

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 March 2020 Accepted 10 April 2020

Keywords: crystal structure; quinazolin-4-one; hydrogen bonding; Hirshfeld analysis.

CCDC reference: 1996127

Supporting information: this article has supporting information at journals.iucr.org/e

Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate

Cong Nguyen Tien,^a* Quang Nguyen Tan,^{a,b} Dung Pham Duc,^a Phuong Tran Hoang,^c Dat Nguyen Dang,^d Luong Truong Minh^d and Luc Van Meervelt^e*

^aFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, Ho Chi Minh City, 700000, Vietnam, ^bPhan Boi Chau High School, 70 Le Hong Phong Street, Binh Thuan Province, 77000, Vietnam, ^cFaculty of Chemistry, University of Science, 227 Nguyen Van Cu Street, Ho Chi Minh City, 721337, Vietnam, ^dFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and ^eDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium. *Correspondence e-mail: congnt@hcmue.edu.vn, luc.vanmeervelt@kuleuven.be

The title compound, $C_{18}H_{16}N_2O_3S$, was synthesized by reaction of 2-mercapto-3phenylquinazolin-4(3*H*)-one with ethyl chloroacetate. The quinazoline ring forms a dihedral angle of 86.83 (5)° with the phenyl ring. The terminal methyl group is disordered by a rotation of about 60° in a 0.531 (13): 0.469 (13) ratio. In the crystal, $C-H\cdots O$ hydrogen-bonding interactions result in the formation of columns running in the [010] direction. Two parallel columns further interact by $C-H\cdots O$ hydrogen bonds. The most important contributions to the surface contacts are from $H\cdots H$ (48.4%), $C\cdots H/H\cdots C$ (21.5%) and $O\cdots H/H\cdots O$ (18.7%) interactions, as concluded from a Hirshfeld analysis.

1. Chemical context

Hybrid derivatives, where quinazolin-4-one is incorporated with different heterocycles, possess a variety of biological effects including anticancer (Khalil et al., 2003; Gursoy & Karal, 2003; Gawad et al., 2010; Elfekki et al., 2014; Alanazi et al., 2016; El-Sayed et al., 2017; Nguyen et al., 2019), anticonvulsant (El-Azab et al., 2013) and antimicrobial (Pandey et al., 2009; Al-Khuzaie & Al-Majidi, 2014; Al-Majidi & Al-Khuzaie, 2015; Lv et al., 2018; Godhani et al., 2016) activities. Some derivatives of 2-mercapto-3-(4-methoxyphenyl)quinazolin-4(3H)-one containing the thiazolidine-4-one moiety have been found to have good antituberculosis activity (Godhani et al., 2016). In addition, many amide and *N*-substituted hydrazide compounds derived from 2-mercapto-3-phenylquinazolin-4-one have been demonstrated to have valuable biological activities such as antitumor (Al-Suwaidan et al., 2016, 2017; Mohamed et al., 2016), anticonvulsant (El-Helby & Wahab, 2003) and antibacterial (Lfta et al., 2016) activity. The capacity to increase the HDL cholesterol activity of some N-substituted compounds containing a quinazolin-4-one moiety has also been investigated (Deshmukh & Dhongade, 2004).

Ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate is an intermediate compound in the synthesis

research communications

Figure 1

Reaction scheme for the synthesis of the title compound (4).

process of both *N*-substituted and heterocyclic compounds containing a quinazolin-4-one moiety. The synthesis and properties of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)thio]acetate have therefore attracted much attention.

As shown in Fig. 1, 2-mercapto-3-phenylquinazolin-4(3H)one (3) was obtained by the reaction of anthranilic acid (1)and phenyl isothiocyanate (2) (Nguyen et al., 2019). The IR spectrum of (3) shows the stretching vibrations of N-H (3217 and 3134 cm⁻¹) and C=O (1659 cm⁻¹) bonds, indicating that (3) exists in the thione form (Al-Majidi & Al-Khuzaie, 2015). In the ¹H NMR spectrum, besides signals of nine protons in the aromatic area, there is a singlet signal with the intensity of 1H at δ 13.05 ppm attributed to the proton of the thiol group. In an alkaline medium, (3) exists in the thiolate form and reacts easily with ethyl chloroacetate to yield (4). In the IR spectrum of (4), the disappearance of the NH stretching and the presence of a strong C=O absorption at 1732 cm^{-1} indicate the existence of an ester compound. In the ¹H NMR spectrum of (4), the signal at δ 13.05 ppm disappears and three new signals in the aliphatic area [singlet signal at δ 3.99 (2H), *quartet* signal at δ 4.15 (2H) and *triplet* signal at δ 1.23 ppm are consistent with the presence (3H)] of the -CH₂COOCH₂CH₃ moiety in (4).

Figure 2

The molecular structure of the title compound, showing the atomlabelling scheme and displacement ellipsoids at the 50% probability level. Methyl group C17B [occupancy 0.469 (13)] is shown in green.

As no X-ray crystallographic information is available for this ester, we have determined the crystal structure by singlecrystal X-ray diffraction and a Hirshfeld surface analysis has been performed to gain further insight into the intermolecular interactions.

2. Structural commentary

The title compound crystallizes in the space group $P2_1/n$ with four molecules in the unit cell. The asymmetric unit of the title compound is illustrated in Fig. 2. The C17 methyl group is disordered over two orientations by a rotation of about 60° about the O15-C16 bond in a 0.531 (13): 0.469 (13) ratio. The quinazoline ring system is almost planar (r.m.s. deviation = 0.0207 Å). The angle between the two fused six-membered rings is 2.05 (9)°. The substituents S11, C18 and O23 deviating by -0.0951(17), -0.140(2) and 0.108(2) Å, respectively, from the best plane through the quinazoline ring system. This plane makes an angle of 86.83 $(5)^{\circ}$ with the plane of the C18– C23 phenyl ring (r.m.s. deviation = 0.0052 Å). The dihedral angle between the best planes through the acetate atoms (C12, C13, O14 and O15) and the quinazoline ring system is 75.21 (5)°. A short intramolecular C16-H16B \cdots O14 contact is observed $[C16-H16B = 0.97 \text{ Å}, H16B \cdots O14 = 2.28 \text{ Å},$ $C16 \cdot \cdot \cdot O14 = 2.655$ (4) Å, $C16 - H16B \cdot \cdot \cdot O14 = 102^{\circ}$].

Theoretically, compound (3) may exist in the thione form, namely 3-phenyl-2-thioxo-2,3-dihydroquinazolin-4(1*H*)-one. Therefore, it could react with ethyl chloroacetate to give ethyl 2-(4-oxo-3-phenyl-2-thioxo-3,4-dihydroquinazolin-1(2*H*)-yl)acetate as illustrated in Fig. 3. However, our current structure determination indicates that the final product is ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate (4), which proves that in the alkaline environment, (3) converts into the thiolate form and then reacts with ethyl chloroacetate to yield the title compound (4).

Reaction scheme for the thione tautomer of (3) with ethyl chloroacetate resulting in ethyl 2-(4-oxo-3-phenyl-2-thioxo-3,4-dihydroquinazolin-1(2H)-yl)acetate as reaction product.

research communications

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C7-H7\cdots O23^{i}$	0.93	2.59	3.452 (3)	155
$C12-H12B\cdots O14^{ii}$	0.97	2.42	3.311 (3)	153
$C19-H19\cdots O23^{ii}$	0.93	2.41	3.236 (2)	148

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, y + 1, z.

3. Supramolecular features and Hirshfeld surface analysis

The crystal packing is mainly characterized by C–H···O hydrogen-bonding interactions (Table 1, Figs. 4 and 5). Columns running in the [010] direction are formed by C12– H12B···O14ⁱⁱ and C19–H19···O23ⁱⁱ interactions, which results also in a short S11···H23ⁱⁱ contact of 3.020 Å [symmetry code: (ii) x, y + 1, z]. Two parallel columns interact *via* C7–H7···O23ⁱ hydrogen-bonding interactions [symmetry code: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$]. No voids, C-H··· π interactions or π - π stackings are observed in the crystal packing.

In order to gain further insight into the intermolecular interactions, a Hirshfeld surface and two-dimensional fingerprint plots were calculated using CrystalExplorer (Turner et al., 2017). The Hirshfeld surface mapped over d_{norm} (Fig. 6) shows the expected bright-red spots near atoms O14, O23, H7, H12B and H19 involved in the $C-H \cdots O$ hydrogen-bonding interactions described above. In addition, the faint-red spots near atoms S11 and O14 indicate a short S...O contact [3.2128 (16) Å]. Small faint-red spots appear near atoms H8 and H17E are due to a short H8···H17E contact (2.352 Å). The S11···H23 contact mentioned is only visible as a white spot, while a white region above the C18-C23 phenyl ring is present because of the proximity of atom H20. The distance between H20 and the centroid of this phenyl ring of 3.204 Å, however, is too long for a $C-H\cdots\pi$ interaction. The fingerprint plots (Fig. 7) illustrate that the largest contributions to the Hirshfeld surface come from $H \cdots H$ contacts (48.4%), followed by significant contributions by reciprocal C···H/

Figure 5

Partial crystal packing of the title compound showing two parallel columns running in the [010] direction. Intermolecular $C-H\cdots O$ interactions are shown as red dashed lines (see Table 1 for details), $C-H\cdots S$ interactions as yellow dashed lines. Only the major component of the disordered C17 methyl group is shown.

Figure 6

The Hirshfeld surface of (4) mapped over d_{norm} for the title compound in the range -0.2419 to 1.2857 a.u.

Figure 7

Full two-dimensional fingerprint plots for the title compound, showing (*a*) all interactions, and delineated into (*b*) $H \cdots H$, (*c*) $C \cdots H/H \cdots C$, (*d*) $O \cdots H/H \cdots O$, (*e*) $S \cdots H/H \cdots S$ and (*f*) $N \cdots C/C \cdots N$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from a given point on the Hirshfeld surface.

 $H \cdots C$ (21.5%) and $O \cdots H/H \cdots O$ (18.7%) contacts. Smaller contributions are from $S \cdots H/H \cdots S$ (4.0%), $N \cdots C/C \cdots N$ (1.6%), $C \cdots C$ (1.6%), $C \cdots S/S \cdots C$ (1.4%), $N \cdots H/H \cdots N$ (1.3%), $S \cdots O/O \cdots S$ (1.0%), $N \cdots S/S \cdots N$ (1.0%) and $O \cdots O$ contacts (0.1%).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for 4-oxo-3,4-dihydroquinazoline gave 645 hits, of which 141 have a phenyl group at position N3 and 27 have a sulfur atom at position C2. A combination of both substitutions (without a link between the two) results in a set of 10 hits, which was used for further analysis. The dihedral angle between the leastsquares planes through the quinazoline and phenyl rings varies between 71.99° (CSD refcode MUDGID; Saeed et al., 2014) and 86.46° (CSD refcode GUWDIM; Rimaz et al., 2009) with an average of 81.63°. The dihedral angle does not depend on eventual ortho subsitution of the phenyl ring, as illustrated by the structures MUDGID (71.99°) and MUDNAC (85.90°; Saeed et al., 2014), which both have an o-toluidine substituent at position N3. The almost perpendicular mutual orientation of both rings is also observed for the title compound.

5. Synthesis and crystallization

Anthranilic acid, phenyl isothiocyanate and ethyl chloroacetate were purchased from Acros and used without purification. Melting points were measured in open capillary tubes on a Gallenkamp melting point apparatus. IR spectra (ν , cm⁻¹) were recorded on FTIR-8400S-SHIMADZU spectrometer using KBr pellets. The NMR spectra were recorded on a Bruker Avance III spectrometer (500 MHz for ¹H NMR) using residual solvent DMSO- d_6 signals as internal reference. The spin-spin coupling constants (J) are given in Hz. Peak multiplicity is reported as s (singlet), d (doublet), dd (doublet-doublet), t (triplet), q (quartet), m (multiplet). The synthetic protocol for title compound (4) is shown in Fig. 1 (Nguyen *et al.*, 2019).

Synthesis of 2-mercapto-3-phenylquinazolin-4-one (3):

Phenyl isothiocyanate (2) (0.1 mol) was added to the solution of anthranilic acid (1) (0.1 mol) and triethylamine (3.0 mL) in absolute ethanol (200 mL). The reaction mixture then was refluxed for 4 h. After cooling to room temperature, the reaction mixture was poured into cold water. The resulting solid was filtered and recrystallized from a mixture of DMF and water, then washed with cold ethanol to give the product (3). M.p. 569 K; yield 80%. IR (KBr, cm⁻¹): 3217, 3134 (N-H), 3028 (C-H aromatic), 1659 (C=O), 1618, 1524, 1485 (C=N, C=C aromatic). ¹H NMR [Bruker XL-500, 500 MHz, d_6 -DMSO, δ (ppm), J (Hz)]: 13.05 (s, 1H, H^{2a}), 7.96 (d, 1H, ${}^{3}J$ = 8.0 Hz, H⁵), 7.80 (dd, 1H, ${}^{3}J_1$ = ${}^{3}J_2$ = 7.5 Hz, H⁶), 7.36 (dd, 1H, ${}^{3}J_1$ = ${}^{3}J_2$ = 7.5 Hz, H^{3b,3f}).

Synthesis of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl) sulfanyl]acetate (4):

A mixture of (3) (20 mmol) and anhydrous potassium carbonate (20 mmol) in dry DMF (30 mL) was stirred for 30 min, ethyl chloroacetate (20 mmol) was then added. After refluxing for 5 h, the reaction mixture was cooled to room temperature and poured into ice-cold water. The white precipitate was filtered off and recrystallized from ethanol to afford crystals of (4). Colourless crystals, m.p. 485 K, yield 65%. IR (KBr, cm⁻¹): 3059 (C–H aromatic), 2976, 2906 (C–H aliphatic), 1732 (C=O ester), 1680 (C=O ketone), 1607, 1598, 1468 (C=N, C=C aromatic). ¹H NMR [Bruker XL-500, 500 MHz, d_6 -DMSO, δ (ppm), J (Hz)]: 8.09 (d, 1H, ³J = 8.0 Hz, H⁵), 7.84 (d, 1H, ³J = 7.5 Hz, H⁸), 7.61-7.48 (m, 7H, H^{6,7,3b,3c,3d,3e,3f}), 4.15 (q, 2H, ³J = 7.0 Hz, H^{2c}), 3.99 (s, 2H, H^{2a}), 1.23 (t, 3H, ³J = 7.0 Hz, H^{2d}).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The methyl group C17 is disordered over two positions with population parameters 0.531 (13) and 0.469 (13)]. The H atoms were placed in idealized positions and included as riding contributions with $U_{iso}(H)$ values of $1.2U_{eq}$ or $1.5U_{eq}$ of the parent atoms, with C-H distances of 0.93 (aromatic), 0.97 (CH₂) and 0.96 Å (CH₃). In the final cycles of refinement, two outliers were omitted.

Funding information

We are grateful to The Ministry of Education and Training of Vietnam for supporting this research (grant No. B2019-SPS-02). LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

research communications

Table 2Experimental details.

Crystal data Chemical formula C18H16N2O3S 340.39 М., Crystal system, space group Monoclinic, P21/n Temperature (K) 293 11.8865 (6), 5.1298 (3), *a*, *b*, *c* (Å) 28.2942 (14) β (°) V (Å³) 93.667 (4) 1721.72 (16) Ζ 4 Radiation type Μο Κα $\mu \,({\rm mm}^{-1})$ 0.21 Crystal size (mm) $0.5 \times 0.15 \times 0.15$ Data collection Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset/far. Eos Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018) 0.715, 1.000 T_{\min}, T_{\max} No. of measured, independent and 18522, 3533, 2875 observed $[I > 2\sigma(I)]$ reflections R_{int} 0.024 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.625 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.043, 0.111, 1.08 No. of reflections 3533 No. of parameters 229 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.15, -0.22

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

References

- Alanazi, A. M., Abdel-Aziz, A. A.-M., Shawer, T. Z., Ayyad, R. R., Al-Obaid, A. M., Al-Agamy, M. H. M., Maarouf, A. R. & El-Azab, A. S. (2016). J. Enzyme Inhib. Med. Chem. 31, 721–735.
- Al-Khuzaie, M. G. A. & Al-Majidi, S. M. H. (2014). Iraqi J. Sci. 55, 582–593.
- Al-Majidi, S. M. H. & Al-Khuzaie, M. G. A. (2015). Asian J. Chem. 27, 756–762.
- Al-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel-Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2016). *J. Enzyme Inhib. Med. Chem.* **31**, 78–89.

Al-Suwaidan, I. A., Abdel-Aziz, A. A. M., Shawer, T. Z., Ayyad, R. R., Alanazi, A. M., El-Morsy, A. M., Mohamed, M. A., Abdel- Aziz, A. I., El-Sayed, M. A. A. & El-Azab, A. S. (2017). J. Enzyme Inhib. Med. Chem. 32 , 1229–1239.
Deshmukh, M. B. & Dhongade, S. (2004). <i>E-J. Chem.</i> 1 , 17–31. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &
 Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. El-Azab, A. S., Abdel-Hamide, S. G., Sayed-Ahmed, M. M., Hassan, G. S., El-Hadiyah, T. M., Al-Shabanah, O. A., Al-Deeb, O. A. & El-Subbach, H. J. (2013). Mad. Cham. Ray. 22, 2815–2827.
 Subbagii, H. I. (2015). Med. Chem. Res. 22, 2615–2627. Elfekki, I. M., Hassan, W. F. M., Elshihawy, H. E. A. E., Ali, I. A. I. & Eltamany, E. H. M. (2014). Chem. Pharm. Bull. 62, 675–694. El-Helby A. G. A. & Walab, M. H. A. (2003). Acta Pharm. 53, 127–
138.
El-Sayed, S., Metwally, K., El-Shanawani, A. A., Abdel-Aziz, L. M., Pratsinis, H. & Kletsas, D. (2017). <i>Chem. Cent. J.</i> 11 , 102–111.
Gawad, N. M. A., Georgey, H. H., Youssef, R. M. & El-Sayed, N. A. (2010). Eur. J. Med. Chem. 45, 6058–6067.
Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2016). <i>Indian J. Chem.</i> 55B, 734–746.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). <i>Acta</i> <i>Cryst.</i> B72, 171–179.
 Gursoy, A. & Karal, N. (2003). Eur. J. Med. Chem. 38, 633–643. Khalil, A. A., Hamide, S. G. A., Al-Obaid, A. M. & El-Subbagh, H. I. (2003). Arch. Pharm. Med. Chem. 2, 95–103.
Lfta, S. J., Ayram, N. B. & Baqer, S. M. (2016). <i>Al-Nahrain J. Sci.</i> 19 , 1–12.
Lv, X., Yang, L., Fan, Z. & Bao, X. (2018). J. Saudi Chem. Soc. 22, 101–109.
Mohamed, M. A., Ayyad, R. R., Shawer, T. Z., Abdel-Aziz, A. A. M. & El-Azab, A. S. (2016). <i>Eur. J. Med. Chem.</i> 112 , 106–113.
Nguyen, C. T., Nguyen, Q. T., Dao, P. H., Nguyen, T. L., Nguyen, P. T. & Nguyen, H. H. (2019). J. Chem., Article ID 1492316, 8 pp (https://doi.org/10.1155/2019/1492316)
Pandey, S. K., Singh, A. & Nizamuddin, A. S. (2009). Eur. J. Med. Chem. 44, 1188–1197.
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, UK.

- Rimaz, M., Khalafy, J., Tavana, K., Slepokura, K., Lis, T., Souldozi, A., Mahyari, A. T., Shajari, N. & Ramazani, A. (2009). Z. Naturforsch. *Teil B*, **64**, 1065–1069.
- Saeed, A., Mahmood, S. & Florke, U. (2014). Turk. J. Chem. 38, 275–287.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. University of Western Australia. http://hirshfeldsurface.net

supporting information

Acta Cryst. (2020). E76, 668-672 [https://doi.org/10.1107/S2056989020005071]

Synthesis and structure of ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate

Cong Nguyen Tien, Quang Nguyen Tan, Dung Pham Duc, Phuong Tran Hoang, Dat Nguyen Dang, Luong Truong Minh and Luc Van Meervelt

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Ethyl 2-[(4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)sulfanyl]acetate

Crystal data

 $C_{18}H_{16}N_{2}O_{3}S$ $M_{r} = 340.39$ Monoclinic, $P2_{1}/n$ a = 11.8865 (6) Å b = 5.1298 (3) Å c = 28.2942 (14) Å $\beta = 93.667 (4)^{\circ}$ $V = 1721.72 (16) Å^{3}$ Z = 4

Data collection

Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S = 1.083533 reflections F(000) = 712 $D_x = 1.313 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7343 reflections $\theta = 2.9-26.9^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 293 KNeedle, colourless $0.5 \times 0.15 \times 0.15 \text{ mm}$

 $T_{\min} = 0.715, T_{\max} = 1.000$ 18522 measured reflections 3533 independent reflections 2875 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 26.4^{\circ}, \theta_{\text{min}} = 2.7^{\circ}$ $h = -14 \rightarrow 14$ $k = -6 \rightarrow 6$ $l = -35 \rightarrow 35$

229 parameters0 restraintsPrimary atom site location: dualHydrogen site location: inferred from neighbouring sitesH-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0409P)^2 + 0.5306P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\text{max}} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.68674 (11)	0.7908 (3)	0.38689 (5)	0.0521 (4)	
C2	0.58088 (13)	0.8340 (3)	0.37790 (6)	0.0453 (4)	
N3	0.51456 (10)	0.7160 (3)	0.34201 (5)	0.0438 (3)	
C4	0.55985 (14)	0.5351 (3)	0.31132 (6)	0.0456 (4)	
C5	0.67846 (13)	0.4761 (3)	0.32214 (6)	0.0450 (4)	
C6	0.73246 (16)	0.2867 (4)	0.29607 (7)	0.0577 (5)	
H6	0.692325	0.197199	0.271885	0.069*	
C7	0.84377 (17)	0.2334 (4)	0.30609 (8)	0.0702 (6)	
H7	0.879740	0.107617	0.288799	0.084*	
C8	0.90293 (17)	0.3672 (5)	0.34210 (9)	0.0794 (7)	
H8	0.979020	0.331142	0.348609	0.095*	
C9	0.85182 (16)	0.5518 (5)	0.36837 (8)	0.0709 (6)	
H9	0.893080	0.639601	0.392451	0.085*	
C10	0.73754 (14)	0.6078 (4)	0.35893 (6)	0.0489 (4)	
S11	0.50921 (4)	1.05531 (10)	0.41245 (2)	0.06194 (18)	
C12	0.62397 (16)	1.1534 (4)	0.45253 (7)	0.0564 (5)	
H12A	0.686170	1.209133	0.434376	0.068*	
H12B	0.600486	1.301892	0.470701	0.068*	
C13	0.66465 (17)	0.9421 (4)	0.48617 (7)	0.0563 (5)	
O14	0.61472 (13)	0.7513 (3)	0.49620 (5)	0.0728 (4)	
015	0.76681 (14)	1.0046 (3)	0.50483 (6)	0.0907 (5)	
C16	0.8156 (3)	0.8266 (9)	0.54064 (14)	0.1386 (14)	
H16A	0.856216	0.924744	0.565576	0.166*	0.531 (13)
H16B	0.756086	0.729319	0.554614	0.166*	0.531 (13)
H16C	0.780435	0.857679	0.570144	0.166*	0.469 (13)
H16D	0.798109	0.649159	0.530875	0.166*	0.469 (13)
C17A	0.8872 (9)	0.6589 (19)	0.5203 (4)	0.129 (4)	0.531 (13)
H17A	0.844520	0.538073	0.500469	0.194*	0.531 (13)
H17B	0.930264	0.565109	0.544649	0.194*	0.531 (13)
H17C	0.937310	0.755551	0.501607	0.194*	0.531 (13)
C17B	0.9293 (6)	0.850 (3)	0.5485 (4)	0.152 (7)	0.469 (13)
H17D	0.964924	0.820026	0.519528	0.228*	0.469 (13)
H17E	0.955908	0.724381	0.571772	0.228*	0.469 (13)
H17F	0.947221	1.022473	0.559888	0.228*	0.469 (13)
C18	0.39382 (13)	0.7640 (3)	0.33627 (6)	0.0454 (4)	
C19	0.35129 (17)	0.9418 (4)	0.30424 (7)	0.0620 (5)	

supporting information

H19	0.399266	1.040013	0.286589	0.074*
C20	0.23496 (18)	0.9749 (5)	0.29822 (9)	0.0763 (6)
H20	0.205352	1.096917	0.276528	0.092*
C21	0.16481 (17)	0.8324 (5)	0.32340 (9)	0.0773 (6)
H21	0.087168	0.852870	0.318649	0.093*
C22	0.20844 (17)	0.6590 (6)	0.35575 (11)	0.0981 (9)
H22	0.160210	0.563733	0.373781	0.118*
O23	0.50149 (10)	0.4422 (3)	0.27855 (5)	0.0628 (4)
C23	0.32353 (16)	0.6215 (5)	0.36235 (9)	0.0804 (7)
H23	0.352638	0.500489	0.384337	0.096*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
N1	0.0442 (8)	0.0581 (9)	0.0531 (9)	0.0025 (7)	-0.0027 (6)	-0.0094 (7)
C2	0.0450 (9)	0.0470 (9)	0.0436 (9)	0.0019 (7)	0.0000 (7)	-0.0009 (7)
N3	0.0390 (7)	0.0495 (8)	0.0429 (7)	-0.0008 (6)	0.0014 (6)	-0.0007 (6)
C4	0.0448 (9)	0.0500 (10)	0.0426 (9)	-0.0079 (7)	0.0059 (7)	-0.0003 (7)
C5	0.0436 (8)	0.0490 (9)	0.0432 (9)	-0.0020(7)	0.0087 (7)	0.0011 (7)
C6	0.0592 (11)	0.0621 (12)	0.0530 (10)	0.0015 (9)	0.0133 (9)	-0.0057 (9)
C7	0.0640 (12)	0.0763 (14)	0.0722 (14)	0.0156 (11)	0.0198 (10)	-0.0067 (11)
C8	0.0448 (10)	0.1025 (18)	0.0911 (16)	0.0192 (11)	0.0054 (10)	-0.0125 (14)
C9	0.0454 (10)	0.0877 (15)	0.0784 (14)	0.0082 (10)	-0.0050 (9)	-0.0172 (12)
C10	0.0415 (9)	0.0551 (10)	0.0503 (10)	0.0012 (8)	0.0051 (7)	-0.0006 (8)
S11	0.0562 (3)	0.0648 (3)	0.0638 (3)	0.0166 (2)	-0.0040 (2)	-0.0173 (2)
C12	0.0662 (11)	0.0442 (10)	0.0583 (11)	0.0019 (9)	-0.0007 (9)	-0.0083 (8)
C13	0.0682 (12)	0.0521 (11)	0.0486 (10)	0.0027 (9)	0.0039 (9)	-0.0064 (9)
O14	0.0954 (11)	0.0510 (8)	0.0736 (10)	-0.0013 (8)	0.0189 (8)	-0.0009 (7)
015	0.0849 (11)	0.0986 (12)	0.0845 (11)	-0.0084 (9)	-0.0259 (9)	0.0233 (10)
C16	0.130 (3)	0.164 (3)	0.115 (3)	0.017 (3)	-0.037 (2)	0.058 (3)
C17A	0.131 (7)	0.112 (6)	0.143 (7)	0.033 (5)	0.006 (5)	0.020 (5)
C17B	0.093 (5)	0.221 (15)	0.137 (9)	0.000 (6)	-0.030 (5)	0.083 (10)
C18	0.0390 (8)	0.0472 (9)	0.0495 (9)	0.0018 (7)	-0.0019 (7)	0.0005 (7)
C19	0.0591 (11)	0.0629 (12)	0.0625 (12)	-0.0047 (9)	-0.0084 (9)	0.0135 (10)
C20	0.0663 (13)	0.0759 (14)	0.0830 (15)	0.0141 (11)	-0.0229 (12)	0.0171 (12)
C21	0.0445 (10)	0.0862 (16)	0.0997 (17)	0.0125 (11)	-0.0074 (11)	0.0044 (14)
C22	0.0431 (11)	0.113 (2)	0.139 (2)	0.0074 (12)	0.0148 (13)	0.0576 (19)
O23	0.0525 (7)	0.0796 (9)	0.0558 (8)	-0.0115 (7)	0.0002 (6)	-0.0174 (7)
C23	0.0441 (10)	0.0888 (16)	0.1085 (18)	0.0097 (10)	0.0063 (11)	0.0494 (14)

Geometric parameters (Å, °)

N1—C2	1.287 (2)	S11—C12	1.7896 (19)
N1-C10	1.390 (2)	C12—H12A	0.9700
C17Aa—H17A	0.9600	C12—H12B	0.9700
C17Aa—H17B	0.9600	C12—C13	1.502 (3)
C17Aa—H17C	0.9600	C13—O14	1.188 (2)
C17Bb—H17D	0.9600	C13—O15	1.332 (2)

C17Bb—H17E	0 9600	Q15—C16	1 456 (3)
C17Bb—H17F	0.9600	C16—H16A	0.9700
C_{2}	1384(2)	C16—H16B	0.9700
$C_2 = S_{11}$	1.361(2) 1.7541(17)	C16-H16C	0.9700
N3_C4	1.7541(17) 1.402(2)	C16—H16D	0.9700
N3 C18	1.402(2) 1.4550(10)	C_{16} C_{17A}	1 363 (8)
C_{4}	1.455(2)	C16 C17R	1.303(8)
$C_4 = C_3$	1.435(2)	C_{10} C_{10} C_{10}	1.301(9)
C4	1.219(2) 1.400(2)	$C_{18}^{18} = C_{19}^{22}$	1.300(2)
$C_{5} = C_{10}$	1.400(2) 1.202(2)	$C_{10} = U_{10}$	1.302(3)
C5C10	1.393 (2)	C19—H19	0.9300
	0.9300	C19—C20	1.393 (3)
	1.363 (3)	C20—H20	0.9300
C/—H/	0.9300	C20—C21	1.346 (3)
C7—C8	1.383 (3)	C21—H21	0.9300
С8—Н8	0.9300	C21—C22	1.356 (3)
C8—C9	1.370 (3)	C22—H22	0.9300
С9—Н9	0.9300	C22—C23	1.382 (3)
C9—C10	1.397 (2)	С23—Н23	0.9300
C2—N1—C10	117.28 (15)	H16Aa—C16—H16B	108.2
N1—C2—N3	124.99 (15)	C17Bb-C16-H16C	108.8
N1—C2—S11	120.31 (13)	C17Bb-C16-H16D	108.8
H17Aa—C17Aa—H17B	109.5	H16Cb—C16—H16D	107.7
H17Aa—C17Aa—H17C	109.5	H12A—C12—H12B	107.7
N3-C2-S11	114.70 (11)	C13—C12—S11	113.59(13)
$C_2 - N_3 - C_4$	121.38 (13)	C13—C12—H12A	108.8
$C_{2} = N_{3} = C_{18}$	121.27(13)	C13—C12—H12B	108.8
C4 - N3 - C18	117 26 (13)	014-013-012	126 89 (19)
$N_3 - C_4 - C_5$	117.20(13) 114.37(14)	014-013-015	120.09(19) 124.07(19)
023 - C4 - N3	120 51 (15)	015-013-012	124.07(17) 109.01(17)
$H17B_2 C17A_2 H17C$	100 5	C_{13} C_{15} C_{16}	109.01(17) 115.0(2)
H17Db C17Rb H17E	100.5	015 015 016 116	100.8
H17Db C17Bb H17E	109.5	015 C16 H16B	109.8
H17Eh C17Bh H17E	109.5	015 C16 H16C	109.8
11/20 - C1/B0 - 11/F	109.5	015 - 015	108.8
023 - 04 - 03	123.12(10) 120.27(10)		100.5
$C_0 - C_3 - C_4$	120.27(10)	C10 - C1/Aa - H1/A	109.5
C10 - C3 - C4	119.40 (13)	C16 - C17 - N3	120.03 (10)
$C_{10} = C_{5} = C_{6}$	120.27 (10)	C10 - C1/Aa - H1/B	109.5
С5—С6—Н6	120.0	C19 - C18 - C23	120.39 (17)
C/-C6-C5	120.09 (19)	C23—C18—N3	118.92 (15)
С/—С6—Н6	120.0	CI6—CI/Aa—HI/C	109.5
С6—С/—Н/	120.2	CI6—CI7Bb—HI7D	109.5
C6—C7—C8	119.64 (19)	С18—С19—Н19	120.4
С8—С7—Н7	120.2	C18—C19—C20	119.14 (19)
С7—С8—Н8	119.3	C16—C17Bb—H17E	109.5
C9—C8—C7	121.39 (19)	C16—C17Bb—H17F	109.5
С9—С8—Н8	119.3	C20—C19—H19	120.4
С8—С9—Н9	120.1	С19—С20—Н20	119.6

supporting information

C8—C9—C10	119.9 (2)	C21—C20—C19	120.9 (2)
С10—С9—Н9	120.1	C21—C20—H20	119.6
N1—C10—C5	122.43 (15)	C20—C21—H21	120.3
N1—C10—C9	118.83 (17)	C20—C21—C22	119.37 (19)
C17Aa—C16—O15	109.5 (5)	C22—C21—H21	120.3
С5—С10—С9	118.73 (17)	C21—C22—H22	119.5
C2—S11—C12	99.06 (8)	C21—C22—C23	121.0 (2)
C17Bb-C16-O15	113.9 (5)	С23—С22—Н22	119.5
S11-C12-H12A	108.8	C18—C23—C22	119.24 (19)
C17Aa—C16—H16A	109.8	C18—C23—H23	120.4
S11—C12—H12B	108.8	С22—С23—Н23	120.4
C17Aa—C16—H16B	109.8		
N1 C2 N3 C4	-0.6(3)	C7 C8 C0 C10	0.0 (4)
N1 = C2 = N3 = C4	-0.0(3)	$C^{2} = C^{2} = C^{2$	0.0(4)
N1 = C2 = N3 = C18	170.02(10) 0.18(17)	$C_8 = C_9 = C_{10} = N_1$	-1.0(3)
11 - 2 - 511 - 212	0.18(17) 0.7(3)	$C_{0} = C_{0} = C_{10} = C_{3}$	-1.3(3)
$C_2 = N_1 = C_{10} = C_3$	-17850(18)	$C_{10} = N_1 = C_2 = N_3$	1.3(3) 178 30(13)
$C_2 = N_1 = C_1 = C_2$	-1/8.39(18)	$C_{10} = 0.05 = 0.05 = 0.07$	-1.1(3)
$C_2 = N_3 = C_4 = C_3$	2.9(2) -176.56(16)	C10 - C3 - C0 - C7	1.1(3) 17077(12)
$C_2 = N_3 = C_4 = 0.23$	1/0.30(10)	S11 - C2 - N3 - C4 S11 C2 N3 C18	-36(2)
$C_2 = N_3 = C_{18} = C_{17}$	-84.4(2)	$S_{11} = C_2 = N_3 = C_{18}$	-10.1(2)
$C_2 = N_3 = C_{10} = C_{23}$	-68.04(15)	S11 - C12 - C13 - O14 S11 - C12 - C13 - O15	-19.1(3) 162 70 (14)
$N_{2} = S_{11} = C_{12} = C_{13}$	170.82(13)	$C_{12} = C_{13} = C_{15} = C_{15}$	102.70(14) 176.3(3)
$N_3 = C_4 = C_5 = C_6$	179.82 (13)	014 015 015 016	-1.0(4)
$N_3 = C_4 = C_5 = C_0$	-2 2 (2)	$C_{13} = C_{15} = C_{15} = C_{16} = C_{17}$	-1.9(4)
$N_{3} = C_{4} = C_{3} = C_{10}$	3.3(2)	$C_{13} = 015 = C_{10} = C_{17} = C_{17}$	101.3(9) 07.7(7)
$N_3 = C_{18} = C_{19} = C_{20}$	-177.5(2)	C18 = N3 = C4 = C5	-173.88(14)
$C_{4} = C_{10} = C_{23} = C_{22}$	-85.4(2)	$C_{18} = N_3 = C_4 = C_3$	67(2)
$C_{4} = N_{3} = C_{18} = C_{19}$	03.4(2)	$C_{18} = 10 = 025$	-0.1(2)
C_{4} C_{5} C_{6} C_{7}	170.52(18)	$C_{10} = C_{10} = C_{20} = C_{21}$	0.4(4)
$C_{4} = C_{5} = C_{10} = C_{10}$	179.32(10) 1.7(3)	$C_{19} = C_{18} = C_{23} = C_{22}$	0.3(4)
$C_{4} = C_{5} = C_{10} = 10$	-170.01.(18)	$C_{1}^{2} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$	-1.7(5)
$C_{4} = C_{5} = C_{10} = C_{5}$	1/9.01(10)	$C_{20} = C_{21} = C_{22} = C_{23}$	1.7(3)
$C_{0} = C_{0} = C_{0} = C_{0}$	-177.70(16)	023 C4 C5 C6	-45(3)
$C_{0} = C_{0} = C_{10} = C_{10}$	1/(.10(10))	023 - 04 - 05 - 00	ч. <i>3 (3)</i> 176 07 (17)
$C_{0} = C_{0} = C_{10} = C_{9}$	1.0(3)	$C_{23} = C_{4} = C_{10} = C_{10}$	-0.5(3)
Cu-C/-Co-C9	0.0 (4)	U2J-U10-U19-U2U	0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C7—H7…O23 ⁱ	0.93	2.59	3.452 (3)	155
C12—H12B…O14 ⁱⁱ	0.97	2.42	3.311 (3)	153
C19—H19…O23 ⁱⁱ	0.93	2.41	3.236 (2)	148

Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) x, y+1, z.