (9)	0.0196 (8)	0.0160 (9)	-0.0012 (7)	0.0039 (7)	0.0010 (7)
C3	0.0197 (9)	0.0191 (9)	0.0187 (9)	0.0026 (7)	0.0014 (7)	0.0027 (7)
C4	0.0197 (8)	0.0162 (8)	0.0153 (8)	0.0000 (7)	0.0008 (7)	0.0013 (7)
C5	0.0248 (10)	0.0222 (9)	0.0177 (9)	0.0000 (8)	-0.0010 (7)	0.0022 (7)
C6	0.0167 (8)	0.0176 (8)	0.0244 (10)	0.0034 (7)	0.0011 (7)	0.0008 (7)
C7	0.0175 (8)	0.0153 (8)	0.0220 (9)	0.0003 (6)	0.0056 (7)	-0.0028 (7)
C8	0.0173 (8)	0.0176 (8)	0.0285 (10)	0.0018 (7)	0.0061 (7)	-0.0032 (8)
C9	0.0191 (9)	0.0232 (10)	0.0308 (11)	-0.0009 (7)	0.0102 (8)	-0.0084 (8)
C10	0.0222 (9)	0.0231 (9)	0.0219 (10)	-0.0062 (8)	0.0076 (7)	-0.0050 (8)
C11	0.0203 (9)	0.0165 (8)	0.0210 (9)	-0.0002 (7)	0.0041 (7)	-0.0012 (7)
C12	0.0153 (8)	0.0134 (7)	0.0191 (9)	-0.0016 (6)	0.0034 (6)	-0.0039 (6)
C13	0.0146 (8)	0.0158 (8)	0.0200 (9)	0.0003 (6)	0.0022 (7)	0.0026 (7)
C14	0.0155 (8)	0.0147 (8)	0.0194 (9)	0.0006 (6)	0.0017 (7)	-0.0007 (7)
C15	0.0170 (8)	0.0182 (8)	0.0222 (9)	-0.0007 (7)	0.0030 (7)	0.0006 (7)
C16	0.0209 (9)	0.0178 (9)	0.0264 (10)	-0.0040(7)	0.0017 (8)	-0.0046 (8)
C17	0.0277 (10)	0.0210 (9)	0.0198 (9)	-0.0038 (8)	0.0041 (8)	-0.0068 (7)
C18	0.0289 (10)	0.0196 (9)	0.0199 (9)	-0.0033 (8)	0.0071 (8)	-0.0037 (7)
C19	0.0156 (8)	0.0132 (7)	0.0201 (9)	0.0013 (6)	0.0037 (7)	-0.0009 (6)
C20	0.0176 (8)	0.0159 (8)	0.0171 (8)	-0.0019 (6)	0.0058 (7)	-0.0017 (7)
C21	0.0165 (8)	0.0142 (7)	0.0168 (8)	0.0013 (6)	0.0049 (6)	0.0003 (6)
C22	0.0224 (9)	0.0172 (8)	0.0178 (9)	0.0003 (7)	0.0055 (7)	0.0001 (7)
C23	0.0257 (10)	0.0169 (8)	0.0229 (10)	0.0052 (7)	0.0072 (8)	0.0025 (7)
C24	0.0223 (9)	0.0226 (9)	0.0198 (9)	0.0063 (7)	0.0039 (7)	0.0051 (7)
C25	0.0188 (8)	0.0221 (9)	0.0176 (9)	0.0004 (7)	0.0026 (7)	0.0011 (7)
C26	0.0147 (7)	0.0168 (8)	0.0156 (8)	0.0008 (6)	0.0052 (6)	0.0018 (6)
N4	0.0336 (10)	0.0283 (9)	0.0424 (12)	-0.0019 (9)	0.0080 (9)	-0.0097 (9)
C27	0.0279 (11)	0.0397 (13)	0.0345 (13)	-0.0025 (10)	0.0057 (10)	-0.0124 (11)
C28	0.0398 (14)	0.0325 (12)	0.0385 (14)	-0.0027 (10)	0.0113 (11)	-0.0008 (10)
C31	0.0390 (13)	0.0315 (12)	0.0352 (13)	-0.0004 (10)	0.0074 (10)	-0.0033 (10)
C30	0.0490 (15)	0.0442 (15)	0.0303 (13)	-0.0139 (13)	0.0061 (11)	-0.0122 (11)
C29	0.0610 (18)	0.0294 (13)	0.0419 (15)	-0.0146 (12)	0.0100 (13)	-0.0088 (11)

Geometric parameters (Å, °)

Ga1—O2	1.9177 (13)	C11—C12	1.412 (3)
Gal—Ol	1.9201 (13)	C11—H11	0.9500
Gal—O3	1.9331 (13)	C13—C14	1.442 (3)
Gal—N1	2.0500 (16)	C13—H13	0.9500
Ga1—N2	2.0700 (16)	C14—C15	1.403 (3)
Ga1—N3	2.0923 (16)	C14—C19	1.423 (3)
O1—C26	1.314 (2)	C15—C16	1.375 (3)
O2—C19	1.315 (2)	С15—Н15	0.9500
O3—C12	1.318 (2)	C16—C17	1.393 (3)
N1-C20	1.290 (2)	C16—H16	0.9500

N1—C1	1.470 (2)	C17—C18	1.378 (3)
N2—C13	1.287 (2)	C17—H17	0.9500
N2—C2	1.469 (2)	C18—C19	1.408 (3)
N3—C6	1.286 (2)	C18—H18	0.9500
N3—C3	1.471 (2)	C20—C21	1.442 (3)
C1—C4	1.547 (3)	С20—Н20	0.9500
C1—H1A	0.9900	C21—C22	1.412 (3)
C1—H1B	0.9900	C21—C26	1.420 (3)
C2—C4	1.541 (3)	C22—C23	1.379 (3)
C2—H2A	0 9900	C22_H22	0.9500
C_2 -H2B	0.9900	C_{23} C_{24}	1 393 (3)
$C_2 = C_4$	1 534 (3)	C23_H23	0.9500
$C_3 H_3 \Lambda$	0.0000	C24 C25	1.377(3)
C3 H3P	0.9900	$C_{24} = C_{23}$	0.0500
C4 C5	0.9900	$C_{24} = 1124$	0.9300
C_{4}	1.325 (5)	$C_{23} = C_{20}$	1.411 (5)
C5—H5A	0.9800	C25—H25	0.9500
C5—H5B	0.9800	N4	1.325 (3)
C5—H5C	0.9800	N4—C31	1.334 (3)
C6—C7	1.442 (3)	C27—C28	1.384 (3)
С6—Н6	0.9500	С27—Н27	0.9500
C7—C8	1.406 (3)	C28—C29	1.368 (4)
C7—C12	1.423 (3)	C28—H28	0.9500
C8—C9	1.376 (3)	C31—C30	1.377 (3)
С8—Н8	0.9500	C31—H31	0.9500
C9—C10	1.396 (3)	C30—C29	1.374 (4)
С9—Н9	0.9500	С30—Н30	0.9500
C10—C11	1.378 (3)	С29—Н29	0.9500
C10—H10	0.9500		
O2—Ga1—O1	90.08 (6)	С10—С9—Н9	120.6
O2—Ga1—O3	90.59 (6)	C11—C10—C9	121.38 (19)
01—Ga1—O3	95.47 (6)	C11—C10—H10	119.3
Ω^2 —Ga1—N1	175 18 (6)	C9-C10-H10	119.3
O1-Ga1-N1	88 81 (6)	C10-C11-C12	121 29 (18)
G_3 — G_{a1} — N_1	94 19 (6)	C10-C11-H11	119.4
Ω^2 _Ga1_N2	89.06 (6)	C_{12} C_{11} H_{11}	119.4
$O_2 = O_1 = N_2$	05.07 (6)	$C_{12} = C_{11} = I_{11}$	119.4
$O_1 = O_1 = N_2$	95.97 (0) 169 56 (6)	03 - 012 - 07	119.80(17) 122.07(17)
N1 Col N2	108.30(0)	03-012-07	123.07(17)
N1 - Ga1 - N2	80.39 (0) 05.21 (C)	C12 - C12	117.03(17)
O_2 —Ga1—N3	95.21 (6)	N2 - C13 - C14	125.55 (17)
Ol—Gal—N3	1/4.34 (6)	N2—C13—H13	117.2
03—Gal—N3	86.51 (6)	C14—C13—H13	117.2
NI—Gal—N3	85.75 (6)	C15—C14—C19	119.62 (17)
N2—Ga1—N3	82.13 (6)	C15—C14—C13	118.01 (17)
C26—O1—Ga1	128.24 (12)	C19—C14—C13	122.37 (16)
C19—O2—Ga1	126.91 (12)	C16—C15—C14	122.20 (18)
C12—O3—Ga1	123.63 (11)	C16—C15—H15	118.9
C20—N1—C1	117.07 (16)	C14—C15—H15	118.9

C20—N1—Ga1	124.52 (13)	C15—C16—C17	118.28 (18)
C1—N1—Ga1	118.41 (12)	C15—C16—H16	120.9
C13—N2—C2	118.31 (16)	C17—C16—H16	120.9
C13—N2—Ga1	124.86 (13)	C18—C17—C16	120.99 (19)
C2—N2—Gal	116.83 (12)	C18—C17—H17	119.5
C6—N3—C3	118.08 (16)	C16—C17—H17	119.5
C6—N3—Gal	122.36 (13)	C17—C18—C19	121.96 (19)
C3—N3—Gal	119.18 (12)	C17—C18—H18	119.0
N1—C1—C4	110.59 (15)	C19—C18—H18	119.0
N1—C1—H1A	109.5	O2—C19—C18	119.07 (17)
C4—C1—H1A	109.5	O2—C19—C14	124.00 (17)
N1—C1—H1B	109.5	C18—C19—C14	116.89 (17)
C4—C1—H1B	109.5	N1—C20—C21	125.27 (17)
H1A—C1—H1B	108.1	N1—C20—H20	117.4
N2—C2—C4	110.76 (15)	C21—C20—H20	117.4
N2—C2—H2A	109.5	C22—C21—C26	120.15 (17)
C4—C2—H2A	109.5	C22—C21—C20	117.11 (17)
N2—C2—H2B	109.5	C26—C21—C20	122.24 (16)
C4—C2—H2B	109.5	C23—C22—C21	120.80 (18)
H2A—C2—H2B	108.1	С23—С22—Н22	119.6
N3—C3—C4	110.75 (15)	C21—C22—H22	119.6
N3—C3—H3A	109.5	C22—C23—C24	119.15 (18)
С4—С3—НЗА	109.5	С22—С23—Н23	120.4
N3—C3—H3B	109.5	C24—C23—H23	120.4
C4—C3—H3B	109.5	C25—C24—C23	121.16 (18)
НЗА—СЗ—НЗВ	108.1	C25—C24—H24	119.4
C5—C4—C3	108.61 (15)	C23—C24—H24	119.4
C5—C4—C2	109.35 (16)	C24—C25—C26	121.36 (18)
C3—C4—C2	110.20 (15)	С24—С25—Н25	119.3
C5—C4—C1	108.63 (15)	С26—С25—Н25	119.3
C3—C4—C1	109.59 (15)	O1—C26—C25	118.91 (17)
C2—C4—C1	110.41 (15)	O1—C26—C21	123.76 (16)
С4—С5—Н5А	109.5	C25—C26—C21	117.31 (17)
C4—C5—H5B	109.5	C27—N4—C31	116.4 (2)
H5A—C5—H5B	109.5	N4—C27—C28	124.0 (2)
C4—C5—H5C	109.5	N4—C27—H27	118.0
H5A—C5—H5C	109.5	С28—С27—Н27	118.0
H5B—C5—H5C	109.5	C29—C28—C27	118.5 (3)
N3—C6—C7	124.76 (17)	C29—C28—H28	120.8
N3—C6—H6	117.6	C27—C28—H28	120.8
С7—С6—Н6	117.6	N4-C31-C30	123.8 (3)
C8—C7—C12	120.33 (18)	N4—C31—H31	118.1
C8—C7—C6	117.20 (17)	С30—С31—Н31	118.1
С12—С7—С6	122.34 (17)	C29—C30—C31	118.5 (2)
C9—C8—C7	121.23 (19)	С29—С30—Н30	120.7
С9—С8—Н8	119.4	С31—С30—Н30	120.7
С7—С8—Н8	119.4	C28—C29—C30	118.8 (2)
C8—C9—C10	118.71 (18)	С28—С29—Н29	120.6

С8—С9—Н9	120.6	С30—С29—Н29	120.6
C20 N1 C1 C4	143 42 (16)	C10 C14 C15 C16	-18(3)
C_{20} N1 C_{1} C_{4}	-37.03(10)	$C_{13} = C_{14} = C_{15} = C_{16}$	1.0(3)
$C_1 = N_1 = C_1 = C_4$	37.03(19) 130.46(17)	C_{13} C_{14} C_{15} C_{16} C_{17}	-0.2(3)
$C_{13} = N_2 = C_2 = C_4$	-40.07(10)	$C_{14} = C_{15} = C_{10} = C_{17}$	0.5(3)
Ga1 - N2 - C2 - C4	-40.07(19)	$C_{15} - C_{10} - C_{17} - C_{18}$	1.3(3)
$C_0 = N_3 = C_3 = C_4$	133.01(17)	$C_{10} - C_{17} - C_{18} - C_{19}$	-0.3(3)
Ga1 - N3 - C3 - C4	-31.1(2)	Ga1 = 02 = C19 = C18	153.40(14)
$N_3 = C_3 = C_4 = C_3$	-101.38(15)	Ga1 = 02 = C19 = C14	-29.1(2)
$N_3 - C_3 - C_4 - C_2$	/8.64 (19)	C17 - C18 - C19 - O2	1/5.99 (18)
N3 - C3 - C4 - C1	-43.0 (2)	C17 - C18 - C19 - C14	-1.6 (3)
N2-C2-C4-C5	-157.84 (15)	C15—C14—C19—O2	-1/4.// (1/)
N2-C2-C4-C3	-38.5 (2)	C13—C14—C19—O2	4.6 (3)
N2—C2—C4—C1	82.69 (19)	C15—C14—C19—C18	2.7 (3)
N1—C1—C4—C5	-157.85 (15)	C13—C14—C19—C18	-177.91 (17)
N1—C1—C4—C3	83.63 (18)	C1—N1—C20—C21	-171.93 (17)
N1—C1—C4—C2	-37.9 (2)	Ga1—N1—C20—C21	8.6 (3)
C3—N3—C6—C7	-174.51 (18)	N1—C20—C21—C22	-175.78 (17)
Ga1—N3—C6—C7	12.6 (3)	N1-C20-C21-C26	12.3 (3)
N3—C6—C7—C8	-170.91 (19)	C26—C21—C22—C23	0.5 (3)
N3—C6—C7—C12	13.3 (3)	C20—C21—C22—C23	-171.58 (17)
C12—C7—C8—C9	-0.5 (3)	C21—C22—C23—C24	1.7 (3)
C6—C7—C8—C9	-176.32 (19)	C22—C23—C24—C25	-2.0(3)
C7—C8—C9—C10	1.4 (3)	C23—C24—C25—C26	-0.1 (3)
C8—C9—C10—C11	-0.6 (3)	Ga1-01-C26-C25	165.16 (13)
C9—C10—C11—C12	-1.1 (3)	Ga1-01-C26-C21	-16.8 (2)
Ga1—O3—C12—C11	148.16 (14)	C24—C25—C26—O1	-179.51 (17)
Ga1—O3—C12—C7	-34.2 (2)	C24—C25—C26—C21	2.3 (3)
C10-C11-C12-O3	179.70 (17)	C22—C21—C26—O1	179.38 (16)
C10-C11-C12-C7	2.0 (3)	C20-C21-C26-O1	-8.9 (3)
C8—C7—C12—O3	-178.84 (17)	C22—C21—C26—C25	-2.5(3)
C6—C7—C12—O3	-3.2 (3)	C20—C21—C26—C25	169.20 (17)
C8—C7—C12—C11	-1.2 (3)	C31—N4—C27—C28	-0.1 (4)
C6—C7—C12—C11	174.44 (17)	N4—C27—C28—C29	-0.8(4)
C2—N2—C13—C14	-177.24 (17)	C27—N4—C31—C30	1.4 (4)
Ga1—N2—C13—C14	2.2 (3)	N4—C31—C30—C29	-1.7 (4)
N2-C13-C14-C15	-171.93 (17)	C27—C28—C29—C30	0.5 (4)
N_{2} C13 C14 C19	87(3)	C_{31} C_{30} C_{29} C_{28}	0.7(4)
1,2 013 011 017	0.7 (0)	051 050 027 020	··· (·)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15…O1 ⁱ	0.95	2.96	3.540 (2)	121
C16—H16…O1 ⁱ	0.95	2.83	3.462 (2)	125
C20—H20…O1 ⁱⁱ	0.95	2.78	3.552 (2)	139
C22—H22…O1 ⁱⁱ	0.95	2.70	3.391 (2)	130
C20—H20····O3 ⁱⁱ	0.95	2.36	3.233 (2)	153

				g informati	
С8—Н8…О2ііі	0.95	2.58	3.502 (2)	164	
С22—Н22…О2 ^{іі}	0.95	2.87	3.812 (2)	172	

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*+2, -*y*, -*z*.

 $(\{[(2,2-Bis\{[(2-oxidobenzylidene)amino-\kappa^2N,O]methyl\}propyl)imino]methyl\}phenololato-\kappa^2N,O)gallium(III) acetonitrile 0.75-solvate (1b)$

Crystal data

$[Ga(C_{26}H_{24}N_{3}O_{3})] \cdot 0.75C_{2}H_{3}N$	Z = 4
$M_r = 526.99$	F(000) = 1090
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.459 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.9053 (6) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 14.1157 (8) Å	Cell parameters from 3787 reflections
c = 16.2324 (9) Å	$\theta = 2.3 - 31.6^{\circ}$
$\alpha = 93.915 \ (1)^{\circ}$	$\mu = 1.18 \text{ mm}^{-1}$
$\beta = 103.120 \ (1)^{\circ}$	T = 173 K
$\gamma = 97.600 \ (1)^{\circ}$	Block, colorless
$V = 2399.6 (2) Å^3$	$0.24 \times 0.24 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEXII CCD platform	52020 measured reflections
diffractometer	20841 independent reflections
Radiation source: fine-focus sealed tube	12632 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.056$
ω scans	$\theta_{\text{max}} = 35.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 17$
(SADABS; Sheldrick, 1996)	$k = -22 \longrightarrow 22$
$T_{\min} = 0.666, \ T_{\max} = 0.748$	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $m^2(F^2) = 0.110$	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.00	H-atom parameters constrained
20841 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0459P)^2]$
653 parameters	where $P = (F_o^2 + 2F_o^2)/3$
12 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.62 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta\rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One cocrystallized acetonitrile solvent molecule is modeled as disordered over a crystallographic inversion center (50:50). Analogous bond lengths of the disordered solvent molecule were restrained to be similar to those of the ordered solvent molecule. Anisotropic displacement parameters were restrained toward the expected thermal motion of each atom along the solvent molecule.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Gal	0.33445 (2)	0.03781 (2)	0.24211 (2)	0.01860 (5)	
01	0.44828 (12)	0.13910 (10)	0.31777 (8)	0.0220 (3)	
02	0.46507 (12)	-0.04363 (10)	0.25420 (8)	0.0218 (3)	
03	0.37262 (13)	0.08983 (10)	0.14315 (8)	0.0241 (3)	
N1	0.18433 (15)	0.11232 (12)	0.24496 (10)	0.0212 (3)	
N2	0.27584 (14)	-0.02693 (12)	0.34216 (10)	0.0209 (3)	
N3	0.19786 (15)	-0.06598 (12)	0.16370 (10)	0.0217 (3)	
C1	0.05468 (18)	0.05719 (15)	0.21985 (13)	0.0255 (4)	
H1A	0.026618	0.046121	0.157090	0.031*	
H1B	-0.005405	0.093924	0.240757	0.031*	
C2	0.14316 (17)	-0.02575 (15)	0.34819 (12)	0.0246 (4)	
H2A	0.135976	0.036435	0.377438	0.030*	
H2B	0.117628	-0.077622	0.381760	0.030*	
C3	0.09945 (18)	-0.11402 (15)	0.20160 (12)	0.0245 (4)	
H3A	0.134205	-0.163818	0.236144	0.029*	
H3B	0.026198	-0.145981	0.155998	0.029*	
C4	0.05462 (18)	-0.04032 (15)	0.25812 (12)	0.0238 (4)	
C5	-0.08040 (19)	-0.08028 (17)	0.26360 (15)	0.0329 (5)	
H5A	-0.082878	-0.146596	0.278286	0.049*	
H5B	-0.139827	-0.079009	0.208585	0.049*	
H5C	-0.104986	-0.040845	0.307452	0.049*	
C6	0.19550 (19)	0.20191 (15)	0.27144 (12)	0.0237 (4)	
H6	0.119766	0.230078	0.263599	0.028*	
C7	0.31410 (19)	0.26305 (14)	0.31215 (12)	0.0232 (4)	
C8	0.3057 (2)	0.35909 (16)	0.33702 (15)	0.0331 (5)	
H8	0.226524	0.381942	0.320075	0.040*	
C9	0.4093 (2)	0.42044 (17)	0.38521 (16)	0.0387 (5)	
H9	0.402551	0.485296	0.400841	0.046*	
C10	0.5245 (2)	0.38591 (16)	0.41078 (14)	0.0336 (5)	
H10	0.596392	0.427516	0.444869	0.040*	
C11	0.5359 (2)	0.29228 (15)	0.38738 (12)	0.0266 (4)	
H11	0.615473	0.270528	0.405827	0.032*	
C12	0.43154 (18)	0.22808 (14)	0.33655 (11)	0.0219 (4)	
C13	0.34944 (18)	-0.06416 (14)	0.40040 (11)	0.0218 (4)	
H13	0.320358	-0.077190	0.449969	0.026*	
C14	0.47214 (18)	-0.08761 (14)	0.39642 (12)	0.0219 (4)	
C15	0.53730 (19)	-0.13112 (16)	0.46534 (13)	0.0277 (4)	
H15	0.506073	-0.132892	0.515377	0.033*	
C16	0.6443 (2)	-0.17097 (18)	0.46246 (14)	0.0339 (5)	
H16	0.687720	-0.199144	0.509935	0.041*	
C17	0.6879 (2)	-0.16919 (17)	0.38805 (14)	0.0329 (5)	
H17	0.760288	-0.198519	0.384291	0.039*	
C18	0.62782 (18)	-0.12554 (15)	0.31982 (13)	0.0260 (4)	
H18	0.660432	-0.124775	0.270303	0.031*	
C19	0.51916 (17)	-0.08206 (13)	0.32185 (12)	0.0204 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C20	0.18695 (18)	-0.08578 (14)	0.08384 (12)	0.0228 (4)
H20	0.122273	-0.136873	0.055435	0.027*
C21	0.26351 (18)	-0.03783 (14)	0.03338 (11)	0.0220 (4)
C22	0.2445 (2)	-0.07568(15)	-0.05216 (12)	0.0272 (4)
H22	0.187717	-0.133888	-0.072312	0.033*
C23	0.3057(2)	-0.03073(16)	-0.10647(13)	0.0296 (4)
H23	0.293134	-0.057784	-0.163514	0.036*
C24	0.3869 (2)	0.05560 (16)	-0.07693(13)	0.0290 (4)
H24	0.429615	0.087588	-0.114433	0.035*
C25	0.4062(2)	0.09529(15)	0.00563(12)	0.0271(4)
H25	0.459923	0.155256	0.023510	0.033*
C26	0.34797(18)	0.04897(14)	0.023310 0.06428(11)	0.033
G20	0.88779(2)	0.37876 (2)	0.00120(11) 0.20703(2)	0.0203(1)
04	0.00779(2) 0.96341(13)	0.37870(2) 0.33951(10)	0.20703(2) 0.31629(8)	0.02130(3)
05	1.03345(14)	0.33991(10) 0.47499(10)	0.31029(0) 0.21460(0)	0.0232(3)
05	0.05007(14)	0.47499(10) 0.28754(10)	0.21400(9) 0.14551(8)	0.0274(3)
00 N4	0.33307(14) 0.72150(16)	0.28734(10) 0.20010(12)	0.14551(8) 0.20611(10)	0.0233(3)
IN4 N5	0.72139(10) 0.70704(10)	0.29010(12)	0.20011(10)	0.0234(3)
N5 NC	0.79794 (16)	0.48050(12) 0.41276(12)	0.23177(10)	0.0257(3)
NO COZ	0.79023 (16)	0.41370(12)	0.08876(10)	0.0258 (4)
C27	0.60495 (19)	0.30705 (15)	0.14/03 (14)	0.0301 (5)
H2/A	0.529706	0.2/523/	0.164450	0.036*
H27B	0.602541	0.278657	0.089103	0.036*
C28	0.6574 (2)	0.46920 (16)	0.23465 (14)	0.0304 (4)
H28A	0.625324	0.531380	0.238360	0.037*
H28B	0.630943	0.430783	0.278180	0.037*
C29	0.6718 (2)	0.45548 (16)	0.08224 (13)	0.0314 (5)
H29A	0.617476	0.439976	0.023830	0.038*
H29B	0.692541	0.526262	0.093844	0.038*
C30	0.5993 (2)	0.41555 (16)	0.14597 (13)	0.0298 (4)
C31	0.4592 (2)	0.4286 (2)	0.11911 (17)	0.0435 (6)
H31A	0.415714	0.408886	0.163195	0.065*
H31B	0.418523	0.389050	0.065437	0.065*
H31C	0.453512	0.496329	0.111512	0.065*
C32	0.70962 (18)	0.22489 (14)	0.25667 (12)	0.0224 (4)
H32	0.627549	0.188283	0.249186	0.027*
C33	0.80972 (18)	0.20277 (14)	0.32341 (12)	0.0213 (4)
C34	0.7804 (2)	0.12148 (15)	0.36508 (13)	0.0261 (4)
H34	0.698088	0.084187	0.347472	0.031*
C35	0.8688 (2)	0.09528 (15)	0.43072 (13)	0.0292 (4)
H35	0.848965	0.039562	0.457714	0.035*
C36	0.9883 (2)	0.15185 (16)	0.45706 (13)	0.0296 (4)
H36	1.050090	0.134068	0.502320	0.036*
C37	1.0184 (2)	0.23275 (15)	0.41893 (12)	0.0266(4)
H37	1.099980	0.270522	0.439196	0.032*
C38	0.93063 (18)	0.26111 (14)	0.35021 (12)	0.0219 (4)
C39	0.8561 (2)	0.56736 (16)	0.29109(13)	0.0302(4)
H39	0.805555	0.611047	0.308692	0.036*
C40	0.9918 (2)	0.59753 (15)	0.31083(13)	0.0298(5)
2.0	··· · · · · · · · · · · · · · · · · ·		0.01000 (10)	

C41	1.0425 (3)	0.67730 (16)	0.37092 (15)	0.0387 (5)	
H41	0.986699	0.709721	0.395752	0.046*	
C42	1.1712 (3)	0.70961 (18)	0.39470 (17)	0.0466 (7)	
H42	1.204642	0.761936	0.437371	0.056*	
C43	1.2517 (3)	0.66453 (17)	0.35532 (17)	0.0455 (7)	
H43	1.340637	0.687230	0.370669	0.055*	
C44	1.2049 (2)	0.58765 (16)	0.29454 (15)	0.0370 (5)	
H44	1.261587	0.559550	0.267123	0.044*	
C45	1.0733 (2)	0.54965 (14)	0.27215 (13)	0.0273 (4)	
C46	0.8377 (2)	0.40946 (15)	0.02332 (12)	0.0290 (4)	
H46	0.798146	0.438958	-0.024532	0.035*	
C47	0.9459 (2)	0.36367 (15)	0.01634 (13)	0.0284 (4)	
C48	0.9925 (2)	0.37474 (16)	-0.05753 (13)	0.0341 (5)	
H48	0.954108	0.413589	-0.098494	0.041*	
C49	1.0913 (2)	0.33087 (17)	-0.07124 (14)	0.0376 (6)	
H49	1.122712	0.340226	-0.120547	0.045*	
C50	1.1456 (2)	0.27204 (17)	-0.01189 (14)	0.0368 (5)	
H50	1.214005	0.240870	-0.021336	0.044*	
C51	1.1014 (2)	0.25852 (17)	0.06031 (13)	0.0318 (5)	
H51	1.139212	0.217512	0.099417	0.038*	
C52	1.00143 (19)	0.30438 (14)	0.07704 (12)	0.0254 (4)	
N7	0.5915 (4)	0.6858 (2)	0.1290 (2)	0.0948 (12)	
C53	0.5005 (4)	0.71106 (19)	0.13652 (19)	0.0567 (8)	
C54	0.3847 (3)	0.7435 (2)	0.1459 (2)	0.0725 (10)	
H54A	0.326486	0.740988	0.089818	0.109*	
H54B	0.403900	0.809746	0.172898	0.109*	
H54C	0.344580	0.701975	0.181432	0.109*	
N8	0.1723 (7)	0.4753 (6)	0.5239 (4)	0.108 (3)	0.5
C55	0.0695 (12)	0.4891 (11)	0.5101 (7)	0.068 (3)	0.5
C56	-0.0654 (12)	0.4986 (14)	0.4977 (10)	0.092 (4)	0.5
H56A	-0.080115	0.559478	0.474522	0.137*	0.5
H56B	-0.089116	0.497416	0.552425	0.137*	0.5
H56C	-0.117265	0.445106	0.457992	0.137*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gal	0.01759 (10)	0.02105 (11)	0.01673 (9)	0.00134 (8)	0.00448 (7)	0.00080 (7)
01	0.0196 (6)	0.0242 (7)	0.0205 (6)	0.0034 (5)	0.0025 (5)	-0.0019 (5)
02	0.0220 (6)	0.0265 (7)	0.0182 (6)	0.0061 (5)	0.0062 (5)	0.0024 (5)
O3	0.0292 (7)	0.0235 (7)	0.0176 (6)	-0.0033 (6)	0.0064 (5)	-0.0012 (5)
N1	0.0190 (7)	0.0245 (8)	0.0196 (7)	0.0031 (6)	0.0031 (6)	0.0032 (6)
N2	0.0185 (7)	0.0250 (8)	0.0203 (7)	0.0032 (6)	0.0071 (6)	0.0008 (6)
N3	0.0214 (8)	0.0226 (8)	0.0209 (7)	0.0011 (6)	0.0061 (6)	0.0008 (6)
C1	0.0182 (9)	0.0300 (11)	0.0267 (10)	0.0034 (8)	0.0024 (7)	0.0024 (8)
C2	0.0193 (9)	0.0319 (11)	0.0244 (9)	0.0044 (8)	0.0086 (7)	0.0033 (8)
C3	0.0221 (9)	0.0255 (10)	0.0250 (9)	-0.0026 (7)	0.0075 (7)	0.0020 (8)
C4	0.0182 (8)	0.0285 (10)	0.0250 (9)	0.0022 (7)	0.0064 (7)	0.0022 (8)

C5	0.0209 (9)	0.0396 (13)	0.0391 (12)	0.0005 (9)	0.0112 (9)	0.0043 (10)
C6	0.0243 (9)	0.0269 (10)	0.0219 (9)	0.0073 (8)	0.0065 (7)	0.0052 (7)
C7	0.0257 (9)	0.0226 (10)	0.0227 (9)	0.0045 (7)	0.0080 (7)	0.0028 (7)
C8	0.0350 (12)	0.0249 (11)	0.0407 (12)	0.0078 (9)	0.0098 (10)	0.0027 (9)
C9	0.0454 (14)	0.0228 (11)	0.0465 (14)	0.0013 (10)	0.0127 (11)	-0.0057 (10)
C10	0.0362 (12)	0.0288 (11)	0.0326 (11)	-0.0050 (9)	0.0103 (9)	-0.0065 (9)
C11	0.0256 (10)	0.0309 (11)	0.0219 (9)	0.0005 (8)	0.0070 (8)	-0.0029(8)
C12	0.0245 (9)	0.0259 (10)	0.0163 (8)	0.0017 (7)	0.0082 (7)	0.0021 (7)
C13	0.0241 (9)	0.0233 (9)	0.0177 (8)	0.0004 (7)	0.0066 (7)	0.0009 (7)
C14	0.0207 (9)	0.0237 (10)	0.0197 (8)	0.0001 (7)	0.0040 (7)	0.0004 (7)
C15	0.0259 (10)	0.0340 (12)	0.0222 (9)	0.0043 (9)	0.0034 (8)	0.0039 (8)
C16	0.0268 (10)	0.0434 (13)	0.0320 (11)	0.0124 (10)	0.0014 (9)	0.0119 (10)
C17	0.0223 (10)	0.0388 (13)	0.0381 (12)	0.0098 (9)	0.0048 (9)	0.0055 (10)
C18	0.0196 (9)	0.0305 (11)	0.0271 (10)	0.0020 (8)	0.0055 (8)	0.0000 (8)
C19	0.0182 (8)	0.0193 (9)	0.0220 (9)	0.0001(7)	0.0032 (7)	-0.0003(7)
C20	0.0220(9)	0.0193 (9)	0.0248(9)	-0.0006(7)	0.0040(7)	-0.0011(7)
C21	0.0226 (9)	0.0236 (10)	0.0182 (8)	0.0030 (7)	0.0028 (7)	0.0000 (7)
C22	0.0302(10)	0.0260(10)	0.0216(9)	-0.0009(8)	0.0035 (8)	-0.0050(8)
C23	0.0355(11)	0.0342(12)	0.0181(9)	0.0033 (9)	0.0068 (8)	-0.0019(8)
C24	0.0360 (11)	0.0303(11)	0.0230 (9)	0.0027 (9)	0.0125 (8)	0.0054 (8)
C25	0.0299 (10)	0.0269 (10)	0.0227 (9)	-0.0019(8)	0.0067 (8)	0.0011 (8)
C26	0.0229 (9)	0.0222 (9)	0.0169 (8)	0.0042 (7)	0.0040 (7)	0.0005 (7)
Ga2	0.02359 (11)	0.02028 (11)	0.01746 (10)	-0.00167(8)	0.00174 (8)	0.00285 (8)
04	0.0273 (7)	0.0247 (7)	0.0197 (6)	-0.0027 (6)	0.0010 (5)	0.0043 (5)
05	0.0307 (7)	0.0243 (7)	0.0240 (7)	-0.0059 (6)	0.0065 (6)	0.0007 (6)
06	0.0330 (8)	0.0219 (7)	0.0208 (7)	0.0010 (6)	0.0070 (6)	0.0041 (5)
N4	0.0243 (8)	0.0221 (8)	0.0205 (7)	-0.0007 (6)	0.0005 (6)	0.0039 (6)
N5	0.0269 (8)	0.0253 (9)	0.0225 (8)	0.0005 (7)	0.0025 (7)	0.0041 (7)
N6	0.0309 (9)	0.0219 (8)	0.0203 (8)	-0.0020 (7)	0.0002 (7)	0.0043 (6)
C27	0.0245 (10)	0.0294 (11)	0.0304 (10)	-0.0034 (8)	-0.0029 (8)	0.0078 (9)
C28	0.0272 (10)	0.0314 (11)	0.0333 (11)	0.0072 (9)	0.0058 (9)	0.0068 (9)
C29	0.0354 (11)	0.0289 (11)	0.0256 (10)	0.0034 (9)	-0.0020 (9)	0.0082 (8)
C30	0.0277 (10)	0.0297 (11)	0.0287 (10)	0.0020 (8)	-0.0002(8)	0.0074 (8)
C31	0.0287 (12)	0.0487 (16)	0.0496 (15)	0.0070 (11)	-0.0021 (11)	0.0179 (12)
C32	0.0217 (9)	0.0208 (9)	0.0243 (9)	0.0010 (7)	0.0065 (7)	0.0007 (7)
C33	0.0240 (9)	0.0217 (9)	0.0204 (8)	0.0048 (7)	0.0085 (7)	0.0039 (7)
C34	0.0299 (10)	0.0233 (10)	0.0282 (10)	0.0048 (8)	0.0117 (8)	0.0056 (8)
C35	0.0429 (12)	0.0231 (10)	0.0262 (10)	0.0100 (9)	0.0130 (9)	0.0087 (8)
C36	0.0377 (12)	0.0313 (11)	0.0217 (9)	0.0137 (9)	0.0053 (8)	0.0051 (8)
C37	0.0276 (10)	0.0310(11)	0.0206 (9)	0.0058 (8)	0.0039 (8)	0.0017 (8)
C38	0.0249 (9)	0.0236 (10)	0.0188 (8)	0.0053 (8)	0.0075 (7)	0.0028 (7)
C39	0.0377 (12)	0.0262 (11)	0.0253 (10)	0.0050 (9)	0.0049 (9)	0.0014 (8)
C40	0.0383 (12)	0.0210 (10)	0.0246 (10)	-0.0021 (9)	0.0002 (9)	0.0025 (8)
C41	0.0516 (15)	0.0249 (11)	0.0337 (12)	0.0029 (10)	0.0020 (11)	-0.0040 (9)
C42	0.0551 (16)	0.0261 (12)	0.0451 (14)	-0.0064 (11)	-0.0065 (12)	-0.0036 (11)
C43	0.0412 (14)	0.0308 (13)	0.0498 (15)	-0.0109 (11)	-0.0094 (12)	0.0030 (11)
C44	0.0336 (12)	0.0290 (12)	0.0423 (13)	-0.0062 (9)	0.0021 (10)	0.0055 (10)
C45	0.0339 (11)	0.0192 (9)	0.0238 (9)	-0.0036 (8)	0.0002 (8)	0.0055 (7)

C46	0.0391 (12)	0.0243 (10)	0.0189 (9)	-0.0030 (9)	0.0008 (8)	0.0051 (7)
C47	0.0372 (11)	0.0229 (10)	0.0217 (9)	-0.0053 (8)	0.0061 (8)	0.0016 (7)
C48	0.0473 (13)	0.0290 (11)	0.0219 (10)	-0.0088 (10)	0.0083 (9)	0.0032 (8)
C49	0.0495 (14)	0.0363 (13)	0.0243 (10)	-0.0124 (11)	0.0156 (10)	-0.0017 (9)
C50	0.0356 (12)	0.0390 (13)	0.0325 (12)	-0.0082 (10)	0.0120 (10)	-0.0054 (10)
C51	0.0319 (11)	0.0347 (12)	0.0261 (10)	-0.0011 (9)	0.0058 (9)	-0.0001 (9)
C52	0.0298 (10)	0.0220 (10)	0.0190 (9)	-0.0084 (8)	0.0031 (7)	-0.0032 (7)
N7	0.123 (3)	0.0493 (18)	0.141 (3)	0.0348 (19)	0.077 (3)	0.0124 (19)
C53	0.090 (2)	0.0246 (13)	0.0566 (18)	0.0070 (15)	0.0214 (17)	-0.0010 (12)
C54	0.064 (2)	0.0500 (19)	0.092 (3)	0.0034 (16)	0.0055 (19)	-0.0236 (18)
N8	0.085 (4)	0.156 (8)	0.067 (4)	-0.042 (5)	0.024 (4)	-0.003 (4)
C55	0.101 (5)	0.062 (6)	0.031 (4)	-0.032 (5)	0.025 (5)	-0.005 (4)
C56	0.096 (6)	0.083 (9)	0.076 (7)	0.000 (7)	-0.021 (6)	0.044 (6)

Geometric parameters (Å, °)

1.9175 (13)	Ga2—N6	2.0984 (16)
1.9215 (13)	O4—C38	1.313 (2)
1.9302 (13)	O5—C45	1.316 (2)
2.0668 (16)	O6—C52	1.321 (2)
2.0719 (16)	N4—C32	1.288 (2)
2.0976 (16)	N4—C27	1.467 (2)
1.318 (2)	N5—C39	1.280 (3)
1.312 (2)	N5—C28	1.478 (3)
1.321 (2)	N6—C46	1.284 (3)
1.288 (2)	N6—C29	1.474 (3)
1.475 (2)	C27—C30	1.542 (3)
1.284 (2)	С27—Н27А	0.9900
1.474 (2)	С27—Н27В	0.9900
1.282 (2)	C28—C30	1.535 (3)
1.468 (2)	C28—H28A	0.9900
1.548 (3)	C28—H28B	0.9900
0.9900	C29—C30	1.531 (3)
0.9900	С29—Н29А	0.9900
1.542 (3)	С29—Н29В	0.9900
0.9900	C30—C31	1.531 (3)
0.9900	C31—H31A	0.9800
1.540 (3)	C31—H31B	0.9800
0.9900	C31—H31C	0.9800
0.9900	C32—C33	1.436 (3)
1.530 (3)	С32—Н32	0.9500
0.9800	C33—C34	1.408 (3)
0.9800	C33—C38	1.418 (3)
0.9800	C34—C35	1.372 (3)
1.447 (3)	C34—H34	0.9500
0.9500	C35—C36	1.394 (3)
1.409 (3)	С35—Н35	0.9500
1.416 (3)	C36—C37	1.373 (3)
	$\begin{array}{c} 1.9175\ (13)\\ 1.9215\ (13)\\ 1.9215\ (13)\\ 1.9302\ (13)\\ 2.0668\ (16)\\ 2.0719\ (16)\\ 2.0976\ (16)\\ 1.318\ (2)\\ 1.312\ (2)\\ 1.312\ (2)\\ 1.321\ (2)\\ 1.321\ (2)\\ 1.288\ (2)\\ 1.475\ (2)\\ 1.284\ (2)\\ 1.474\ (2)\\ 1.282\ (2)\\ 1.468\ (2)\\ 1.548\ (3)\\ 0.9900\\ 0.9900\\ 0.9900\\ 1.542\ (3)\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9900\\ 0.9800\\ 0.9800\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.447\ (3)\\ 0.9500\\ 1.409\ (3)\\ 1.416\ (3)\\ \end{array}$	1.9175(13)Ga2—N6 $1.9215(13)$ O4—C38 $1.9302(13)$ O5—C45 $2.0668(16)$ O6—C52 $2.0719(16)$ N4—C32 $2.0976(16)$ N4—C27 $1.318(2)$ N5—C39 $1.312(2)$ N6—C46 $1.288(2)$ N6—C29 $1.475(2)$ C27—H27A $1.474(2)$ C27—H27B $1.282(2)$ C28—C30 $1.468(2)$ C28—H28A $1.548(3)$ C28—H28B 0.9900 C29—C30 0.9900 C30—C31 0.9900 C31—H31A $1.540(3)$ C31—H31C 0.9900 C32—C33 $1.530(3)$ C32—H32 0.9800 C33—C34 0.9800 C34—C35 $1.447(3)$ C34—H34 0.9500 C35—C36 $1.409(3)$ C35—H35 $1.416(3)$ C36—C37

С8—С9	1.373 (3)	С36—Н36	0.9500
С8—Н8	0.9500	C37—C38	1.413 (3)
C9—C10	1.393 (3)	С37—Н37	0.9500
С9—Н9	0.9500	C39—C40	1.440 (3)
C10-C11	1.379 (3)	С39—Н39	0.9500
C10—H10	0.9500	C40—C41	1.402 (3)
C11—C12	1.413 (3)	C40—C45	1.413 (3)
C11—H11	0.9500	C41—C42	1.374 (4)
C13—C14	1.434 (3)	C41—H41	0.9500
C13—H13	0.9500	C42—C43	1,390 (4)
C14—C15	1.408 (3)	C42—H42	0.9500
C14—C19	1421(3)	C43—C44	1 375 (3)
C15—C16	1 369 (3)	C43—H43	0.9500
C15—H15	0.9500	C44-C45	1419(3)
C16-C17	1 396 (3)	C44 - H44	0.9500
C16 H16	0.9500	C_{44} C_{44} C_{47}	1.441(3)
C17 $C18$	1.381(2)	$C_{40} = C_{47}$	0.0500
C17 = U17	1.301 (3)	C40— $H40C47$ — $C48$	0.9300
$C1/\pi1/$	0.9300	C47 - C48	1.414(3)
C18-C19	1.410 (3)	C47 - C32	1.419 (3)
C18—H18	0.9500	C48—C49	1.364 (3)
C20—C21	1.436 (3)	C48—H48	0.9500
C20—H20	0.9500	C49—C50	1.396 (3)
C21—C22	1.413 (3)	С49—Н49	0.9500
C21—C26	1.417 (3)	C50—C51	1.380 (3)
C22—C23	1.362 (3)	С50—Н50	0.9500
C22—H22	0.9500	C51—C52	1.407 (3)
C23—C24	1.393 (3)	C51—H51	0.9500
С23—Н23	0.9500	N7—C53	1.126 (4)
C24—C25	1.376 (3)	C53—C54	1.435 (4)
C24—H24	0.9500	C54—H54A	0.9800
C25—C26	1.409 (3)	C54—H54B	0.9800
С25—Н25	0.9500	С54—Н54С	0.9800
Ga2—O6	1.9238 (14)	N8—C55	1.138 (9)
Ga2—O5	1.9239 (14)	C55—C56	1.464 (7)
Ga2—O4	1.9296 (13)	C56—H56A	0.9800
Ga2—N4	2.0583 (16)	C56—H56B	0.9800
Ga2—N5	2.0897 (18)	С56—Н56С	0.9800
O3—Ga1—O1	92.70 (6)	O5—Ga2—N5	87.99 (6)
$O_3 - G_{a1} - O_2$	94.28 (6)	O4— $Ga2$ — $N5$	97.10 (6)
01-Ga1-02	91 39 (6)	N4—Ga2—N5	84 35 (7)
O3-Ga1-N1	95 36 (6)	Ω_{6} Ga2 N6	87 38 (6)
O1 - Ga1 - N1	89.77 (6)	Ω_{5} Ω_{2} N_{6}	93.86 (6)
O2-Ga1-N1	170 22 (6)	O4-Ga2-N6	174 83 (6)
$O_2 = Ga1 = N_3$	89 22 (6)	N4 - Ga2 - N6	85 60 (6)
O1 - Ga1 - N3	174 65 (6)	$N5 - G_{2} - N6$	82 12 (7)
$O_1 - G_{a1} - N_3$	$03 \Lambda \Lambda (6)$	C38 04 Co2	12(7)
02 - 0a1 - N3	95.44 (0) 95.09 (6)	$C_{30} - C_{4} - C_{a2}$	120.73(12) 126.12(12)
	03.00 (0)	U43-U3-Ua2	120.13 (13)

O3—Ga1—N2	174.19 (6)	C52—O6—Ga2	124.41 (13)
O1—Ga1—N2	92.79 (6)	C32—N4—C27	116.98 (17)
O2—Ga1—N2	87.50 (6)	C32—N4—Ga2	125.53 (13)
N1—Ga1—N2	82.74 (6)	C27—N4—Ga2	117.33 (12)
N3—Ga1—N2	85.15 (6)	C_{39} N5 C_{28}	117.77 (19)
$C_{12} = 0_{12} = 0_{13}$	129 23 (12)	$C_{39} N_{5} G_{2}$	12447(15)
C19 - O2 - Ga1	129.23(12) 128.71(12)	$C_{28} N_{5} G_{22}$	11773(13)
$C_{26} = 03 = G_{21}$	120.71(12) 129.25(12)	$C_{46} N_{6} C_{29}$	118 37 (18)
C_{6} N1 $-C_{1}$	129.23(12) 117.43(17)	$C_{46} = N_{6} = G_{2}^{2}$	121.62(15)
C6-N1-Gal	125.09(13)	$C_{10} = N_{0} = G_{10}^{-2}$	121.02(13) 119.60(13)
C1 N1 Gal	117 36 (13)	N4 C27 C30	110.78 (16)
C13 N2 C2	117.85 (16)	N4_C27_H27A	109.5
$C_{13} = N_2 = C_2$	124 10 (13)	$C_{20} C_{27} H_{27A}$	109.5
$C_1 = N_2 = Gal$	124.19(13) 117.00(12)	N4 C27 H27R	109.5
$C_2 = N_2 = C_3$	117.90(12) 117.81(16)	$R_{-}C_{2}/-R_{2}/B$	109.5
$C_{20} = N_{3} = C_{3}$	117.01(10) 125.21(14)	C_{30} C_{27} H_{27} H_{27}	109.3
C_{20} N3 C_{21}	125.21(14) 116.74(12)	HZ/A = CZ/=HZ/B	100.1
C3—N3—Gal	110.74(12) 100.22(15)	N5 - C28 - C30	110./1 (1/)
NI - CI - C4	109.32 (15)	N5-C28-H28A	109.5
NI—CI—HIA	109.8	C30—C28—H28A	109.5
C4—C1—HIA	109.8	N5—C28—H28B	109.5
NI-CI-HIB	109.8	С30—С28—Н28В	109.5
C4—C1—H1B	109.8	H28A—C28—H28B	108.1
H1A—C1—H1B	108.3	N6—C29—C30	110.29 (17)
N2—C2—C4	109.46 (15)	N6—C29—H29A	109.6
N2—C2—H2A	109.8	С30—С29—Н29А	109.6
C4—C2—H2A	109.8	N6—C29—H29B	109.6
N2—C2—H2B	109.8	С30—С29—Н29В	109.6
C4—C2—H2B	109.8	H29A—C29—H29B	108.1
H2A—C2—H2B	108.2	C31—C30—C29	110.19 (18)
N3—C3—C4	110.14 (16)	C31—C30—C28	108.7 (2)
N3—C3—H3A	109.6	C29—C30—C28	109.88 (17)
С4—С3—Н3А	109.6	C31—C30—C27	107.98 (18)
N3—C3—H3B	109.6	C29—C30—C27	109.15 (19)
С4—С3—Н3В	109.6	C28—C30—C27	110.96 (17)
НЗА—СЗ—НЗВ	108.1	C30—C31—H31A	109.5
C5—C4—C3	107.96 (17)	C30—C31—H31B	109.5
C5—C4—C2	109.08 (16)	H31A—C31—H31B	109.5
C3—C4—C2	109.90 (16)	C30—C31—H31C	109.5
C5—C4—C1	109.85 (17)	H31A—C31—H31C	109.5
C3—C4—C1	110.62 (16)	H31B—C31—H31C	109.5
C2—C4—C1	109.40 (16)	N4—C32—C33	125.58 (18)
C4—C5—H5A	109.5	N4—C32—H32	117.2
C4—C5—H5B	109.5	C33—C32—H32	117.2
H5A—C5—H5B	109.5	C34—C33—C38	120.46 (18)
C4—C5—H5C	109.5	C34—C33—C32	116.57 (18)
H5A—C5—H5C	109.5	C38—C33—C32	122.89 (17)
H5B-C5-H5C	109.5	C_{35} — C_{34} — C_{33}	121.1 (2)
N1-C6-C7	125.26 (18)	C35—C34—H34	119.5

N1—C6—H6	117.4	С33—С34—Н34	119.5
С7—С6—Н6	117.4	C34—C35—C36	118.82 (19)
C8—C7—C12	119.92 (19)	С34—С35—Н35	120.6
C8—C7—C6	116.42 (18)	С36—С35—Н35	120.6
С12—С7—С6	123.18 (18)	C37—C36—C35	121.33 (19)
C9—C8—C7	121.5 (2)	С37—С36—Н36	119.3
С9—С8—Н8	119.3	С35—С36—Н36	119.3
С7—С8—Н8	119.3	C36—C37—C38	121.5 (2)
C8—C9—C10	118.9 (2)	С36—С37—Н37	119.3
C8—C9—H9	120.6	C38—C37—H37	119.3
C10—C9—H9	120.6	$04-C_{38}-C_{37}$	119.25 (18)
$C_{11} - C_{10} - C_{9}$	120.0 121.1(2)	$04-C_{38}-C_{33}$	$123 \ 93 \ (17)$
C_{11} C_{10} H_{10}	110 5	C_{37} C_{38} C_{33}	125.95(17) 116.80(18)
C_{10} C_{10} H_{10}	119.5	$V_{2}^{2} = C_{2}^{2} = C_{2$	110.80(18) 125.3(2)
$C_{10} = C_{10} = 110$	119.5	N5 C30 H30	123.3(2)
$C_{10} = C_{11} = C_{12}$	121.3(2)	$N_{3} = C_{3} = 1137$	117.3
	119.5	C40 - C39 - H39	117.5
	119.3	C41 - C40 - C43	119.9 (2)
01 - 012 - 011	118.23 (18)	C41 - C40 - C39	117.7(2)
	124.3/(1/)	C45—C40—C39	122.34 (19)
C11—C12—C7	117.34 (18)	C42—C41—C40	121.5 (2)
N2-C13-C14	125.08 (17)	C42—C41—H41	119.3
N2—C13—H13	117.5	C40—C41—H41	119.3
C14—C13—H13	117.5	C41—C42—C43	118.9 (2)
C15—C14—C19	119.84 (18)	C41—C42—H42	120.5
C15—C14—C13	116.94 (17)	C43—C42—H42	120.5
C19—C14—C13	122.51 (17)	C44—C43—C42	121.2 (2)
C16—C15—C14	122.03 (19)	C44—C43—H43	119.4
C16—C15—H15	119.0	C42—C43—H43	119.4
C14—C15—H15	119.0	C43—C44—C45	121.0 (2)
C15—C16—C17	118.4 (2)	C43—C44—H44	119.5
C15—C16—H16	120.8	C45—C44—H44	119.5
C17—C16—H16	120.8	O5—C45—C40	123.83 (19)
C18—C17—C16	121.2 (2)	O5—C45—C44	118.7 (2)
C18—C17—H17	119.4	C40—C45—C44	117.4 (2)
С16—С17—Н17	119.4	N6—C46—C47	125.52 (19)
C17—C18—C19	121.59 (19)	N6—C46—H46	117.2
C17—C18—H18	119.2	C47—C46—H46	117.2
C19—C18—H18	119.2	C48 - C47 - C52	119.5(2)
02-C19-C18	118 49 (17)	$C_{48} - C_{47} - C_{46}$	117.3(2)
02 - C19 - C14	$124\ 48\ (17)$	C_{52} C_{47} C_{46}	123 03 (19)
$C_{18} C_{19} C_{14}$	124.40(17) 116 04 (18)	C_{49} C_{48} C_{47}	123.03(17) 121.5(2)
$N_3 C_{20} C_{21}$	126.00 (18)	$C_{49} = C_{48} = C_{47}$	121.3 (2)
N3 C20 H20	117.0	$C_{47} = C_{48} = H_{48}$	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	117.0	$C_{4} = C_{40} = C_{50}$	119.3
$C_{21} = C_{20} = \Pi_{20}$	11/.0	$C_{49} = C_{49} = C_{40} = U_{40}$	117.2 (2)
$C_{22} = C_{21} = C_{20}$	117./7(10)	$C_{40} = C_{49} = C$	120.4
$C_{22} = C_{21} = C_{20}$	117.30(17)	C_{50} C_{49} C_{49} C_{49} C_{49} C_{40} C_{40}	120.4
$C_{20} = C_{21} = C_{20}$	122.42 (17)	$C_{51} = C_{50} = C_{49}$	120.9 (2)
$U_{23} - U_{22} - U_{21}$	121.60 (19)	C31-C30-H30	119.5

С23—С22—Н22	119.2	C49—C50—H50	119.5
C21—C22—H22	119.2	C50—C51—C52	121.2 (2)
C22—C23—C24	118.88 (18)	C50—C51—H51	119.4
С22—С23—Н23	120.6	C52—C51—H51	119.4
C24—C23—H23	120.6	O6—C52—C51	119.52 (19)
C25—C24—C23	121.10(19)	O6—C52—C47	122.7 (2)
C25—C24—H24	119.5	C51—C52—C47	117.70 (19)
C23—C24—H24	119.5	N7—C53—C54	179.8 (4)
C_{24} C_{25} C_{26}	121 47 (19)	C53—C54—H54A	109.5
C_{24} C_{25} H_{25}	119.3	C53—C54—H54B	109.5
C_{26} C_{25} H_{25}	119.3	H54A_C54_H54B	109.5
03-026-025	119.5	C53—C54—H54C	109.5
O_{3}^{-} C_{20}^{-} C_{23}^{-}	124.38(17)	H54A C54 H54C	109.5
$C_{20} = C_{20} = C_{21}$	124.30(17) 117.00(17)	H54R C54 H54C	109.5
$C_{25} = C_{20} = C_{21}$	117.09(17)	Nº C55 C56	109.3 172.0(10)
06 - 0a2 - 03	91.00 (0)	10 - 035 - 050	1/3.9 (10)
00 - 0a2 - 04	95.51 (0)	C55—C50—H50A	109.5
$G_{-Ga2} - G_{4}$	91.22 (6)	С55—С56—Н56В	109.5
$O_6 - G_{a2} - N_4$	96.64 (6)	H56A—C56—H56B	109.5
O5—Ga2—N4	172.32 (7)	С55—С56—Н56С	109.5
O4—Ga2—N4	89.15 (6)	H56A—C56—H56C	109.5
06—Ga2—N5	169.36 (6)	H56B—C56—H56C	109.5
C6—N1—C1—C4	-134.82 (18)	C32—N4—C27—C30	134.21 (19)
Gal—N1—C1—C4	41.39 (19)	Ga2—N4—C27—C30	-41.6 (2)
C13—N2—C2—C4	-144.97 (18)	C39—N5—C28—C30	140.67 (19)
Ga1—N2—C2—C4	37.7 (2)	Ga2—N5—C28—C30	-37.6 (2)
C20—N3—C3—C4	-132.89 (18)	C46—N6—C29—C30	154.60 (18)
Ga1—N3—C3—C4	41.7 (2)	Ga2—N6—C29—C30	-32.7 (2)
N3—C3—C4—C5	155.31 (17)	N6-C29-C30-C31	-159.72 (19)
N3—C3—C4—C2	-85.82 (19)	N6-C29-C30-C28	80.6 (2)
N3-C3-C4-C1	35.1 (2)	N6-C29-C30-C27	-41.3 (2)
N2-C2-C4-C5	156.62 (17)	N5-C28-C30-C31	-161.28 (18)
N2-C2-C4-C3	38.4 (2)	N5-C28-C30-C29	-40.7 (2)
N2—C2—C4—C1	-83.20 (19)	N5-C28-C30-C27	80.2 (2)
N1-C1-C4-C5	157.89 (17)	N4—C27—C30—C31	-154.34 (19)
N1-C1-C4-C3	-83.03 (19)	N4—C27—C30—C29	85.9 (2)
N1—C1—C4—C2	38.2 (2)	N4—C27—C30—C28	-35.4 (2)
C1—N1—C6—C7	168.79 (18)	C27—N4—C32—C33	-174.73 (19)
Ga1—N1—C6—C7	-7.1 (3)	Ga2—N4—C32—C33	0.6 (3)
N1—C6—C7—C8	-179.54 (19)	N4—C32—C33—C34	-172.83 (19)
N1—C6—C7—C12	-7.5(3)	N4—C32—C33—C38	10.3 (3)
C12-C7-C8-C9	-0.3(3)	C_{38} C_{33} C_{34} C_{35}	-1.9(3)
C6-C7-C8-C9	172.0(2)	$C_{32} = C_{33} = C_{34} = C_{35}$	$-178\ 84\ (19)$
C7-C8-C9-C10	-0.9(4)	C_{33} C_{34} C_{35} C_{36}	14(3)
C8 - C9 - C10 - C11	10(4)	C_{34} C_{35} C_{36} C_{37}	0.2(3)
C9-C10-C11-C12	0.2(3)	$C_{35} - C_{36} - C_{37} - C_{38}$	-13(3)
$G_{21} = 01 = 012 = 012$	-173 14 (13)	$G_{a2} = 04 = 038 = 037$	1.5(3) 162 04 (14)
$G_{21} = 01 = 012 = 011$	96(3)	$G_{a2} = O_4 = C_{38} = C_{33}$	-105(3)
$0u_1 - 0_1 - 0_1 2 - 0_1$	2.0 (3)	0a2 07 030 033	17.2 (3)

C10-C11-C12-O1	-178.80 (18)	C36—C37—C38—O4	179.43 (18)
C10-C11-C12-C7	-1.4 (3)	C36—C37—C38—C33	0.8 (3)
C8—C7—C12—O1	178.68 (18)	C34—C33—C38—O4	-177.79 (18)
C6-C7-C12-O1	6.9 (3)	C32—C33—C38—O4	-1.0 (3)
C8—C7—C12—C11	1.4 (3)	C34—C33—C38—C37	0.7 (3)
C6-C7-C12-C11	-170.34 (17)	C32—C33—C38—C37	177.52 (18)
C2-N2-C13-C14	167.67 (18)	C28—N5—C39—C40	-178.1 (2)
Ga1—N2—C13—C14	-15.2 (3)	Ga2—N5—C39—C40	0.1 (3)
N2-C13-C14-C15	-177.88 (19)	N5-C39-C40-C41	-165.2 (2)
N2-C13-C14-C19	-7.6 (3)	N5-C39-C40-C45	14.7 (3)
C19—C14—C15—C16	-1.6 (3)	C45—C40—C41—C42	-1.2 (3)
C13—C14—C15—C16	169.0 (2)	C39—C40—C41—C42	178.7 (2)
C14—C15—C16—C17	-1.0 (3)	C40—C41—C42—C43	2.9 (4)
C15—C16—C17—C18	2.2 (3)	C41—C42—C43—C44	-1.2 (4)
C16—C17—C18—C19	-0.8 (3)	C42—C43—C44—C45	-2.2 (4)
Ga1—O2—C19—C18	-169.20 (13)	Ga2—O5—C45—C40	-31.3 (3)
Ga1-02-C19-C14	14.2 (3)	Ga2—O5—C45—C44	151.55 (16)
C17—C18—C19—O2	-178.59 (19)	C41—C40—C45—O5	-179.26 (19)
C17—C18—C19—C14	-1.7 (3)	C39—C40—C45—O5	0.9 (3)
C15—C14—C19—O2	179.53 (18)	C41—C40—C45—C44	-2.1 (3)
C13—C14—C19—O2	9.5 (3)	C39—C40—C45—C44	178.0 (2)
C15—C14—C19—C18	2.9 (3)	C43—C44—C45—O5	-178.9 (2)
C13-C14-C19-C18	-167.11 (18)	C43—C44—C45—C40	3.8 (3)
C3—N3—C20—C21	171.62 (19)	C29—N6—C46—C47	-174.31 (19)
Ga1—N3—C20—C21	-2.5 (3)	Ga2—N6—C46—C47	13.2 (3)
N3—C20—C21—C22	174.4 (2)	N6-C46-C47-C48	-173.7 (2)
N3—C20—C21—C26	-10.9 (3)	N6-C46-C47-C52	10.2 (3)
C26—C21—C22—C23	0.0 (3)	C52—C47—C48—C49	-1.1 (3)
C20—C21—C22—C23	174.9 (2)	C46—C47—C48—C49	-177.4 (2)
C21—C22—C23—C24	-1.3 (3)	C47—C48—C49—C50	1.5 (3)
C22—C23—C24—C25	0.3 (3)	C48—C49—C50—C51	-0.5 (3)
C23—C24—C25—C26	2.0 (3)	C49—C50—C51—C52	-0.8 (3)
Ga1—O3—C26—C25	-168.30 (14)	Ga2—O6—C52—C51	149.73 (15)
Ga1—O3—C26—C21	13.5 (3)	Ga2—O6—C52—C47	-33.5 (2)
C24—C25—C26—O3	178.51 (19)	C50—C51—C52—O6	178.01 (18)
C24—C25—C26—C21	-3.2 (3)	C50—C51—C52—C47	1.1 (3)
C22—C21—C26—O3	-179.63 (18)	C48—C47—C52—O6	-176.98 (18)
C20—C21—C26—O3	5.8 (3)	C46—C47—C52—O6	-0.9 (3)
C22—C21—C26—C25	2.2 (3)	C48—C47—C52—C51	-0.2 (3)
C20-C21-C26-C25	-172.45 (19)	C46—C47—C52—C51	175.84 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С32—Н32…О1	0.95	2.51	3.333 (2)	146
C34—H34…O1	0.95	2.88	3.574 (2)	131
C15—H15…O1 ⁱ	0.95	2.65	3.499 (2)	149
C24—H24…O2 ⁱⁱ	0.95	2.83	3.610 (2)	140

C54—H54 <i>B</i> ···O2 ⁱⁱⁱ	0.98	2.31	3.282 (3)	171
С27—Н27А…ОЗ	0.99	2.89	3.697 (2)	140
C6—H6····O4 ^{iv}	0.95	2.68	3.557 (2)	153
C8—H8····O4 ^{iv}	0.95	2.84	3.642 (3)	143
C8—H8····O5 ^{iv}	0.95	2.91	3.806 (3)	157
C48—H48…O5 ^v	0.95	2.55	3.413 (3)	151
C6—H6···O6 ^{iv}	0.95	2.54	3.325 (2)	140
C22—H22…O6 ⁱⁱ	0.95	2.56	3.502 (2)	173
C28—H28A…N7	0.99	2.91	3.680 (4)	135
C29—H29 <i>B</i> ···N7	0.99	2.72	3.554 (4)	143
C31—H31 <i>C</i> ···N7	0.98	2.85	3.703 (4)	146
C10—H10····N8 ^{vi}	0.95	2.63	3.508 (7)	154

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z; (iii) x, y+1, z; (iv) x-1, y, z; (v) -x+2, -y+1, -z; (vi) -x+1, -y+1, -z+1.

 $([(2,2-Bis{[(2-oxidobenzylidene)amino-<math>\kappa^2 N, O]$ methyl}propyl)imino]methyl}phenololato- $\kappa^2 N, O)$ indium(III) dichloromethane monosolvate (2)

Crystal data

$[In(C_{26}H_{24}N_{3}O_{3})]{\cdot}CH_{2}Cl_{2}$
$M_r = 626.23$
Monoclinic, $P2_1/c$
a = 10.0704 (2) Å
b = 16.2514 (4) Å
<i>c</i> = 16.1749 (4) Å
$\beta = 99.130 \ (2)^{\circ}$
$V = 2613.62 (11) \text{ Å}^3$
Z = 4

Data collection

$T_{\rm min} = 0.676, \ T_{\rm max} = 1.000$
31229 measured reflections
8621 independent reflection
7401 reflections with $I > 2\sigma$
$R_{\rm int} = 0.037$
$\theta_{\rm max} = 33.1^{\circ}, \theta_{\rm min} = 2.5^{\circ}$
$h = -15 \rightarrow 13$
$k = -21 \rightarrow 24$
$l = -22 \rightarrow 24$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.064$ S = 1.068621 reflections 326 parameters 0 restraints Primary atom site location: dual F(000) = 1264 $D_{\rm x} = 1.591 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 17154 reflections $\theta = 2.4 - 32.9^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 100 KNeedle, colourless $0.34 \times 0.14 \times 0.07 \text{ mm}$

1S $\tau(I)$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0232P)^2 + 0.8708P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.003$ $\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
In1	0.44234 (2)	0.76734 (2)	0.60863 (2)	0.01380 (4)
01	0.30272 (11)	0.85701 (7)	0.63247 (7)	0.0179 (2)
O2	0.40058 (12)	0.78742 (7)	0.47927 (7)	0.0192 (2)
O3	0.29061 (11)	0.67774 (7)	0.60288 (8)	0.0194 (2)
N1	0.51813 (14)	0.77671 (8)	0.74596 (8)	0.0165 (3)
N2	0.63141 (13)	0.83756 (8)	0.59915 (8)	0.0168 (3)
N3	0.58328 (13)	0.65939 (8)	0.62197 (8)	0.0161 (3)
C1	0.65051 (17)	0.73976 (10)	0.77773 (10)	0.0196 (3)
H1A	0.638433	0.682044	0.789904	0.024*
H1B	0.688637	0.766753	0.829572	0.024*
C2	0.73966 (16)	0.83319 (10)	0.67196 (10)	0.0196 (3)
H2A	0.723603	0.874388	0.712624	0.024*
H2B	0.824759	0.845933	0.653984	0.024*
C3	0.72684 (15)	0.67764 (10)	0.64906 (11)	0.0195 (3)
H3A	0.766964	0.693095	0.600612	0.023*
H3B	0.771881	0.628327	0.672869	0.023*
C4	0.74959 (16)	0.74748 (10)	0.71434 (11)	0.0183 (3)
C5	0.89334 (18)	0.73819 (11)	0.76248 (12)	0.0250 (4)
H5A	0.955679	0.735006	0.723426	0.038*
H5B	0.899158	0.688889	0.795556	0.038*
H5C	0.914876	0.784863	0.798484	0.038*
C6	0.44813 (16)	0.80394 (10)	0.79995 (10)	0.0174 (3)
H6	0.483528	0.795509	0.855990	0.021*
C7	0.31986 (16)	0.84640 (10)	0.78311 (10)	0.0168 (3)
C8	0.26184 (17)	0.86798 (11)	0.85429 (11)	0.0228 (3)
H8	0.301662	0.849411	0.906786	0.027*
C9	0.14814 (18)	0.91570 (12)	0.84762 (12)	0.0282 (4)
H9	0.112293	0.929965	0.895214	0.034*
C10	0.08675 (18)	0.94264 (12)	0.76874 (12)	0.0274 (4)
H10	0.009923	0.975165	0.763955	0.033*
C11	0.13927 (17)	0.92134 (11)	0.69770 (11)	0.0225 (3)
H11	0.096553	0.939458	0.645680	0.027*
C12	0.25668 (16)	0.87255 (10)	0.70252 (10)	0.0173 (3)
C13	0.64839 (16)	0.88497 (10)	0.53775 (10)	0.0179 (3)
H13	0.729159	0.913720	0.543284	0.021*
C14	0.55527 (16)	0.89815 (10)	0.46131 (10)	0.0170 (3)
C15	0.58775 (17)	0.96171 (10)	0.40835 (10)	0.0208 (3)
H15	0.666516	0.991607	0.423808	0.025*
C16	0.50515 (18)	0.98046 (10)	0.33410 (10)	0.0223 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H16	0.528051	1.022498	0.299972	0.027*
C17	0.38735 (18)	0.93571 (11)	0.31103 (10)	0.0219 (3)
H17	0.330829	0.948394	0.261440	0.026*
C18	0.35340 (17)	0.87253 (10)	0.36106 (10)	0.0193 (3)
H18	0.274314	0.843322	0.344230	0.023*
C19	0.43559 (15)	0.85131 (10)	0.43689 (9)	0.0159 (3)
C20	0.54875 (15)	0.58334 (10)	0.61401 (10)	0.0160 (3)
H20	0.617996	0.544907	0.622622	0.019*
C21	0.41363 (15)	0.55107 (10)	0.59307 (9)	0.0151 (3)
C22	0.40479 (16)	0.46536 (10)	0.57930 (10)	0.0190 (3)
H22	0.483626	0.435241	0.580611	0.023*
C23	0.28335 (17)	0.42487 (10)	0.56399 (11)	0.0219 (3)
H23	0.279604	0.368547	0.553733	0.026*
C24	0.16602 (16)	0.47043 (11)	0.56423 (10)	0.0208 (3)
H24	0.083232	0.443813	0.555089	0.025*
C25	0.17059 (16)	0.55445 (10)	0.57782 (10)	0.0191 (3)
H25	0.090731	0.583086	0.578182	0.023*
C26	0.29404 (15)	0.59796 (10)	0.59120 (9)	0.0154 (3)
C11	0.03175 (6)	0.90823 (3)	0.44842 (3)	0.03845 (12)
C12	-0.06104 (5)	0.74882 (3)	0.49805 (4)	0.03799 (12)
C27	0.07878 (16)	0.80653 (11)	0.47822 (12)	0.0239 (4)
H27A	0.118092	0.780353	0.433928	0.029*
H27B	0.146259	0.807633	0.528180	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.01471 (6)	0.01451 (6)	0.01177 (5)	-0.00124 (4)	0.00086 (4)	-0.00034 (4)
01	0.0219 (5)	0.0169 (5)	0.0149 (5)	0.0031 (4)	0.0029 (4)	0.0005 (4)
O2	0.0230 (6)	0.0218 (6)	0.0123 (5)	-0.0078 (5)	0.0012 (4)	-0.0006 (4)
O3	0.0149 (5)	0.0168 (6)	0.0264 (6)	-0.0005 (4)	0.0030 (4)	-0.0010 (5)
N1	0.0185 (6)	0.0164 (6)	0.0140 (6)	-0.0020 (5)	0.0012 (5)	0.0012 (5)
N2	0.0182 (6)	0.0156 (6)	0.0154 (6)	-0.0023 (5)	-0.0002(5)	-0.0012 (5)
N3	0.0138 (6)	0.0177 (6)	0.0170 (6)	-0.0022(5)	0.0030 (5)	-0.0025 (5)
C1	0.0215 (8)	0.0204 (8)	0.0150 (7)	0.0015 (6)	-0.0027 (6)	0.0019 (6)
C2	0.0189 (7)	0.0198 (8)	0.0184 (8)	-0.0044 (6)	-0.0023 (6)	0.0000 (6)
C3	0.0122 (7)	0.0207 (8)	0.0253 (8)	-0.0018 (6)	0.0016 (6)	-0.0007 (6)
C4	0.0164 (7)	0.0179 (7)	0.0190 (8)	-0.0021 (6)	-0.0022 (6)	0.0004 (6)
C5	0.0200 (8)	0.0253 (9)	0.0270 (9)	-0.0036 (7)	-0.0049 (7)	0.0019 (7)
C6	0.0232 (8)	0.0159 (7)	0.0126 (7)	-0.0067 (6)	0.0012 (6)	0.0010 (6)
C7	0.0188 (7)	0.0161 (7)	0.0156 (7)	-0.0059 (6)	0.0036 (6)	-0.0006 (6)
C8	0.0222 (8)	0.0287 (9)	0.0180 (8)	-0.0089 (7)	0.0051 (6)	-0.0019 (7)
C9	0.0229 (8)	0.0380 (11)	0.0263 (9)	-0.0056 (8)	0.0117 (7)	-0.0083 (8)
C10	0.0190 (8)	0.0322 (10)	0.0317 (10)	0.0003 (7)	0.0064 (7)	-0.0065 (8)
C11	0.0215 (8)	0.0232 (8)	0.0228 (8)	0.0006 (7)	0.0031 (7)	-0.0015 (7)
C12	0.0195 (7)	0.0138 (7)	0.0188 (8)	-0.0043 (6)	0.0035 (6)	-0.0011 (6)
C13	0.0177 (7)	0.0159 (7)	0.0205 (8)	-0.0028 (6)	0.0045 (6)	-0.0024 (6)
C14	0.0204 (7)	0.0153 (7)	0.0158 (7)	-0.0001 (6)	0.0043 (6)	-0.0014 (6)

C15	0.0249 (8)	0.0172 (8)	0.0205 (8)	-0.0037 (6)	0.0039 (6)	-0.0011 (6)
C16	0.0333 (9)	0.0165 (8)	0.0179 (8)	-0.0006 (7)	0.0060 (7)	0.0027 (6)
C17	0.0298 (9)	0.0218 (8)	0.0140 (7)	0.0040 (7)	0.0036 (6)	-0.0004 (6)
C18	0.0210 (8)	0.0220 (8)	0.0147 (7)	-0.0011 (6)	0.0024 (6)	-0.0034 (6)
C19	0.0194 (7)	0.0160 (7)	0.0133 (7)	0.0011 (6)	0.0053 (6)	-0.0026 (5)
C20	0.0154 (7)	0.0167 (7)	0.0163 (7)	0.0008 (6)	0.0031 (6)	-0.0004 (6)
C21	0.0167 (7)	0.0163 (7)	0.0122 (7)	-0.0024 (6)	0.0024 (5)	0.0010 (5)
C22	0.0190 (7)	0.0177 (8)	0.0195 (8)	-0.0005 (6)	0.0007 (6)	0.0005 (6)
C23	0.0253 (8)	0.0159 (8)	0.0235 (8)	-0.0057 (7)	0.0010(7)	0.0017 (6)
C24	0.0179 (7)	0.0229 (8)	0.0206 (8)	-0.0070 (6)	0.0006 (6)	0.0030 (6)
C25	0.0153 (7)	0.0224 (8)	0.0193 (8)	-0.0022 (6)	0.0020 (6)	0.0018 (6)
C26	0.0167 (7)	0.0180 (7)	0.0114 (7)	-0.0028 (6)	0.0023 (5)	0.0017 (5)
Cl1	0.0511 (3)	0.0208 (2)	0.0417 (3)	0.0032 (2)	0.0019 (2)	-0.00014 (19)
Cl2	0.0281 (2)	0.0428 (3)	0.0453 (3)	-0.0093 (2)	0.0126 (2)	0.0067 (2)
C27	0.0167 (7)	0.0207 (8)	0.0340 (10)	-0.0018 (6)	0.0030 (7)	-0.0023 (7)

Geometric parameters (Å, °)

In1—O1	2.1027 (11)	С9—Н9	0.9300
In1—O2	2.0935 (11)	C9—C10	1.397 (3)
In1—O3	2.1020 (11)	C10—H10	0.9300
In1—N1	2.2365 (14)	C10—C11	1.383 (2)
In1—N2	2.2458 (13)	C11—H11	0.9300
In1—N3	2.2453 (13)	C11—C12	1.416 (2)
O1—C12	1.3151 (19)	С13—Н13	0.9300
O2—C19	1.3224 (19)	C13—C14	1.444 (2)
O3—C26	1.3116 (19)	C14—C15	1.413 (2)
N1—C1	1.478 (2)	C14—C19	1.427 (2)
N1—C6	1.285 (2)	С15—Н15	0.9300
N2—C2	1.474 (2)	C15—C16	1.382 (2)
N2—C13	1.290 (2)	C16—H16	0.9300
N3—C3	1.473 (2)	C16—C17	1.391 (3)
N3—C20	1.285 (2)	С17—Н17	0.9300
C1—H1A	0.9700	C17—C18	1.383 (2)
C1—H1B	0.9700	C18—H18	0.9300
C1—C4	1.545 (2)	C18—C19	1.409 (2)
C2—H2A	0.9700	С20—Н20	0.9300
С2—Н2В	0.9700	C20—C21	1.447 (2)
C2—C4	1.549 (2)	C21—C22	1.411 (2)
С3—НЗА	0.9700	C21—C26	1.421 (2)
С3—Н3В	0.9700	С22—Н22	0.9300
C3—C4	1.542 (2)	C22—C23	1.376 (2)
C4—C5	1.538 (2)	С23—Н23	0.9300
C5—H5A	0.9600	C23—C24	1.395 (2)
С5—Н5В	0.9600	C24—H24	0.9300
С5—Н5С	0.9600	C24—C25	1.383 (2)
С6—Н6	0.9300	С25—Н25	0.9300
C6—C7	1.452 (2)	C25—C26	1.417 (2)

C7—C8	1.415 (2)	Cl1—C27	1.7651 (18)
C7—C12	1.422 (2)	Cl2—C27	1.7631 (17)
С8—Н8	0.9300	С27—Н27А	0.9700
C8—C9	1.373 (3)	С27—Н27В	0.9700
O1—In1—N1	84.46 (5)	С7—С8—Н8	119.2
O1—In1—N2	105.02 (5)	C9—C8—C7	121.52 (17)
O1—In1—N3	162.70 (5)	C9—C8—H8	119.2
Ω^2 —In1— Ω^1	92.35(5)	C8—C9—H9	120.3
$02 - \ln 1 - 03$	91 97 (5)	$C_8 - C_9 - C_{10}$	119 44 (16)
O_2 In O_3	164 77 (5)	C_{10} C_{9} H_{9}	120.3
$O_2 = In1 = N1$ $O_2 = In1 = N2$	83 71 (5)	$C_{10} = C_{10} = H_{10}$	120.5
$O_2 = In_1 = N_2$	102 07 (5)	$C_{11} = C_{10} = C_{10}$	119.7
02 - 111 - N3	105.97(5)	$C_{11} = C_{10} = C_{9}$	120.34 (17)
	89.18 (4)		119.7
U3—In1—N1	102.84 (5)		119.3
03—In1—N2	165.28 (5)	C10—C11—C12	121.38 (17)
O3—In1—N3	84.66 (5)	C12—C11—H11	119.3
N1—In1—N2	82.75 (5)	O1—C12—C7	124.40 (15)
N1—In1—N3	81.19 (5)	O1—C12—C11	117.76 (15)
N3—In1—N2	82.75 (5)	C11—C12—C7	117.79 (15)
C12—O1—In1	128.94 (10)	N2—C13—H13	116.5
C19—O2—In1	127.79 (10)	N2-C13-C14	126.90 (15)
C26—O3—In1	130.97 (10)	C14—C13—H13	116.5
C1—N1—In1	117.67 (10)	C15—C14—C13	116.49 (15)
C6—N1—In1	124.12 (11)	C15—C14—C19	119.25 (15)
C6—N1—C1	117.74 (14)	C19—C14—C13	124.26 (14)
C2—N2—In1	116.64 (10)	C14—C15—H15	119.2
C13—N2—In1	125.01 (11)	C16—C15—C14	121.52 (16)
C13 = N2 = C2	118 19 (13)	C16—C15—H15	119.2
$C_3 = N_3 = I_1 I_1$	116.55 (10)	C15-C16-H16	120.4
C_20 N ₃ In 1	125 81 (11)	C_{15} C_{16} C_{17}	120.1 119.20(15)
$C_{20} = N_3 = M_1$	125.01(11) 117.44(14)	$C_{13} = C_{10} = C_{17}$	119.20 (13)
$V_{20} = N_{3} = C_{3}$	100.2	$C_{1} = C_{10} = H_{10}$	120.4
NI-CI-HIA	109.2	C10 - C17 - H17	119.7
NI-CI-HIB	109.2	C18 - C17 - C16	120.70 (16)
	112.22 (13)	C18—C17—H17	119.7
HIA—CI—HIB	107.9	C1/C18H18	119.2
C4—C1—HIA	109.2	C17—C18—C19	121.68 (16)
C4—C1—H1B	109.2	C19—C18—H18	119.2
N2—C2—H2A	109.1	O2—C19—C14	123.92 (14)
N2—C2—H2B	109.1	O2—C19—C18	118.37 (14)
N2—C2—C4	112.62 (13)	C18—C19—C14	117.64 (14)
H2A—C2—H2B	107.8	N3—C20—H20	116.5
C4—C2—H2A	109.1	N3—C20—C21	126.97 (15)
C4—C2—H2B	109.1	С21—С20—Н20	116.5
N3—C3—H3A	109.1	C22—C21—C20	115.34 (14)
N3—C3—H3B	109.1	C22—C21—C26	119.59 (14)
N3—C3—C4	112.59 (13)	C26—C21—C20	124.93 (14)
НЗА—СЗ—НЗВ	107.8	C21—C22—H22	118.9

С4—С3—Н3А	109.1	C23—C22—C21	122.16 (16)
С4—С3—Н3В	109.1	С23—С22—Н22	118.9
C1—C4—C2	111.33 (14)	С22—С23—Н23	120.8
C3—C4—C1	110.68 (13)	C22—C23—C24	118.34 (16)
C3—C4—C2	111.51 (14)	C24—C23—H23	120.8
$C_{5}-C_{4}-C_{1}$	108 12 (14)	C23—C24—H24	119.4
C_{5} C_{4} C_{2}	107.57(13)	$C_{25} = C_{24} = C_{23}$	121 18 (15)
C_{5} C_{4} C_{2}	107.57(15) 107.45(14)	$C_{25} C_{24} C_{25} C_{24} U_{24}$	110 /
C_{4} C_{5} H_{5}	107.45 (14)	$C_{23} = C_{24} = 1124$	119.4
C4 = C5 = H5P	109.5	C_{24} C_{25} C_{26}	117.2 121.57(15)
	109.5	$C_{24} = C_{23} = C_{20}$	121.37 (13)
C4—C5—H5C	109.5	C26-C25-H25	119.2
H5A—C5—H5B	109.5	03-026-021	124.64 (14)
H5A—C5—H5C	109.5	03-C26-C25	118.23 (14)
H5B—C5—H5C	109.5	C25—C26—C21	117.11 (14)
N1—C6—H6	116.4	Cl1—C27—H27A	109.4
N1—C6—C7	127.16 (15)	Cl1—C27—H27B	109.4
С7—С6—Н6	116.4	Cl2—C27—Cl1	111.12 (9)
C8—C7—C6	115.79 (15)	Cl2—C27—H27A	109.4
C8—C7—C12	119.30 (15)	Cl2—C27—H27B	109.4
С12—С7—С6	124.71 (14)	H27A—C27—H27B	108.0
In1—O1—C12—C7	18.4 (2)	C6—C7—C12—C11	-173.00(15)
In1—O1—C12—C11	-164.25(11)	C7—C8—C9—C10	1.0 (3)
In1-O2-C19-C14	31.0 (2)	C8-C7-C12-O1	179.02(15)
In1 = 02 = C19 = C18	-152.00(11)	C8 - C7 - C12 - C11	16(2)
ln1 = 03 = C26 = C21	110(2)	$C_{8} = C_{9} = C_{10} = C_{11}$	1.0(2)
In1 = 0.3 = 0.26 = 0.21	-170.70(11)	C_{0} C_{10} C_{11} C_{12}	-0.6(3)
$m_1 = 0.5 = 0.20 = 0.23$	1/0.70(11)	C_{3}	-177.07(16)
$\lim_{n \to \infty} \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{i=1}^$	54.02(17)	$C_{10} = C_{11} = C_{12} = C_{13}$	-1/7.97(10)
InI - NI - Cb - C/	-11.7(2)	C10-C11-C12-C7	-0.4(2)
In1—N2—C2—C4	36.43 (16)		-2.0(2)
In1—N2—C13—C14	-4.6 (2)	C13—N2—C2—C4	-147.93 (15)
In1—N3—C3—C4	37.20 (17)	C13—C14—C15—C16	-179.20 (15)
In1—N3—C20—C21	1.6 (2)	C13—C14—C19—O2	-4.1 (2)
N1—C1—C4—C2	41.27 (18)	C13—C14—C19—C18	178.85 (15)
N1—C1—C4—C3	-83.35 (17)	C14—C15—C16—C17	0.0 (3)
N1—C1—C4—C5	159.22 (14)	C15—C14—C19—O2	175.61 (14)
N1—C6—C7—C8	178.28 (16)	C15-C14-C19-C18	-1.5 (2)
N1-C6-C7-C12	-6.9 (3)	C15—C16—C17—C18	-0.7 (3)
N2-C2-C4-C1	-84.71 (17)	C16—C17—C18—C19	0.3 (3)
N2—C2—C4—C3	39.44 (18)	C17—C18—C19—O2	-176.42 (15)
N2—C2—C4—C5	157.01 (14)	C17—C18—C19—C14	0.8 (2)
N2-C13-C14-C15	171.32 (16)	C19—C14—C15—C16	1.1 (2)
N2-C13-C14-C19	-9.0 (3)	C20—N3—C3—C4	-137.89 (15)
N3-C3-C4-C1	40.04 (19)	C_{20} C_{21} C_{22} C_{23}	175.90 (15)
$N_3 C_3 C_4 C_2$	-84 47 (17)	C_{20} C_{21} C_{26} C_{23}	47(2)
$N_3 - C_3 - C_4 - C_5$	157.89 (14)	C_{20} C_{21} C_{20} C_{20} C_{21} C_{20} C_{25}	-173.64(14)
N3 C20 C21 C22	173 34 (16)	$C_{20} = C_{21} = C_{20} = C_{23} = C_{23}$	-1.6(3)
$N_2 = C_{20} = C_{21} = C_{22}$	173.34(10)	$C_{21} = C_{22} = C_{23} = C_{24}$	1.0(3) 170.79(15)
INJ	-11.0(3)	$U_{22} - U_{21} - U_{20} - U_{3}$	-1/9./8(13)

C1—N1—C6—C7	176.28 (15)	C22—C21—C26—C25	1.9 (2)
C2—N2—C13—C14	-179.82 (15)	C22—C23—C24—C25	1.3 (3)
C3—N3—C20—C21	176.14 (15)	C23—C24—C25—C26	0.6 (3)
C6—N1—C1—C4	-152.81 (14)	C24—C25—C26—O3	179.35 (15)
C6—C7—C8—C9	173.12 (16)	C24—C25—C26—C21	-2.2 (2)
C6—C7—C12—O1	4.4 (3)	C26—C21—C22—C23	0.0 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H…A	D····A	D—H··· A
C6—H6…O2 ⁱ	0.93	2.65	3.3596 (19)	134
C8—H8····O2 ⁱ	0.93	2.63	3.394 (2)	139
C27—H27 <i>B</i> ···O1	0.97	2.26	3.193 (2)	160
C27—H27 <i>B</i> ···O2	0.97	2.82	3.253 (2)	108
C27—H27 <i>B</i> ···O3	0.97	2.73	3.411 (2)	127

Symmetry code: (i) x, -y+3/2, z+1/2.