

Received 20 January 2020 Accepted 28 February 2020

Edited by P. Roussel, ENSCL, France

Keywords: crystal structure; rare-earth silicide; chiral structure; chiral magnet; single-crystal growth; X-ray diffraction.

CCDC references: 1974014; 1974013

Supporting information: this article has supporting information at journals.iucr.org/e

Redetermination of the crystal structure of R_5Si_4 (R = Pr, Nd) from single-crystal X-ray diffraction data

Kaori Yokota,^a Ryuta Watanuki,^b* Miki Nakashima,^a Masatomo Uehara,^a Jun Gouchi,^c Yoshiya Uwatoko^c and Izuru Umehara^a

^aDepartment of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, ^bDepartment of Chemistry, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan, and ^cThe Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan. *Correspondence e-mail: watanuki-ryuta-sm@ynu.ac.jp

The crystal structures of praseodymium silicide (5/4), Pr₅Si₄, and neodymium silicide (5/4), Nd₅Si₄, were redetermined using high-quality single-crystal X-ray diffraction data. The previous structure reports of Pr₅Si₄ were only based on powder X-ray diffraction data [Smith et al. (1967). Acta Cryst. 22 940–943; Yang et al. (2002b). J. Alloys Compd. 339, 189-194; Yang et al., (2003). J. Alloys *Compd.* **263**, 146–153]. On the other hand, the structure of Nd_5Si_4 has been determined from powder data [neutron; Cadogan et al., (2002). J. Phys. Condens. Matter, 14, 7191–7200] and X-ray [Smith et al. (1967). Acta Cryst. 22 940-943; Yang et al. (2002b). J. Alloys Compd. 339, 189-194; Yang et al., (2003). J. Alloys Compd. 263, 146–153] and single-crystal data with isotropic atomic displacement parameters [Roger et al., (2006). J. Alloys Compd. 415, 73-84]. In addition, the anisotropic atomic displacement parameters for all atomic sites have been determined for the first time. These compounds are confirmed to have the tetragonal Zr_5Si_4 -type structure (space group: $P4_12_12$), as reported previously (Smith et al., 1967). The structure is built up by distorted bodycentered cubes consisting of Pr(Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels in which the silicon dimers are situated.

1. Chemical context

510 https://doi.org/10.1107/S2056989020002789

In natural science, there are some essential concepts concerned with symmetry, among which chiral symmetry is one of the fundamentals in all fields of physics, especially magnetism in solid-state materials. A chiral magnet in solids is of great interest in both science and technology. These magnets have been studied for novel phenomena such as chiral magnetic soliton lattices and use in future spintronic devices such as magnetic memories and logic gates. The critical point is that the crystal-structure chirality affects the arrangement of magnetic moments in these materials. The symmetry of crystals plays an important role in the spatial arrangement of the magnetic moments. For example, the intermetallic compound YbNi₃Al₉ has a trigonal ErNi₃Al₉type structure in space group R32, a member of the Sohncke group (Gladyshevskii et al., 1993). This compound exhibits a characteristic helical magnetic structure, reflecting the symmetry of the crystal (Aoki et al., 2018). To study magnetism for chiral symmetry, we focused on the intermetallic compound R_5Si_4 (R = Pr and Nd), which has a

Table 1Selected bond lengths (Å) for Pr_5Si_4 .

Pr1-Pr2 ⁱ	3.4914 (4)	Pr1-Si1 ^{ix}	3.1756 (13)
Pr1-Pr2 ⁱⁱ	3.5319 (4)	Pr1-Si2 ⁱⁱ	3.1780 (13)
Pr1-Pr2 ⁱⁱⁱ	3.5319 (4)	Pr1-Si2 ⁱⁱⁱ	3.1780 (13)
$Pr1-Pr2^{iv}$	3.4914 (4)	Pr2-Pr2 ⁱ	3.9561 (6)
Pr1-Pr3 ^v	3.6423 (3)	Pr2-Pr3 ^{vii}	3.9414 (4)
Pr1-Pr3 ^{vi}	3.6423 (3)	$Pr2-Pr3^{x}$	3.9717 (3)
Pr1-Si1 ^{vii}	3.1756 (13)	Pr2-Pr3 ^{xi}	3.9156 (3)
Pr1-Si1 ^{viii}	3.0985 (13)	Pr3–Pr3 ⁱⁱ	4.0074 (2)
Pr1-Si1	3.0985 (13)	Si1-Si2	2.4738 (16)

Symmetry codes: (i) -y + 1, -x + 1, $-z + \frac{1}{2}$; (ii) $-y + \frac{3}{2}$, $x + \frac{1}{2}$, $z + \frac{1}{4}$; (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + \frac{3}{4}$; (iv) -x + 1, -y + 1, $z + \frac{1}{2}$; (v) -y + 2, -x + 1, $-z + \frac{1}{2}$; (vi) -x + 1, -y + 2, $z + \frac{1}{2}$; (vii) $-y + \frac{3}{2}$, $x - \frac{1}{2}$, $z + \frac{1}{4}$; (viii) y, x, -z + 1; (ix) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + \frac{3}{4}$.

Table 2 Selected bond lengths (Å) for Nd_5Si_4 .

$Nd1-Nd2^{i}$	3.4725 (5)	$Nd1-Si1^{ix}$	3.1528 (16)
Nd1_Nd2 ⁱⁱ	3 5021 (5)	Nd1_Si2 ⁱⁱ	3 1661 (16)
Nd1-Nd2 ⁱⁱⁱ	3.5021 (5)	$Nd1 - Si2^{iii}$ Nd1 - Si2 ⁱⁱⁱ	3.1661 (16)
Nd1-Nd2 ^{iv}	3.4725 (5)	Nd2-Nd2 ⁱ	3.9202 (7)
Nd1-Nd3 ^v	3.6265 (3)	$Nd2-Nd3^{x}$	3.9094 (4)
Nd1-Nd3 ^{vi}	3.6265 (3)	Nd2-Nd3 ^{xi}	3.9378 (4)
Nd1-Si1 ^{vii}	3.1528 (16)	Nd2-Nd3 ^{vii}	3.9061 (4)
Nd1-Si1 ^{viii}	3.0744 (15)	Nd3–Nd3 ^{xii}	3.9752 (2)
Nd1-Si1	3.0744 (15)	Si1-Si2	2.482 (2)

 $\begin{array}{l} \text{Symmetry codes: (i)} -y+1, -x+1, -z+\frac{1}{2}; (ii) -y+\frac{3}{2}, x+\frac{1}{2}, z+\frac{1}{4}; (iii) x+\frac{1}{2}, -y+\frac{3}{2}, -z+\frac{3}{4}; (iv) -x+1, -y+1, z+\frac{1}{2}; (v) -y+2, -x+1, -z+\frac{1}{2}; (vi) -x+1, -y+2, z+\frac{1}{2}; (vii) -y+\frac{3}{2}, x-\frac{1}{2}, z+\frac{1}{4}; (viii) y, x, -z+1; (ix) x-\frac{1}{2}, -y+\frac{3}{2}, -z+\frac{3}{4}. \end{array}$

tetragonal Zr_5Si_4 -type crystal structure in the chiral space group $P4_12_12$ (Smith *et al.*, 1967).

Roger *et al.* (2006) isolated a small single crystal of Nd₅Si₄ by crushing the solidified sample and collected single-crystal X-ray data. Very recently, Sato *et al.* (2018) reported the single-crystal growth and magnetic properties of Ce₅Si₄, which has the same crystal structure as Pr₅Si₄ and Nd₅Si₄. At present, there has only been a report of large-size single-crystal growth for R = Ce, and there are no reports of a large single crystal having been grown successfully for R = Pr or Nd. In particular,

Figure 1

Principal units in the structure of (a) Pr₅Si₄ and (b) Nd₅Si₄, illustrated using VESTA (Momma & Izumi, 2011). Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes: (i) -y + 1, -x + 1, $-z + \frac{1}{2}$; (ii) $-y + \frac{3}{2}$, $x + \frac{1}{2}$, $z + \frac{1}{4}$; (iii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + \frac{3}{4}$; (iv) -x + 1, -y + 1, $z + \frac{1}{2}$; (v) -y + 2, -x + 1, $-z + \frac{1}{2}$; (vi) -x + 1, -y + 2, $z + \frac{1}{2}$; (vii) $-y + \frac{3}{2}$, $x - \frac{1}{2}$, $z + \frac{1}{4}$; (viii) y, x, -z + 1; (ix) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + \frac{3}{4}$.

for Pr_5Si_4 , the crystal-structure analysis is based only on powder XRD data (Yang *et al.*, 2002*a*,*b*,*c*, 2003; Cadogan *et al.*, 2002; Smith *et al.*, 1967). It is still unknown, however, whether there is a relationship between chiral symmetry and electronic properties, including magnetic ones. In this paper, we report the details of crystallographic studies of single-crystal X-ray analysis of high-quality single-crystalline Pr_5Si_4 and Nd_5Si_4 , which are expected to be candidate materials for chiral magnets.

2. Structural commentary

The crystal structures of Pr_5Si_4 and Nd_5Si_4 refined in this study are essentially the same as those determined previously, belonging to chiral space group $P4_12_12$ (No. 92) for R = La, Ce, and Nd (Yang *et al.*, 2002*a*; Sato *et al.*, 2018). The asymmetric unit of these compounds consists of three Pr (Nd) and two Si atoms. The Pr1(Nd1) atom occupies the Wyckoff 4*a* site, and the Pr2 (Nd2), Pr3 (Nd3), Si1 and Si2 are located on the general position 8*b* sites. The principal units in the crystal structures of Pr_5Si_4 and Nd_5Si_4 are illustrated in Fig. 1, and selected bond lengths are given in Tables 1 and 2. The Pr1(Nd1) coordination environment in these compounds can be described as a distorted cube with four Pr2 (Nd2) and four Pr3 (Nd3) [Pr1-Pr2 and Pr1-Pr3 bond lengths ranging from 3.4914 (4) to 3.6423 (3) Å, Pr2-Pr3 bond lengths in the range 3.9156 (3) to 4.0074 (2) Å, Nd1-Nd2 and Nd1-Nd3 bond

Parts of the crystal structure showing five distorted body-centered cubes sharing Pr2-Pr3 edges (polyhedral drawing). Si1 and Si2 atoms form dimers with atoms Si2 and Si1, respectively, of the adjacent unit.

research communications

lengths of 3.4725 (5)-3.6265 (3) Å and Nd2-Nd3 bond lengths of 3.9094 (4)-3.9752 (2) Å]. In addition, the Pr1(Nd1)-Si bonds protruding through the distorted rectangular faces formed by two Pr2 (Nd2) and two Pr3 (Nd3) atoms have Pr1-Si bond lengths ranging from 3.0985 (13) to 3.1780 (13) Å and Nd1-Si bond lengths from 3.0744 (15) to 3.1661 (16) Å. The distorted cubes are connected through common two Pr2-Pr3 (Nd2-Nd3) edges, and Si1 (Si2) atoms form dimers with Si2 (Si1) atoms in the adjacent unit (Fig. 2). The Si1–Si2 bond length in Pr_5Si_4 is 2.4738 (16) Å, and that of Nd_5Si_4 is 2.482 (2) Å. The extended structure is shown in polyhedral representation in Fig. 3. The structure is built up by distorted body-centered cubes consisting of Pr (Nd) atoms, which are linked to each other by edge-sharing to form a three-dimensional framework. This framework delimits zigzag channels oriented along the [100] and [010] directions, in which the Si-Si dimers are situated.

3. Synthesis and crystallization

We have succeeded in growing single-crystalline samples of Pr_5Si_4 for the first time. For Nd₅Si₄, Roger *et al.* (2006) obtained a very small single crystal, but we have succeeded in growing a large single crystal. These compounds are incongruently melting compounds (Shukla *et al.*, 2009), so we synthesized source materials with the non-stoichiometric

Figure 3

Polyhedral representation of the crystal structure of Pr_5Si_4 showing the Si–Si dimers situated in zigzag channels running along the [100] and [010] directions.

molar ratio of Pr (Nd):Si of 58:42 in a mono-arc furnace. Each melted button of source materials was turned over and remelted three times to ensure homogeneity. Single crystals of Pr₅Si₄ and Nd₅Si₄ were grown by the Czochralski pulling method in a tetra arc furnace in an argon atmosphere on a water-cooled copper hearth. A tungsten rod was used as a pulling axis with no seed crystal, and after optimizing the initial conditions of the growth, the crystal was pulled at a constant rate of 12 mm hour⁻¹. The sizes of the grown ingots were about 30 mm in length and 5 mm in diameter. The grown single-crystal samples were characterized by powder X-ray diffraction using a Rigaku MiniFlexII diffractometer with Cu $K\alpha$ radiation. The powder X-ray diffraction peaks can be well indexed based on the tetragonal Zr₅Si₄-type structure. In addition, it has been confirmed that the whole grown crystal is a single grain crystal by means of the back-reflection Laue method.

4. Database survey

A survey of the Inorganic Crystal Structure Database (ICSD; Belsky et al., 2002) for Pr₅Si₄ vielded three hits. In all three, it is reported that Pr₅Si₄ has a Zr₅Si₄-type structure (Smith *et al.*, 1967; ICSD 649362; Yang et al., 2002b; ICSD 95099; Yang et al., 2003; ICSD 98352). On the other hand, for Nd₅Si₄, previous reports have shown that Nd₅Si₄ has two types of crystal structure, a Sm₅Ge₄ type (Raman, 1968; ICSD 645983; Roger et al., 2006; ICSD 154658 and 154659) and a Zr₅Si₄-type structure (Smith et al., 1967; ICSD 645939; Mokra et al., 1978; ICSD 645946; Eremenko et al., 1984; ICSD 600990; Yang et al., 2002a; ICSD 94987; Yang et al., 2002c; ICSD 190404; Cadogan et al., 2002; ICSD 190404). Roger et al. (2006) reported that Sm₅Ge₄-type Nd₅Si₄ could be obtained only with the addition of a tiny amount of boron of less than three at.% in the initial mixture, and that when synthesized with Nd and Si alone, Zr₅Si₄-type Nd₅Si₄ was obtained.

5. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 3. The highest and deepest remaining difference electron density features are located at 0.90 Å from Pr2 and 1.08 Å from Pr3 for Pr₅Si₄, and 0.74 Å from Nd1 and 1.38 Å from Nd2 for Nd₅Si₄. The absolute structures of the samples were well-defined in space group $P4_12_12$ (No. 92), although the bulk samples possibly also contain the other enantiomer; space group $P4_32_12$ (No. 96).

Acknowledgements

The authors gratefully thank the Instrumental Analysis Center of Yokohama National University for providing access to the single-crystal X-ray diffractometer.

Table 3Experimental details.

	Pr ₅ Si ₄	Nd ₅ Si ₄
Crystal data		
M _r	816.91	833.56
Crystal system, space group	Tetragonal, $P4_12_12$	Tetragonal, $P4_12_12$
Temperature (K)	223	223
a, c (Å)	7.9001 (2), 14.9568 (6)	7.8644 (2), 14.8085 (5)
$V(Å^3)$	933.48 (6)	915.89 (6)
Ζ	4	4
Radiation type	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	26.03	28.27
Crystal size (mm)	$0.13 \times 0.08 \times 0.03$	$0.12 \times 0.09 \times 0.07$
Data collection		
Diffractometer	XtaLAB AFC12 (RINC): Kappa dual offset/far	XtaLAB AFC12 (RINC): Kappa dual offset/far
Absorption correction	Analytical [<i>CrysAlis PRO</i> (Rigaku OD, 2019) based on Clark & Reid (1995)]	Analytical [<i>CrysAlis PRO</i> (Rigaku OD, 2019) based on Clark & Reid (1995)]
T_{\min}, T_{\max}	0.588, 0.830	0.561, 0.702
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5553, 1260, 1225	6054, 1238, 1203
R _{int}	0.025	0.032
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.710	0.708
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.013, 0.026, 1.10	0.015, 0.028, 1.09
No. of reflections	1260	1238
No. of parameters	43	43
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.69, -0.85	1.10, -0.71
Absolute structure	Flack x determined using 431 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)	Flack x determined using 422 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	-0.04 (2)	-0.01 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Funding information

Funding for this research was provided by: JSPS Grant-in-Aid for Scientific Research (KAKENHI) (grant No. 18K049922 and 18K03536).

References

- Aoki, R., Togawa, Y. & Ohara, S. (2018). Phys. Rev. B, 97, 214414.
- Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.
- Cadogan, J. M., Ryan, D. H., Altounian, Z., Wang, H. B. & Swainson, I. P. (2002). J. Phys. Condens. Matter, 14, 7191–7200.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eremenko, V. N., Meleshevich, K. A., Buyanov, Y. I. & Obushenko, I. M. (1984). Dokl. Akad. Nauk Ukr. SSR, Ser. A, 11, 80.
- Gladyshevskii, R. E., Cenzual, K., Flack, H. D. & Parthé, E. (1993). *Acta Cryst.* B49, 468–474.
- Mokra, I. R., Bodak, O. I. & Gladyshevskii, E. I. (1978). Dopovidi Akademii Nauk Ukrains'koi RSR, Seriya A Fiziko-Mat. Tekh. Nauk, 1043–1045.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Raman, A. (1968). Trans. Indian Inst. Met. 21, 5-8.

- Rigaku OD (2019). CrysAlis PRO. Oxford Diffraction, Yarnton, England.
- Roger, J., Babizhetskyy, V., Jardin, R., Halet, J. F. & Guérin, R. (2006). *J. Alloys Compd.* **415**, 73–84.
- Sato, Y. J., Shimizu, Y., Nakamura, A., Homma, Y., Li, D., Maurya, A., Honda, F. & Aoki, D. (2018). J. Phys. Soc. Jpn, 87, 074701.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shukla, A., Kang, Y. B. & Pelton, A. D. (2009). Int. J. Mater. Res. 100, 208–217.
- Smith, G. S., Tharp, A. G. & Johnson, W. (1967). Acta Cryst. 22, 940–943.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, H. F., Rao, G. H., Chu, W. G., Liu, G. Y., Ouyang, Z. W. & Liang, J. K. (2002a). J. Alloys Compd. 334, 131–134.
- Yang, H. F., Rao, G. H., Chu, W. G., Liu, G. Y., Ouyang, Z. W. & Liang, J. K. (2002b). J. Alloys Compd. 339, 189–194.
- Yang, H. F., Rao, G. H., Liu, G. Y., Ouyang, Z. W., Liu, W. F., Feng, X. M., Chu, W. G. & Liang, J. K. (2002c). J. Alloys Compd. 346, 190– 196.
- Yang, H. F., Rao, G. H., Liu, G. Y., Ouyang, Z. W., Liu, W. F., Feng, X. M., Chu, W. G. & Liang, J. K. (2003). J. Alloys Compd. 263, 146– 153.

supporting information

Acta Cryst. (2020). E76, 510-513 [https://doi.org/10.1107/S2056989020002789]

Redetermination of the crystal structure of R_5Si_4 (R = Pr, Nd) from single-crystal X-ray diffraction data

Kaori Yokota, Ryuta Watanuki, Miki Nakashima, Masatomo Uehara, Jun Gouchi, Yoshiya Uwatoko and Izuru Umehara

Computing details

For both structures, data collection: *CrysAlis PRO* (Rigaku OD, 2019); cell refinement: *CrysAlis PRO* (Rigaku OD, 2019); data reduction: *CrysAlis PRO* (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Pentapraseodymium tetrasiliside (A)

Crystal data Pr₅Si₄ $D_{\rm x} = 5.813 {\rm Mg} {\rm m}^{-3}$ $M_r = 816.91$ Mo *K* α radiation, $\lambda = 0.71073$ Å Tetragonal, P41212 Cell parameters from 4009 reflections $\theta = 3.8 - 30.3^{\circ}$ Hall symbol: P 4abw 2nw a = 7.9001 (2) Å $\mu = 26.03 \text{ mm}^{-1}$ T = 223 Kc = 14.9568 (6) Å Plate, metallic gray V = 933.48 (6) Å³ Z = 4 $0.13 \times 0.08 \times 0.03$ mm F(000) = 1404Data collection XtaLAB AFC12 (RINC): Kappa dual offset/far $T_{\rm min} = 0.588, T_{\rm max} = 0.830$ diffractometer 5553 measured reflections Radiation source: micro-focus sealed X-ray tube 1260 independent reflections Mirror monochromator 1225 reflections with $I > 2\sigma(I)$ Detector resolution: 5.8140 pixels mm⁻¹ $R_{\rm int} = 0.025$ $\theta_{\text{max}} = 30.3^{\circ}, \ \theta_{\text{min}} = 3.7^{\circ}$ ω scans $h = -11 \rightarrow 11$ Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2019) based on $k = -10 \rightarrow 10$ Clark & Reid (1995)] $l = -19 \rightarrow 17$ Refinement Refinement on F^2 Primary atom site location: dual Least-squares matrix: full $w = 1/[\sigma^2(F_0^2) + (0.0078P)^2 + 0.0556P]$ $R[F^2 > 2\sigma(F^2)] = 0.013$ where $P = (F_0^2 + 2F_c^2)/3$ $wR(F^2) = 0.026$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$ S = 1.101260 reflections $\Delta \rho_{\rm min} = -0.85 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL (Sheldrick, 43 parameters 2015b), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 0 restraints

Extinction coefficient: 0.00247 (9)

Absolute structure: Flack *x* determined using 431 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: -0.04 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pr1	0.81086 (3)	0.81086 (3)	0.500000	0.00721 (8)	
Pr2	0.51578 (3)	0.37028 (3)	0.12478 (2)	0.00578 (7)	
Pr3	0.51088 (3)	0.87144 (3)	0.04758 (2)	0.00676 (7)	
Si1	0.92537 (16)	0.71000 (16)	0.30916 (8)	0.0069 (2)	
Si2	0.69967 (16)	0.66478 (16)	0.19702 (8)	0.0078 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Pr1	0.00720 (10)	0.00720 (10)	0.00723 (16)	-0.00017 (11)	0.00069 (9)	-0.00069 (9)
Pr2	0.00587 (11)	0.00618 (12)	0.00529 (12)	-0.00033 (9)	0.00050 (9)	-0.00083 (8)
Pr3	0.00630 (12)	0.00650 (12)	0.00748 (12)	-0.00045 (7)	-0.00114 (9)	0.00172 (9)
Si1	0.0074 (5)	0.0078 (6)	0.0056 (6)	-0.0011 (4)	-0.0004 (4)	0.0001 (5)
Si2	0.0066 (5)	0.0074 (6)	0.0094 (6)	-0.0018 (4)	-0.0012 (5)	0.0007 (5)

Geometric parameters (Å, °)

Pr1—Pr2 ⁱ	3.4914 (4)	Pr2—Pr3 ^{xi}	3.9156 (3)
Pr1—Pr2 ⁱⁱ	3.5319 (4)	Pr2—Si1 ^{xi}	3.0641 (13)
Pr1—Pr2 ⁱⁱⁱ	3.5319 (4)	Pr2—Si1 ⁱ	3.1005 (14)
Pr1—Pr2 ^{iv}	3.4914 (4)	Pr2—Si1 ^{xii}	3.0668 (14)
Pr1—Pr3 ^v	3.6423 (3)	Pr2—Si2	2.9480 (13)
Pr1—Pr3 ^{vi}	3.6423 (3)	Pr2—Si2 ^{xi}	2.9737 (13)
Pr1—Si1 ^{vii}	3.1756 (13)	Pr2—Si2 ⁱ	3.0730 (13)
Pr1—Si1 ^{viii}	3.0985 (13)	Pr3—Pr3 ⁱⁱ	4.0074 (2)
Pr1—Si1	3.0985 (13)	Pr3—Si1 ^{xiii}	3.1554 (13)
Pr1—Si1 ^{ix}	3.1756 (13)	Pr3—Si1 ^{xii}	3.3434 (12)
Pr1—Si2 ⁱⁱ	3.1780 (13)	Pr3—Si1 ^{xiv}	3.1957 (12)
Pr1—Si2 ⁱⁱⁱ	3.1780 (13)	Pr3—Si2 ^{xiii}	3.2566 (12)
Pr2—Pr2 ⁱ	3.9561 (6)	Pr3—Si2 ^{xii}	3.1708 (12)
Pr2—Pr3 ^{vii}	3.9414 (4)	Pr3—Si2	3.1442 (12)
Pr2—Pr3 ^x	3.9717 (3)	Si1—Si2	2.4738 (16)
$Pr2^{i}$ — $Pr1$ — $Pr2^{iv}$	71.331 (11)	Si2 ^{xi} —Pr2—Si2 ⁱ	124.47 (4)
Pr2 ⁱⁱⁱ —Pr1—Pr2 ⁱⁱ	68.120 (11)	$Pr1^{xvi}$ — $Pr3$ — $Pr1^{xii}$	97.461 (6)

$Pr2^{iv}$ — $Pr1$ — $Pr2^{ii}$	176.841 (6)	Pr1 ^{xvi} —Pr3—Pr2 ^x	99.525 (8)
Pr2 ⁱ —Pr1—Pr2 ⁱⁱⁱ	176.841 (6)	Pr1 ^{xii} —Pr3—Pr2 ^{xvii}	158.527 (9)
$Pr2^{i}$ $Pr1$ $Pr2^{ii}$	110.343 (4)	Pr1 ^{xvi} —Pr3—Pr2 ^{xiii}	136.554 (9)
$Pr2^{iv}$ — $Pr1$ — $Pr2^{iii}$	110.343 (4)	$Pr1^{xii}$ — $Pr3$ — $Pr2^{x}$	97.821 (7)
$Pr2^{iv}$ — $Pr1$ — $Pr3^{v}$	109.131 (9)	Pr1 ^{xii} —Pr3—Pr2 ^{xiii}	99.441 (7)
$Pr2^{iii}$ — $Pr1$ — $Pr3^{vi}$	74.025 (6)	Pr1 ^{xvi} —Pr3—Pr2 ^{xvii}	102.639 (8)
$Pr2^{i}$ — $Pr1$ — $Pr3^{v}$	70.258 (6)	Pr1 ^{xvi} —Pr3—Pr3 ⁱⁱ	98.905 (6)
$Pr2^{ii}$ — $Pr1$ — $Pr3^{v}$	74.025 (6)	Pr1 ^{xii} —Pr3—Pr3 ⁱⁱ	56.190 (4)
Pr2 ⁱⁱ —Pr1—Pr3 ^{vi}	106.588 (8)	Pr2 ^{xiii} —Pr3—Pr2 ^{xvii}	60.464 (9)
$Pr2^{i}$ — $Pr1$ — $Pr3^{vi}$	109.131 (9)	Pr2 ^{xvii} —Pr3—Pr2 ^x	86.316 (6)
$Pr2^{iv}$ — $Pr1$ — $Pr3^{vi}$	70.258 (6)	Pr2 ^{xiii} —Pr3—Pr2 ^x	117.252 (7)
$Pr2^{iii}$ — $Pr1$ — $Pr3^{v}$	106.588 (8)	Pr2 ^x —Pr3—Pr3 ⁱⁱ	149.882 (8)
$Pr3^{vi}$ — $Pr1$ — $Pr3^{v}$	179.290 (14)	Pr2 ^{xvii} —Pr3—Pr3 ⁱⁱ	112.494 (8)
Si1—Pr1—Pr2 ⁱⁱⁱ	122.55 (3)	Pr2 ^{xiii} —Pr3—Pr3 ⁱⁱ	60.158 (7)
Si1 ^{viii} —Pr1—Pr2 ⁱ	127.07 (3)	Si1 ^{xii} —Pr3—Pr1 ^{xvi}	89.84 (2)
Si1—Pr1—Pr2 ⁱⁱ	54.63 (3)	Si1 ^{xiv} —Pr3—Pr1 ^{xii}	54.18 (2)
Si1 ^{ix} —Pr1—Pr2 ⁱⁱⁱ	128.63 (2)	Si1 ^{xiii} —Pr3—Pr1 ^{xvi}	55.14 (2)
Sil ^{ix} —Pr1—Pr2 ^{iv}	54.47 (2)	Si1 ^{xii} —Pr3—Pr1 ^{xii}	51.84 (2)
Si1—Pr1—Pr2 ⁱ	55.75 (3)	Si1 ^{xiii} —Pr3—Pr1 ^{xii}	144.17 (3)
Si1 ^{vii} —Pr1—Pr2 ^{iv}	54.52 (2)	Si1 ^{xiv} —Pr3—Pr1 ^{xvi}	53.40 (2)
Si1 ^{viii} —Pr1—Pr2 ⁱⁱⁱ	54.63 (3)	Si1 ^{xiii} —Pr3—Pr2 ^{xiii}	89.98 (2)
Sil ^{ix} —Pr1—Pr2 ⁱ	54.52 (2)	Si1 ^{xiv} —Pr3—Pr2 ^{xiii}	108.89 (3)
Si1 ^{vii} —Pr1—Pr2 ⁱⁱⁱ	124.06 (2)	Si1 ^{xii} —Pr3—Pr2 ^{xvii}	134.80 (2)
$Si1^{vii}$ — $Pr1$ — $Pr2^i$	54.47 (2)	Si1 ^{xiv} —Pr3—Pr2 ^x	129.63 (3)
Si1—Pr1—Pr2 ^{iv}	127.07 (3)	Si1 ^{xii} —Pr3—Pr2 ^{xiii}	131.45 (2)
Si1 ^{viii} —Pr1—Pr2 ⁱⁱ	122.55 (3)	Si1 ^{xiii} —Pr3—Pr2 ^{xvii}	50.33 (3)
Si1 ^{viii} —Pr1—Pr2 ^{iv}	55.75 (3)	Si1 ^{xii} —Pr3—Pr2 ^x	48.60 (2)
Si1 ^{ix} —Pr1—Pr2 ⁱⁱ	124.06 (2)	Si1 ^{xiii} —Pr3—Pr2 ^x	108.41 (2)
Si1 ^{vii} —Pr1—Pr2 ⁱⁱ	128.63 (2)	Si1 ^{xiv} —Pr3—Pr2 ^{xvii}	136.01 (3)
Si1—Pr1—Pr3 ^{vi}	124.12 (2)	Si1 ^{xiii} —Pr3—Pr3 ⁱⁱ	101.66 (2)
Si1 ^{viii} —Pr1—Pr3 ^v	124.12 (2)	Si1 ^{xii} —Pr3—Pr3 ⁱⁱ	108.02 (2)
Si1 ^{vii} —Pr1—Pr3 ^v	54.62 (2)	Si1 ^{xiv} —Pr3—Pr3 ⁱⁱ	50.43 (2)
Si1 ^{viii} —Pr1—Pr3 ^{vi}	55.90 (2)	Si1 ^{xiv} —Pr3—Si1 ^{xii}	85.949 (17)
Sil ^{ix} —Pr1—Pr3 ^v	124.76 (3)	Si1 ^{xiii} —Pr3—Si1 ^{xii}	137.237 (18)
Si1 ^{ix} —Pr1—Pr3 ^{vi}	54.62 (2)	Si1 ^{xiii} —Pr3—Si1 ^{xiv}	90.036 (12)
Si1 ^{vii} —Pr1—Pr3 ^{vi}	124.76 (3)	Si1 ^{xiv} —Pr3—Si2 ^{xiii}	90.54 (3)
Si1—Pr1—Pr3 ^v	55.90 (2)	Si1 ^{xiii} —Pr3—Si2 ^{xiii}	45.35 (3)
Si1—Pr1—Si1 ^{vii}	91.45 (4)	Si1 ^{xiii} —Pr3—Si2 ^{xii}	92.74 (3)
Si1 ^{viii} —Pr1—Si1 ^{ix}	91.45 (4)	Si2 ^{xii} —Pr3—Pr1 ^{xii}	87.19 (2)
Si1—Pr1—Si1 ^{ix}	90.57 (2)	Si2—Pr3—Pr1 ^{xii}	54.53 (2)
Si1 ^{viii} —Pr1—Si1 ^{vii}	90.57 (2)	Si2—Pr3—Pr1 ^{xvi}	145.87 (2)
Si1—Pr1—Si1 ^{viii}	177.18 (5)	Si2 ^{xiii} —Pr3—Pr1 ^{xii}	123.76 (2)
Si1 ^{ix} —Pr1—Si1 ^{vii}	88.74 (5)	Si2 ^{xiii} —Pr3—Pr1 ^{xvi}	90.26 (2)
Si1 ^{vii} —Pr1—Si2 ⁱⁱ	178.20 (3)	Si2 ^{xii} —Pr3—Pr1 ^{xvi}	55.08 (2)
Si1 ^{ix} —Pr1—Si2 ⁱⁱ	92.22 (3)	Si2 ^{xiii} —Pr3—Pr2 ^{xvii}	49.43 (2)
Si1 ^{vii} —Pr1—Si2 ⁱⁱⁱ	92.22 (3)	Si2 ^{xiii} —Pr3—Pr2 ^{xiii}	47.45 (2)
Si1—Pr1—Si2 ⁱⁱ	90.07 (3)	Si2 ^{xiii} —Pr3—Pr2 ^x	135.71 (2)
Si1 ^{ix} —Pr1—Si2 ⁱⁱⁱ	178.20 (3)	Si2 ^{xii} —Pr3—Pr2 ^{xiii}	164.53 (2)

Si1—Pr1—Si2 ⁱⁱⁱ	87.88 (3)	Si2—Pr3—Pr2 ^{xiii}	48.31 (2)
Si1 ^{viii} —Pr1—Si2 ⁱⁱⁱ	90.07 (3)	Si2—Pr3—Pr2 ^{xvii}	103.99 (2)
Si1 ^{viii} —Pr1—Si2 ⁱⁱ	87.88 (3)	Si2 ^{xii} —Pr3—Pr2 ^{xvii}	110.50 (2)
Si2 ⁱⁱⁱ —Pr1—Pr2 ⁱⁱ	54.20 (2)	Si2—Pr3—Pr2 ^x	103.11 (2)
Si2 ⁱⁱⁱ —Pr1—Pr2 ^{iv}	127.29 (2)	Si2 ^{xii} —Pr3—Pr2 ^x	47.59 (2)
Si2 ⁱⁱ —Pr1—Pr2 ⁱⁱ	51.80 (2)	Si2 ^{xiii} —Pr3—Pr3 ⁱⁱ	67.57 (2)
Si2 ⁱⁱⁱ —Pr1—Pr2 ⁱ	125.04 (2)	Si2—Pr3—Pr3 ⁱⁱ	50.90 (2)
Si2 ⁱⁱ —Pr1—Pr2 ^{iv}	125.04 (2)	Si2 ^{xii} —Pr3—Pr3 ⁱⁱ	133.74 (2)
Si2 ⁱⁱ —Pr1—Pr2 ⁱⁱⁱ	54.20 (2)	Si2 ^{xii} —Pr3—Si1 ^{xiv}	86.34 (3)
Si2 ⁱⁱⁱ —Pr1—Pr2 ⁱⁱⁱ	51.80 (2)	Si2—Pr3—Si1 ^{xii}	86.35 (3)
Si2 ⁱⁱ —Pr1—Pr2 ⁱ	127.29 (2)	Si2 ^{xiii} —Pr3—Si1 ^{xii}	175.55 (3)
Si2 ⁱⁱⁱ —Pr1—Pr3 ^{vi}	125.73 (2)	Si2 ^{xii} —Pr3—Si1 ^{xii}	44.54 (3)
Si2 ⁱⁱ —Pr1—Pr3 ^{vi}	54.90 (2)	Si2—Pr3—Si1 ^{xiv}	92.48 (3)
Si2 ⁱⁱ —Pr1—Pr3 ^v	125.73 (2)	Si2—Pr3—Si1 ^{xiii}	136.40 (3)
Si2 ⁱⁱⁱ —Pr1—Pr3 ^v	54.90 (2)	Si2—Pr3—Si2 ^{xiii}	91.079 (17)
Si2 ⁱⁱⁱ —Pr1—Si2 ⁱⁱ	86.85 (5)	Si2 ^{xii} —Pr3—Si2 ^{xiii}	138.014 (18)
$Pr1^{xv}$ $Pr2$ $Pr1^{xii}$	103.710 (6)	Si2—Pr3—Si2 ^{xii}	130.86 (2)
$Pr1^{xii}$ $Pr2$ $Pr2^{i}$	55.940 (5)	Pr1—Si1—Pr1 ^{xvii}	123.37(4)
$Pr1^{xv}$ $Pr2$ $Pr2^{i}$	140.135(10)	$Pr1$ — $Si1$ — $Pr2^i$	68.56 (3)
$Pr1^{xv}$ $Pr2$ $Pr3^{vii}$	102,847 (8)	$Pr1$ — $Si1$ — $Pr3^{ii}$	70.13 (2)
$Pr1^{xv}$ $Pr2^{Pr3^{x}}$	106.888 (8)	$Pr1^{xvii}$ Si1— $Pr3^{ii}$	134.03 (4)
$Pr1^{xii} Pr2 Pr3^{xi}$	106 191 (8)	$Pr1^{xvii} Si1 Pr3^{v}$	71 14 (3)
$Pr1^{xii}$ $Pr2$ $Pr3^{vii}$	105 646 (8)	$Pr1$ — $Si1$ — $Pr3^{v}$	70 70 (3)
$Pr1^{xii} Pr2 Pr3^{x}$	117 969 (7)	$Pr1 - Si1 - Pr3^{xi}$	136 94 (4)
$Pr1^{xv} Pr2 Pr3^{xi}$	149 920 (8)	$Pr2^{xiii} Si1 Pr1^{xvii}$	68 02 (3)
$\mathbf{Pr}^{\mathbf{i}} = \mathbf{Pr}^{2} = \mathbf{Pr}^{3^{\mathbf{x}}}$	112 953 (9)	$Pr2^{ii}$ _Si1_Pr1	69.02(3)
$\mathbf{Pr}_{\mathbf{v}_{ii}}^{\mathbf{v}_{ii}} = \mathbf{Pr}_{\mathbf{v}_{ii}}^{\mathbf{v}_{ii}} = \mathbf{Pr}_{\mathbf{v}_{ii}}^{\mathbf{v}_{ii}}$	59 445 (6)	$Pr2^{xiii}$ _Si1_Pr1	139.92(4)
$\mathbf{Pr}_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} = \mathbf{Pr}_{\mathbf{x}_{i}}^{\mathbf{x}_{i}} = \mathbf{Pr}_{\mathbf{x}_{i}}^{\mathbf{x}_{i}}$	60 092 (6)	$Pr2^{ii} Si1 Pr1^{xvii}$	67 99 (3)
$Pr3^{xi} Pr2^{xi} Pr2^{x}$	61.068 (5)	$Pr2^{i}$ Si1 $Pr1^{xvii}$	141 38 (4)
$\mathbf{Pr}_{\mathbf{x}_{i}} = \mathbf{Pr}_{\mathbf{x}_{i}} - \mathbf{Pr}_{\mathbf{x}_{i}} = \mathbf{Pr}_{\mathbf{x}_{i}} - \mathbf{Pr}_{\mathbf{x}_{i}}$	65 880 (8)	$Pr2^{xiii} Si1 Pr2^{i}$	129 66 (4)
$\mathbf{Pr}_{\mathbf{Y}_{ii}} = \mathbf{Pr}_{\mathbf{Y}_{ii}} = \mathbf{Pr}_{\mathbf{Y}_{ii}} = \mathbf{Pr}_{\mathbf{Y}_{ii}}$	$117\ 851\ (7)$	$\mathbf{Pr}^{2i} \mathbf{Si1} \mathbf{Pr}^{2i}$	129.00(4) 138.30(4)
$\mathbf{S_{i1xi}} \mathbf{Pr2} \mathbf{Pr1xv}$	57 51 (2)	$\mathbf{Pr}_{\mathbf{x}_{112}} = \mathbf{Si1}_{\mathbf{x}_{112}} = \mathbf{Pr}_{\mathbf{x}_{112}}$	83 22 (3)
$S_{i1i} = D_{r2} = D_{r1} x_{ii}$	96.00(2)	$\mathbf{D}_{\mathbf{r}} 2_{\mathbf{i} \mathbf{i} \mathbf{i}} \mathbf{i} \mathbf{i} \mathbf{j} 1 \mathbf{D}_{\mathbf{r}} 2_{\mathbf{i} \mathbf{i}}$	82.63 (3)
$S_{11} - F_{12} - F_{11}$ $S_{11} x_{11} - F_{12} - F_{11} x_{11}$	90.00 (2) 55.47 (2)	$\mathbf{F}_{12} = -\mathbf{S}_{11} - \mathbf{F}_{13}$ $\mathbf{D}_{\mathbf{F}}_{2\mathbf{X}_{11}} = \mathbf{S}_{11} - \mathbf{D}_{\mathbf{F}}_{2\mathbf{X}_{11}}$	76.47(3)
SII - FI2 - FII $SII xii Dr2 Dr1xy$	55.47(2)	$\mathbf{F}_{12} = -\mathbf{S}_{11} - \mathbf{F}_{13}$ $\mathbf{D}_{\mathbf{F}}_{2\mathbf{X}_{1}} = \mathbf{S}_{11} - \mathbf{D}_{\mathbf{F}}_{2\mathbf{X}_{1}}$	70.47(3)
$S_{11} - 12 - 111$ Sili Dr2 Dr1xv	57.49(2)	112 - 511 - 115 Dr2ii Sil Dr2v	130.21(4)
$S_{11} - F_{12} - F_{11}$ $S_{11} x_1 - F_{12} - F_{11} x_1$ $S_{11} x_1 - F_{12} - F_{11} x_1$	33.09(2)	F12 - S11 - F13 Pr2ii Si1 - Pr2ii	87.20 (3) 70.07 (3)
SII^{**} $FI2$ FII^{**}	147.16(3)	$P_{12} = S_{11} = P_{13}$	79.97 (3)
$SII^{m} - FI2 - FI2^{n}$	111.23(2) 155.46(2)	$P_{12} = S_{11} = P_{13} = P_{13}$	78.10 (3)
SII	133.40(3)	$P12 = S11 = P13^{-1}$	84.10(5)
S11 - PT2 - PT2	90.05 (3)	$PT2 = ST1 = PT3^{\circ}$	81.41 (5)
$S11^{-1}$ $Pf2$ $Pf3^{-1}$	104.88 (3)	$Pt2^{xiii} = S11 = Pt3^{y}$	138.72 (4)
$S11^{}Pt2^{}Pt3^{-}$	54.93 (2)	$Pr3^{x}$ $S11$ $Pr1^{x}$	70.24 (3)
$S11$ $-P12$ $-P13^{\circ}$	145.54 (2)	$PT3^{**} \longrightarrow S11 \longrightarrow PT3^{*}$	/8.24 (3)
$S11 - PT2 - PT5^{**}$	51.5/(2)	$PT5^{**} \longrightarrow S11 \longrightarrow PT5^{**}$	133.30 (4)
$S11^{-1}$ $Pr2$ $Pr3^{-1}$	97.03 (3)	$PT3^{*} \longrightarrow S11 \longrightarrow PT3^{*}$	140.82 (4)
$S11^{An}$ $Yr2$ $Yr3^{A}$	101.67 (2)	512—511—Pri	116.82 (5)
S_{11}^{AB} $Pr2$ $Pr3^{AB}$	147.77 (2)	$S12$ — $S11$ — $Pr1^{xvu}$	119.66 (5)
$S11^{i}$ — $Pr2$ — $Pr3^{x_{1}}$	117.17 (2)	S_{12} — S_{11} — $Pr2^{xm}$	63.92 (4)

140.10 (2)	Si2—Si1—Pr2 ⁱⁱ	135.25 (5)
92.601 (18)	Si2—Si1—Pr2 ⁱ	65.79 (4)
93.56 (3)	Si2—Si1—Pr3 ^v	137.54 (6)
92.85 (4)	Si2—Si1—Pr3 ⁱⁱ	64.03 (4)
140.79 (3)	Si2—Si1—Pr3 ^{xi}	69.49 (4)
90.38 (3)	Pr1 ^{xii} —Si2—Pr3 ^{xi}	135.69 (4)
92.68 (2)	Pr2—Si2—Pr1 ^{xii}	70.30 (3)
57.90 (2)	Pr2 ^{xiii} —Si2—Pr1 ^{xii}	141.97 (4)
158.04 (2)	Pr2 ⁱ —Si2—Pr1 ^{xii}	68.78 (3)
57.02 (2)	Pr2—Si2—Pr2 ^{xiii}	132.15 (4)
152.08 (2)	Pr2—Si2—Pr2 ⁱ	82.12 (3)
98.16 (2)	Pr2 ^{xiii} —Si2—Pr2 ⁱ	134.64 (4)
107.11 (2)	Pr2 ^{xiii} —Si2—Pr3 ⁱⁱ	80.47 (3)
50.30 (2)	Pr2 ^{xiii} —Si2—Pr3 ^{xi}	82.34 (3)
47.57 (2)	Pr2—Si2—Pr3 ⁱⁱ	140.09 (4)
53.61 (2)	Pr2 ⁱ —Si2—Pr3 ⁱⁱ	87.54 (3)
51.94 (2)	Pr2—Si2—Pr3 ^{xi}	78.08 (3)
52.15 (2)	Pr2 ⁱ —Si2—Pr3 ^{xi}	76.97 (3)
70.89 (2)	Pr2 ^{xiii} —Si2—Pr3	79.53 (3)
100.75 (2)	Pr2—Si2—Pr3	85.15 (3)
54.47 (2)	Pr2 ⁱ —Si2—Pr3	140.56 (4)
160.33 (3)	Pr3—Si2—Pr1 ^{xii}	71.78 (3)
70.64 (3)	Pr3 ⁱⁱ —Si2—Pr1 ^{xii}	70.02 (3)
102.52 (2)	Pr3—Si2—Pr3 ^{xi}	136.07 (4)
95.16 (3)	Pr3—Si2—Pr3 ⁱⁱ	78.78 (3)
139.57 (4)	Pr3 ⁱⁱ —Si2—Pr3 ^{xi}	136.58 (4)
47.24 (3)	Si1—Si2—Pr1 ^{xii}	121.26 (5)
140.11 (3)	Si1—Si2—Pr2 ⁱ	66.96 (4)
97.97 (3)	Si1—Si2—Pr2 ^{xiii}	67.74 (4)
48.35 (3)	Si1—Si2—Pr2	135.86 (5)
125.48 (3)	Si1—Si2—Pr3 ⁱⁱ	71.43 (4)
100.995 (18)	Si1—Si2—Pr3	138.49 (5)
93.03 (4)	Si1—Si2—Pr3 ^{xi}	65.16 (4)
	140.10 (2) $92.601 (18)$ $93.56 (3)$ $92.85 (4)$ $140.79 (3)$ $90.38 (3)$ $92.68 (2)$ $57.90 (2)$ $158.04 (2)$ $57.02 (2)$ $152.08 (2)$ $98.16 (2)$ $107.11 (2)$ $50.30 (2)$ $47.57 (2)$ $53.61 (2)$ $51.94 (2)$ $52.15 (2)$ $70.89 (2)$ $100.75 (2)$ $54.47 (2)$ $160.33 (3)$ $70.64 (3)$ $102.52 (2)$ $95.16 (3)$ $139.57 (4)$ $47.24 (3)$ $140.11 (3)$ $97.97 (3)$ $48.35 (3)$ $125.48 (3)$ $100.995 (18)$ $93.03 (4)$	$140.10(2)$ $Si2-Si1-Pr2^{ii}$ $92.601(18)$ $Si2-Si1-Pr3^{ii}$ $93.56(3)$ $Si2-Si1-Pr3^{ii}$ $92.85(4)$ $Si2-Si1-Pr3^{ii}$ $140.79(3)$ $Si2-Si1-Pr3^{ii}$ $90.38(3)$ $Pr1^{xii}-Si2-Pr3^{xi}$ $92.68(2)$ $Pr2-Si2-Pr1^{xii}$ $92.68(2)$ $Pr2-Si2-Pr1^{xii}$ $97.90(2)$ $Pr2^{xii}-Si2-Pr1^{xii}$ $57.90(2)$ $Pr2^{xii}-Si2-Pr1^{xii}$ $57.90(2)$ $Pr2^{xii}-Si2-Pr2^{xiii}$ $57.02(2)$ $Pr2-Si2-Pr2^{xiii}$ $98.16(2)$ $Pr2^{xii}-Si2-Pr2^{i}$ $98.16(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $57.02(2)$ $Pr2-Si2-Pr3^{ii}$ $57.02(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $57.02(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $57.02(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $57.02(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.94(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.94(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.94(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.94(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.94(2)$ $Pr2^{xii}-Si2-Pr3^{ii}$ $51.6(3)$ $Pr3^{ii}-Si2-Pr1^{xii}$ $100.75(2)$ $Pr3^{-Si}-Si2-Pr1^{xii}$ $70.64(3)$ $Pr3^{ii}-Si2-Pr1^{xii}$ $70.64(3)$ $Pr3^{ii}-Si2-Pr3^{ii}$ $70.64(3)$ $Pr3^{ii}-Si2-Pr3^{ii}$ $70.7(4)$ $Pr3^{ii}-Si2-Pr3^{ii}$ $70.7(3)$ $Si1-Si2-Pr3^{ii}$ $70.97(3)$ $Si1-Si2-Pr2^{i}$ $70.97(3)$ $Si1-Si2-Pr3^{ii}$ $70.995(18)$ $Si1-Si2-Pr3^{ii}$ $70.995(18)$ $Si1$

Symmetry codes: (i) -y+1, -x+1, -z+1/2; (ii) -y+3/2, x+1/2, z+1/4; (iii) x+1/2, -y+3/2, -z+3/4; (iv) -x+1, -y+1/2; (v) -y+2, -x+1, -z+1/2; (vi) -x+1, -y+2, z+1/2; (vii) -y+3/2, x-1/2, z+1/4; (viii) y, x, -z+1; (ix) x-1/2, -y+3/2, -z+3/4; (x) y, x, -z; (xi) -x+3/2, y-1/2, -z+1/4; (xii) y-1/2, -x+3/2, z-1/4; (xiii) -x+3/2, y+1/2, -z+1/4; (xiv) -y+1, -x+2, -z+1/2; (xv) -x+1, -y+1, z-1/2; (xvi) -x+1, -y+2, z-1/2; (xvii) y+1/2, -x+3/2, z-1/4.

Pentaneodymium tetrasiliside (B)

Crystal data Nd₅Si₄ $M_r = 833.56$ Tetragonal, $P4_12_12$ Hall symbol: P 4abw 2nw a = 7.8644 (2) Å c = 14.8085 (5) Å V = 915.89 (6) Å³ Z = 4F(000) = 1424

 $D_x = 6.045 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3985 reflections $\theta = 3.8-30.4^{\circ}$ $\mu = 28.27 \text{ mm}^{-1}$ T = 223 KPlate, metallic gray $0.12 \times 0.09 \times 0.07 \text{ mm}$ Data collection

XtaLAB AFC12 (RINC): Kappa dual offset/far diffractometer Radiation source: micro-focus sealed X-ray tube Mirror monochromator Detector resolution: 5.8140 pixels mm ⁻¹ ω scans Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2019) based on Clark & Reid (1995)]	$T_{\min} = 0.561, T_{\max} = 0.702$ 6054 measured reflections 1238 independent reflections 1203 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$ $\theta_{\text{max}} = 30.2^{\circ}, \theta_{\text{min}} = 3.7^{\circ}$ $h = -11 \rightarrow 10$ $k = -10 \rightarrow 10$ $l = -20 \rightarrow 19$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.028$ S = 1.09 1238 reflections 43 parameters 0 restricted	$\begin{aligned} (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 1.10 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.71 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4} \\ \text{Extinction coefficient: } 0.00090 (6) \\ \text{Absolute structure: Flack x determined using} \\ 422 \text{ quationts } [f(I), (I)] [f(I)+(I)] \text{ (Barsons at all otherwise)} \end{aligned}$
Primary atom site location: dual $w = 1/[\sigma^2(F_o^2) + 0.4858P]$ where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure parameter: -0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractiona	l atomic	coordinates	and	l isotropic o	r equival	ent i	sotropic	displ	lacement	paramete	rs (A	²)
-----------	----------	-------------	-----	---------------	-----------	-------	----------	-------	----------	----------	-------	----------------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Nd1	0.81184 (4)	0.81184 (4)	0.500000	0.00637 (9)	
Nd2	0.51490 (3)	0.36933 (4)	0.12498 (2)	0.00518 (7)	
Nd3	0.51034 (4)	0.87021 (4)	0.04676 (2)	0.00649 (7)	
Sil	0.9274 (2)	0.7098 (2)	0.30921 (10)	0.0060 (3)	
Si2	0.7003 (2)	0.6636 (2)	0.19543 (10)	0.0078 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.00630 (11)	0.00630 (11)	0.00652 (17)	-0.00026 (13)	0.00064 (11)	-0.00064 (11)
Nd2	0.00538 (14)	0.00534 (14)	0.00483 (12)	0.00002 (12)	0.00035 (11)	-0.00097 (10)
Nd3	0.00617 (15)	0.00631 (14)	0.00700 (13)	-0.00027 (9)	-0.00098 (11)	0.00152 (11)
Si1	0.0060 (7)	0.0066 (7)	0.0054 (6)	-0.0007 (5)	0.0001 (5)	0.0001 (6)
Si2	0.0069 (7)	0.0073 (7)	0.0093 (6)	-0.0016 (5)	-0.0015 (6)	0.0017 (6)

Geometric parameters (Å, °)

Nd1—Nd2 ⁱ	3.4725 (5)	Nd2—Nd3 ^{vii}	3.9061 (4)
Nd1—Nd2 ⁱⁱ	3.5021 (5)	Nd2—Si1 ^x	3.0366 (16)

supporting information

Nd1—Nd2 ⁱⁱⁱ	3.5021 (5)	Nd2—Si1 ⁱ	3.0848 (17)
Nd1—Nd2 ^{iv}	3.4725 (5)	Nd2—Si1 ^{xii}	3.0436 (17)
Nd1—Nd3 ^v	3.6265 (3)	Nd2—Si2	2.9272 (17)
Nd1—Nd3 ^{vi}	3.6265 (3)	Nd2—Si2 ^x	2.9533 (17)
Nd1—Si1 ^{vii}	3.1528 (16)	Nd2—Si2 ⁱ	3.0565 (15)
Nd1—Si1 ^{viii}	3.0744 (15)	Nd3—Nd3 ^{xii}	3.9752 (2)
Nd1—Si1	3.0744 (15)	Nd3—Si1 ^{xiii}	3.1359 (15)
Nd1—Si1 ^{ix}	3.1528 (16)	Nd3—Si1 ^{xii}	3.3315 (14)
Nd1—Si2 ⁱⁱ	3.1661 (16)	Nd3—Si1 ^{xiv}	3.1748 (15)
Nd1—Si2 ⁱⁱⁱ	3.1661 (16)	Nd3—Si2 ^{xiii}	3.2425 (15)
Nd2—Nd2 ⁱ	3.9202 (7)	Nd3—Si2 ^{xii}	3,1619 (16)
Nd2—Nd3 ^x	3.9094 (4)	Nd3—Si2	3.1177 (14)
$Nd2$ — $Nd3^{xi}$	3,9378(4)	Sil—Si2	2,482 (2)
1102 1103	5.5570(1)		2.102 (2)
Nd2 ⁱ —Nd1—Nd2 ^{iv}	71.144 (14)	Si2 ^x —Nd2—Si2 ⁱ	123.86 (5)
Nd2 ⁱⁱⁱ —Nd1—Nd2 ⁱⁱ	68.070 (13)	Nd1 ^{xvi} —Nd3—Nd1 ^{xii}	97.355 (7)
Nd2 ^{iv} —Nd1—Nd2 ⁱⁱ	177.032 (7)	Nd1 ^{xvi} —Nd3—Nd2 ^{xi}	99.740 (9)
Nd2 ⁱ —Nd1—Nd2 ⁱⁱⁱ	177.032 (7)	Nd1 ^{xii} —Nd3—Nd2 ^{xiii}	99.322 (9)
Nd2 ⁱ —Nd1—Nd2 ⁱⁱ	110.453 (5)	Nd1 ^{xvi} —Nd3—Nd2 ^{xvii}	102.777 (9)
Nd2 ^{iv} —Nd1—Nd2 ⁱⁱⁱ	110.453 (5)	Nd1 ^{xii} —Nd3—Nd2 ^{xi}	97.621 (8)
Nd2 ^{iv} —Nd1—Nd3 ^v	70.374 (8)	Nd1 ^{xii} —Nd3—Nd2 ^{xvii}	158.298 (11)
Nd2 ⁱⁱⁱ —Nd1—Nd3 ^{vi}	106.665 (10)	Nd1 ^{xvi} —Nd3—Nd2 ^{xiii}	136.478 (12)
Nd2 ⁱ —Nd1—Nd3 ^v	108.985 (11)	Nd1 ^{xvi} —Nd3—Nd3 ^{xii}	57.694 (6)
Nd2 ⁱⁱ —Nd1—Nd3 ^v	106.665 (10)	Nd1 ^{xii} —Nd3—Nd3 ^{xii}	137.385 (10)
Nd2 ⁱⁱ —Nd1—Nd3 ^{vi}	73.978 (8)	Nd2 ^{xvii} —Nd3—Nd2 ^{xiii}	60.212 (10)
Nd2 ⁱ —Nd1—Nd3 ^{vi}	70.374 (8)	Nd2 ^{xiii} —Nd3—Nd2 ^{xi}	117.333 (8)
Nd2 ^{iv} —Nd1—Nd3 ^{vi}	108.985 (11)	Nd2 ^{xvii} —Nd3—Nd2 ^{xi}	86.968 (8)
Nd2 ⁱⁱⁱ —Nd1—Nd3 ^v	73.978 (8)	Nd2 ^{xi} —Nd3—Nd3 ^{xii}	59.212 (7)
Nd3 ^{vi} —Nd1—Nd3 ^v	179.256 (17)	Nd2 ^{xiii} —Nd3—Nd3 ^{xii}	122.770 (9)
Si1—Nd1—Nd2 ⁱⁱⁱ	122.55 (4)	Nd2 ^{xvii} —Nd3—Nd3 ^{xii}	62.562 (7)
Si1 ^{viii} —Nd1—Nd2 ⁱ	126.97 (4)	Si1 ^{xii} —Nd3—Nd1 ^{xvi}	89.95 (3)
Si1—Nd1—Nd2 ⁱⁱ	54.67 (3)	Si1 ^{xiv} —Nd3—Nd1 ^{xii}	54.16 (3)
Si1 ^{ix} —Nd1—Nd2 ⁱⁱⁱ	128.53 (3)	Si1 ^{xiii} —Nd3—Nd1 ^{xvi}	55.00 (3)
Si1 ^{ix} —Nd1—Nd2 ^{iv}	54.30 (3)	Si1 ^{xii} —Nd3—Nd1 ^{xii}	51.72 (3)
Si1—Nd1—Nd2 ⁱ	55.82 (3)	Si1 ^{xiii} —Nd3—Nd1 ^{xii}	143.78 (3)
Si1 ^{vii} —Nd1—Nd2 ^{iv}	54.44 (3)	Si1 ^{xiv} —Nd3—Nd1 ^{xvi}	53.25 (3)
Si1 ^{viii} —Nd1—Nd2 ⁱⁱⁱ	54.67 (3)	Si1 ^{xiii} —Nd3—Nd2 ^{xvii}	50.52 (3)
Si1 ^{ix} —Nd1—Nd2 ⁱ	54.44 (3)	Si1 ^{xiv} —Nd3—Nd2 ^{xvii}	135.69 (3)
Si1 ^{vii} —Nd1—Nd2 ⁱⁱⁱ	124.35 (3)	Si1 ^{xii} —Nd3—Nd2 ^{xiii}	131.30 (3)
Si1 ^{vii} —Nd1—Nd2 ⁱ	54.30 (3)	Si1 ^{xiv} —Nd3—Nd2 ^{xi}	129.50 (3)
Si1—Nd1—Nd2 ^{iv}	126.97 (4)	Si1 ^{xii} —Nd3—Nd2 ^{xvii}	135.35 (3)
Si1 ^{viii} —Nd1—Nd2 ⁱⁱ	122.55 (4)	Si1 ^{xiii} —Nd3—Nd2 ^{xiii}	90.04 (3)
Si1 ^{viii} —Nd1—Nd2 ^{iv}	55.82 (3)	Si1 ^{xii} —Nd3—Nd2 ^{xi}	48.50 (3)
Si1 ^{ix} —Nd1—Nd2 ⁱⁱ	124.35 (3)	Si1 ^{xiii} —Nd3—Nd2 ^{xi}	108.97 (3)
Si1 ^{vii} —Nd1—Nd2 ⁱⁱ	128.53 (3)	Si1 ^{xiv} —Nd3—Nd2 ^{xiii}	108.81 (3)
Si1—Nd1—Nd3 ^{vi}	55.83 (3)	Si1 ^{xiii} —Nd3—Nd3 ^{xii}	51.39 (3)
Si1 ^{viii} —Nd1—Nd3 ^v	55.83 (3)	Sil ^{xii} —Nd3—Nd3 ^{xii}	91,19 (3)
Sil ^{vii} —Nd1—Nd3 ^v	124 78 (3)	Si1 ^{xiv} —Nd3—Nd3 ^{xii}	110.85 (3)
SII 1141 114J	12 11 / 0 (3)		110.00 (0)

Si1 ^{viii} —Nd1—Nd3 ^{vi}	124.19 (3)	Si1 ^{xiv} —Nd3—Si1 ^{xii}	85.88 (2)
Si1 ^{ix} —Nd1—Nd3 ^v	54.57 (3)	Si1 ^{xiii} —Nd3—Si1 ^{xii}	137.46 (2)
Si1 ^{ix} —Nd1—Nd3 ^{vi}	124.78 (3)	Si1 ^{xiii} —Nd3—Si1 ^{xiv}	89.678 (15)
Si1 ^{vii} —Nd1—Nd3 ^{vi}	54.57 (3)	Si1 ^{xiv} —Nd3—Si2 ^{xiii}	90.11 (4)
Si1—Nd1—Nd3 ^v	124.19 (3)	Si1 ^{xiii} —Nd3—Si2 ^{xiii}	45.76 (4)
Si1—Nd1—Si1 ^{vii}	91.21 (4)	Si1 ^{xiii} —Nd3—Si2 ^{xii}	92.67 (4)
Si1 ^{viii} —Nd1—Si1 ^{ix}	91.21 (4)	$Si2^{xii}$ —Nd3—Nd1 ^{xii}	87.36 (3)
Si1—Nd1—Si1 ^{ix}	90.79 (3)	Si2—Nd3—Nd1 ^{xii}	54.76 (3)
Si1 ^{viii} —Nd1—Si1 ^{vii}	90.79 (3)	Si2—Nd3—Nd1 ^{xvi}	146.00 (3)
Si1—Nd1—Si1 ^{viii}	177.21 (7)	$Si2^{xiii}$ Nd3 Nd1 ^{xii}	123.04 (3)
$Si1^{ix}$ $Nd1$ $Si1^{vii}$	88 51 (6)	$Si2^{xiii}$ Nd3 Nd1 ^{xvi}	90 38 (3)
$Si1^{vii}$ Nd1 Si2 ⁱⁱ	178 58 (4)	$Si2^{xii}$ Nd3 Nd1 ^{xvi}	55.09(3)
$Si1^{ix}$ Nd1 $Si2^{ii}$	92 27 (4)	Si2 xii Nd3 xiii	47 19 (3)
$Si1^{vii}$ Nd1 $Si2^{iii}$	92.27 (4)	Si2 x_{iii} Nd3 $Nd2_{x_{iii}}$	49 57 (3)
Si1—Nd1—Si2 ⁱⁱ	89.96 (4)	Si2 ^{xiii} —Nd3—Nd2 ^{xi}	13652(3)
Si1 ^{ix} —Nd1—Si2 ⁱⁱⁱ	178 58 (4)	Si2 xii Nd3 xvii	110.79(3)
Si1Nd1Si2 ⁱⁱⁱ	88 01 (4)	Si2 Nd3 Nd2 ^{xvii}	103.54(3)
Silviii Ndl Si2iii	80.06 (4)	Si2 Nd3 Nd 2^{xiii}	105.54 (5) 48.09 (3)
$si1^{vii}$ Nd1 $si2^{ii}$	88.01 (4)	$Si2 mid_{3} Md_{3}$	164.61.(3)
$Si2^{iii}$ Nd1 Nd2 ⁱⁱ	54.28 (3)	Si2 -1 Nd3 -1 Nd2	107.01(3)
Si2 - Nd1 - Nd2 $Si2^{iii} Nd1 Nd2^{iv}$	127.09(3)	Si2 mid M = Md2 $Si2^{xii}$ Md3 Md2 ^{xi}	102.77(3)
Si2 Nd1 Nd2 ⁱⁱ	51 78 (3)	Si2 = Nd3 = Nd2 $Si2^{xiii} Nd3 = Nd3^{xii}$	93 42 (3)
Si2 = Nd1 = Nd2 $Si2^{iii} = Nd1 = Nd2^{i}$	125 25 (3)	Si2 = Nd3 = Nd3	33.42(3)
$S_{12} = M_{11} = M_{22}$ $S_{12} = M_{21} = M_{22}$	125.25(3) 125.25(3)	S_{12} M_{13} M_{23} M_{23}	50.23(3)
$S_{12} = Ma_1 = Ma_2$ $S_{12} = Ma_1 = Ma_2$	123.23(3)	$S_{12} = M_{13} = M_{13}$ $S_{12} = M_{13} = M_{13}$ $S_{12} = M_{13} = M_{13}$	50.25 (5) 86 36 (4)
$S_{12} = Ma_1 = Ma_2$ $S_{12} = Ma_1 = Ma_2$	51.78 (3)	$S_{12} = Nd_3 = S_{11}$ $S_{12} = Nd_2 = S_{11} S_{11}$	80.30 (4)
Siz — Nui — Nuz	127.00(3)	S_{12} M_{03} S_{11}	30.20(4)
Si2 - Mai - Maz $Si2^{iii} - Mai - Maz^{ii}$	127.09(3)	S12 - Nu5 - S11 $Si2^{xii} Nid3 - Si1^{xii}$	1/4.74(4)
SIZ —INUI—INUS SIZII NIAI NIAZVI	34.90(3)	S12 - Nd3 - S11 S12 Nd2 S11xiv	44.83(4)
S12"—Nd1—Nd3" S:2ii Nd1 Nd2y	125.08(3)	$S12$ —IN 03 — $S11^{mi}$	92.77(4)
SI2"—INUI—INUS"	34.98(3)	S12—INUS— $S11$ ^{mm}	130.20(4)
S12	125.08(3)	$S12$ —INU3— $S12^{min}$	90.54 (2)
$S12^{m}$ Null $S12^{m}$	80.97(0)	$S12^{AH}$ Nu ₃ $S12^{AH}$	138.34 (2)
	103.774 (8)	$S12$ —INd3— $S12^{AH}$	131.07 (3)
NdI^{M} $Nd2$ $Nd2^{i}$	55.965 (6)	$NdI = SII = NdI^{XVII}$	123.58 (5)
$Nd1^{**}$ $Nd2$ $Nd2^{*}$	140.405 (13)	$Nd1 - S11 - Nd2^{t}$	68.64 (3)
$Nd1^{**}$ $Nd2$ $Nd3^{*}$	149.935 (9)	$Nd1 - S11 - Nd3^{n}$	/0.00 (3)
$Nd1^{xv}$ $Nd2$ $Nd3^{xi}$	107.244 (10)	NdI^{xvn} S11 $-Nd3^{xn}$	134.15 (5)
NdI^{AII} $Nd2$ $Nd3^{VII}$	106.182 (10)	NdI^{XVII} $SII - Nd3^{VI}$	71.13 (3)
NdI^{xu} $Nd2$ $Nd3^{x}$	106.111 (9)	$Nd1 - S11 - Nd3^{v_1}$	70.93 (3)
$Nd1^{xu}$ $Nd2$ $Nd3^{xu}$	117.604 (9)	$Nd1$ — $S11$ — $Nd3^{x}$	136.75 (6)
Nd1 ^{xv} —Nd2—Nd3 ^{vn}	102.810 (9)	$Nd2^{xm}$ —Si1—Nd1 ^{xm}	68.23 (3)
Nd2 ¹ —Nd2—Nd3 ^{x1}	112.321 (11)	Nd2 ⁿ —S11—Nd1	69.84 (3)
$Nd3^{x}$ $Nd2$ $Nd2^{1}$	59.853 (7)	Nd2 ^{xm} —Si1—Nd1	139.62 (5)
$Nd3^{vil}$ $Nd2$ $Nd2^{i}$	59.937 (8)	Nd2 ⁿ —S11—Nd1 ^{xvn}	68.14 (4)
$Nd3^{vn}$ — $Nd2$ — $Nd3^{xn}$	117.388 (8)	Nd2 ¹ —Si1—Nd1 ^{xvn}	141.48 (5)
Nd3 ^{vn} —Nd2—Nd3 ^x	65.627 (10)	Nd2 ^{xin} —Si1—Nd2 ⁱ	129.31 (5)
Nd3 ^x —Nd2—Nd3 ^{xi}	60.872 (7)	Nd2 ⁿ —Si1—Nd2 ⁱ	138.41 (5)
Si1 ^x —Nd2—Nd1 ^{xv}	57.47 (3)	Nd2 ^{xiii} —Si1—Nd2 ⁱⁱ	83.28 (4)

Si1 ⁱ —Nd2—Nd1 ^{xii}	96.51 (3)	Nd2 ^{xiii} —Si1—Nd3 ^x	83.05 (4)
Si1 ^{xii} —Nd2—Nd1 ^{xii}	55.49 (3)	Nd2 ^{xiii} —Si1—Nd3 ⁱⁱ	76.24 (3)
Si1 ^{xii} —Nd2—Nd1 ^{xv}	57.42 (3)	Nd2 ⁱⁱ —Si1—Nd3 ^x	138.55 (5)
Si1 ⁱ —Nd2—Nd1 ^{xv}	55.54 (3)	Nd2 ⁱⁱ —Si1—Nd3 ^{vi}	87.22 (4)
Si1 ^x —Nd2—Nd1 ^{xii}	147.02 (3)	Nd2 ⁱⁱ —Si1—Nd3 ⁱⁱ	80.06 (4)
Si1 ^{xii} —Nd2—Nd2 ⁱ	111.31 (3)	Nd2 ⁱ —Si1—Nd3 ^x	77.79 (4)
Si1 ^x —Nd2—Nd2 ⁱ	155.46 (3)	Nd2 ⁱ —Si1—Nd3 ⁱⁱ	83.83 (4)
Si1 ⁱ —Nd2—Nd2 ⁱ	90.59 (3)	Nd2 ⁱ —Si1—Nd3 ^{vi}	81.65 (4)
Si1 ^x —Nd2—Nd3 ^x	97.14 (3)	Nd2 ^{xiii} —Si1—Nd3 ^{vi}	138.92 (5)
Si1 ^x —Nd2—Nd3 ^{xi}	55.26 (3)	Nd3 ^x —Si1—Nd1 ^{xvii}	70.43 (3)
Si1 ⁱ —Nd2—Nd3 ^{xi}	145.44 (3)	Nd3 ^x —Si1—Nd3 ^{vi}	78.09 (3)
Si1 ⁱ —Nd2—Nd3 ^x	117.05 (3)	Nd3 ^x —Si1—Nd3 ⁱⁱ	133.33 (5)
Si1 ^x —Nd2—Nd3 ^{vii}	104.58 (3)	Nd3 ^{vi} —Si1—Nd3 ⁱⁱ	140.92 (5)
Si1 ^{xii} —Nd2—Nd3 ^{xi}	101.82 (3)	Si2—Si1—Nd1	116.71 (6)
Si1 ^{xii} —Nd2—Nd3 ^{vii}	140.39 (3)	Si2—Si1—Nd1 ^{xvii}	119.56 (6)
Si1 ⁱ —Nd2—Nd3 ^{vii}	51.69 (3)	Si2—Si1—Nd2 ^{xiii}	63.78 (5)
Si1 ^{xii} —Nd2—Nd3 ^x	147.88 (3)	Si2—Si1—Nd2 ⁱⁱ	135.29 (6)
Si1 ^{xii} —Nd2—Si1 ⁱ	92.69 (2)	Si2—Si1—Nd2 ⁱ	65.57 (5)
Si1 ^x —Nd2—Si1 ⁱ	93.26 (4)	Si2—Si1—Nd3 ^{vi}	137.48 (7)
Si1 ^x —Nd2—Si1 ^{xii}	92.72 (5)	Si2—Si1—Nd3 ⁱⁱ	63.95 (4)
Si1 ^x —Nd2—Si2 ⁱ	140.91 (4)	Si2—Si1—Nd3 ^x	69.39 (5)
Si1 ^{xii} —Nd2—Si2 ⁱ	90.60 (4)	Nd1 ^{xii} —Si2—Nd3 ^x	135.36 (6)
Si2 ⁱ —Nd2—Nd1 ^{xv}	92.89 (3)	Nd2—Si2—Nd1 ^{xii}	70.04 (4)
Si2—Nd2—Nd1 ^{xii}	58.18 (3)	Nd2 ^{xiii} —Si2—Nd1 ^{xii}	142.04 (5)
Si2 ^x —Nd2—Nd1 ^{xii}	157.63 (3)	Nd2 ⁱ —Si2—Nd1 ^{xii}	68.47 (3)
Si2 ⁱ —Nd2—Nd1 ^{xii}	57.24 (3)	Nd2—Si2—Nd2 ^{xiii}	133.24 (5)
Si2—Nd2—Nd1 ^{xv}	151.99 (3)	Nd2—Si2—Nd2 ⁱ	81.83 (4)
Si2 ^x —Nd2—Nd1 ^{xv}	98.52 (3)	Nd2 ^{xiii} —Si2—Nd2 ⁱ	134.00 (5)
Si2 ^x —Nd2—Nd2 ⁱ	106.53 (3)	Nd2 ^{xiii} —Si2—Nd3 ⁱⁱ	80.09 (4)
Si2—Nd2—Nd2 ⁱ	50.51 (3)	Nd2 ^{xiii} —Si2—Nd3 ^x	82.54 (4)
Si2 ⁱ —Nd2—Nd2 ⁱ	47.66 (3)	Nd2—Si2—Nd3 ⁱⁱ	139.78 (6)
Si2 ⁱ —Nd2—Nd3 ^x	100.42 (3)	Nd2 ⁱ —Si2—Nd3 ⁱⁱ	87.23 (4)
Si2 ^x —Nd2—Nd3 ^{xi}	52.28 (3)	Nd2—Si2—Nd3 ^x	78.46 (4)
Si2 ^x —Nd2—Nd3 ^{vii}	70.03 (3)	Nd2 ⁱ —Si2—Nd3 ^x	76.59 (3)
Si2 ^x —Nd2—Nd3 ^x	51.78 (3)	Nd2 ^{xiii} —Si2—Nd3	80.12 (4)
Si2 ⁱ —Nd2—Nd3 ^{vii}	53.85 (3)	Nd2—Si2—Nd3	85.51 (4)
Si2—Nd2—Nd3 ^{vii}	102.94 (3)	Nd2 ⁱ —Si2—Nd3	140.17 (6)
Si2 ⁱ —Nd2—Nd3 ^{xi}	159.76 (3)	Nd3—Si2—Nd1 ^{xii}	71.70 (3)
Si2—Nd2—Nd3 ^{xi}	69.76 (3)	Nd3 ⁱⁱ —Si2—Nd1 ^{xii}	69.93 (3)
Si2—Nd2—Nd3 ^x	54.35 (3)	Nd3—Si2—Nd3 ^x	137.09 (5)
Si2—Nd2—Si1 ^{xii}	95.25 (4)	Nd3—Si2—Nd3 ⁱⁱ	78.55 (4)
Si2—Nd2—Si1 ⁱ	140.41 (4)	Nd3 ⁱⁱ —Si2—Nd3 ^x	136.04 (5)
Si2 ⁱ —Nd2—Si1 ⁱ	47.67 (4)	Si1—Si2—Nd1 ^{xii}	120.80 (6)
Si2 ^x —Nd2—Si1 ^{xii}	140.61 (4)	Si1—Si2—Nd2 ⁱ	66.76 (5)
Si2 ^x —Nd2—Si1 ⁱ	97.55 (4)	Si1—Si2—Nd2 ^{xiii}	67.28 (5)
Si2 ^x —Nd2—Si1 ^x	48.93 (4)	Si1—Si2—Nd2	135.73 (6)
Si2—Nd2—Si1 ^x	124.91 (4)	Si1—Si2—Nd3 ⁱⁱ	71.20 (5)

supporting information

Si2—Nd2—Si2 ^x	100.44 (2)	Si1—Si2—Nd3	138.40 (7)
Si2—Nd2—Si2 ⁱ	93.45 (5)	Si1—Si2—Nd3 ^x	64.85 (5)

 $\overline{\text{Symmetry codes: (i)} - y + 1, -z + 1/2; (ii)} - y + 3/2, x + 1/2, z + 1/4; (iii) x + 1/2, -y + 3/2, -z + 3/4; (iv) - x + 1, -y + 1, z + 1/2; (v) - x + 1, -y + 2, z + 1/2; (vi) - y + 2, -z + 1/2; (vi) - y + 3/2, x - 1/2, z + 1/4; (viii) y, x, -z + 1; (ix) x - 1/2, -y + 3/2, -z + 3/4; (x) - x + 3/2, y - 1/2, -z + 1/4; (xi) y, x, -z; (xii) y - 1/2, -x + 3/2, z - 1/4; (xiii) - x + 3/2, y + 1/2, -z + 1/4; (xiv) - y + 1, -x + 2, -z + 1/2; (xv) - x + 1, -y + 1, z - 1/2; (xvi) - x + 1, -y + 2, z - 1/2; (xvii) y + 1/2, -x + 3/2, z - 1/4.$