

Received 14 February 2020 Accepted 28 February 2020

Edited by M. Zeller, Purdue University, USA

Keywords: piperazines; crystal structure; molecular dimensions; molecular conformation; hydrogen bonding; supramolecular assembly.

CCDC references: 1987252; 1987251; 1987250; 1987249

Supporting information: this article has supporting information at journals.iucr.org/e

 $\bigcirc \bigcirc$ Open \bigcirc Access

Crystal structures of the recreational drug *N*-(4methoxyphenyl)piperazine (MeOPP) and three of its salts

Haruvegowda Kiran Kumar,^a Hemmige S. Yathirajan,^a* Chayanna Harish Chinthal,^a Sabine Foro^b and Christopher Glidewell^c

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and ^cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. *Correspondence e-mail: yathirajan@hotmail.com

Crystal structures are reported for N-(4-methoxyphenyl)piperazine (MeOPP), (I), and for its 3,5-dinitrobenzoate, 2,4,6-trinitrophenolate (picrate) and 4-aminobenzoate salts, (II)-(IV), the last of which crystallizes as a monohydrate. In MeOPP, $C_{11}H_{16}N_2O$, (I), the 4-methoxyphenyl group is nearly planar and it occupies an equatorial site on the piperazine ring: the molecules are linked into simple C(10) chains by N-H···O hydrogen bonds. In each of the salts, *i.e.*, $C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_6^-$, (II), $C_{11}H_{17}N_2O^+ \cdot C_6H_2N_3O_7^-$, (III), and $C_{11}H_{17}N_2O^+ \cdot C_7H_6NO_2^- \cdot H_2O$, (IV), the effectively planar 4-methoxyphenyl substituent again occupies an equatorial site on the piperazine ring. In (II), two of the nitro groups are disordered over two sets of atomic sites and the bond distances in the anion indicate considerable delocalization of the negative charge over the C atoms of the ring. The ions in (II) are linked by two N-H···O hydrogen bonds to form a cyclic, centrosymmetric four-ion aggregate; those in (III) are linked by a combination of N-H···O and C-H··· π (arene) hydrogen bonds to form sheets; and the components of (IV) are linked by N-H···O, O- $H \cdots O$ and $C - H \cdots \pi$ (arene) hydrogen bonds to form a three-dimensional framework structure. Comparisons are made with the structures of some related compounds.

1. Chemical context

N-(4-Methoxyphenyl)piperazine (MeOPP) has fairly recently emerged as a new addition to the range of designer drugs aimed at recreational use, and considerable effort has consequently been invested in the development of rapid and reliable methods for the detection in human fluids not only of MeOPP itself but also of its primary metabolites N-(4-hydroxyphenyl)piperazine and 4-hydroxyaniline (Staack & Maurer, 2003; Staack et al., 2004). The action of MeOPP on human physiology is similar to that of amphetamines, but it has a significantly lower potential for abuse (Nagai et al., 2007). In view of these observations, coupled with the broad range of biological activities exhibited by piperazine derivatives in general (Asif, 2015; Brito et al., 2019), we have recently initiated a programme of study centred on N-(4-methoxyphenyl)piperazine derivatives. Thus, we have recently reported the synthesis and structures of a range of salts derived from MeOPP (Kiran Kumar, Yathirajan, Foro et al., 2019), as well as those of a range of neutral 1-aroyl-4-(4methoxyphenyl)piperazines (Kiran Kumar, Yathirajan, Sagar et al., 2019). In a continuation of the earlier work, we have now prepared a further series of salts, whose molecular and

supramolecular structures we report here, along with that of MeOPP itself: the structures reported here are those of *N*-(4-methoxyphenyl)piperazine (I), 4-(4-methoxyphenyl)piperazin-1-ium 3,5-dinitrobenzoate (II), 4-(4-methoxyphenyl)piperazin-1-ium 2,4,6-trinitrophenolate (III) and 4-(4-methoxyphenyl)piperazin-1-ium 4-aminobenzoate monohydrate (IV) (Figs. 1–4). The salts (II)–(IV) were readily prepared by co-crystallization of MeOPP with the appropriate acidic component in methanol.

2. Structural commentary

Compound (I) is the neutral N-(4-methoxyphenyl)piperazine (MeOPP), and compounds (II) and (III) are unsolvated 1:1 3,5-dinitrobenzoate and 2,4,6-trinitrophenolate (picrate) salts, respectively, while compound (IV) is the 1:1 4-aminobenzoate salt, which crystallizes as a stoichiometric monohydrate in which the water component is firmly embedded in the overall hydrogen-bonded network (see Section 3, below). In each of (I)–(IV), the 4-methoxyphenyl substituent occupies an equatorial site on the piperazine ring but the MeOPP component exhibits no internal symmetry, so that it is conformationally

Figure 1

The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The independent components of compound (II) showing the atomlabelling scheme and the hydrogen bond, drawn as a dashed line, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

chiral: the space groups (Table 2) confirm that each compound has crystallized as a conformational racemate. In each compound, the reference MeOPP unit was selected as one having a torsional angle C23-C24-O24-C27 that was close to 180°, as opposed to the alternative value close to zero degrees, and with the ring-puckering angle θ (Cremer & Pople, 1975), as calculated for the atom sequence (N1,C2,C3,N4,C5,C6) which was close to 0°, as opposed to a value close to 180° for the opposite conformational enantiomer.

In the salt (III), the nitro substituents at atoms C32 and C36 (Fig. 3) are both disordered over two sets of atomic sites

The independent components of compound (III) showing the atomlabelling scheme, the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit, and the disorder in the nitro groups: the major disorder components are drawn with full lines and the minor disorder components are drawn with broken lines. Displacement ellipsoids are drawn at the 30% probability level.

research communications

Figure 4

The independent components of compound (IV) showing the atomlabelling scheme and the hydrogen bonds, drawn as dashed lines, within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

having refined occupancies of 0.531 (16) and 0.469 (16) for the nitro group at atom C32, and 0.62 (6) and 0.38 (6) for that at atom C36. The major and minor disorder components of both these nitro groups are rotated about the exocyclic C-N bonds: for the C32 substituent, the two components are rotated by similar amounts, 22.6 (5) and 24.2 (5) $^{\circ}$ for the major and minor components, but in opposite senses, so that the dihedral angle between the two components is $46.8 (6)^{\circ}$; by contrast, the rotations at C36 are in the same sense, by 25.2 (8) and 5.0 $(3)^{\circ}$, with a dihedral angle between the components of $20.7 (18)^{\circ}$. The bond distances within this anion show some interesting features: firstly, the distance C31-O31, 1.235 (2) Å, is short for a phenolic bond [mean value (Allen et al., 1987) 1.362 Å, lower quartile value 1.353 Å] and more reminiscent of the distances observed in ketones (mean value 1.210 Å); secondly, the two C–C distances flanking this C–O unit, 1.448 (3) and 1.455 (3) Å, are much longer that the other C-C distances in this ring, which lie in the range 1.364(3)-1.383 (3) Å. These metrical observations support the formulation of the picrate anion here as containing an effectively double C=O bond at atom C31, with extensive delocalization of the negative charge over the atoms C32-C36, as indicated in the scheme.

In each compound, the methoxy C atom lies close to the plane of the adjacent aryl ring: the deviations from this plane are 0.176 (5), 0.033 (3), 0.040 (6) and 0.277 (7) Å in (I)–(IV), respectively. Associated with this near co-planarity, the two exocyclic O–C–C angles differ by *ca* 10° in each case, as is often observed when alkoxyarene systems are planar or nearly so (Seip & Seip, 1973; Ferguson *et al.*, 1996).

3. Supramolecular features

The supramolecular assembly of compound (I) is extremely simple: a single $N-H\cdots O$ hydrogen bond (Table 1) links molecules that are related by a 2_1 screw axis to form a C(10)(Etter, 1990; Etter *et al.*, 1990; Bernstein *et al.*, 1995) chain running parallel to the [001] direction (Fig. 5). However, there are no direction-specific interactions between adjacent chains so that the supramolecular assembly here is one-dimensional.

The assembly in the 3,5-dinitrobenzoate salt (II) is also very simple. Two independent N—H···O hydrogen bonds (Table 1) link inversion-related ion-pairs to form a cyclic centrosymmetric four-ion aggregate characterized by an $R_4^4(12)$ motif, and centred at (0.5, 0.5, 0.5) (Fig. 6). There are no direction-

Part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded chain parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(1 - x, 1 - y, \frac{1}{2} + z)$ and $(1 - x, 1 - y, -\frac{1}{2} + z)$, respectively.

Figure 6

Part of the crystal structure of compound (II) showing the formation of a cyclic hydrogen-bonded $R_4^4(12)$ aggregate. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).

Table 1	
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)-(IV).	

Compound	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
(I)	$N1 - H1 \cdots O24^{i}$	0.91 (4)	2.23 (4)	3.139 (3)	171 (3)
(II)	N1-H11···O31	0.96 (2)	1.814 (19)	2.7638 (18)	169 (2)
< /	$N1 - H12 \cdot \cdot \cdot O32^{ii}$	0.964 (18)	1.740 (18)	2.6953 (18)	170.5 (17)
(III)	N1-H11···O31	0.92 (3)	1.81 (3)	2.704 (3)	163 (2)
· /	N1-H11···O37	0.92 (3)	2.56 (3)	2.982 (11)	108.7 (19)
	N1-H11···O47	0.92 (3)	2.42 (3)	2.870 (15)	110.1 (19)
	$N1-H12\cdots O33^{iii}$	0.91 (3)	2.12 (3)	2.926 (6)	148 (2)
	$N1-H12\cdots O43^{iii}$	0.91 (3)	1.92 (3)	2.815 (6)	168 (2)
	N1-H12···O47	0.91 (3)	2.54 (3)	2.870 (15)	102.1 (19)
	$C12-H12\cdots Cg1^{iv}$	0.93	2.86	3.769 (3)	164
(IV)	N1-H11O41	0.95 (2)	1.88 (2)	2.803 (3)	165.2 (8)
· /	N1-H12···O31	0.943 (7)	1.793 (18)	2.728 (3)	171.2 (7)
	$O41 - H41 \cdots O32^{v}$	0.85 (3)	1.78 (3)	2.631 (4)	178 (4)
	$O41 - H42 \cdots O31^{vi}$	0.85 (3)	1.95 (3)	2.772 (3)	164 (3)
	$N34 - H341 \cdots O24^{vii}$	0.82 (4)	2.23 (4)	3.057 (4)	177 (4)
	$C22-H22\cdots Cg2^{v}$	0.93	2.93	3.666 (3)	137
	$C26-H26\cdots Cg2^{viii}$	0.93	2.77	3.531 (3)	139

Cg1 and Cg2 represent the centroids of the rings (C21-C26) and (C31-C36), respectively.

Symmetry codes: (i) 1 - x, 1 - y, $\frac{1}{2}$ + z; (ii) 1 - x, 1 - y, 1 - z; (iii) -1 + x, y, z; (iv) $\frac{1}{2}$ - x, $-\frac{1}{2}$ + y, $\frac{3}{2}$ - z; (v) -x, 1 - y, 2 - z; (vi) 1 - x, 1 - y, 2 - z; (vii) x, y, 1 + z; (viii) - x, 2 - y, 2 - z.

specific interactions between adjacent aggregates, so that the supramolecular assembly here is finite, or zero-dimensional.

The component ions of compound (III) are linked by a combination of $N-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds to form complex sheets; however, the formation of the sheet structure is readily analysed in terms of two simpler, one-dimensional sub-structures (Ferguson *et al.*, 1998*a,b;* Gregson *et al.*, 2000). Although two of the nitro groups exhibit positional disorder (see Section 2, above), the hydrogen bonds involving the two sets of disorder components are fairly similar (Table 1), so that it is only necessary here to consider the interactions involving the major disorder components. The two ions within the selected asymmetric unit (Fig. 3) are linked by a markedly asymmetric $N-H\cdots(O)_2$ three-centre system containing an $R_1^2(6)$ ring, and ion-pairs of this type, which are

related by translation, are linked by a two-centre N-H···O hydrogen bond to form a $C(8)C(11)[R_1^2(6)]$ chain of rings running parallel to [100] (Fig. 7). In the second sub-structure, cations, which are related by a 2₁ screw axis, are linked by a C-H··· π (arene) hydrogen bond, to form a chain running parallel to the [010] direction (Fig. 8). The combination of chains running parallel to the [100] and [010] directions then generates a sheet lying parallel to (001) in the domain 0.5 < z < 1.0. A second sheet of this type, related to the first by inversion, lies in the domain 0 < z < 0.5: although there are no direction-specific interactions between adjacent sheets, so that the supramolecular assembly in (III) is two dimensional, the sheets are, however, strongly interdigitated (Fig. 9).

Part of the crystal structure of compound (III) showing the formation of a hydrogen-bonded chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder components and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1 + x, y, z) and (-1 + x, y, z), respectively.

Part of the crystal structure of compound (III), showing the formation of a hydrogen-bonded chain of cations along [010]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline, the minor disorder components and the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions $(\frac{1}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z)$ and $(\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z)$, respectively.

research communications

Figure 9

A projection along [100] of part of the crystal structure of (III), showing the interdigitation of the sheets lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the minor disorder components and the H atoms not involved in the motifs shown have been omitted.

Figure 10

Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded chain of rings parallel to [100]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the unit-cell outline and the H atoms bonded to C atoms have been omitted. The atoms marked with an asterisk (*), a hash (#), a dollar sign (\$) or an ampersand (&) are at the symmetry positions (1 - x, 1 - y, 2 - z), (-x, 1 - y, 2 - z), (1 + x, y, z) and (-1 + x, y, z) respectively.

For compound (IV), the supramolecular assembly is more complex than for any of compounds (I)–(III), as a result of the presence of both an additional amino substituent in the cation and a water molecule, which acts as both a donor and an acceptor of hydrogen bonds (Table 1). The combination of N-H···O, O-H···O and C-H··· π (arene) hydrogen bonds links the components into a three-dimensional framework structure but, again, this can readily be analysed in terms of fairly simple sub-structures. In the first of these, the ionic components and the water molecules form a chain of centrosymmetric rings running parallel to the [100] direction, in which $R_6^6(16)$ rings centred at (n, 0.5, 1) alternate with $R_6^4(12)$ rings centred at (n + 0.5, 0.5, 1), where n represents an integer in each case (Fig. 10). In the second sub-structure, the two N-H···O hydrogen bonds having atoms O24 and O31 as the acceptors (Table 1) link the ions into a simple $C_2^2(18)$ chain running parallel to the [001] direction (Fig. 11).

Figure 11

Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded chain parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the water molecules and the H atoms bonded to C atoms have been omitted.

Part of the crystal structure of compound (IV) showing the formation of a hydrogen-bonded chain parallel to [010] and built from $N-H\cdots O$, $O-H\cdots O$ and $C-H\cdots \pi$ (arene) hydrogen bonds; these are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms not involved in the motifs shown have been omitted.

There are two $C-H\cdots\pi(\text{arene})$ interactions in the structure of compound (IV): the longer of these, involving atom C22, lies within the chain of rings along [100] but the other, shorter, interaction combines with some of the $N-H\cdotsO$ and $O-H\cdotsO$ hydrogen bonds to generate a complex chain running parallel to the [010] direction (Fig. 12). The combination of chains along [100], [010] and [001] then suffices to generate a three-dimensional supramolecular structure.

Hence the supramolecular aggregation is zero-, one-, twoand three-dimensional in compounds (II), (I), (III) and (IV), respectively.

4. Database survey

The first salt of MeOPP to have its structure reported was 4-(4-methoxyphenyl)piperazin-1-ium chloride (V) (Zia-ur-Rehman *et al.*, 2009), in which two N-H···Cl hydrogen bonds link the ions into simple chains. The aggregation in the 3,5-dinitrobenzoate salt (II) reported here, where two independent N-H···O hydrogen bonds generate a cyclic $R_4^4(12)$ motif, can be contrasted with that in the trichloroacetate salt

(VI) (Kiran Kumar, Yathirajan, Foro et al., 2019), where two independent N-H···O hydrogen bonds generate a continuous $C_2^2(6)$ chain: the reason for the finite aggregation in (II) versus the continuous aggregation in (VI) is not obvious. The electronic delocalization in the anion of (III) reported here is similar to that in the anion of the 5-hydroxy-3,5-dinitrobenzoate salt (VII) (Kiran Kumar, Yathirajan, Foro et al., 2019), where it is the phenolic hydroxyl group that has ionized rather than the carboxyl group, so forming an anion more reminiscent of a picrate ion than of a 3,5-dinitrobenzoate ion. The aggregation in (VII) takes the form of a chain of rings generated by a combination of $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds, with chains of this type further linked by C-H. $\cdot \cdot \pi$ (arene) hydrogen bonds to form a three-dimensional structure. The unit-cell dimensions of compound (IV) reported here are similar to those in a series of isomorphous monohydrated benzoate salts containing anions of type (4- $C_6H_4COO)^-$, where - = H, F, Cl or Br, compounds (VIII)-(XI), in all of which the 4-methoxyphenyl unit exhibits disorder (Kiran Kumar, Yathirajan, Foro et al., 2019): however, despite the similarity in cell dimensions, the structure of (IV) differs from those of (VIII)-(XI) firstly in showing no disorder and secondly in forming a three-dimensional hydrogen-bonded structure as opposed to the onedimensional assembly in (VIII)-(XI). By contrast with compounds (VIII)–(XI) in space group $P\overline{1}$, the 4-iodobenzoate analogue (XII), also a monohydrate (Kiran Kumar, Yathirajan, Harish Chinthal et al., 2020) crystallizes in space group $P2_1/c$ with Z' = 3, but with no disorder, and an extensive series of N-H···O and O-H···O hydrogen bonds links the nine independent components into complex sheets.

5. Synthesis and crystallization

N-[4-Methoxyphenyl]piperazine (I), was purchased from Sigma-Aldrich, and crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of a solution in methanol, m.p. 316-318 K. For the preparation of the salts (II)-(IV), solutions of (I) (100 mg, 0.52 mmol) in methanol (10 ml), and of 0.52 mmol of the appropriate acidic component [3,5-dinitrobenzoic acid (110.3 mg) for (II), picric acid (119.1 mg) for (III), and 4-aminobenzoic acid (71.3 mg) for (IV)] also in methanol (10 ml) were mixed and then briefly held at 313 K with stirring. The solutions were allowed to cool to ambient temperature and then set aside to crystallize, giving the products (II)-(IV). The products were collected by filtration, and dried in air: m.p. (II) 393-395 K, (III) 420-422 K, and (IV) 407-409 K. Crystals of the salts (II)-(IV) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in methanol/ethyl acetate (1:1, v/v).

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 2. All H atoms were located in difference

research communications

Table 2	
Experimental	details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$C_{11}H_{16}N_2O$	$C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_6^-$	$C_{11}H_{17}N_2O^+ \cdot C_6H_2N_3O_7^-$	$C_7H_6NO_2^+ \cdot C_{11}H_{17}N_2O^- \cdot H_2O$
M _r	192.26	404.38	421.37	347.41
Crystal system, space group	Orthorhombic, Pna21	Triclinic, P1	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$
Temperature (K)	293	293	293	293
a, b, c (Å)	6.9683 (7), 7.9683 (8), 18.975 (2)	7.4365 (4), 10.6276 (6), 13.2700 (6)	8.7568 (6), 6.6292 (5), 34.024 (2)	6.2590 (7), 7.4549 (9), 19.269 (2)
$lpha,eta,\gamma$ (°)	90, 90, 90	92.238 (4), 97.057 (4), 108.618 (5)	90, 96.987 (6), 90	83.28 (1), 84.740 (1), 85.38 (1)
$V(Å^3)$	1053.60 (19)	982.92 (9)	1960.4 (2)	886.94 (17)
Z	4	2	4	2
Radiation type	Μο Κα	Μο Κα	Μο <i>Κα</i>	Μο Κα
$\mu (\text{mm}^{-1})$	0.08	0.11	0.12	0.09
Crystal size (mm)	$0.48\times0.48\times0.40$	$0.50\times0.48\times0.48$	$0.48 \times 0.42 \times 0.20$	$0.40 \times 0.20 \times 0.14$
Data collection				
Diffractometer	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD	Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	Multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)
T_{\min}, T_{\max}	0.814, 0.969	0.765, 0.950	0.844, 0.977	0.814, 0.987
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4066, 1984, 1545	7013, 4202, 3057	14483, 4353, 2844	5786, 3500, 1923
R _{int}	0.012	0.011	0.023	0.031
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.654	0.650	0.659	0.618
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.088, 1.06	0.041, 0.110, 1.02	0.058, 0.136, 1.09	0.069, 0.187, 1.07
No. of reflections	1984	4202	4353	3500
No. of parameters	131	268	333	240
No. of restraints	1	0	216	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.10, -0.12	0.15, -0.19	0.18, -0.18	0.24, -0.20
Absolute structure	Flack x determined using 546 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	-	-	-

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXT (Sheldrick, 2015a), SHELX2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C-H distances of 0.93 Å (aromatic), 0.96 Å (CH₃) or 0.97 Å (CH₂), and with $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for the methyl groups which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N atoms in (I) and (II), the atomic coordinates were refined with $U_{iso}(H) = 1.2U_{eq}(N)$ giving the N-H distances shown in Table 1. In (III) and (IV), free refinement of the atomic coordinates for the H atoms bonded to N in the cations, and to O in the water component of (IV) gave N-H and O-H distances which were rather unsatisfactory: hence these H atoms bonded to N were treated as riding atoms with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$, while for those bonded to O in (IV), the O-H distances were restrained to a value of 0.84 (2) Å, with $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm O})$, giving the distances shown in Table 1. In compound (III), two of the nitro groups exhibited disorder over two sets of atomic sites having unequal occupancy. For the minor disorder components, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components subject to s. u. values of 0.01 and 0.02 Å, respectively, giving refined occupancies of 0.531 (16) and 0.469 (16) for the nitro group at atom C32, and 0.62 (6) and 0.38 (6) for that at atom C36. In addition, for each of the disordered substituents, the component atoms were restrained to have the same U^{ij} components. In the absence of significant resonant scattering, the correct orientation of the structure of (I) with respect to the polar axis direction could not be established: the value of the Flack x parameter (Flack, 1983), as calculated (Parsons *et al.*, 2013) using 546 quotients of the type $[(I^+) - (I^-)]/[(I^+) + (I^-)]$ was -0.5 (8), so that the correct orientation is indeterminate (Flack & Bernardinelli, 2000): however, in the space group *Pna2*₁, this parameter does not carry any information of chemical significance.

Acknowledgements

HKK thanks University of Mysore for research facilities.

research communications

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Asif, M. (2015). Int. J. Adv. Sci. Res. 1, 5-11.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Brito, A., Moreira, L. K. S., Menegatti, R. & Costa, E. A. (2019). *Fundam. Clin. Pharmacol.* **33**, 13–24.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). *Acta Cryst.* E75, 1494–1506.
- Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). CSD Communication (CCDC 1982784). CCDC, Cambridge, England. DOI: 10.5517/ccdc.csd.cc24k7sr.
- Kiran Kumar, H., Yathirajan, H. S., Sagar, B. K., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1253–1260.
- Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132–137.
- Oxford Diffraction (2009). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Staack, R. F. & Maurer, H. H. (2003). J. Chromatogr. B, 798, 333-342.
- Staack, R. F., Theobald, D. S., Paul, D., Springer, D., Kraemer, T. & Maurer, H. H. (2004). *Xenobiotica*, **34**, 179–192.
- Zia-ur-Rehman, Tahir, M. N., Danish, M., Muhammad, N. & Ali, S. (2009). Acta Cryst. E65, 0503.

Acta Cryst. (2020). E76, 488-495 [https://doi.org/10.1107/S2056989020002844]

Crystal structures of the recreational drug *N*-(4-methoxyphenyl)piperazine (MeOPP) and three of its salts

Haruvegowda Kiran Kumar, Hemmige S. Yathirajan, Chayanna Harish Chinthal, Sabine Foro and Christopher Glidewell

Computing details

For all structures, data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2020); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015b) and *PLATON* (Spek, 2020).

N-(4-Methoxyphenyl)piperazine (I)

Crystal data

 $C_{11}H_{16}N_{2}O$ $M_{r} = 192.26$ Orthorhombic, *Pna2*₁ a = 6.9683 (7) Å b = 7.9683 (8) Å c = 18.975 (2) Å V = 1053.60 (19) Å³ Z = 4F(000) = 416

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.814, T_{\max} = 0.969$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.088$ S = 1.061984 reflections 131 parameters $D_x = 1.212 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1984 reflections $\theta = 2.8-27.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.48 \times 0.48 \times 0.40 \text{ mm}$

4066 measured reflections 1984 independent reflections 1545 reflections with $I > 2\sigma(I)$ $R_{int} = 0.012$ $\theta_{max} = 27.7^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = -24 \rightarrow 21$

1 restraint Primary atom site location: dual Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0466P)^2 + 0.042P]$ where $P = (F_o^2 + 2F_c^2)/3$ $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Absolute structure: Flack x determined using 546 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.7092 (4)	0.4549 (3)	0.62326 (14)	0.0784 (6)
H1	0.790 (5)	0.480 (4)	0.6597 (19)	0.094*
C2	0.8074 (4)	0.4800 (3)	0.55762 (17)	0.0709 (7)
H2A	0.9239	0.4134	0.5568	0.085*
H2B	0.8428	0.5972	0.5528	0.085*
C3	0.6799 (3)	0.4296 (3)	0.49739 (15)	0.0617 (6)
H3A	0.7453	0.4509	0.4532	0.074*
H3B	0.6531	0.3103	0.5002	0.074*
N4	0.4997 (3)	0.5231 (2)	0.49904 (11)	0.0502 (4)
C5	0.4049 (3)	0.5099 (3)	0.56726 (13)	0.0582 (6)
H5A	0.3622	0.3954	0.5746	0.070*
H5B	0.2930	0.5823	0.5680	0.070*
C6	0.5390 (4)	0.5596 (4)	0.62554 (15)	0.0716 (7)
H6A	0.5749	0.6765	0.6203	0.086*
H6B	0.4754	0.5464	0.6707	0.086*
C21	0.3791 (3)	0.5080 (2)	0.43961 (12)	0.0465 (5)
C22	0.4222 (3)	0.4034 (3)	0.38284 (13)	0.0568 (6)
H22	0.5303	0.3351	0.3848	0.068*
C23	0.3067 (4)	0.3998 (3)	0.32390 (13)	0.0614 (6)
H23	0.3391	0.3300	0.2864	0.074*
C24	0.1445 (4)	0.4975 (3)	0.31948 (13)	0.0568 (7)
C25	0.0979 (3)	0.6002 (3)	0.37552 (14)	0.0567 (6)
H25	-0.0117	0.6665	0.3736	0.068*
C26	0.2136 (3)	0.6042 (2)	0.43401 (13)	0.0539 (6)
H26	0.1799	0.6739	0.4713	0.065*
O24	0.0395 (3)	0.4861 (2)	0.25830 (11)	0.0798 (6)
C27	-0.1153 (4)	0.5990 (5)	0.2494 (2)	0.1065 (12)
H27A	-0.1652	0.5889	0.2024	0.160*
H27B	-0.0713	0.7118	0.2570	0.160*
H27C	-0.2145	0.5731	0.2828	0.160*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0715 (15)	0.0896 (15)	0.0739 (15)	-0.0055 (13)	-0.0133 (12)	0.0146 (12)
C2	0.0555 (13)	0.0649 (14)	0.0923 (19)	0.0004 (12)	-0.0035 (15)	0.0092 (14)

C3	0.0523 (12)	0.0568 (12)	0.0761 (15)	0.0058 (11)	0.0081 (13)	0.0058 (12)
N4	0.0450 (8)	0.0497 (9)	0.0560 (11)	0.0007 (7)	0.0087 (9)	0.0028 (8)
C5	0.0531 (12)	0.0625 (13)	0.0588 (14)	-0.0064 (10)	0.0095 (12)	0.0008 (10)
C6	0.0707 (16)	0.0855 (18)	0.0586 (14)	-0.0130 (14)	0.0012 (13)	-0.0009 (12)
C21	0.0475 (11)	0.0390 (11)	0.0532 (13)	-0.0030 (9)	0.0137 (10)	0.0035 (10)
C22	0.0580 (14)	0.0531 (13)	0.0594 (15)	0.0095 (10)	0.0132 (13)	0.0007 (10)
C23	0.0710 (15)	0.0595 (14)	0.0538 (15)	0.0044 (13)	0.0187 (13)	-0.0080 (10)
C24	0.0574 (14)	0.0637 (15)	0.0492 (15)	-0.0055 (11)	0.0077 (12)	0.0029 (10)
C25	0.0487 (12)	0.0570 (13)	0.0643 (15)	0.0047 (10)	0.0089 (12)	-0.0001 (11)
C26	0.0535 (12)	0.0500 (12)	0.0581 (14)	0.0031 (10)	0.0123 (12)	-0.0069 (10)
O24	0.0771 (12)	0.1029 (15)	0.0595 (12)	0.0020 (11)	-0.0017 (11)	-0.0059 (10)
C27	0.077 (2)	0.154 (4)	0.089 (2)	0.0160 (18)	-0.0205 (19)	-0.007 (2)

Geometric parameters (Å, °)

N1—C2	1.435 (4)	C21—C26	1.389 (3)
N1—C6	1.451 (4)	C21—C22	1.395 (3)
N1—H1	0.91 (4)	C22—C23	1.378 (4)
C2—C3	1.502 (4)	C22—H22	0.9300
C2—H2A	0.9700	C23—C24	1.375 (3)
C2—H2B	0.9700	C23—H23	0.9300
C3—N4	1.460 (3)	C24—O24	1.375 (3)
С3—НЗА	0.9700	C24—C25	1.380 (4)
С3—Н3В	0.9700	C25—C26	1.372 (4)
N4—C21	1.411 (3)	C25—H25	0.9300
N4—C5	1.457 (3)	C26—H26	0.9300
C5—C6	1.501 (4)	O24—C27	1.415 (4)
С5—Н5А	0.9700	C27—H27A	0.9600
С5—Н5В	0.9700	C27—H27B	0.9600
С6—Н6А	0.9700	C27—H27C	0.9600
С6—Н6В	0.9700		
C2-N1-C6	109.6 (2)	С5—С6—Н6В	109.7
C2—N1—H1	110 (2)	H6A—C6—H6B	108.2
C6—N1—H1	111 (2)	C26—C21—C22	116.7 (2)
N1-C2-C3	109.9 (2)	C26—C21—N4	120.58 (19)
N1—C2—H2A	109.7	C22—C21—N4	122.66 (19)
С3—С2—Н2А	109.7	C23—C22—C21	120.9 (2)
N1—C2—H2B	109.7	C23—C22—H22	119.6
C3—C2—H2B	109.7	C21—C22—H22	119.6
H2A—C2—H2B	108.2	C24—C23—C22	121.2 (2)
N4—C3—C2	110.8 (2)	C24—C23—H23	119.4
N4—C3—H3A	109.5	C22—C23—H23	119.4
С2—С3—НЗА	109.5	O24—C24—C23	116.8 (2)
N4—C3—H3B	109.5	O24—C24—C25	124.4 (2)
С2—С3—Н3В	109.5	C23—C24—C25	118.8 (2)
НЗА—СЗ—НЗВ	108.1	C26—C25—C24	119.9 (2)
C21—N4—C5	115.72 (15)	C26—C25—H25	120.0

C21—N4—C3	116.8 (2)	С24—С25—Н25	120.0
C5—N4—C3	111.8 (2)	C25—C26—C21	122.5 (2)
N4—C5—C6	110.71 (18)	С25—С26—Н26	118.8
N4—C5—H5A	109.5	С21—С26—Н26	118.8
С6—С5—Н5А	109.5	C24—O24—C27	117.7 (2)
N4—C5—H5B	109.5	O24—C27—H27A	109.5
С6—С5—Н5В	109.5	O24—C27—H27B	109.5
H5A—C5—H5B	108.1	H27A—C27—H27B	109.5
N1—C6—C5	109.6 (2)	O24—C27—H27C	109.5
N1—C6—H6A	109.7	Н27А—С27—Н27С	109.5
С5—С6—Н6А	109.7	H27B—C27—H27C	109.5
N1—C6—H6B	109.7		
C6—N1—C2—C3	-61.6 (3)	C26—C21—C22—C23	1.3 (3)
N1-C2-C3-N4	57.0 (3)	N4—C21—C22—C23	-176.0 (2)
C2-C3-N4-C21	170.30 (19)	C21—C22—C23—C24	-0.8 (3)
C2—C3—N4—C5	-53.1 (3)	C22—C23—C24—O24	179.5 (2)
C21—N4—C5—C6	-169.38 (19)	C22—C23—C24—C25	-0.1 (3)
C3—N4—C5—C6	53.5 (2)	O24—C24—C25—C26	-179.1 (2)
C2—N1—C6—C5	61.8 (3)	C23—C24—C25—C26	0.5 (3)
N4-C5-C6-N1	-57.4 (3)	C24—C25—C26—C21	0.1 (3)
C5—N4—C21—C26	50.9 (2)	C22—C21—C26—C25	-1.0 (3)
C3—N4—C21—C26	-174.17 (19)	N4—C21—C26—C25	176.40 (19)
C5—N4—C21—C22	-131.9 (2)	C23—C24—O24—C27	-173.1 (3)
C3—N4—C21—C22	3.0 (3)	C25—C24—O24—C27	6.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O24 ⁱ	0.91 (4)	2.23 (4)	3.139 (3)	171 (3)

Symmetry code: (i) -x+1, -y+1, z+1/2.

4-(4-Methoxyphenyl)piperazin-1-ium 3,5-dinitrobenzoate (II)

Crystal data

$C_{11}H_{17}N_2O^+ \cdot C_7H_3N_2O_6^-$	Z = 2
$M_r = 404.38$	F(000) = 424
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.366 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.4365 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 10.6276 (6) Å	Cell parameters from 4210 reflections
c = 13.2700 (6) Å	$\theta = 2.7 - 27.8^{\circ}$
$\alpha = 92.238 \ (4)^{\circ}$	$\mu=0.11~\mathrm{mm}^{-1}$
$\beta = 97.057 \ (4)^{\circ}$	T = 293 K
$\gamma = 108.618 \ (5)^{\circ}$	Block, yellow
$V = 982.92 (9) \text{ Å}^3$	$0.50 \times 0.48 \times 0.48 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\rm rec} = 0.765$, $T_{\rm rec} = 0.950$	7013 measured reflections 4202 independent reflections 3057 reflections with $I > 2\sigma(I)$ $R_{int} = 0.011$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -7 \rightarrow 9$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 9$
$T_{\rm min} = 0.703, T_{\rm max} = 0.950$	$i = 10 \rightarrow 9$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.110$ S = 1.02 4202 reflections 268 parameters 0 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 0.2082P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³
rinnary atom site location. dual	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.4909 (2)	0.44996 (14)	0.34081 (10)	0.0521 (3)	
H11	0.578 (3)	0.5249 (19)	0.3837 (14)	0.063*	
H12	0.464 (3)	0.3711 (18)	0.3776 (14)	0.063*	
C2	0.3094 (3)	0.47725 (16)	0.31197 (13)	0.0579 (4)	
H2A	0.2620	0.4993	0.3729	0.070*	
H2B	0.2140	0.3982	0.2761	0.070*	
C3	0.3399 (3)	0.59140 (16)	0.24455 (12)	0.0518 (4)	
H3A	0.2191	0.6068	0.2249	0.062*	
H3B	0.4290	0.6719	0.2819	0.062*	
N4	0.41580 (19)	0.56126 (12)	0.15311 (9)	0.0475 (3)	
C5	0.5974 (3)	0.54000 (17)	0.18174 (12)	0.0532 (4)	
H5A	0.6890	0.6204	0.2180	0.064*	
H5B	0.6473	0.5205	0.1209	0.064*	
C6	0.5732 (3)	0.42574 (17)	0.24871 (13)	0.0601 (5)	
H6A	0.4893	0.3441	0.2105	0.072*	
H6B	0.6967	0.4147	0.2689	0.072*	
C21	0.4128 (2)	0.65236 (14)	0.07691 (11)	0.0443 (3)	
C22	0.2377 (2)	0.65974 (17)	0.03241 (12)	0.0555 (4)	
H22	0.1256	0.6063	0.0536	0.067*	
C23	0.2264 (2)	0.74413 (18)	-0.04220 (13)	0.0572 (4)	
H23	0.1074	0.7474	-0.0706	0.069*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C24	0.3915 (2)	0.82446 (16)	-0.07540 (11)	0.0468 (4)
C25	0.5662 (2)	0.81844 (16)	-0.03278 (11)	0.0477 (4)
H25	0.6779	0.8715	-0.0546	0.057*
C26	0.5764 (2)	0.73326 (16)	0.04294 (11)	0.0477 (4)
H26	0.6957	0.7305	0.0714	0.057*
O24	0.36537 (16)	0.90394 (12)	-0.15109 (9)	0.0609 (3)
C27	0.5312 (2)	0.98606 (18)	-0.18771 (14)	0.0595 (4)
H27A	0.4941	1.0364	-0.2401	0.089*
H27B	0.6143	1.0459	-0.1327	0.089*
H27C	0.5973	0.9314	-0.2151	0.089*
C31	0.75477 (19)	0.90885 (13)	0.44906 (10)	0.0370 (3)
C32	0.74671 (19)	1.02627 (13)	0.49332 (11)	0.0379 (3)
H32	0.6919	1.0266	0.5526	0.045*
C33	0.8211 (2)	1.14339 (13)	0.44845 (11)	0.0397 (3)
C34	0.9027 (2)	1.14837 (15)	0.36080 (11)	0.0425 (3)
H34	0.9502	1.2278	0.3310	0.051*
C35	0.91080 (19)	1.03023 (15)	0.31926 (10)	0.0416 (3)
C36	0.8395 (2)	0.91119 (14)	0.36128 (11)	0.0413 (3)
H36	0.8480	0.8331	0.3312	0.050*
C37	0.6792 (2)	0.77976 (14)	0.49869 (12)	0.0442 (3)
O31	0.70674 (18)	0.67975 (10)	0.46073 (10)	0.0624 (3)
O32	0.59993 (18)	0.78544 (11)	0.57568 (10)	0.0617 (3)
N33	0.8205 (2)	1.26892 (13)	0.49865 (12)	0.0556 (4)
O33	0.7947 (3)	1.26858 (14)	0.58726 (12)	0.0877 (5)
O34	0.8460 (2)	1.36548 (11)	0.44914 (12)	0.0745 (4)
N35	1.00278 (19)	1.03268 (17)	0.22712 (11)	0.0575 (4)
O35	0.9969 (2)	0.92646 (16)	0.18661 (11)	0.0886 (5)
O36	1.08186 (19)	1.14064 (15)	0.19653 (10)	0.0723 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0813 (10)	0.0340 (7)	0.0413 (7)	0.0163 (7)	0.0151 (7)	0.0085 (6)
C2	0.0783 (12)	0.0465 (9)	0.0517 (9)	0.0171 (8)	0.0255 (9)	0.0128 (7)
C3	0.0688 (11)	0.0490 (9)	0.0434 (8)	0.0220 (8)	0.0200 (8)	0.0106 (7)
N4	0.0625 (8)	0.0452 (7)	0.0365 (6)	0.0178 (6)	0.0121 (6)	0.0052 (5)
C5	0.0726 (11)	0.0562 (9)	0.0390 (8)	0.0285 (8)	0.0170 (8)	0.0091 (7)
C6	0.0932 (14)	0.0516 (9)	0.0463 (9)	0.0353 (9)	0.0179 (9)	0.0066 (7)
C21	0.0539 (9)	0.0432 (8)	0.0331 (7)	0.0126 (7)	0.0060 (6)	0.0004 (6)
C22	0.0475 (9)	0.0609 (10)	0.0494 (9)	0.0045 (8)	0.0083 (7)	0.0100 (8)
C23	0.0430 (9)	0.0721 (11)	0.0525 (9)	0.0141 (8)	0.0020 (7)	0.0152 (8)
C24	0.0511 (9)	0.0534 (9)	0.0352 (7)	0.0161 (7)	0.0056 (6)	0.0062 (7)
C25	0.0458 (9)	0.0581 (9)	0.0386 (8)	0.0140 (7)	0.0101 (6)	0.0090 (7)
C26	0.0475 (9)	0.0591 (9)	0.0378 (8)	0.0186 (7)	0.0067 (6)	0.0069 (7)
O24	0.0505 (7)	0.0792 (8)	0.0544 (7)	0.0201 (6)	0.0080 (5)	0.0293 (6)
C27	0.0565 (10)	0.0651 (11)	0.0575 (10)	0.0177 (8)	0.0105 (8)	0.0234 (9)
C31	0.0330 (7)	0.0355 (7)	0.0397 (7)	0.0091 (5)	-0.0009(5)	0.0061 (6)
C32	0.0348 (7)	0.0413 (7)	0.0382 (7)	0.0127 (6)	0.0052 (6)	0.0074 (6)

C33	0.0377 (7)	0.0351 (7)	0.0466 (8)	0.0131 (6)	0.0030 (6)	0.0062 (6)
C34	0.0367 (8)	0.0421 (8)	0.0464 (8)	0.0092 (6)	0.0036 (6)	0.0155 (6)
C35	0.0328 (7)	0.0539 (9)	0.0357 (7)	0.0107 (6)	0.0038 (6)	0.0073 (6)
C36	0.0385 (8)	0.0398 (7)	0.0433 (8)	0.0120 (6)	0.0008 (6)	-0.0011 (6)
C37	0.0415 (8)	0.0353 (7)	0.0505 (9)	0.0077 (6)	-0.0015 (7)	0.0091 (6)
O31	0.0784 (8)	0.0349 (6)	0.0698 (8)	0.0157 (5)	0.0036 (6)	0.0028 (5)
O32	0.0726 (8)	0.0484 (6)	0.0700 (8)	0.0186 (6)	0.0285 (7)	0.0260 (6)
N33	0.0577 (9)	0.0405 (7)	0.0724 (10)	0.0205 (6)	0.0109 (7)	0.0057 (7)
O33	0.1379 (14)	0.0651 (9)	0.0746 (10)	0.0460 (9)	0.0368 (9)	-0.0020 (7)
O34	0.0822 (9)	0.0374 (6)	0.1060 (11)	0.0211 (6)	0.0133 (8)	0.0183 (7)
N35	0.0442 (8)	0.0778 (11)	0.0466 (8)	0.0131 (7)	0.0107 (6)	0.0044 (8)
O35	0.0877 (11)	0.0931 (11)	0.0767 (9)	0.0117 (8)	0.0374 (8)	-0.0187 (8)
O36	0.0611 (8)	0.0951 (10)	0.0654 (8)	0.0219 (7)	0.0285 (6)	0.0330 (7)

Geometric parameters (Å, °)

N1—C2	1.478 (2)	C25—C26	1.390 (2)
N1—C6	1.481 (2)	С25—Н25	0.9300
N1—H11	0.96 (2)	C26—H26	0.9300
N1—H12	0.965 (18)	O24—C27	1.4181 (19)
C2—C3	1.511 (2)	С27—Н27А	0.9600
C2—H2A	0.9700	С27—Н27В	0.9600
C2—H2B	0.9700	С27—Н27С	0.9600
C3—N4	1.4654 (19)	C31—C32	1.3803 (19)
С3—НЗА	0.9700	C31—C36	1.388 (2)
С3—Н3В	0.9700	C31—C37	1.5169 (19)
N4—C21	1.4301 (18)	C32—C33	1.3817 (19)
N4—C5	1.448 (2)	С32—Н32	0.9300
C5—C6	1.510 (2)	C33—C34	1.372 (2)
С5—Н5А	0.9700	C33—N33	1.4693 (19)
С5—Н5В	0.9700	C34—C35	1.374 (2)
С6—Н6А	0.9700	C34—H34	0.9300
С6—Н6В	0.9700	C35—C36	1.376 (2)
C21—C26	1.386 (2)	C35—N35	1.4696 (19)
C21—C22	1.389 (2)	С36—Н36	0.9300
C22—C23	1.374 (2)	C37—O31	1.2440 (18)
C22—H22	0.9300	C37—O32	1.2495 (19)
C23—C24	1.387 (2)	N33—O33	1.2143 (19)
С23—Н23	0.9300	N33—O34	1.2165 (17)
C24—O24	1.3724 (18)	N35—O35	1.2169 (19)
C24—C25	1.373 (2)	N35—O36	1.2211 (18)
C2—N1—C6	110.43 (13)	O24—C24—C23	116.04 (14)
C2—N1—H11	108.2 (11)	C25—C24—C23	119.13 (14)
C6—N1—H11	111.1 (11)	C24—C25—C26	120.16 (14)
C2—N1—H12	108.4 (11)	C24—C25—H25	119.9
C6—N1—H12	108.7 (10)	С26—С25—Н25	119.9
H11—N1—H12	110.0 (15)	C21—C26—C25	121.40 (15)

N1—C2—C3	110.47 (14)	C21—C26—H26	119.3
N1—C2—H2A	109.6	C25—C26—H26	119.3
C3—C2—H2A	109.6	C24—O24—C27	117.47 (13)
N1—C2—H2B	109.6	O24—C27—H27A	109.5
С3—С2—Н2В	109.6	O24—C27—H27B	109.5
H2A—C2—H2B	108.1	H27A—C27—H27B	109.5
N4—C3—C2	110.40 (13)	O24—C27—H27C	109.5
N4—C3—H3A	109.6	H27A—C27—H27C	109.5
С2—С3—НЗА	109.6	H27B—C27—H27C	109.5
N4—C3—H3B	109.6	C32—C31—C36	119.36 (12)
С2—С3—Н3В	109.6	C32—C31—C37	120.07 (13)
H_{3A} C_{3} H_{3B}	108.1	C_{36} C_{31} C_{37}	120.52(13)
C_{1} N4-C5	115 97 (12)	$C_{31} - C_{32} - C_{33}$	120.02(13) 119.18(13)
$C_{21} = N_{4} = C_{3}$	113.26 (12)	$C_{31} = C_{32} = H_{32}$	120.4
C_{5} N/ C_{3}	100.00(12)	C_{33} C_{32} H_{32}	120.4
C_{3} C_{4} C_{5} C_{6}	109.90(12) 110.50(14)	$C_{33} = C_{32} = C_{32}$	120.4 122.74(13)
N4 C5 U5 A	100.6	$C_{34} = C_{33} = C_{32}$	122.74(13)
N4—C3—H3A	109.0	C_{34} C_{33} N_{33}	118.33 (13)
C6-C5-H5A	109.6	C_{32} — C_{33} — N_{33}	118.88 (13)
N4—C5—H5B	109.6	$C_{33} = C_{34} = C_{35}$	116./3 (13)
С6—С5—Н5В	109.6	С33—С34—Н34	121.6
H5A—C5—H5B	108.1	С35—С34—Н34	121.6
N1—C6—C5	111.08 (13)	C34—C35—C36	122.71 (13)
N1—C6—H6A	109.4	C34—C35—N35	118.15 (13)
С5—С6—Н6А	109.4	C36—C35—N35	119.13 (14)
N1—C6—H6B	109.4	C35—C36—C31	119.26 (13)
С5—С6—Н6В	109.4	С35—С36—Н36	120.4
H6A—C6—H6B	108.0	С31—С36—Н36	120.4
C26—C21—C22	117.42 (14)	O31—C37—O32	126.39 (14)
C26-C21-N4	123.45 (14)	O31—C37—C31	117.10 (14)
C22—C21—N4	119.12 (14)	O32—C37—C31	116.49 (13)
C23—C22—C21	121.53 (15)	O33—N33—O34	124.64 (15)
С23—С22—Н22	119.2	O33—N33—C33	117.22 (13)
C21—C22—H22	119.2	O34—N33—C33	118.14 (15)
$C_{22} - C_{23} - C_{24}$	120.35 (15)	035—N35—036	124.03 (15)
C22—C23—H23	119.8	035—N35—C35	117.67 (15)
C_{24} C_{23} H_{23}	119.8	036 - N35 - C35	118 29 (15)
024 - 023 - 025	124 83 (14)	050 105 055	110.29 (13)
024 024 025	124.03 (14)		
C6 N1 C2 C3	-55.07(17)	C_{36} C_{31} C_{32} C_{33}	0.8(2)
$C_{0} = 1 \overline{1} - C_{2} = C_{3}$	57.80 (18)	$C_{30} = C_{31} = C_{32} = C_{33}$	178 20 (12)
N1 = C2 = C3 = 104	37.09(10)	$C_{37} - C_{31} - C_{32} - C_{33}$	1/6.20(12)
$C_2 = C_3 = N_4 = C_2 I$	108.40(14)	$C_{31} = C_{32} = C_{33} = C_{34}$	0.3(2)
C2—C3—N4—C5	-60.05 (18)	C31—C32—C33—N33	-1//.08 (13)
C21—N4—C5—C6	-1/0.46(12)	$C_{32} - C_{33} - C_{34} - C_{35}$	-1.1(2)
C3—N4—C5—C6	59.49 (16)	N33-C33-C34-C35	1/6.30 (13)
C2—N1—C6—C5	54.81 (19)	C33—C34—C35—C36	0.8 (2)
N4—C5—C6—N1	-57.29 (19)	C33—C34—C35—N35	-178.10 (13)
C5—N4—C21—C26	-10.3 (2)	C34—C35—C36—C31	0.3 (2)
C3—N4—C21—C26	118.13 (17)	N35-C35-C36-C31	179.18 (12)

C5—N4—C21—C22	168.48 (14)	C32—C31—C36—C35	-1.1 (2)
C3—N4—C21—C22	-63.10 (18)	C37—C31—C36—C35	-178.48 (12)
C26—C21—C22—C23	-0.2 (2)	C32—C31—C37—O31	-173.38 (14)
N4—C21—C22—C23	-179.05 (15)	C36—C31—C37—O31	4.0 (2)
C21—C22—C23—C24	0.2 (3)	C32—C31—C37—O32	4.7 (2)
C22—C23—C24—O24	179.14 (16)	C36—C31—C37—O32	-177.93 (13)
C22—C23—C24—C25	0.0 (3)	C34—C33—N33—O33	-161.49 (16)
O24—C24—C25—C26	-179.33 (14)	C32—C33—N33—O33	16.0 (2)
C23—C24—C25—C26	-0.3 (2)	C34—C33—N33—O34	18.4 (2)
C22—C21—C26—C25	-0.1 (2)	C32—C33—N33—O34	-164.13 (14)
N4—C21—C26—C25	178.71 (14)	C34—C35—N35—O35	-174.75 (15)
C24—C25—C26—C21	0.3 (2)	C36—C35—N35—O35	6.3 (2)
C25—C24—O24—C27	-0.2 (2)	C34—C35—N35—O36	6.0 (2)
C23—C24—O24—C27	-179.20 (15)	C36—C35—N35—O36	-172.92 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H11…O31	0.96 (2)	1.814 (19)	2.7638 (18)	169 (2)
N1—H12····O32 ⁱ	0.964 (18)	1.740 (18)	2.6953 (18)	170.5 (17)

Symmetry code: (i) -x+1, -y+1, -z+1.

4-(4-Methoxyphenyl)piperazin-1-ium 2,4,6-trinitrophenolate (III)

Crystal data

 $C_{11}H_{17}N_2O^+ \cdot C_6H_2N_3O_7^ M_r = 421.37$ Monoclinic, $P2_1/n$ a = 8.7568 (6) Å b = 6.6292 (5) Åc = 34.024 (2) Å $\beta = 96.987 \ (6)^{\circ}$ V = 1960.4 (2) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator $R_{\rm int} = 0.023$ ω scans $h = -11 \rightarrow 11$ Absorption correction: multi-scan $k = -8 \rightarrow 8$ (CrysAlis RED; Oxford Diffraction, 2009) $T_{\rm min} = 0.844, \ T_{\rm max} = 0.977$ $l = -40 \rightarrow 42$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.136$ *S* = 1.09

F(000) = 880 $D_{\rm x} = 1.428 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4353 reflections $\theta = 2.8 - 27.9^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 293 KPlate, yellow $0.48 \times 0.42 \times 0.20 \text{ mm}$

14483 measured reflections 4353 independent reflections 2844 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$

4353 reflections 333 parameters 216 restraints Primary atom site location: dual Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2 + 1.052P]$	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.0738 (2)	0.1834 (3)	0.59884 (5)	0.0479 (5)	
H11	0.151 (3)	0.169 (4)	0.5830(7)	0.058*	
H12	-0.019 (3)	0.169 (4)	0.5837 (7)	0.058*	
C2	0.0862 (3)	0.0294 (4)	0.63061 (6)	0.0525 (6)	
H2A	0.0870	-0.1042	0.6190	0.063*	
H2B	-0.0021	0.0387	0.6452	0.063*	
C3	0.2321 (3)	0.0615 (4)	0.65845 (7)	0.0500 (6)	
H3A	0.2374	-0.0366	0.6797	0.060*	
H3B	0.3205	0.0412	0.6443	0.060*	
N4	0.23682 (19)	0.2647 (3)	0.67506 (5)	0.0400 (4)	
C5	0.2311 (3)	0.4129 (4)	0.64346 (6)	0.0466 (6)	
H5A	0.3190	0.3950	0.6290	0.056*	
H5B	0.2362	0.5476	0.6547	0.056*	
C6	0.0844 (3)	0.3897 (4)	0.61558 (7)	0.0541 (6)	
H6A	-0.0033	0.4153	0.6297	0.065*	
H6B	0.0827	0.4874	0.5943	0.065*	
C21	0.3552 (2)	0.2940 (3)	0.70738 (6)	0.0395 (5)	
C22	0.3572 (3)	0.1707 (4)	0.74060 (6)	0.0484 (6)	
H22	0.2840	0.0692	0.7409	0.058*	
C23	0.4660 (3)	0.1966 (4)	0.77304 (6)	0.0544 (7)	
H23	0.4667	0.1108	0.7947	0.065*	
C24	0.5738 (3)	0.3482 (4)	0.77367 (6)	0.0528 (6)	
C25	0.5737 (3)	0.4715 (4)	0.74137 (7)	0.0562 (7)	
H25	0.6457	0.5747	0.7415	0.067*	
C26	0.4657 (3)	0.4422 (4)	0.70826 (6)	0.0487 (6)	
H26	0.4684	0.5247	0.6862	0.058*	
O24	0.6749 (2)	0.3618 (3)	0.80799 (5)	0.0735 (6)	
C27	0.7871 (4)	0.5171 (6)	0.81017 (8)	0.1008 (13)	
H27A	0.8500	0.5107	0.8353	0.151*	
H27B	0.8505	0.4998	0.7893	0.151*	
H27C	0.7368	0.6458	0.8074	0.151*	
C31	0.3734 (2)	0.2329 (3)	0.52703 (6)	0.0356 (5)	
031	0.32183 (18)	0.2105 (3)	0.55895 (4)	0.0597 (5)	
C33	0.5987 (2)	0.2562 (3)	0.48889 (6)	0.0370 (5)	
H33	0.7047	0.2625	0.4888	0.044*	

C34	0.5007 (2)	0.2576 (3)	0.45381 (6)	0.0383 (5)	
C35	0.3436 (2)	0.2518 (3)	0.45352 (6)	0.0393 (5)	
H35	0.2796	0.2548	0.4296	0.047*	
C32	0.5365 (2)	0.2455 (3)	0.52377 (6)	0.0339 (4)	0.531 (16)
N32	0.6471 (5)	0.244 (2)	0.55966 (13)	0.036 (3)	0.531 (16)
O32	0.6107 (6)	0.1681 (18)	0.58975 (13)	0.068 (2)	0.531 (16)
033	0.7762 (6)	0.3080 (16)	0.55749 (18)	0.0608 (18)	0.531 (16)
C42	0.5365 (2)	0.2455 (3)	0.52377 (6)	0.0339 (4)	0.469 (16)
N42	0.6434 (7)	0.242 (3)	0.55983 (17)	0.056 (5)	0.469 (16)
O42	0.6039 (6)	0.306 (2)	0.59065 (15)	0.071 (3)	0.469 (16)
O43	0.7755 (7)	0.191 (2)	0.5573 (2)	0.073 (2)	0.469 (16)
N34	0.5657 (2)	0.2627 (3)	0.41672 (5)	0.0514 (5)	
O34	0.7052 (2)	0.2600 (3)	0.41785 (5)	0.0689 (5)	
O35	0.4782 (2)	0.2684 (3)	0.38591 (5)	0.0800 (6)	
C36	0.2819 (2)	0.2416 (3)	0.48841 (6)	0.0370 (5)	0.62 (6)
N36	0.1151 (5)	0.2315 (18)	0.4864 (3)	0.056 (3)	0.62 (6)
O36	0.0431 (11)	0.178 (4)	0.4554 (4)	0.096 (4)	0.62 (6)
O37	0.0549 (12)	0.301 (3)	0.5138 (3)	0.084 (3)	0.62 (6)
C46	0.2819 (2)	0.2416 (3)	0.48841 (6)	0.0370 (5)	0.38 (6)
N46	0.1144 (7)	0.238 (3)	0.4844 (3)	0.055 (5)	0.38 (6)
O46	0.0441 (16)	0.215 (5)	0.4518 (4)	0.080 (5)	0.38 (6)
O47	0.0510 (15)	0.227 (9)	0.5144 (4)	0.089 (7)	0.38 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U^{13}	U ²³
N1	0.0325 (10)	0.0750 (15)	0.0359 (10)	-0.0069 (10)	0.0025 (8)	-0.0021 (10)
C2	0.0542 (14)	0.0582 (16)	0.0448 (13)	-0.0104(12)	0.0050 (11)	-0.0058(11)
C3	0.0576 (14)	0.0484 (15)	0.0423 (12)	-0.0008 (11)	-0.0007 (10)	-0.0018 (11)
N4	0.0431 (10)	0.0433 (11)	0.0332 (8)	-0.0024(8)	0.0034 (7)	0.0004 (8)
C5	0.0506 (13)	0.0499 (14)	0.0379 (11)	-0.0036 (11)	0.0001 (10)	0.0040 (10)
C6	0.0508 (14)	0.0640 (17)	0.0457 (13)	0.0036 (12)	-0.0017 (11)	0.0073 (12)
C21	0.0395 (11)	0.0485 (14)	0.0314 (10)	-0.0006 (10)	0.0080 (8)	-0.0022 (9)
C22	0.0515 (13)	0.0573 (15)	0.0371 (12)	-0.0095 (12)	0.0078 (10)	0.0040 (10)
C23	0.0574 (15)	0.0734 (18)	0.0328 (11)	-0.0057 (13)	0.0074 (10)	0.0102 (11)
C24	0.0456 (13)	0.0809 (19)	0.0312 (11)	-0.0042(13)	0.0024 (9)	-0.0026 (12)
C25	0.0540 (14)	0.0710 (18)	0.0425 (13)	-0.0193 (13)	0.0018 (11)	0.0005 (12)
C26	0.0535 (14)	0.0582 (16)	0.0341 (11)	-0.0094(12)	0.0039 (10)	0.0061 (10)
O24	0.0634 (11)	0.1146 (17)	0.0390 (9)	-0.0199 (11)	-0.0082(8)	0.0053 (10)
C27	0.082 (2)	0.160 (4)	0.0538 (17)	-0.051 (2)	-0.0169 (15)	0.003 (2)
C31	0.0367 (10)	0.0329 (11)	0.0372 (11)	0.0006 (9)	0.0038 (8)	-0.0029(9)
031	0.0439 (9)	0.0975 (15)	0.0388 (8)	-0.0007 (9)	0.0093 (7)	0.0006 (9)
C33	0.0345 (10)	0.0303 (11)	0.0469 (11)	-0.0010(9)	0.0081 (9)	0.0000 (9)
C34	0.0459 (12)	0.0340 (11)	0.0361 (10)	-0.0020(10)	0.0089 (9)	0.0014 (9)
C35	0.0472 (12)	0.0343 (11)	0.0345 (10)	-0.0022(10)	-0.0033 (9)	0.0010 (9)
C32	0.0349 (10)	0.0298 (11)	0.0351 (10)	-0.0001(9)	-0.0032(8)	-0.0027(9)
N32	0.029 (4)	0.035 (5)	0.038 (5)	-0.004 (4)	-0.022 (4)	0.005 (4)
O32	0.072 (3)	0.094 (6)	0.034 (2)	-0.018 (3)	-0.0095 (17)	0.013 (3)
		· · /	× /	× /	× /	× /

O33	0.033 (2)	0.075 (4)	0.070 (3)	-0.002 (3)	-0.0091 (17)	0.010 (3)
C42	0.0349 (10)	0.0298 (11)	0.0351 (10)	-0.0001 (9)	-0.0032 (8)	-0.0027 (9)
N42	0.062 (7)	0.050 (8)	0.058 (7)	0.003 (6)	0.022 (5)	-0.013 (6)
O42	0.069 (3)	0.095 (7)	0.044 (3)	0.005 (3)	-0.0066 (19)	-0.007 (3)
O43	0.036 (3)	0.096 (7)	0.080 (3)	0.014 (3)	-0.015 (2)	-0.013 (4)
N34	0.0644 (13)	0.0488 (12)	0.0427 (11)	-0.0041 (11)	0.0135 (10)	0.0020 (9)
O34	0.0609 (11)	0.0862 (14)	0.0653 (11)	0.0002 (11)	0.0300 (9)	0.0074 (10)
O35	0.0879 (14)	0.1139 (18)	0.0383 (9)	-0.0126 (13)	0.0081 (9)	0.0024 (11)
C36	0.0324 (10)	0.0363 (11)	0.0414 (11)	-0.0010 (9)	0.0011 (8)	-0.0007 (9)
N36	0.034 (4)	0.069 (5)	0.060 (6)	0.012 (4)	-0.016 (4)	-0.003 (4)
O36	0.049 (4)	0.147 (9)	0.085 (6)	-0.019 (4)	-0.020 (4)	-0.037 (7)
O37	0.046 (4)	0.129 (8)	0.079 (5)	0.024 (4)	0.018 (3)	0.006 (3)
C46	0.0324 (10)	0.0363 (11)	0.0414 (11)	-0.0010 (9)	0.0011 (8)	-0.0007 (9)
N46	0.045 (8)	0.075 (9)	0.049 (8)	-0.023 (7)	0.020 (7)	0.014 (7)
O46	0.043 (6)	0.138 (11)	0.054 (6)	0.015 (7)	-0.010 (5)	0.013 (8)
O47	0.038 (5)	0.18 (2)	0.043 (6)	-0.017 (7)	0.006 (4)	0.012 (6)

Geometric parameters (Å, °)

N1—C6	1.480 (3)	C26—H26	0.9300
N1-C2	1.481 (3)	O24—C27	1.419 (4)
N1—H11	0.92 (3)	C27—H27A	0.9600
N1—H12	0.91 (3)	С27—Н27В	0.9600
C2—C3	1.510(3)	С27—Н27С	0.9600
C2—H2A	0.9700	C31—O31	1.235 (2)
C2—H2B	0.9700	C31—C32	1.448 (3)
C3—N4	1.460 (3)	C31—C36	1.455 (3)
С3—НЗА	0.9700	C33—C32	1.366 (3)
С3—Н3В	0.9700	C33—C34	1.383 (3)
N4—C21	1.430 (3)	С33—Н33	0.9300
N4—C5	1.453 (3)	C34—C35	1.375 (3)
C5—C6	1.509 (3)	C34—N34	1.446 (3)
C5—H5A	0.9700	C35—C36	1.364 (3)
С5—Н5В	0.9700	С35—Н35	0.9300
С6—Н6А	0.9700	C32—N32	1.463 (4)
С6—Н6В	0.9700	N32—O32	1.218 (7)
C21—C26	1.377 (3)	N32—O33	1.218 (7)
C21—C22	1.393 (3)	N42—O43	1.218 (7)
C22—C23	1.378 (3)	N42—O42	1.222 (8)
С22—Н22	0.9300	N34—O34	1.217 (2)
C23—C24	1.377 (3)	N34—O35	1.221 (2)
С23—Н23	0.9300	C36—N36	1.455 (5)
C24—C25	1.369 (3)	N36—O36	1.213 (5)
C24—O24	1.380 (3)	N36—O37	1.218 (7)
C25—C26	1.393 (3)	N46—O46	1.213 (7)
С25—Н25	0.9300	N46—O47	1.220 (8)
C6—N1—C2	111.14 (18)	C25—C24—O24	125.3 (2)

C6—N1—H11	107.7 (16)	C23—C24—O24	115.4 (2)
C2—N1—H11	111.3 (15)	C24—C25—C26	120.0 (2)
C6—N1—H12	108.7 (16)	C24—C25—H25	120.0
C2—N1—H12	108.8 (16)	C26—C25—H25	120.0
H11—N1—H12	109 (2)	C21—C26—C25	121.5 (2)
N1-C2-C3	110.02(19)	C21—C26—H26	119.2
N1 - C2 - H2A	109.7	$C_{25} = C_{26} = H_{26}$	119.2
$C_3 = C_2 = H_2 A$	109.7	$C_{24} = 0.24 = 0.24$	117.2
N1_C2_H2B	109.7	024 - 027 - H27A	109.5
$C_3 C_2 H_2 B$	109.7	O24 $O27$ $H27R$	109.5
	109.7	H_{27} H_{27} H_{27} H_{27} H_{27}	109.5
$M_{12} = C_2 = M_{22} = M_{22}$	108.2	$\Omega_2 A = C_2 A = \Omega_2 $	109.5
N4 = C2 = U2A	110.6 (2)	$U_2 = U_2 $	109.5
N4-C3-H3A	109.5	$H_2/A = C_2/=H_2/C$	109.5
C2—C3—H3A	109.5	$H_2/B = C_2/=H_2/C$	109.5
N4—C3—H3B	109.5	031 - 031 - 032	122.96 (18)
С2—С3—НЗВ	109.5	031-031-036	125.38 (18)
НЗА—СЗ—НЗВ	108.1	C32—C33—C34	118.62 (18)
C21—N4—C5	115.72 (17)	С32—С33—Н33	120.7
C21—N4—C3	114.01 (17)	С34—С33—Н33	120.7
C5—N4—C3	109.92 (17)	C35—C34—C33	121.41 (18)
N4—C5—C6	110.26 (19)	C35—C34—N34	119.60 (18)
N4—C5—H5A	109.6	C33—C34—N34	118.99 (19)
С6—С5—Н5А	109.6	C36—C35—C34	119.79 (18)
N4—C5—H5B	109.6	С36—С35—Н35	120.1
С6—С5—Н5В	109.6	С34—С35—Н35	120.1
H5A—C5—H5B	108.1	C33—C32—C31	124.80 (17)
N1—C6—C5	110.2 (2)	C33—C32—N32	115.6 (3)
N1—C6—H6A	109.6	C31—C32—N32	119.6 (3)
С5—С6—Н6А	109.6	O32—N32—O33	122.3 (4)
N1—C6—H6B	109.6	O32—N32—C32	119.3 (6)
С5—С6—Н6В	109.6	O33—N32—C32	118.2 (5)
H6A—C6—H6B	108.1	043 - N42 - 042	122.0 (6)
$C_{26} = C_{21} = C_{22}$	1175(2)	0.34 - N.34 - 0.35	122.0(0) 123.3(2)
$C_{26} = C_{21} = C_{22}$	117.3(2) 123 74 (19)	034 - N34 - C34	123.3(2)
$C_{20} = C_{21} = N_4$	125.74(19) 118 75 (19)	035 - N34 - C34	118.10(1)
$C_{22} = C_{21} = R_{4}$	110.75(17)	C_{35} C_{36} C_{31}	110.5(2)
$C_{23} = C_{22} = C_{21}$	121.1 (2)	$C_{35} = C_{30} = C_{31}$	123.71(10) 117.5(4)
$C_{23} = C_{22} = H_{22}$	119.5	C_{21} C_{26} N26	117.3(4)
$C_{21} = C_{22} = H_{22}$	119.5	$C_{31} = C_{30} = N_{30}$	110.7(4)
$C_{24} = C_{23} = C_{22}$	120.6 (2)	030 - 1030 - 037	123.3 (7)
C24—C23—H23	119.7	036—N36—C36	117.9 (6)
C22—C23—H23	119.7	U37—N36—C36	118.1 (6)
C25—C24—C23	119.3 (2)	O46—N46—O47	121.8 (10)
C6—N1—C2—C3	-54.9 (3)	C33—C34—C35—C36	-0.9 (3)
N1-C2-C3-N4	56.9 (2)	N34—C34—C35—C36	178.29 (19)
C2—C3—N4—C21	168.24 (18)	C34—C33—C32—C31	0.7 (3)
C2—C3—N4—C5	-59.9 (2)	C34—C33—C32—N32	179.8 (6)
C21—N4—C5—C6	-168.80 (19)	O31—C31—C32—C33	175.2 (2)

C3—N4—C5—C6	60.3 (2)	C36—C31—C32—C33	-2.4 (3)
C2—N1—C6—C5	55.6 (2)	O31—C31—C32—N32	-3.8 (7)
N4—C5—C6—N1	-58.2 (2)	C36—C31—C32—N32	178.5 (6)
C5—N4—C21—C26	-4.7 (3)	C33—C32—N32—O32	-155.0 (10)
C3—N4—C21—C26	124.3 (2)	C31—C32—N32—O32	24.2 (15)
C5—N4—C21—C22	173.2 (2)	C33—C32—N32—O33	20.3 (13)
C3—N4—C21—C22	-57.8 (3)	C31—C32—N32—O33	-160.6 (8)
C26—C21—C22—C23	0.0 (3)	C35—C34—N34—O34	-177.3 (2)
N4—C21—C22—C23	-178.0 (2)	C33—C34—N34—O34	2.0 (3)
C21—C22—C23—C24	1.3 (4)	C35—C34—N34—O35	2.4 (3)
C22—C23—C24—C25	-1.2 (4)	C33—C34—N34—O35	-178.4 (2)
C22—C23—C24—O24	178.8 (2)	C34—C35—C36—C31	-1.1 (3)
C23—C24—C25—C26	-0.3 (4)	C34—C35—C36—N36	-178.7 (6)
O24—C24—C25—C26	179.8 (2)	O31—C31—C36—C35	-175.0 (2)
C22—C21—C26—C25	-1.4 (3)	C32—C31—C36—C35	2.6 (3)
N4—C21—C26—C25	176.5 (2)	O31—C31—C36—N36	2.6 (6)
C24—C25—C26—C21	1.6 (4)	C32—C31—C36—N36	-179.8 (6)
C25—C24—O24—C27	0.6 (4)	C35—C36—N36—O36	19.8 (18)
C23—C24—O24—C27	-179.4 (3)	C31—C36—N36—O36	-158.0 (16)
C32—C33—C34—C35	1.1 (3)	C35—C36—N36—O37	-151.0 (14)
C32—C33—C34—N34	-178.13 (19)	C31—C36—N36—O37	31.3 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N1—H11…O31	0.92 (3)	1.81 (3)	2.704 (3)	163 (2)
N1—H11…O37	0.92 (3)	2.56 (3)	2.982 (11)	108.7 (19)
N1—H11…O47	0.92 (3)	2.42 (3)	2.870 (15)	110.1 (19)
N1—H12…O33 ⁱ	0.91 (3)	2.12 (3)	2.926 (6)	148 (2)
N1—H12…O43 ⁱ	0.91 (3)	1.92 (3)	2.815 (6)	168 (2)
C22—H22···Cg1 ⁱⁱ	0.93	2.86	3.769 (3)	164

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2.

4-(4-Methoxyphenyl)piperazin-1-ium 4-aminobenzoate monohydrate (IV)

Crystal data

$C_7H_6NO_2^+ \cdot C_{11}H_{17}N_2O^- \cdot H_2O$	Z = 2
$M_r = 34/.41$	F(000) = 372
Triclinic, P1	$D_{\rm x} = 1.301 {\rm Mg m^{-3}}$
a = 6.2590 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 7.4549 (9) Å	Cell parameters from 3815 reflections
c = 19.269 (2) Å	$\theta = 2.9 - 28.0^{\circ}$
$\alpha = 83.28 \ (1)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 84.740 \ (1)^{\circ}$	T = 293 K
$\gamma = 85.38 (1)^{\circ}$	Needle, orange
$V = 886.94 (17) \text{ Å}^3$	$0.40 \times 0.20 \times 0.14 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur with Sapphire CCD diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan	5786 measured reflections 3500 independent reflections 1923 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -7 \rightarrow 7$
(CrysAlis RED; Oxford Diffraction, 2009)	$k = -9 \rightarrow 9$
$T_{\min} = 0.814, T_{\max} = 0.987$	<i>l</i> = −23→23
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.069$ $wR(F^2) = 0.187$ S = 1.07 3500 reflections 240 parameters 2 restraints Primery atom site leastion: dual	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0852P)^2 + 0.1253P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³
i innary atom site location, quai	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.2828 (4)	0.7421 (3)	0.95242 (13)	0.0450 (7)	
H11	0.2404 (10)	0.622 (3)	0.9597 (2)	0.054*	
H12	0.3170 (8)	0.7746 (7)	0.9957 (10)	0.054*	
C2	0.4741 (5)	0.7531 (5)	0.90102 (16)	0.0497 (8)	
H2A	0.5897	0.6695	0.9179	0.060*	
H2B	0.5230	0.8745	0.8959	0.060*	
C3	0.4195 (5)	0.7068 (4)	0.83065 (15)	0.0441 (8)	
H3A	0.5434	0.7229	0.7970	0.053*	
H3B	0.3885	0.5804	0.8349	0.053*	
N4	0.2361 (4)	0.8177 (3)	0.80430 (12)	0.0364 (6)	
C5	0.0500 (5)	0.8148 (4)	0.85669 (15)	0.0439 (7)	
H5A	-0.0018	0.6943	0.8637	0.053*	
H5B	-0.0648	0.8982	0.8391	0.053*	
C6	0.1042 (5)	0.8661 (4)	0.92564 (15)	0.0483 (8)	
H6A	0.1461	0.9898	0.9197	0.058*	
H6B	-0.0212	0.8590	0.9591	0.058*	
C21	0.1873 (4)	0.7910 (4)	0.73590 (14)	0.0360 (7)	
C22	0.3250 (5)	0.6885 (4)	0.69232 (16)	0.0486 (8)	
H22	0.4527	0.6338	0.7084	0.058*	
C23	0.2747 (5)	0.6671 (5)	0.62568 (17)	0.0560 (9)	
H23	0.3696	0.5990	0.5974	0.067*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C24	0.0876 (5)	0.7445 (5)	0.60071 (16)	0.0492 (8)
C25	-0.0491 (5)	0.8463 (5)	0.64207 (17)	0.0560 (9)
H25	-0.1761	0.9008	0.6254	0.067*
C26	0.0006 (5)	0.8689 (4)	0.70887 (16)	0.0524 (9)
H26	-0.0947	0.9387	0.7364	0.063*
O24	0.0508 (4)	0.7097 (4)	0.53404 (12)	0.0751 (8)
C27	-0.1543 (7)	0.7604 (7)	0.5111 (2)	0.0904 (15)
H27A	-0.2619	0.7136	0.5457	0.136*
H27B	-0.1664	0.7123	0.4676	0.136*
H27C	-0.1748	0.8901	0.5042	0.136*
C31	0.2985 (4)	0.7266 (4)	1.20437 (15)	0.0377 (7)
C32	0.1577 (5)	0.6559 (4)	1.25859 (17)	0.0499 (8)
H32	0.0366	0.6033	1.2480	0.060*
C33	0.1932 (5)	0.6617 (4)	1.32757 (17)	0.0543 (9)
H33	0.0961	0.6128	1.3628	0.065*
C34	0.3719 (5)	0.7394 (4)	1.34546 (16)	0.0501 (8)
C35	0.5129 (5)	0.8063 (4)	1.29165 (17)	0.0497 (8)
H35	0.6352	0.8570	1.3023	0.060*
C36	0.4789 (5)	0.8008 (4)	1.22268 (16)	0.0439 (8)
H36	0.5781	0.8474	1.1877	0.053*
C37	0.2566 (5)	0.7256 (4)	1.12955 (17)	0.0477 (8)
O31	0.3847 (4)	0.7999 (3)	1.08228 (12)	0.0614 (7)
O32	0.0963 (4)	0.6528 (4)	1.11651 (14)	0.0866 (9)
N34	0.4074 (6)	0.7461 (6)	1.41482 (17)	0.0767 (11)
H341	0.312 (7)	0.732 (6)	1.447 (2)	0.092*
H342	0.511 (7)	0.811 (6)	1.421 (2)	0.092*
O41	0.2239 (4)	0.3712 (3)	0.96061 (13)	0.0592 (7)
H41	0.122 (5)	0.361 (5)	0.9356 (18)	0.089*
H42	0.329 (5)	0.307 (5)	0.943 (2)	0.089*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0545 (17)	0.0468 (15)	0.0367 (14)	-0.0123 (12)	-0.0095 (12)	-0.0066 (11)
C2	0.0439 (19)	0.062 (2)	0.0445 (19)	-0.0063 (15)	-0.0093 (15)	-0.0065 (15)
C3	0.0361 (17)	0.0536 (19)	0.0422 (18)	0.0048 (14)	-0.0056 (13)	-0.0072 (14)
N4	0.0364 (13)	0.0388 (13)	0.0345 (13)	-0.0009 (10)	-0.0026 (10)	-0.0074 (10)
C5	0.0384 (17)	0.0543 (19)	0.0390 (17)	0.0001 (14)	-0.0030 (13)	-0.0072 (14)
C6	0.052 (2)	0.0528 (19)	0.0394 (18)	-0.0008 (15)	-0.0025 (15)	-0.0072 (14)
C21	0.0351 (16)	0.0327 (16)	0.0404 (17)	-0.0017 (12)	-0.0040 (13)	-0.0049 (12)
C22	0.0357 (17)	0.065 (2)	0.0461 (19)	0.0099 (15)	-0.0072 (14)	-0.0152 (16)
C23	0.046 (2)	0.076 (2)	0.047 (2)	0.0101 (17)	-0.0033 (16)	-0.0237 (17)
C24	0.049 (2)	0.066 (2)	0.0344 (18)	-0.0069 (16)	-0.0061 (14)	-0.0105 (15)
C25	0.054 (2)	0.067 (2)	0.048 (2)	0.0168 (17)	-0.0173 (16)	-0.0139 (17)
C26	0.055 (2)	0.058 (2)	0.0441 (19)	0.0151 (16)	-0.0079 (15)	-0.0156 (16)
O24	0.0604 (16)	0.123 (2)	0.0470 (15)	0.0053 (15)	-0.0153 (12)	-0.0311 (14)
C27	0.075 (3)	0.148 (4)	0.055 (3)	0.002 (3)	-0.026 (2)	-0.030 (3)
C31	0.0366 (16)	0.0332 (16)	0.0448 (18)	0.0014 (13)	-0.0080 (13)	-0.0098 (13)

C32	0.0438 (18)	0.0477 (19)	0.061 (2)	-0.0079 (15)	-0.0035 (16)	-0.0152 (16)
C33	0.052 (2)	0.057 (2)	0.052 (2)	-0.0068 (17)	0.0088 (16)	-0.0039 (16)
C34	0.054 (2)	0.054 (2)	0.0415 (19)	0.0096 (16)	-0.0099 (16)	-0.0073 (15)
C35	0.0440 (19)	0.058 (2)	0.050 (2)	-0.0055 (15)	-0.0149 (16)	-0.0075 (16)
C36	0.0431 (18)	0.0435 (18)	0.0461 (19)	-0.0079 (14)	-0.0061 (14)	-0.0031 (14)
C37	0.052 (2)	0.0399 (18)	0.054 (2)	0.0030 (15)	-0.0137 (17)	-0.0144 (15)
O31	0.0741 (17)	0.0713 (16)	0.0416 (14)	-0.0104 (13)	-0.0126 (12)	-0.0088 (11)
O32	0.0760 (19)	0.116 (2)	0.080 (2)	-0.0354 (17)	-0.0310 (15)	-0.0252 (16)
N34	0.075 (3)	0.112 (3)	0.044 (2)	0.009 (2)	-0.0138 (16)	-0.0150 (19)
O41	0.0597 (16)	0.0589 (16)	0.0637 (16)	-0.0143 (12)	-0.0196 (12)	-0.0088 (12)

Geometric parameters (Å, °)

N1—C6	1.483 (4)	C25—C26	1.384 (4)
N1—C2	1.484 (4)	C25—H25	0.9300
N1—H11	0.94 (2)	C26—H26	0.9300
N1—H12	0.94 (2)	O24—C27	1.405 (4)
С2—С3	1.513 (4)	C27—H27A	0.9600
C2—H2A	0.9700	C27—H27B	0.9600
C2—H2B	0.9700	C27—H27C	0.9600
C3—N4	1.454 (3)	C31—C32	1.387 (4)
С3—НЗА	0.9700	C31—C36	1.387 (4)
С3—Н3В	0.9700	C31—C37	1.490 (4)
N4—C21	1.420 (3)	C32—C33	1.374 (4)
N4—C5	1.470 (3)	C32—H32	0.9300
С5—С6	1.500 (4)	C33—C34	1.388 (5)
С5—Н5А	0.9700	С33—Н33	0.9300
С5—Н5В	0.9700	C34—C35	1.373 (4)
С6—Н6А	0.9700	C34—N34	1.382 (4)
C6—H6B	0.9700	C35—C36	1.371 (4)
C21—C26	1.381 (4)	С35—Н35	0.9300
C21—C22	1.393 (4)	C36—H36	0.9300
C22—C23	1.380 (4)	C37—O32	1.237 (4)
C22—H22	0.9300	C37—O31	1.265 (4)
C23—C24	1.366 (4)	N34—H341	0.82 (4)
С23—Н23	0.9300	N34—H342	0.87 (4)
C24—C25	1.362 (4)	O41—H41	0.850 (19)
C24—O24	1.383 (4)	O41—H42	0.856 (19)
C6—N1—C2	109.6 (2)	C25—C24—C23	119.2 (3)
C6—N1—H11	109.8	C25—C24—O24	124.8 (3)
C2—N1—H11	109.8	C23—C24—O24	116.0 (3)
C6—N1—H12	109.8	C24—C25—C26	120.2 (3)
C2—N1—H12	109.8	C24—C25—H25	119.9
H11—N1—H12	108.2	C26—C25—H25	119.9
N1—C2—C3	110.3 (2)	C21—C26—C25	122.0 (3)
N1—C2—H2A	109.6	C21—C26—H26	119.0
C3—C2—H2A	109.6	C25—C26—H26	119.0

N1—C2—H2B	109.6	C24—O24—C27	117.7 (3)
C3—C2—H2B	109.6	O24—C27—H27A	109.5
H2A—C2—H2B	108.1	O24—C27—H27B	109.5
N4—C3—C2	112.8 (2)	H27A—C27—H27B	109.5
N4—C3—H3A	109.0	O24—C27—H27C	109.5
С2—С3—Н3А	109.0	H27A—C27—H27C	109.5
N4—C3—H3B	109.0	H27B—C27—H27C	109.5
C2—C3—H3B	109.0	C32—C31—C36	117.2 (3)
H3A—C3—H3B	107.8	C32—C31—C37	121.5(3)
C21—N4—C3	115.5 (2)	C36—C31—C37	121.3 (3)
$C_{21} - N_{4} - C_{5}$	114.3 (2)	C_{33} — C_{32} — C_{31}	121.5(3)
C3—N4—C5	111.3 (2)	C_{33} — C_{32} — H_{32}	119.3
N4	112.2 (2)	$C_{31} - C_{32} - H_{32}$	119.3
N4—C5—H5A	109.2	C_{32} C_{33} C_{34}	121.0(3)
С6—С5—Н5А	109.2	C_{32} C_{33} H_{33}	119.5
N4—C5—H5B	109.2	C34-C33-H33	119.5
C6-C5-H5B	109.2	$C_{35} - C_{34} - N_{34}$	121.6(3)
$H_{5}A = C_{5} = H_{5}B$	107.9	C_{35} C_{34} C_{33}	1174(3)
N1-C6-C5	107.9	N34 - C34 - C33	1211(3)
N1-C6-H6A	109.8 (2)	$C_{36} - C_{35} - C_{34}$	121.1(3) 1220(3)
C5-C6-H6A	109.7	$C_{36} - C_{35} - C_{34}$	119.0
N1 - C6 - H6B	109.7	C_{34} C_{35} H_{35}	119.0
C5-C6-H6B	109.7	$C_{35} - C_{36} - C_{31}$	120.9(3)
H_{6A} C_{6} H_{6B}	109.7	C_{35} C_{36} H_{36}	119.5
C_{26} C_{21} C_{22}	116.6 (3)	C_{31} C_{36} H_{36}	119.5
$C_{20} = C_{21} = C_{22}$	110.0(3) 121.0(2)	032 - 037 - 031	117.5 122.9(3)
$C_{20} = C_{21} = N_4$	121.0(2) 1223(3)	032 - 037 - 031	122.9(3)
$C_{22} = C_{21} = 104$	122.9(3) 121.0(3)	031 - C37 - C31	118.9(3)
C_{23} C_{22} C_{21} C_{23} C_{22} H_{22}	119.5	C_{34} N34 H341	122(3)
$C_{23} = C_{22} = H_{22}$	119.5	C34 N34 H342	122(3) 115(3)
C_{24} C_{23} C_{22}	120.9 (3)	$H_{341} N_{34} H_{342}$	117(4)
C_{24} C_{23} H_{23}	119.5	$H41 \longrightarrow 041 \longrightarrow H42$	104(4)
$C_{24} = C_{23} = H_{23}$	119.5		104 (4)
022 023 1123	119.5		
C6-N1-C2-C3	-577(3)	C22—C21—C26—C25	0.3(5)
N1-C2-C3-N4	54 8 (3)	N4-C21-C26-C25	1793(3)
$C_2 - C_3 - N_4 - C_2 I$	1751(2)	C^{24} C^{25} C^{26} C^{21}	01(5)
$C_2 = C_3 = N_4 = C_5$	-523(3)	$C_{25} - C_{24} - O_{24} - C_{27}$	-96(5)
$C_{21} = N_{4} = C_{5} = C_{6}$	-1730(2)	C^{23} C^{24} O^{24} C^{27}	1695(4)
$C_3 - N_4 - C_5 - C_6$	53 8 (3)	$C_{36} = C_{31} = C_{32} = C_{33}$	109.2(1) 11(4)
$C_2 = N_1 = C_2 = C_2$	59.3 (3)	C_{37} C_{31} C_{32} C_{33}	-178.0(3)
N4-C5-C6-N1	-57.6(3)	$C_{31} - C_{32} - C_{33} - C_{34}$	0.2(5)
$C_3 - N_4 - C_2 - C_2 6$	170.9(3)	$C_{32} - C_{33} - C_{34} - C_{35}$	-1.3(5)
C_{5} N4 C_{21} C_{20}	397(4)	$C_{32} = C_{33} = C_{34} = N_{34}$	1.5(3) 1797(3)
$C_3 - N_4 - C_{21} - C_{22}$	-10.2(4)	N34-C34-C35-C36	-1798(3)
C_{5} N4 C_{21} C_{22}	-141.4(3)	C_{33} — C_{34} — C_{35} — C_{36}	1.2 (5)
$C_{26} - C_{21} - C_{22} - C_{23}$	-0.1(5)	C34-C35-C36-C31	0.0(5)
N4—C21—C22—C23	-179.0(3)	C_{32} C_{31} C_{36} C_{35}	-1.2(4)

C21—C22—C23—C24	-0.5(5)	C37—C31—C36—C35	177.9 (3)
C22—C23—C24—C23	-178.2 (3)	C32—C31—C37—O32	-2.9 (4)
C22—C23—C24—O24		C36—C31—C37—O32	178.0 (3)
C23—C24—C25—C26	-0.8 (5)	C32—C31—C37—O31	176.5 (3)
O24—C24—C25—C26	178.3 (3)	C36—C31—C37—O31	-2.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H11…O41	0.95 (2)	1.88 (2)	2.803 (3)	165 (1)
N1—H12···O31	0.94 (1)	1.79 (2)	2.728 (3)	171 (1)
O41—H41…O32 ⁱ	0.85 (3)	1.78 (3)	2.631 (4)	178 (4)
O41—H42···O31 ⁱⁱ	0.85 (3)	1.95 (3)	2.772 (3)	164 (3)
N34—H341…O24 ⁱⁱⁱ	0.82 (4)	2.23 (4)	3.057 (4)	177 (4)
C22—H22···Cg2 ⁱ	0.93	2.93	3.666 (3)	137
C26—H26···Cg2 ^{iv}	0.93	2.77	3.531 (3)	139

Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x, y, z+1; (iv) -x, -y+2, -z+2.