CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 March 2020
Accepted 10 March 2020

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; thio-substituted pyrazines; pyrazinethiophanes; ortho-bis-L regioisomer; silver(I); nitrate; two-dimensional coordination polymers; supramolecular frameworks.

CCDC references: 1989541; 1989540; 1989539; 1989538

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and $3,4,8,10,11,13$-hexahydro- $1 \mathrm{H}, 6 \mathrm{H}$-bis([1,4]di-thiocino)[6,7-b:6', 7^{\prime}-e]pyrazine

Tokouré Assoumatine ${ }^{\text {a }}$ and Helen Stoeckli-Evans ${ }^{\text {b* }}$

${ }^{\text {a }}$ Institute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and ${ }^{\mathbf{b}}$ Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland. *Correspondence e-mail: helen.stoeckli-evans@unine.ch

The two new pyrazineophanes, 5,7-dihydro- $1 H, 3 H$-dithieno $\left[3,4-b: 3^{\prime}, 4^{\prime}-e\right]$ pyrazine, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}, \mathbf{L 1}$, and 3,4,8,10,11,13-hexahydro- $1 H, 6 H$-bis([1,4]dithiocino)-[6,7-b:6 $\left.6^{\prime}, 7^{\prime}-e\right]$ pyrazine, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}, \mathbf{L 2}$, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of $\mathbf{L} 1$, which is planar (r.m.s. deviation $=0.008 \AA$), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of $\mathbf{L} \mathbf{2}$ is step-shaped and consists of two $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of $\mathbf{L} \mathbf{1}$ with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[$\mu-5,7-$ dihydro- $1 H, 3 H$-dithieno $\left[3,4-b ; 3^{\prime}, 4^{\prime}-e\right]$ pyrazine- $\left.\kappa^{2} S: S^{\prime}\right)\left(\mu\right.$-nitrato- $\left.\kappa^{2} O: O^{\prime}\right)$ silver $(\mathrm{I})],\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]_{n}$, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold $\mathrm{AgO}_{2} \mathrm{~S}_{2}$ coordination sphere with a distorted shape. The reaction of $\mathbf{L} \mathbf{2}$ with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[$\left[\mu_{3} 3,4,8,10,11,13\right.$-hexahydro$1 H, 6 H$-bis($[1,4]$ dithiocino) $\left[6,7-b ; 6^{\prime}, 7^{\prime}-e\right]$ pyrazine- $\left.\kappa^{3} S: S^{\prime}: S^{\prime \prime}\right]($ nitrato- $\kappa O)$ silver $(\mathrm{I})],\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\right)\right]_{n},(\mathbf{I I})$, with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS_{3} coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming supramolecular frameworks. There are additional $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ contacts present in the supramolecular framework of II.

1. Chemical context

Ligands with mixed hard and soft binding characters, such as N and S donor atoms, are known to display diverse coordination properties, either by binding selectively to metal centers or by coordination to a wide range of metal cations giving rise to unusual coordination geometries. The title compounds 5,7-dihydro- $1 \mathrm{H}, 3 \mathrm{H}$-dithieno[3,4-b:3', $\left.4^{\prime}-e\right]$ pyrazine (L1), and 3,4,8,10,11,13-hexahydro- $1 H, 6 H$-bis([1,4]dithiocino)[6,7-b:$\left.6^{\prime}, 7^{\prime}-e\right]$ pyrazine ($\left.\mathbf{L} 2\right)$, are new $\mathrm{N}_{2} \mathrm{~S}_{x}(x=2$ in $\mathbf{L} 1$ and $=4$ in $\mathbf{L 2})$ ligands designed for the formation of coordination polymers (Assoumatine, 1999). In L1, both the nitrogen and sulfur
potential coordination sites are orientated exo to their respective rings. Because of this and the rigidity of the entire molecule, the potential chelating ability appears compromised, as stated by Shimizu and colleagues, who prepared a number of Ag^{I} polymer networks with the benzene analogue of $\mathbf{L 1}, \quad 5,7$-dihydro- $1 H, 3 H$-benzo[1,2-c:4,5-c']dithiophene (Shimizu et al., 1998; 1999; Melcer et al., 2001). A search of the Cambridge Structural Database (Groom et al., 2016) revealed that $\mathbf{L} \mathbf{2}$ is unique and no benzene analogue or complexes of this analogue have been described. Using the nomenclature of the group of Shim Sung Lee (Siewe et al., 2014; Kim et al., 2016, 2018), $\mathbf{L} 2$ can be described as the bis-ortho-L regioisomer. Although, in view of the small size of the macrocycles, it is unlikely that either a meta- or a para-bis-L regioisomer could be formed.

L1

L2

2. Structural commentary

The molecular structure of ligand $\mathbf{L} 1$ is illustrated in Fig. 1. The molecule possesses inversion symmetry and consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit. The molecule is planar (r.m.s. deviation = $0.008 \AA$) with the pyrazine ring being located about a center of symmetry. Both the nitrogen and sulfur potential coordination sites are orientated exo to their respective rings.

The molecular structure of ligand $\mathbf{L} \mathbf{2}$ is illustrated in Fig. 2. The molecule also possesses inversion symmetry with the

Figure 1
The molecular structure of $\mathbf{L 1}$, with atom labelling [symmetry code: (i) $-x+1,-y+1,-z+1]$. Displacement ellipsoids are drawn at the 30% probability level.
pyrazine ring being located about a center of symmetry. It consists of two $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}$ chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eightmembered rings. The configuration of these rings fits best to the definition for a twist-boat-chair (Evans \& Boeyens, 1988; Spek, 2020), with a pseudo twofold rotation axis bisecting the $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 4-\mathrm{C} 5$ bonds and their symmetry equivalents. The molecule is step-shaped with six potential sites for coordination.

The reaction of $\mathbf{L} \mathbf{1}$ with silver nitrate leads to the formation of a two-dimensional coordination polymer, (I), with the

Figure 2
The molecular structure of $\mathbf{L 2}$, with atom labelling; symmetry code: (i) $\left.-x+\frac{3}{2},-y+\frac{1}{2},-z+1\right]$. Displacement ellipsoids are drawn at the 30% probability level.

Table 1
Selected geometric parameters ($\left(\begin{array}{l} \\ ,\end{array}\right)$ for \mathbf{I}.

$\mathrm{Ag} 1-\mathrm{S} 1$	$2.4696(5)$	$\mathrm{Ag} 1-\mathrm{O} 1$	$2.5849(15)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{S} 1^{\mathrm{i}}$	$152.57(2)$	$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{i}}$	$103.30(3)$
$\mathrm{S} 1-\mathrm{Ag} 1-\mathrm{O} 1$	$97.62(3)$	$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{i}}$	$80.24(7)$

Symmetry code: (i) $-x+\frac{1}{2}, y,-z+\frac{3}{2}$.
Table 2
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$ for II.

$\mathrm{Ag} 1-\mathrm{S} 1$	$2.5927(10)$	$\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$2.5382(9)$
$\mathrm{Ag} 1-\mathrm{S} 2^{\mathrm{i}}$	$2.4760(10)$	$\mathrm{Ag} 1-\mathrm{O} 11$	$2.492(3)$
$\mathrm{S}^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 1$	$132.51(3)$	$\mathrm{O} 11-\mathrm{Ag} 1-\mathrm{S} 1$	$93.62(8)$
$\mathrm{S}^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{S} 1$	$97.47(3)$	$\mathrm{S} 2^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 11$	$97.12(8)$
$\mathrm{S}^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$121.65(3)$	$\mathrm{O} 11-\mathrm{Ag} 1-\mathrm{S} 3^{\mathrm{ii}}$	$109.25(8)$

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$.
nitrato anion bridging two equivalent silver atoms (Fig. 3). Selected bond lengths and bond angles are given in Table 1. The central pyrazine ring is situated about an inversion center and the silver atom Ag 1 and atoms N 2 and O 2 of the nitrato anion lie on a twofold rotation axis. Atom Ag 1 has a fourfold $\mathrm{AgO}_{2} \mathrm{~S}_{2}$ coordination sphere with a distorted shape. The fourfold geometry index τ_{4} has a value of 0.74 ($\tau_{4}=1$ for a perfect tetrahedral geometry, 0 for a perfect square-planar geometry and 0.85 for perfect trigonal-pyramidal geometry; Yang et al., 2007). The intermediate value of 0.74 tends towards a see-saw arrangement. This seems reasonable in view of the fact that atom Ag 1 is located on a twofold rotation axis.

The reaction of $\mathbf{L} \mathbf{2}$ with silver nitrate also leads to the formation of a two-dimensional coordination polymer (II, Fig. 4). Selected bond lengths and bond angles are given in Table 2. While the ligand has a step-shape in the solid state with one eight-membered ring directed above the pyrazine ring and the other below (Fig. 2), in the complex it has a boat shape with both eight-membered rings directed to the same side of the pyrazine ring (Fig. 4). The configuration of these rings again fits best to the definition for a twist-boat-chair (Evans \& Boeyens, 1988; Spek, 2020), with a pseudo twofold rotation axis bisecting bonds $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 7-\mathrm{C} 8$ and bonds $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 10-\mathrm{C} 11$. The nitrato anion coordinates to the

Figure 3
The asymmetric unit of complex \mathbf{I}, with atom labelling [symmetry codes: (i) $-x+\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $-x+1,-y,-z+2$; (iii) $-x+1,-y+1,-z+2$; (iv) $-x+\frac{3}{2}, y,-z+\frac{3}{2}$; (v) $\left.x+1, y, z\right]$. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4
The asymmetric unit of complex II, with atom labelling [symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$); (iii) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (iv) $\left.-x+1, y+\frac{1}{2},-z+\frac{1}{2}\right]$. Displacement ellipsoids are drawn at the 30% probability level.
silver atom in a monodentate manner via atom O 11 (Fig. 4, Table 2). The silver atom Ag 1 has a fourfold AgOS_{3} coordination sphere with a distorted shape. The fourfold geometry index τ_{4} has a value of 0.75 , which again tends towards a seesaw arrangement.

The pyrazine N atoms are not involved in coordination to the silver atom in either I or II; the silver atom prefers coordination to the S atoms in both complexes. The role of the nitrato anion in \mathbf{I} is essential in forming the two-dimensional network, bridging two equivalent silver atoms, while in II the nitrato anion coordinates to atom Ag 1 in a monodentate manner. There is a significant difference in the $\mathrm{Ag}-\mathrm{S}$ bond lengths and the $\mathrm{Ag}-\mathrm{O}$ bond lengths in compounds I and II (cf. Tables 1 and 2), which are discussed in $\S 5$. Database survey.

3. Supramolecular features

In the crystals of both $\mathbf{L} 1$ and $\mathbf{L 2}$, there are no significant intermolecular interactions present (Figs. 5 and 6, respectively).

In the crystal of \mathbf{I}, the coordination networks lie parallel to the $a c$ plane (Fig. 7) and are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen

Figure 5
Crystal packing of $\mathbf{L 1}$ viewed along the c axis. The molecules stack in columns up the a axis.

Table 3
Hydrogen-bond geometry ($\AA,^{\circ}$) for I.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.50	$3.379(2)$	150

Symmetry code: (ii) $x, y-1, z$.
Table 4
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$ for II.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
C5-H5A . . 013	0.97	2.51	3.239 (5)	132
C6-H6 $A \cdots \mathrm{O} 12{ }^{\text {iii }}$	0.97	2.56	3.442 (5)	150
C8-H8B \cdots S $4^{\text {i }}$	0.97	2.74	3.696 (4)	169
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 12{ }^{\text {iv }}$	0.97	2.37	3.177 (4)	140

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $-x,-y,-z+1$.
bonds, forming a supramolecular framework (Fig. 8 and Table 3).
In the crystal of II, the coordination networks lie parallel to the $a b$ plane (Fig. 9). They are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, forming a supramolecular framework (Fig. 10 and Table 4).

Figure 6
Crystal packing of $\mathbf{L} \mathbf{2}$ viewed along the b axis. The molecules stack in columns up the c axis.

Figure 7
A view along the b axis of the crystal packing of complex \mathbf{I}, illustrating the formation of the metal-organic network. The silver atoms are shown as grey balls.

Figure 8
A view along the a axis of the crystal packing of complex \mathbf{I}. The hydrogen bonds are shown as dashed lines (Table 3).

Figure 9
A view along the c axis of the crystal packing of complex II, illustrating the formation of the metal-organic network. The silver atoms are shown as grey balls. For clarity, the H atoms have been omitted.

Figure 10
A view along the a axis of the crystal packing of complex II. The hydrogen bonds are shown as dashed lines (Table 4). For clarity, only the H atoms involved in these interactions have been included.

Table 5
Short interatomic contacts ${ }^{a}(\AA)$ in $\mathbf{L 1}$ and $\mathbf{L} 2$.

Atom 1	Atom 2	Length	Length - vdW	Symm. op. 1	Symm. op. 2
L1					
H3A	H3A	2.313	-0.087	$1-x, 1-y,-z$	$x, y,-1+z$
H3 B	C1	2.876	-0.024	x, y, z	$-1+x, y, z$
S1	H3A	3.000	0.000	$1-x, 1-y,-z$	$x, y,-1+z$
H3B	N1	2.757	0.007	x, y, z	$-1+x, y, z$
S1	C3	3.515	0.015	x, y, z	$-x, 1-y, 1-z$
N1	S1	3.379	0.029	x, y, z	$\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
S1	C2	3.537	0.037	x, y, z	$-1+x, y, z$
H3B	H4B	2.452	0.052	x, y, z	$\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
C3	H3A	2.998	0.098	$1-x, 1-y,-z$	$x, y,-1+z$
L2					
H6B	C2	2.699	-0.201	x, y, z	$\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
S1	H6 A	2.919	-0.081	$\frac{3}{2}-x, \frac{1}{2}-y, 1-z$	$\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$
S1	H5A	2.992	-0.008	$\frac{3}{2}-x, \frac{1}{2}-y, 1-z$	$-\frac{1}{2}+x,-\frac{1}{2}+y, z$
S2	H4B	3.017	0.017	x, y, z	$x,-y,-\frac{1}{2}+z$
S1	C5	3.525	0.025	$\frac{3}{2}-x, \frac{1}{2}-y, 1-z$	$-\frac{1}{2}+x,-\frac{1}{2}+y, z$

Note: (a) Calculated using Mercury (Macrae et al., 2020).

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface (HS) analyses (Spackman \& Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019). A summary of the short interatomic contacts in $\mathbf{L} 1$ and $\mathbf{L 2}$ is given in Table 5.

The Hirshfeld surfaces of $\mathbf{L} \mathbf{1}$ and $\mathbf{L} \mathbf{2}$ mapped over $d_{\text {norm }}$ are given in Fig. 11a and b, respectively. They show that there are no short significant interatomic contacts present in the crystal of $\mathbf{L 1}$, while the red spots indicate that short contacts are significant in the crystal of $\mathbf{L} \mathbf{2}$.

The full two-dimensional fingerprint plots for $\mathbf{L} 1$ and $\mathbf{L} \mathbf{2}$ are given in Figs. 12 and 13, respectively. The principal intermolecular interactions for $\mathbf{L 1}$ are delineated into the following contacts: $\mathrm{H} \cdots \mathrm{H}$ at $41.7 \%, \mathrm{~S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ at 25.3%, $\mathrm{N} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{N}$ at $17.1 \%, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ at 6.5% and $\mathrm{N} \cdots \mathrm{S}$ at 3.7%. For L2, the principal intermolecular interactions are delineated into $\mathrm{H} \cdots \mathrm{H}$ contacts at $45.2 \%, \mathrm{~S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ at $36.6 \%, \mathrm{~N} \cdots \mathrm{H} /$ $\mathrm{H} \cdots \mathrm{N}$ at $11.7 \%, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ at 4.7% and $\mathrm{S} \cdots \mathrm{S}$ at 1.8%. The $\mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}$ contacts, with the sharp spikes at $d_{\mathrm{e}}+d_{\mathrm{i}} \simeq 2.9 \AA$ in Fig. $12 c$ for $\mathbf{L} 1$ and at $\simeq 2.80 \AA$ in Fig. $13 c$ for $\mathbf{L} 2$, make significant contributions, especially for $\mathbf{L} \mathbf{2}$, which corresponds to the indications given in Fig. 11b, the HS of $\mathbf{L} \mathbf{2}$ mapped over

Figure 11
(a) The Hirshfeld surface of $\mathbf{L} 1$, mapped over $d_{\text {norm }}$ in the colour range 0.0058 to 0.9525 a.u. and (b) the Hirshfeld surface of compound L2, mapped over $d_{\text {norm }}$ in the colour range -0.1279 to 1.1192 a.u..
$d_{\text {norm }}$, and in Table 5. In Fig. $13 e$ the sharp spikes at $d_{\mathrm{e}}+d_{\mathrm{i}} \simeq$ $2.6 \AA$ indicate the significant contribution of the $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ contacts in the crystal of $\mathbf{L} 2$.

Figure 12
The full two-dimensional fingerprint plot for $\mathbf{L 1}$, and fingerprint plots delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}, \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$, and N . . S contacts.

Figure 13
The full two-dimensional fingerprint plot for $\mathbf{L} 2$, and fingerprint plots delineated into $\mathrm{H} \cdots \mathrm{H}, \mathrm{S} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{S}, \mathrm{N} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{N}, \mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$, and S.. S contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, last update November 2019; Groom et al., 2016) for the benzene analogue of $\mathbf{L 1}$, i.e. 5,7-dihydro- $1 H, 3 H$ -benzo[1,2-c:4,5-c']dithiophene, gave ten hits. Five compounds concern silver(I) coordination complexes involving various anions, viz. catena-[$\left[\mu_{2}-5,7\right.$-dihydro- $1 H, 3 H$-thieneo(3,4- $\left.f\right)(2)$ benzothiophene]bis(acetonitrile)silver(I) hexafluoridophosphate] (MIZHAE; Melcer et al., 2001), catena-[[$\mu_{3}-1,2: 4,5-d i-$ thiolo(c)benzene- $\left.S, S, S^{\prime}\right]$ bis(acetonitrile)silver(I) tetrafluoridoborate] (NUTBUZ; Shimizu et al., 1998], catena-[[$\mu_{3^{-}}$ 1,2:4,5-dithiolo (c) benzene- S, S, S^{\prime}]benzonitrilosilver tetrafluoridoborate benzonitrile solvate] (NUTCAG; Shimizu et al., 1998)], catena-[[μ_{3}-benzene-1,2:4,5-bis($3^{\prime}, 4^{\prime}$-thiolane)] (p-tolylsulfonato) silver(I) benzene clathrate] (QACYUO; Shimizu et al., 1999) and catena-[bis ($\mu_{2}-5,7$-dihydro- $1 H, 3 H$-thieno(3,4$f)(2)$ benzothiophene $)$ bis (p-tosyloxy) disilver(I) benzene solvate] (QACYUO01; Melcer et al., 2001). The latter are two reports of the same compound, $c f$. unit-cell parameters and space group.

The compound MIZHAE is a three-dimensional coordination polymer with a fourfold geometry index τ_{4} value of 0.80 (close to a trigonal-pyramidal geometry) for the silver atom, which has an $\mathrm{AgN}_{2} \mathrm{~S}_{2}$ coordination sphere. NUTBUZ is a twodimensional coordination polymer. Here, the silver atom has a fivefold $\mathrm{AgN}_{2} \mathrm{~S}_{3}$ coordination sphere with a distorted shape; the fivefold geometry index τ_{5} is 0.77 ($\tau_{5}=1$ for perfect trigonal-pyramidal geometry and $=0$ for perfect squarepyramidal geometry; Addison et al., 1984). NUTCAG is a twodimensional coordination polymer with a τ_{4} value of 0.73 for the silver atom, which has an AgNS_{3} coordination sphere. QACYUO (and QACYUO0) is a two-dimensional coordination polymer, with the silver atom having a fourfold AgOS_{3} coordination sphere with a trigonal-pyramidal geometry, the fourfold geometry index τ_{4} being 0.83 . The $\mathrm{Ag}-\mathrm{S}$ bond lengths involving the fourfold coordinated silver atoms vary from $2.4708(13) \AA$ in NUTCAG to 2.6077 (7) \AA in QACYUO/01. The values of the various $\mathrm{Ag}-\mathrm{S}$ bond lengths in I and II fall within these limits (see Tables 1 and 2). While in the ligand $\mathbf{L} \mathbf{1}$ the five-membered thiophene rings are planar, in the above mentioned structures and in complex I they have envelope configurations with the S atom as the flap.

The nitrate anion can coordinate in at least ten different ways and is extremely useful for designing multi-dimensional coordination polymers, as shown by a search of the CSD. We have previously examined the role of the nitrate anion in the formation of coordination polymers when reporting on the results of the reaction of silver nitrate with some tetrakis-thioether-substituted pyrazine ligands (Assoumatine \& Stoeckli-Evans, 2017). For the two-dimensional coordination polymer (CSD refcode XALPOS) poly[di- μ-nitrato-bis $\{\mu$ -2,3,5,6-tetrakis[(phenylsulfanyl)methyl]pyrazine\}disilver(I)] the $\mathrm{Ag}-\mathrm{O}$ bond lengths vary from 2.507 (4) to 2.551 (4) \AA. For the three-dimensional coordination polymer (XALPUY) poly[trinitrato $\left\{\mu_{6}-2,3,5,6\right.$-tetrakis[(pyridin-2-ylsulfanyl)methyl]pyrazine\}trisilver(I)], the $\mathrm{Ag}-\mathrm{O}$ bond lengths vary from
2.567 (5) to 2.752 (5) \AA. The values observed for I and II, 2.5849 (15) and 2.492 (3) A , respectively, are similar to those mentioned above.

A search of the CSD for the benzene analogue of $\mathbf{L 2}$, or complexes of this analogue, gave zero hits.

6. Synthesis and crystallization

The reagent tetra-2,3,5,6-bromomethyl-pyrazine ($\mathbf{T B r}$) was first synthesized by Ferigo et al. (1994), and its crystal structure has been reported (CSD refcode: TOJXUN; Assoumatine \& Stoeckli-Evans, 2014). The IR spectra for ligands $\mathbf{L 1}$ and $\mathbf{L 2}$, and for complexes I and II, are given in Fig. S1 in the supporting information.

Synthesis of 5,7-dihydro-1H,3H-dithieno[3,4-b:3' ${ }^{\prime} \mathbf{4}^{\prime}-e$]pyrazine (L1):

Ligand $\mathbf{L 1}$ was first prepared by the reaction of $\mathbf{T B r}$ with $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, using the procedure of Shimizu et al. (1998). This gave a crude brown solid, which was chromatographed on deactivated silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to yield 35% of a white solid.

The yield could be increased by as much as 11% using a method similar to that described by Boekelheide et al. (1973). Well-ground $\mathrm{Na}_{2} \mathrm{~S} \cdot 9 \mathrm{H}_{2} \mathrm{O}(1.06 \mathrm{~g}, 4.42 \mathrm{mmol}$, Aldrich 99%) was dissolved in a solution of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml}, 1 / 1 \mathrm{v} / \mathrm{v})$ in a three-necked flask (500 ml) equipped with a reflux condenser topped by a CaCl_{2} drying tube, an addition funnel $(50 \mathrm{ml})$ and a magnetic stirring bar. To this mixture was added slowly through the addition funnel a solution of $\mathbf{T B r}(1 \mathrm{~g}$, 2.21 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$. The reaction mixture was stirred vigorously for 3 h . Removal of the solvent resulted in a brown residue that was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{ml})$, washed with water $(3 \times 30 \mathrm{ml})$, dried over anhydrous MgSO 4 and then, after filtration, evaporated to dryness. The resultant residue was chromatographed over deactivated silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The main eluted fraction was evaporated to give a white solid that was dried under vacuum yielding pure $\mathbf{L 1}$ (m.p. 518-521 K, with decomposition). Colourless rod-like crystals were formed from a concentrated solution of pure $\mathbf{L 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, after standing for one week at 278 K .
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.22\left(s, 8 \mathrm{H}, \mathrm{Pz}-\mathrm{CH}_{2}-\mathrm{S}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 152.30,34.44 \mathrm{ppm}$. Analysis for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\left(M_{\mathrm{r}}=196.30 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. Calculated (\%): C $48.95, \mathrm{H}$ 4.11, N 14.27, S 32.67. Found (\%): C 49.02, H 4.23, N 14.04, S 32.60. MS (EI, 70 eV), m / z (\%): 196 ([$\left.M^{+}\right], 100$).

Synthesis of $\mathbf{3 , 4 , 8 , 1 0 , 1 1 , 1 3 - h e x a h y d r o - 1 H , 6 H - b i s ([1 , 4] d i - ~}$ thiocino) [6,7-b:6', $\left.\mathbf{7}^{\prime}-e\right]$ pyrazine (L2):

A 500 ml three-necked flask was equipped with a reflux condenser, a 50 ml addition funnel, and a magnetic stirring bar. The entire system was purged and kept under a nitrogen atmosphere using vacuum line techniques. Then well-ground $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($3.52 \mathrm{~g}, 10.80 \mathrm{mmol}$, Fluka 99%) was suspended in DMF (250 ml) in the flask. To this well-stirred suspension was added dropwise through the addition funnel a solution of $\mathbf{T B r}$ $(1 \mathrm{~g}, 2.21 \mathrm{mmol})$ and 1,2 -ethanedithiol $(0.4 \mathrm{ml}, 4.76 \mathrm{mmol}$, 98%) dissolved in DMF (50 ml), at a rate of about $10 \mathrm{ml} \mathrm{h}^{-1}$. The mixture was stirred for a further 20 h and then filtered.

Table 6
Experimental details.

	L1	L2	I	II
Crystal data				
Chemical formula	$\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]$	$\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\right)\right]$	$\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right] \mathrm{AgNO}_{3}$	$\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\right] \mathrm{AgNO}_{3}$
$M_{\text {r }}$	196.28	316.51	366.16	486.39
Crystal system, space group	Monoclinic, $P 2_{1} / n$	Monoclinic, C2/c	Monoclinic, P2/n	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	223	223	223	293
$a, b, c(\mathrm{~A})$	$\begin{aligned} & 4.1027(4), 12.1789(18), \\ & 8.1014(8) \end{aligned}$	$\begin{aligned} & 21.1618(18), 7.0585(5), \\ & 9.5057(7) \end{aligned}$	$\begin{aligned} & 3.8995(3), 6.3902(6), \\ & 20.5741(18) \end{aligned}$	$\begin{aligned} & 7.0777(6), 12.0654(7), \\ & 19.5725(18) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	95.780 (12)	94.47 (1)	93.121 (9)	90.446 (10)
$V\left(\AA^{3}\right)$	402.74 (8)	1415.55 (19)	511.92 (8)	1671.3 (2)
Z	2	4	2	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.60	0.65	2.37	1.72
Crystal size (mm)	$0.45 \times 0.13 \times 0.10$	$0.40 \times 0.30 \times 0.10$	$0.45 \times 0.10 \times 0.10$	$0.50 \times 0.23 \times 0.08$
Data collection				
Diffractometer	STOE IPDS 1	STOE IPDS 1	STOE IPDS 1	STOE IPDS 1
Absorption correction	-	-	Multi-scan (MULABS; Spek, 2020)	Multi-scan (MULABS; Spek, 2020)
$T_{\text {min }}, T_{\text {max }}$	-	-	0.932, 1.000	0.939, 1.000
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	3025, 744, 590	5086, 1367, 1174	3795, 958, 905	12808, 3222, 2226
$R_{\text {int }}$	0.159	0.029	0.021	0.051
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.611	0.615	0.613	0.614
Refinement				
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.074, 0.180, 1.03	0.026, 0.071, 1.05	0.016, 0.041, 1.15	0.029, 0.059, 0.85
No. of reflections	744	1367	958	3222
No. of parameters	55	82	79	208
H -atom treatment	H -atom parameters constrained			
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.77, -0.55	0.31, -0.25	0.31, -0.27	0.61, -0.42

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS1 (Stoe \& Cie, 1998), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2020), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

The orange filtrate was evaporated under reduced pressure. The residue was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ then washed with water $(3 \times 30 \mathrm{ml})$, dried over anhydrous MgSO_{4} and then, after filtration, evaporated to dryness. The resultant residue was chromatographed over deactivated silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The main eluted fraction was evaporated to give a white solid that was dried under vacuum to obtain 0.35 g (50% yield) of pure $\mathbf{L} 2$ (m.p. $541-544 \mathrm{~K}$, with decomposition). Slow evaporation at room temperature of a solution of $\mathbf{L} \mathbf{2}$ in CHCl_{3} in a 5 mm diameter glass tube gave colourless platelike crystals.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 4.08\left(s, 8 \mathrm{H}, \mathrm{Pz}-\mathrm{CH}_{2}-\mathrm{S}\right), 2.92$ $\left(s, 8 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{S}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ 151.15, 34.40, 34.09 ppm . Analysis for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\left(M_{\mathrm{r}}=\right.$ $316.54 \mathrm{~g} \mathrm{~mol}^{-1}$). Calculated (\%): C $45.53, \mathrm{H} 5.09$, N 8.85 , S 40.52. Found (\%): C 45.34, H 5.30, N 8.68, S 40.33. MS (EI, $70 \mathrm{eV}), \mathrm{m} / \mathrm{z}(\%): 316$ ([$\left.\left.M^{+}\right], 98.7\right)$.

Synthesis of complex I:

A solution of $\mathbf{L 1}(15 \mathrm{mg}, 0.08 \mathrm{mmol})$ in THF (5 ml) was introduced into a 16 mm diameter glass tube and layered with $\mathrm{MeCN}(2 \mathrm{ml})$ as a buffer zone. Then a solution of AgNO_{3} $(14 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{ml})$ was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least two weeks, whereupon colourless needle-like crystals of complex I were isolated in the buffer zone.

Analysis for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Ag} \quad\left(M_{\mathrm{r}}=366.18 \mathrm{~g} \mathrm{~mol}^{-1}\right)$. Calculated (\%): C 26.24, H 2.21, N 11.48, S 17.51. Found (\%): C 26.27, H 2.10, N 11.29, S 17.19.

Synthesis of complex II:

A solution of $\mathbf{L 2}(20 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was introduced into a 16 mm diameter glass tube and layered with $\mathrm{MeCN}(2 \mathrm{ml})$ as a buffer zone. Then a solution of AgNO_{3} ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{ml})$ was added very gently to avoid possible mixing. The glass tube was sealed and left in the dark at room temperature for at least three weeks, whereupon thin, colourless plate-like crystals of complex II were isolated at the interface between the two solutions. No analytical data are available for this complex.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. The C-bound H atoms were included in calculated positions and treated as riding on the parent atoms: $\mathrm{C}-\mathrm{H}=0.97-0.98 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For $\mathbf{L} 1$, the rather high $R_{\text {int }}$ value of 0.159 is due to the poor quality, viz. large mosaic spread, of the crystal.

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by the Swiss National Science Foundation and the University of Neuchâtel.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Assoumatine, T. (1999). PhD Thesis, University of Neuchâtel, Switzerland.
Assoumatine, T. \& Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53. Assoumatine, T. \& Stoeckli-Evans, H. (2017). Acta Cryst. E73, 434440.

Boekelheide, V. \& Hollins, R. A. J. (1973). J. Am. Chem. Soc. 95, 3201-3208.
Evans, D. G. \& Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.
Ferigo, M., Bonhôte, P., Marty, W. \& Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Jung, J. H., Habata, Y. \& Lee, S. S. (2018). Cryst. Growth Des. 18, 2424-2431.

Kim, S., Siewe, A. D., Lee, E., Ju, H., Park, I.-H., Park, K.-M., Ikeda, M., Habata, Y. \& Lee, S. S. (2016). Inorg. Chem. 55, 2018-2022.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.

McKinnon, J. J., Jayatilaka, D. \& Spackman, M. A. (2007). Chem. Commип. pp. 3814-3816.
Melcer, N. J., Enright, G. D., Ripmeester, J. A. \& Shimizu, G. K. H. (2001). Inorg. Chem. 40, 4641-4648.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I. \& Ripmeester, J. A. (1999). Chem. Commun. pp. 461-462.

Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Ripmeester, J. A. \& Wayner, D. D. M. (1998). Angew. Chem. Int. Ed. 37, 14071409.

Siewe, A. D., Kim, J.-Y., Kim, S., Park, I.-H. \& Lee, S. S. (2014). Inorg. Chem. 53, 393-398.
Spackman, M. A. \& Jayatilaka, D. (2009). CrystEngComm, 11, 1932.

Spek, A. L. (2020). Acta Cryst. E76, 1-11.
Stoe \& Cie (1998). IPDS-1 Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Tan, S. L., Jotani, M. M. \& Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. \& Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yang, L., Powell, D. R. \& Houser, R. P. (2007). Dalton Trans. pp. 955964.

supporting information

Acta Cryst. (2020). E76, 539-546 [https://doi.org/10.1107/S205698902000362X]
Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3', 4^{\prime}-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6', $\left.7^{\prime}-e\right]$ pyrazine

Tokouré Assoumatine and Helen Stoeckli-Evans

Computing details

For all structures, data collection: EXPOSE in IPDS1 (Stoe \& Cie, 1998); cell refinement: CELL in IPDS1 (Stoe \& Cie, 1998); data reduction: INTEGRATE in IPDS1 (Stoe \& Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL-2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b; $3^{\prime}, 4^{\prime}$-e]pyrazine- $\left.\kappa^{2} S: S^{\prime}\right)\left(\mu\right.$-nitrato- $\left.\kappa^{2} O: O^{\prime}\right)$ silver(I)] (L1)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)\right]$
$M_{r}=196.28$
Monoclinic, $P 2_{1} / n$
$a=4.1027$ (4) \AA
$b=12.1789(18) \AA$
$c=8.1014(8) \AA$
$\beta=95.780(12)^{\circ}$
$V=402.74(8) \AA^{3}$
$Z=2$

Data collection

STOE IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
3025 measured reflections
744 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.074$
$w R\left(F^{2}\right)=0.180$
$S=1.03$
744 reflections
55 parameters
0 restraints

$$
F(000)=204
$$

$D_{\mathrm{x}}=1.619 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3541 reflections
$\theta=3.1-25.7^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Rod, colourless
$0.45 \times 0.13 \times 0.10 \mathrm{~mm}$

590 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.159$
$\theta_{\text {max }}=25.8^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-4 \rightarrow 4$
$k=-14 \rightarrow 14$
$l=-9 \rightarrow 9$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

supporting information

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1296 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001
\end{gathered}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.77 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\hat{A}^{2}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
S1	$0.1126(2)$	$0.62437(7)$	$0.34804(9)$	$0.0363(5)$
N1	$0.4717(8)$	$0.3945(2)$	$0.0713(4)$	$0.0320(7)$
C1	$0.3670(8)$	$0.4860(3)$	$0.1411(3)$	$0.0296(9)$
C2	$0.3971(9)$	$0.5902(3)$	$0.0708(4)$	$0.0303(8)$
C3	$0.2147(9)$	$0.4824(3)$	$0.3009(3)$	$0.0341(9)$
H3A	0.368695	0.451919	0.389472	0.041^{*}
H3B	0.016898	0.436835	0.289632	0.041^{*}
C4	$0.2721(10)$	$0.6844(3)$	$0.1673(4)$	$0.0356(9)$
H4A	0.098963	0.724060	0.099563	0.043^{*}
H4B	0.450057	0.735867	0.201262	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0477(8)$	$0.0408(6)$	$0.0219(6)$	$0.0041(3)$	$0.0106(4)$	$-0.0011(3)$
N1	$0.0412(18)$	$0.0333(14)$	$0.0219(15)$	$0.0007(11)$	$0.0049(11)$	$0.0019(10)$
C1	$0.034(2)$	$0.0354(18)$	$0.0197(17)$	$-0.0011(12)$	$0.0062(13)$	$0.0012(11)$
C2	$0.039(2)$	$0.0349(17)$	$0.0161(15)$	$0.0014(14)$	$0.0007(12)$	$-0.0031(12)$
C3	$0.048(2)$	$0.0363(17)$	$0.0187(18)$	$0.0023(14)$	$0.0061(15)$	$0.0031(12)$
C4	$0.048(2)$	$0.0328(17)$	$0.0268(16)$	$0.0012(14)$	$0.0096(15)$	$0.0010(12)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 4$	$1.817(4)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.507(5)$
$\mathrm{S} 1-\mathrm{C} 3$	$1.828(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 2^{\mathrm{i}}$	$1.332(4)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1$	$1.340(4)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{C} 1-\mathrm{C} 2$	$1.401(5)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{C} 1-\mathrm{C} 3$	$1.494(4)$		
			110.5
$\mathrm{C} 4 — \mathrm{~S} 1-\mathrm{C} 3$	$95.95(14)$	$\mathrm{S} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.5
$\mathrm{C} 2 \mathrm{C} 1-\mathrm{C} 1$	$115.0(3)$	$\mathrm{S} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 3 \mathrm{~B}$	108.7		
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 3$	$122.5(3)$	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	$106.3(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$121.4(3)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{S} 1$	110.5

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	$122.0(3)$	$\mathrm{S} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$115.5(3)$	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.5
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{S} 1$	$106.1(2)$	$\mathrm{S} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	110.5
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.5	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	108.7
$\mathrm{C} 2 \mathrm{i}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-0.8(5)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{S} 1$	$179.8(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	$-179.9(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{S} 1$	$0.7(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1^{\mathrm{i}}$	$0.8(6)$	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 1$	$-1.1(3)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1^{\mathrm{i}}$	$180.0(3)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 4-\mathrm{S} 1$	$179.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$-178.9(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{S} 1$	$-1.0(4)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$0.3(5)$	$\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 2$	$1.2(3)$

Symmetry code: (i) $-x+1,-y+1,-z$.
Poly $\left[\left[\mu_{3} 3,4,8,10,11,13\right.\right.$-hexahydro- $1 H, 6 H-b i s\left([1,4]\right.$ dithiocino) $\left[6,7-b ; 6^{\prime}, 7^{\prime}-e\right]$ pyrazine- $\left.\kappa^{3} S: S^{\prime}: S^{\prime \prime}\right]($ nitrato-
$\kappa O)$ silver(I)] (L2)

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\right)\right]$
$M_{r}=316.51$
Monoclinic, $C 2 / c$
$a=21.1618$ (18) \AA
$b=7.0585$ (5) \AA
$c=9.5057$ (7) \AA
$\beta=94.47$ (1) ${ }^{\circ}$
$V=1415.55$ (19) \AA^{3}
$Z=4$

Data collection

STOE IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
5086 measured reflections
1367 independent reflections
$F(000)=664$
$D_{\mathrm{x}}=1.485 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5000 reflections
$\theta=3.0-25.9^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Colourless, plate
$0.40 \times 0.30 \times 0.10 \mathrm{~mm}$

1174 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.9^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-25 \rightarrow 25$
$k=-8 \rightarrow 8$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.071$
$S=1.05$
1367 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0427 P)^{2}+0.461 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.90795(2)$	$0.54315(6)$	$0.52645(5)$	$0.03312(15)$
S2	$0.89795(2)$	$0.01187(6)$	$0.34452(5)$	$0.03987(16)$
N1	$0.75497(6)$	$0.42931(19)$	$0.55990(14)$	$0.0268(3)$
C1	$0.78592(7)$	$0.1989(2)$	$0.39521(15)$	$0.0253(3)$
C2	$0.79056(6)$	$0.3798(2)$	$0.45558(15)$	$0.0246(3)$
C3	$0.83585(8)$	$0.5281(2)$	$0.41003(18)$	$0.0303(4)$
H3A	0.814637	0.651638	0.407231	0.036^{*}
H3B	0.847038	0.498872	0.314291	0.036^{*}
C4	$0.93325(8)$	$0.2996(2)$	$0.54130(17)$	$0.0323(4)$
H4A	0.970847	0.293157	0.608187	0.039^{*}
H4B	0.899694	0.225955	0.581154	0.039^{*}
C5	$0.94907(7)$	$0.2061(2)$	$0.40278(18)$	$0.0319(4)$
H5A	0.992794	0.159497	0.414165	0.038^{*}
H5B	0.947061	0.302840	0.328648	0.038^{*}
C6	$0.82558(7)$	$0.1326(3)$	$0.27995(17)$	$0.0332(4)$
H6A	0.836729	0.242364	0.223784	0.040^{*}
H6B	0.800162	0.046620	0.217500	0.040^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0246(2)$	$0.0341(2)$	$0.0413(3)$	$-0.01170(15)$	$0.00595(17)$	$-0.01108(17)$
S2	$0.0336(3)$	$0.0307(2)$	$0.0562(3)$	$-0.00329(16)$	$0.0090(2)$	$-0.01143(19)$
N1	$0.0215(6)$	$0.0287(7)$	$0.0300(7)$	$-0.0059(5)$	$0.0004(5)$	$-0.0012(5)$
C1	$0.0196(7)$	$0.0326(8)$	$0.0231(8)$	$-0.0055(6)$	$-0.0017(6)$	$0.0008(6)$
C2	$0.0186(7)$	$0.0295(8)$	$0.0252(8)$	$-0.0058(6)$	$-0.0013(6)$	$0.0032(6)$
C3	$0.0266(8)$	$0.0289(8)$	$0.0356(9)$	$-0.0071(6)$	$0.0044(6)$	$0.0035(7)$
C4	$0.0292(8)$	$0.0375(9)$	$0.0296(8)$	$-0.0063(7)$	$-0.0008(6)$	$0.0047(7)$
C5	$0.0226(7)$	$0.0330(8)$	$0.0402(9)$	$-0.0016(6)$	$0.0039(6)$	$-0.0010(7)$
C6	$0.0281(8)$	$0.0435(9)$	$0.0283(8)$	$-0.0109(7)$	$0.0038(6)$	$-0.0085(7)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 4$	$1.8025(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
$\mathrm{~S} 1-\mathrm{C} 3$	$1.8168(17)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9800
$\mathrm{~S} 2-\mathrm{C} 5$	$1.8062(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.533(2)$
$\mathrm{S} 2-\mathrm{C} 6$	$1.8171(18)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 2$	$1.338(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.3443(19)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9800

C1-C2	1.401 (2)
C1-C6	1.506 (2)
C2-C3	1.506 (2)
C4-S1-C3	102.85 (8)
C5-S2-C6	102.50 (8)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1^{\text {i }}$	118.24 (14)
N1 ${ }^{\text {i }}$ - $\mathrm{C} 1-\mathrm{C} 2$	120.67 (14)
N1- ${ }^{\text {i }}$ - $1-\mathrm{C} 6$	115.54 (14)
C2-C1-C6	123.79 (13)
N1-C2-C1	121.09 (13)
N1-C2-C3	116.07 (14)
C1-C2-C3	122.83 (14)
C2-C3-S1	112.86 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.0
S1-C3-H3A	109.0
C2-C3-H3B	109.0
S1-C3-H3B	109.0
H3A-C3-H3B	107.8
C5-C4-S1	115.28 (11)
C5-C4-H4A	108.5
$\mathrm{C} 1{ }^{\text {i }}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	-0.5 (2)
C1- 1 - $1-\mathrm{C} 2-\mathrm{C} 3$	-179.60 (14)
N1- ${ }^{\text {i }}$ - $1-\mathrm{C} 2-\mathrm{N} 1$	0.6 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-178.56 (14)
N1- ${ }^{\text {i }} 1-\mathrm{C} 2-\mathrm{C} 3$	179.55 (14)
C6-C1-C2-C3	0.4 (2)
N1-C2-C3-S1	80.06 (15)
C1-C2-C3-S1	-98.99 (15)

C5-H5B	0.9800
C6-H6A	0.9800
C6-H6B	0.9800
S1-C4-H4A	108.5
C5-C4-H4B	108.5
S1-C4-H4B	108.5
H4A-C4-H4B	107.5
C4-C5-S2	$115.13(11)$
C4-C5-H5A	108.5
S2-C5-H5A	108.5
C4-C5-H5B	108.5
S2-C5-H5B	108.5
H5A-C5-H5B	107.5
C1-C6-S2	$113.75(11)$
C1-C6-H6A	108.8
S2-C6-H6A	108.8
C1-C6-H6B	108.8
S2-C6-H6B	108.8
H6A-C6-H6B	107.7
C4-S1-C3-C2	$49.78(13)$
C3-S1-C4-C5	$61.99(13)$
S1-C4-C5-S2	$-115.40(11)$
C6-S2-C5-C4	$74.34(13)$
N1-C1-C6-S2	$-86.52(14)$
C2-C1-C6-S2	$92.63(17)$
C5-S2-C6-C1	$-77.62(13)$

Symmetry code: (i) $-x+3 / 2,-y+1 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{~S} 2^{\mathrm{ii}}$	0.98	3.02	$3.7465(17)$	132
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots 1^{\mathrm{iii}}$	0.98	2.99	$3.5248(16)$	115
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{~S}^{\text {iv }}$	0.98	2.92	$3.8389(18)$	157

Symmetry codes: (ii) $x,-y, z+1 / 2$; (iii) $-x+2,-y+1,-z+1$; (iv) $x,-y+1, z-1 / 2$.
(I)

Crystal data

$\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2}\right] \mathrm{AgNO}_{3}$
$M_{r}=366.16$
Monoclinic, $P 2 / n$
$a=3.8995$ (3) \AA
$b=6.3902$ (6) \AA

$$
\begin{aligned}
& c=20.5741(18) \AA \\
& \beta=93.121(9)^{\circ} \\
& V=511.92(8) \AA^{3} \\
& Z=2 \\
& F(000)=360
\end{aligned}
$$

$D_{\mathrm{x}}=2.375 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5000 reflections
$\theta=3.2-25.8^{\circ}$

Data collection

STOE IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
Absorption correction: multi-scan
(MULABS; Spek, 2020)
$T_{\text {min }}=0.932, T_{\max }=1.000$
$\mu=2.37 \mathrm{~mm}^{-1}$
$T=223 \mathrm{~K}$
Needle, colourless
$0.45 \times 0.10 \times 0.10 \mathrm{~mm}$

3795 measured reflections

958 independent reflections
905 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=25.8^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-4 \rightarrow 4$
$k=-7 \rightarrow 7$
$l=-25 \rightarrow 25$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.016$
$w R\left(F^{2}\right)=0.041$
$S=1.15$
958 reflections
79 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.020 P)^{2}+0.3928 P\right]$
> \quad where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.31$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.27$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ag 1	0.250000	$0.73580(3)$	0.750000	$0.02211(9)$
S 1	$-0.02263(12)$	$0.64417(7)$	$0.85176(2)$	$0.01302(12)$
O 1	$0.6178(4)$	$1.0451(2)$	$0.79516(7)$	$0.0274(3)$
O 2	0.750000	$1.3371(3)$	0.750000	$0.0262(5)$
N 1	$0.4947(4)$	$0.2874(2)$	$0.97975(7)$	$0.0136(3)$
N 2	0.750000	$1.1423(3)$	0.750000	$0.0157(5)$
C1	$0.3461(5)$	$0.4408(3)$	$0.94406(8)$	$0.0126(4)$
C2	$0.3516(5)$	$0.6499(3)$	$0.96379(8)$	$0.0124(4)$
C3	$0.1666(5)$	$0.3949(3)$	$0.87926(9)$	$0.0143(4)$
H3A	-0.012208	0.288847	0.883653	0.017^{*}
H3B	0.330073	0.344062	0.848344	0.017^{*}
C4	$0.1801(5)$	$0.8040(3)$	$0.91737(9)$	$0.0148(4)$
H4A	0.349176	0.899858	0.900192	0.018^{*}
H4B	0.007436	0.886025	0.939085	0.018^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Ag 1	$0.03440(16)$	$0.01965(13)$	$0.01297(13)$	0.000	$0.00761(9)$	0.000
S 1	$0.0137(2)$	$0.0144(2)$	$0.0109(2)$	$0.00041(16)$	$-0.00013(16)$	$0.00061(15)$
O 1	$0.0383(9)$	$0.0218(7)$	$0.0230(7)$	$-0.0058(7)$	$0.0090(7)$	$0.0021(6)$
O 2	$0.0451(14)$	$0.0098(9)$	$0.0228(10)$	0.000	$-0.0058(9)$	0.000
N 1	$0.0155(8)$	$0.0134(7)$	$0.0118(7)$	$-0.0009(6)$	$0.0015(6)$	$0.0001(6)$
N 2	$0.0175(12)$	$0.0146(11)$	$0.0144(11)$	0.000	$-0.0040(9)$	0.000
C 1	$0.0127(9)$	$0.0145(9)$	$0.0106(8)$	$-0.0012(7)$	$0.0021(6)$	$0.0009(7)$
C 2	$0.0136(9)$	$0.0134(9)$	$0.0104(8)$	$-0.0005(7)$	$0.0020(7)$	$0.0005(7)$
C 3	$0.0175(9)$	$0.0125(8)$	$0.0126(8)$	$0.0007(7)$	$-0.0014(7)$	$-0.0010(7)$
C 4	$0.0198(10)$	$0.0128(8)$	$0.0114(8)$	$0.0006(7)$	$-0.0015(7)$	$-0.0013(7)$

Geometric parameters (\AA, ${ }^{\circ}$)

Ag1-S1	2.4696 (5)	N1-C2 ${ }^{\text {ii }}$	1.339 (2)
Ag1- $\mathrm{Sl}^{\text {i }}$	2.4696 (5)	C1-C2	1.397 (3)
Ag1-O1	2.5849 (15)	C1-C3	1.501 (2)
Ag1-O1 ${ }^{\text {i }}$	2.5849 (15)	$\mathrm{C} 2-\mathrm{C} 4$	1.503 (3)
S1-C3	1.8322 (19)	C3-H3A	0.9800
S1-C4	1.8368 (19)	C3-H3B	0.9800
$\mathrm{O} 1-\mathrm{N} 2$	1.2517 (18)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9800
$\mathrm{O} 2-\mathrm{N} 2$	1.245 (3)	C4-H4B	0.9800
$\mathrm{N} 1-\mathrm{C} 1$	1.337 (2)		
S1-Ag1-S1 ${ }^{\text {i }}$	152.57 (2)	C2-C1-C3	116.38 (16)
S1-Ag1-O1	97.62 (3)	$\mathrm{N} 1{ }^{\text {ii- }}$ - $\mathrm{C} 2-\mathrm{C} 1$	122.49 (17)
S 1 - $\mathrm{Ag} 1-\mathrm{O} 1$	103.30 (4)	N1 ${ }^{\text {iii }}$ - $22-\mathrm{C} 4$	121.21 (16)
S1-Ag1-O1 ${ }^{\text {i }}$	103.30 (3)	C1-C2-C4	116.29 (16)
$\mathrm{Sl}{ }^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{O} 1^{\mathrm{i}}$	97.62 (3)	C1-C3-S1	105.36 (12)
$\mathrm{O} 1-\mathrm{Ag} 1-\mathrm{Ol}^{\text {i }}$	80.24 (7)	C1-C3-H3A	110.7
C3-S1-C4	96.12 (9)	S1-C3-H3A	110.7
C3-S1-Ag1	106.45 (6)	C1-C3-H3B	110.7
C4-S1-Ag1	107.66 (6)	S1-C3-H3B	110.7
N2-O1-Ag1	110.82 (11)	H3A-C3-H3B	108.8
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2{ }^{\text {ii }}$	114.66 (16)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{S} 1$	105.17 (12)
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1$	119.74 (11)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	110.7
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{O} 1^{\text {iii }}$	119.74 (11)	S1-C4-H4A	110.7
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 1^{\text {iii }}$	120.5 (2)	C2-C4-H4B	110.7
N1-C1-C2	122.85 (17)	S1-C4-H4B	110.7
N1-C1-C3	120.77 (16)	H4A-C4-H4B	108.8
$\mathrm{Ag} 1-\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	136.46 (5)	N1-C1-C3-S1	175.73 (14)
$\mathrm{Ag} 1-\mathrm{O} 1-\mathrm{N} 2-\mathrm{O}{ }^{1 i i}$	-43.54 (5)	C2-C1-C3-S1	-5.08 (19)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	0.3 (3)	$\mathrm{C} 4-\mathrm{S} 1-\mathrm{C} 3-\mathrm{C} 1$	7.26 (14)
$\mathrm{C} 2 \mathrm{ii}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	179.41 (16)	Ag1-S1-C3-C1	117.73 (11)
N1-C1-C2-N1 ${ }^{\text {ii }}$	-0.3 (3)	N1i- C2-C4-S1	-175.17 (14)

$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1^{\mathrm{ii}}$	$-179.47(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{S} 1$	$5.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$178.56(17)$	$\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 2$	$-7.54(14)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$-0.6(2)$	$\mathrm{Ag} 1-\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 2$	$-116.99(11)$

Symmetry codes: (i) $-x+1 / 2, y,-z+3 / 2$; (ii) $-x+1,-y+1,-z+2$; (iii) $-x+3 / 2, y,-z+3 / 2$.

Hydrogen-bond geometry ($\left(\stackrel{\circ}{ },{ }^{o}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots \mathrm{O} 1^{\text {iv }}$	0.98	2.50	$3.379(2)$	150
$\mathrm{C} 4 — \mathrm{H} 4 A \cdots \mathrm{O} 1$	0.98	2.62	$3.475(2)$	146

Symmetry code: (iv) $x, y-1, z$.

(II)

Crystal data

$\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{4}\right] \mathrm{AgNO}_{3}$
$M_{r}=486.39$
Monoclinic, $P 2_{1} / c$
$a=7.0777$ (6) \AA
$b=12.0654$ (7) \AA
$c=19.5725(18) \AA$
$\beta=90.446(10)^{\circ}$
$V=1671.3(2) \AA^{3}$
$Z=4$

Data collection

STOE IPDS 1
diffractometer
Radiation source: fine-focus sealed tube
Plane graphite monochromator
φ rotation scans
Absorption correction: multi-scan
(MULABS; Spek, 2020)
$T_{\min }=0.939, T_{\max }=1.000$
$F(000)=976$
$D_{\mathrm{x}}=1.933 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5000 reflections
$\theta=2.1-25.9^{\circ}$
$\mu=1.72 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.50 \times 0.23 \times 0.08 \mathrm{~mm}$

12808 measured reflections
3222 independent reflections
2226 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=25.9^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-8 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.059$
$S=0.85$
3222 reflections
208 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods

> Secondary atom site location: difference Fourier \quad map
> Hydrogen site location: inferred from
> \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0288 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.61$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.42$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ag1	0.13078 (4)	-0.29440 (2)	0.19436 (2)	0.04241 (10)
S1	0.24146 (12)	-0.10620 (8)	0.24454 (5)	0.0373 (2)
S2	0.77716 (12)	0.01162 (8)	0.28097 (4)	0.0348 (2)
S3	-0.06576 (11)	0.27177 (7)	0.42666 (4)	0.0339 (2)
S4	0.47060 (13)	0.37232 (8)	0.47535 (5)	0.0393 (2)
N1	0.1835 (4)	0.0237 (2)	0.40414 (13)	0.0291 (6)
N2	0.5521 (4)	0.0911 (2)	0.42978 (13)	0.0286 (6)
C1	0.3289 (4)	-0.0297 (3)	0.37562 (15)	0.0274 (7)
C2	0.5158 (4)	0.0053 (3)	0.38798 (15)	0.0258 (7)
C3	0.4069 (4)	0.1436 (3)	0.45887 (15)	0.0251 (7)
C4	0.2197 (4)	0.1106 (3)	0.44487 (15)	0.0263 (7)
C5	0.2793 (5)	-0.1318 (3)	0.33509 (17)	0.0358 (8)
H5A	0.165563	-0.164238	0.353851	0.043*
H5B	0.380341	-0.185522	0.340408	0.043*
C6	0.6852 (5)	-0.0512 (3)	0.35795 (16)	0.0329 (8)
H6A	0.651804	-0.127495	0.347866	0.039*
H6B	0.785052	-0.052515	0.392170	0.039*
C7	0.5692 (5)	0.0204 (3)	0.22688 (18)	0.0426 (9)
H7A	0.477204	0.067732	0.248948	0.051*
H7B	0.603872	0.055461	0.184170	0.051*
C8	0.4763 (5)	-0.0915 (3)	0.21101 (18)	0.0445 (10)
H8A	0.555159	-0.150061	0.229659	0.053*
H8B	0.471027	-0.101211	0.161836	0.053*
C9	0.0521 (4)	0.1650 (3)	0.47689 (16)	0.0307 (8)
H9A	0.092472	0.197692	0.519870	0.037*
H9B	-0.039749	0.107962	0.487395	0.037*
C10	0.1189 (5)	0.3706 (3)	0.40868 (19)	0.0465 (10)
H10A	0.208798	0.336051	0.378179	0.056*
H10B	0.063285	0.432988	0.384615	0.056*
C11	0.2260 (5)	0.4144 (3)	0.4709 (2)	0.0446 (10)
H11A	0.162698	0.389116	0.511779	0.054*
H11B	0.220446	0.494733	0.470435	0.054*
C12	0.4591 (5)	0.2326 (3)	0.50841 (16)	0.0310 (8)
H12A	0.581414	0.214425	0.528093	0.037*
H12B	0.368141	0.231524	0.545226	0.037*
O11	-0.1700 (4)	-0.2945 (3)	0.25969 (17)	0.0690 (9)
O12	-0.2807 (5)	-0.3358 (3)	0.35741 (16)	0.0861 (11)
O13	0.0187 (5)	-0.3523 (3)	0.33897 (16)	0.0757 (9)
N10	-0.1430 (5)	-0.3274 (3)	0.31906 (19)	0.0530 (9)

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	$0.04418(16)$	$0.03874(17)$	$0.04419(16)$	$0.00539(15)$	$-0.00744(11)$	$-0.00304(14)$
S1	$0.0316(5)$	$0.0397(6)$	$0.0405(5)$	$-0.0017(4)$	$-0.0032(4)$	$-0.0104(4)$

supporting information

S2	$0.0278(5)$	$0.0356(6)$	$0.0413(5)$	$-0.0012(4)$	$0.0058(4)$	$-0.0033(4)$
S3	$0.0279(4)$	$0.0339(5)$	$0.0399(5)$	$0.0004(4)$	$-0.0040(3)$	$-0.0003(4)$
S4	$0.0372(5)$	$0.0287(5)$	$0.0519(6)$	$-0.0055(4)$	$-0.0073(4)$	$-0.0004(4)$
N1	$0.0302(15)$	$0.0290(17)$	$0.0282(14)$	$-0.0054(13)$	$0.0028(12)$	$-0.0022(12)$
N2	$0.0258(14)$	$0.0285(17)$	$0.0316(15)$	$0.0003(12)$	$-0.0009(11)$	$0.0027(12)$
C1	$0.0330(18)$	$0.0262(19)$	$0.0231(16)$	$-0.0051(15)$	$0.0021(14)$	$-0.0008(14)$
C2	$0.0311(17)$	$0.0220(18)$	$0.0242(16)$	$-0.0009(15)$	$-0.0008(13)$	$0.0013(13)$
C3	$0.0309(18)$	$0.0196(18)$	$0.0249(16)$	$-0.0026(14)$	$-0.0009(13)$	$0.0024(13)$
C4	$0.0340(18)$	$0.0227(18)$	$0.0222(16)$	$-0.0017(15)$	$0.0016(13)$	$0.0020(13)$
C5	$0.040(2)$	$0.028(2)$	$0.040(2)$	$-0.0070(17)$	$0.0053(16)$	$-0.0069(15)$
C6	$0.0317(18)$	$0.030(2)$	$0.0373(19)$	$0.0046(15)$	$-0.0020(15)$	$0.0016(15)$
C7	$0.042(2)$	$0.051(3)$	$0.034(2)$	$-0.0075(19)$	$-0.0032(16)$	$0.0043(17)$
C8	$0.043(2)$	$0.055(3)$	$0.036(2)$	$-0.0053(19)$	$-0.0005(16)$	$-0.0116(17)$
C9	$0.0309(17)$	$0.031(2)$	$0.0305(18)$	$-0.0019(15)$	$0.0047(14)$	$0.0017(14)$
C10	$0.046(2)$	$0.040(2)$	$0.053(2)$	$-0.0089(19)$	$-0.0150(18)$	$0.0132(19)$
C11	$0.042(2)$	$0.027(2)$	$0.065(3)$	$-0.0001(17)$	$-0.0138(19)$	$-0.0052(18)$
C12	$0.0354(18)$	$0.029(2)$	$0.0286(17)$	$-0.0012(15)$	$-0.0050(14)$	$-0.0029(14)$
O11	$0.0629(19)$	$0.068(2)$	$0.077(2)$	$0.0157(18)$	$0.0216(16)$	$0.0230(19)$
O12	$0.085(2)$	$0.104(3)$	$0.070(2)$	$-0.020(2)$	$0.0425(19)$	$-0.0283(19)$
O13	$0.063(2)$	$0.085(3)$	$0.079(2)$	$-0.0113(19)$	$-0.0004(17)$	$-0.0053(18)$
N10	$0.055(2)$	$0.039(2)$	$0.066(3)$	$-0.0064(17)$	$0.021(2)$	$-0.0154(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

Ag1-S1	2.5927 (10)	C5-H5A	0.9700
Ag1- $\mathrm{S}^{2}{ }^{\text {i }}$	2.4760 (10)	C5-H5B	0.9700
Ag1-S3 ${ }^{\text {ii }}$	2.5382 (9)	C6-H6A	0.9700
Ag1-O11	2.492 (3)	C6-H6B	0.9700
S1-C8	1.801 (4)	C7-C8	1.533 (5)
S1-C5	1.817 (3)	C7-H7A	0.9700
S2-C7	1.809 (4)	C7-H7B	0.9700
S2-C6	1.812 (3)	C8-H8A	0.9700
S3-C10	1.805 (4)	C8-H8B	0.9700
S3-C9	1.819 (3)	C9-H9A	0.9700
S4-C11	1.806 (4)	C9-H9B	0.9700
S4-C12	1.807 (3)	C10-C11	1.524 (5)
N1-C1	1.340 (4)	C10-H10A	0.9700
N1-C4	1.341 (4)	C10-H10B	0.9700
N2-C3	1.338 (4)	C11-H11A	0.9700
N2-C2	1.343 (4)	C11-H11B	0.9700
C1-C2	1.408 (4)	C12-H12A	0.9700
C1-C5	1.505 (4)	C12-H12B	0.9700
C2-C6	1.503 (4)	O11-N10	1.241 (4)
C3-C4	1.409 (4)	O12-N10	1.239 (4)
C3-C12	1.491 (4)	O13-N10	1.243 (4)
C4-C9	1.498 (4)		
S2 ${ }^{\text {i }}$ Ag1-S1	132.51 (3)	H6A-C6-H6B	107.5

S3iil ${ }^{\text {ing }} 1-\mathrm{S} 1$	97.47 (3)
S2 ${ }^{\text {i }}$-Ag1-S3 ${ }^{\text {ii }}$	121.65 (3)
O11-Ag1-S1	93.62 (8)
S2 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{O} 11$	97.12 (8)
O11-Ag1-S3 ${ }^{\text {ii }}$	109.25 (8)
C8-S1-C5	104.04 (16)
C8-S1-Ag1	103.02 (12)
C5-S1-Ag1	105.21 (11)
C7-S2-C6	102.43 (16)
C7-S2-Ag1 ${ }^{\text {iii }}$	105.67 (13)
C6-S2-Ag1 ${ }^{\text {iii }}$	109.21 (12)
C10-S3-C9	104.08 (16)
$\mathrm{C} 10-\mathrm{S} 3-\mathrm{Ag}^{11^{\text {iv }}}$	98.75 (13)
C9-S3-Ag1 ${ }^{\text {iv }}$	111.15 (11)
C11-S4-C12	103.52 (17)
C1-N1-C4	118.7 (3)
C3-N2-C2	118.7 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	120.5 (3)
N1-C1-C5	115.9 (3)
C2- $21-\mathrm{C} 5$	123.5 (3)
N2-C2-C1	120.7 (3)
N2-C2-C6	116.0 (3)
C1-C2-C6	123.2 (3)
N2-C3-C4	120.5 (3)
N2-C3-C12	115.5 (3)
C4-C3-C12	123.9 (3)
N1-C4-C3	120.8 (3)
N1-C4-C9	116.3 (3)
C3-C4-C9	122.8 (3)
C1-C5-S1	114.0 (2)
C1-C5-H5A	108.7
S1-C5-H5A	108.7
C1-C5-H5B	108.7
S1-C5-H5B	108.7
H5A-C5-H5B	107.6
C2-C6-S2	115.3 (2)
C2-C6-H6A	108.4
S2-C6-H6A	108.4
C2-C6-H6B	108.4
S2-C6-H6B	108.4
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-0.4 (4)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	175.3 (3)
C3-N2-C2-C1	-0.8 (4)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 6$	-179.0 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	1.6 (5)
C5- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	-173.7 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 6$	179.7 (3)

97.47 (3)
121.65 (3)
93.62 (8)
97.12 (8)
109.25 (8)
104.04 (16)
103.02 (12)
105.21 (11)
102.43 (16)
105.67 (13)
109.21 (12)
104.08 (16)
98.75 (13)
103.52 (17)
118.7 (3)
118.7 (3)
120.5 (3)
115.9 (3)
123.5 (3)
120.7 (3)
116.0 (3)
.
$115.5(3)$
123.9 (3)
120.8 (3)
116.3 (3)
122.8 (3)
114.0 (2)
108.7
108.7
108.7
107.6
115.3 (2)
108.4
108.4
108.4
-0.4 (4)
175.3 (3)
-0.8 (4)
1.6 (5)
179.7 (3)

C8-C7-S2	114.4 (3)
C8-C7-H7A	108.7
S2-C7-H7A	108.7
C8-C7-H7B	108.7
S2-C7-H7B	108.7
H7A-C7-H7B	107.6
C7-C8-S1	114.1 (3)
C7-C8-H8A	108.7
S1-C8-H8A	108.7
C7-C8-H8B	108.7
S1-C8-H8B	108.7
H8A-C8-H8B	107.6
C4-C9-S3	116.5 (2)
C4-C9-H9A	108.2
S3-C9-H9A	108.2
C4-C9-H9B	108.2
S3-C9-H9B	108.2
H9A-C9—H9B	107.3
C11-C10-S3	115.5 (3)
C11-C10-H10A	108.4
S3-C10-H10A	108.4
C11-C10-H10B	108.4
S3-C10-H10B	108.4
H10A-C10-H10B	107.5
C10-C11-S 4	114.3 (3)
C10-C11-H11A	108.7
S4-C11-H11A	108.7
C10-C11-H11B	108.7
S4-C11-H11B	108.7
H11A-C11-H11B	107.6
C3-C12-S4	116.8 (2)
C3-C12-H12A	108.1
S4-C12-H12A	108.1
C3-C12-H12B	108.1
S4-C12-H12B	108.1
H12A-C12-H12B	107.3
N10-O11-Ag1	110.8 (2)
O12-N10-O11	118.5 (4)
$\mathrm{O} 12-\mathrm{N} 10-\mathrm{O} 13$	121.1 (4)
$\mathrm{O} 11-\mathrm{N} 10-\mathrm{O} 13$	120.4 (3)
C1-C2-C6-S2	97.0 (3)
C7-S2-C6-C2	-52.5 (3)
Ag1 ${ }^{\text {iii- }}$ S2-C6-C2	59.2 (3)
C6-S2-C7-C8	-60.0 (3)
Ag1 ${ }^{\text {iii- }}$ S2-C7-C8	-174.3 (2)
S2-C7-C8-S1	115.8 (3)
C5-S1-C8-C7	-76.5 (3)

supporting information

C5-C1-C2-C6	4.3 (5)	Ag1-S1-C8-C7	173.9 (2)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	-1.1 (4)	N1-C4-C9-S3	-86.5 (3)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 12$	175.8 (3)	C3-C4-C9-S3	96.9 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	-1.6 (4)	C10-S3-C9-C4	-56.6 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 9$	-178.3 (3)	$\mathrm{Ag} 1^{\mathrm{iv}}$ - $\mathrm{S} 3-\mathrm{C} 9-\mathrm{C} 4$	48.7 (3)
N2-C3-C4-N1	2.4 (4)	C9-S3-C10-C11	-54.1 (3)
C12-C3-C4-N1	-174.3 (3)	$\mathrm{Ag} 1{ }^{\text {iv }}$-S3-C10-C11	-168.6 (3)
N2-C3-C4-C9	178.9 (3)	S3-C10-C11-S4	113.1 (3)
C12-C3-C4-C9	2.2 (5)	C12-S4-C11-C10	-79.7 (3)
N1-C1-C5-S1	92.7 (3)	N2-C3-C12-S4	94.2 (3)
C2- $\mathrm{C} 1-\mathrm{C} 5-\mathrm{S} 1$	-91.7 (3)	C4-C3-C12-S4	-89.0 (3)
$\mathrm{C} 8-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 1$	77.0 (3)	C11-S4-C12-C3	78.9 (3)
$\mathrm{Ag} 1-\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 1$	-175.0 (2)	Ag1-O11-N10-O12	-177.6 (3)
N2-C2-C6-S2	-84.9 (3)	Ag1-O11-N10-O13	1.7 (4)

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x, y-1 / 2,-z+1 / 2$; (iii) $-x+1, y+1 / 2,-z+1 / 2$; (iv) $-x, y+1 / 2,-z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 13$	0.97	2.51	$3.239(5)$	132
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 12^{v}$	0.97	2.56	$3.442(5)$	150
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{~S}^{\mathrm{i}}$	0.97	2.74	$3.696(4)$	169
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{~S} 4^{\text {vi }}$	0.97	2.91	$3.508(4)$	121
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 12^{\text {vii }}$	0.97	2.37	$3.177(4)$	140

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (v) $x+1, y, z$; (vi) $-x+1,-y+1,-z+1$; (vii) $-x,-y,-z+1$.

