

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 17 February 2020 Accepted 24 February 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; chalcones; thiophene; superposition molecular structures.

CCDC reference: 1986074

Supporting information: this article has supporting information at journals.iucr.org/e

Unexpected formation of a co-crystal containing the chalcone (*E*)-1-(5-chlorothiophen-2-yl)-3-(3methylthiophen-2-yl)prop-2-en-1-one and the keto– enol tautomer (*Z*)-1-(5-chlorothiophen-2-yl)-3-(3methylthiophen-2-yl)prop-1-en-1-ol

Mahmoud Al-Refai,^a* Basem F. Ali,^a* Armin Geyer,^b Klaus Harms^b and Michael Marsch^b

^aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, and ^bFaculty of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 4, 35032, Marburg, Germany. *Correspondence e-mail: mahmoud_alrefai@aabu.edu.jo, bfali@aabu.edu.jo

The title crystal structure is assembled from the superposition of two molecular structures, (*E*)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, $C_{12}H_9ClOS_2$ (93%), and (*Z*)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, $C_{12}H_{11}ClOS_2$ (7%), $0.93C_{12}H_9ClOS_2 \cdot 0.07C_{12}H_{11}-ClOS_2$. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C-H···O/S, Cl···Cl, Cl··· π and π - π interactions, leading to a compact three-dimensional supramolecular assembly.

1. Chemical context

Chalcones exhibit a wide spectrum of pharmacological activities, including antibacterial (Tran et al., 2012), anticancer (Shin et al., 2013), antifungal (López et al., 2001) and antiinflammatory properties (Fang et al., 2015). On the other hand, thiophene derivatives display a wide range of biological activities such as antimicrobial (Mishra et al., 2012), antiallergic (Gillespie et al., 1985), anti-inflammatory (Molvi et al., 2007), antioxidant and antitumor agents (Jarak et al., 2005). Combining thiophenes and chalcones could result in compounds with interesting new structures and properties: Al-Maqtari et al. (2015) reported the synthesis of thiophenechalcones containing two thiophene rings and their antimicrobial and anticancer activities. One of their reported structures is (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one. However, the crystal structure of this thiophene-based chalcone has not yet been determined.

research communications

As a part of our ongoing research in this area (Ibrahim *et al.*, 2019), we report herein the crystal structure of a chalcone containing two terminal-substituted thiophene rings, namely (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)-prop-2-en-1-one, which crystallized as a co-crystal in an unexpected superposition with the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol as a minor component.

2. Structural commentary

The crystal structure (Fig. 1) exhibits two superimposed molecules with occupancies of 93% and 7%: this was surprising since the formation of the minor (enol) component was quite unexpected. A possible mechanism for the formation of this component is shown in Fig. 2. Equilibria between keto and enol isomers are regularly observed in solution but not in crystals. This issue needs a thorough exploration, which is beyond the scope of this report.

The molecular structures show similar conformations but differ in bond lengths and the carbon-atom geometry (hybridization), which we will describe for the major component in more detail. The molecular structure (Fig. 1) is composed of

Figure 1

(a) The molecular structure of the title co-crystal showing the superposition of the two components, whose occupancies are 93% (black bonds) and 7% (white bonds), (b) the molecular structure with the atomlabelling scheme of the major component and (c) the minor component. Displacement ellipsoids are drawn at the 50% probability level.

Table 1Hydrogen-bond geometry (Å, °).

	•	,		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C3-H3···O1	0.95	2.48	2.818 (3)	101
$C2-H2 \cdot \cdot \cdot S5$	0.95	2.80	3.166 (2)	104
$C13-H13\cdots O1^{i}$	0.95	2.35	3.184 (4)	146
$C9-H9C\cdotsO1^{ii}$	0.98	2.58	3.488 (4)	154
$C6-H6\cdots S11^{iii}$	0.95	3.04	3.948 (2)	160

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) x, y, z - 1.

two substituted thiophene rings, 5-chlorothiophen-2-yl and 3methylthiophen-2-yl, which are linked by the central -CO-CH=CH- spacer. The configuration about the C=C bond [1.344 (3) Å] is E and the carbonyl group is syn with respect to the C=C bond. The molecule is effectively planar as indicated by the torsion angles O1-C1-C10-C14 = 175.0(3), C2-C1 - C10 - C14 = -5.2 (3), C10 - C1 - C2 - C3 = 176.41 (19), O1 - C1 - C2 - C3 = -3.8 (3), C1 - C2 - C3 - C4 = 179.37 (19) and $C2-C3-C4-C8 = -177.5 (2)^{\circ}$. The hydrogen atoms of the propenone unit are *trans* configured and each is involved in an intramolecular short contact that forms an S(5) motif (Fig. 1, Table 1). The bond lengths and angles are consistent with those in related structures (Vu Quoc et al., 2019; Yesilyurt et al., 2018; Sreenatha et al., 2018). The S atoms of the terminal 5-chlorothiophen-2-vl (S11/C10/C12-C14) and 3-methylthiophen-2-yl (S5/C4/C6-C8) rings are anti and the rings are inclined slightly to each other [dihedral angle = $6.92 (13)^{\circ}$].

3. Supramolecular features

The extended structure exhibits several hydrogen-bonding contacts (Table 1). The hydrogen bonds involve a carbonyl O atom serving as a double-acceptor with H atoms from the chlorothiophenyl unit, and a methyl group from the methyl-thiophenyl unit of a neighbouring molecule. Additional C– H···S contacts are also present (Table 1). Further interactions are detected, namely Cl···Cl [C12–Cl1···Cl1ⁱ of 3.3907 (8) Å and 142.92 (8)°; symmetry code: (i) -x, 2 - y, 2 - z], C– Cl··· π [C12–Cl15···Cgⁱⁱ = 3.6536 (14) Å]; symmetry code:

Figure 3

Overall packing of the major component with all intermolecular interactions (dotted and dashed lines) shown.

(ii) 1 - x, 1 - y, 1 - z; Cg1 is the centroid of the S5/C4/C6–C8 ring] as well as $\pi - \pi$ contacts $[Cg1 \cdots Cg2^{iii}$ of 4.0139 (15) Å; symmetry code: (iii) -x, 1 - y, 1 - z; Cg2 is the centroid of the S11/C10/C12–C14 ring], which connect neighbouring molecules, consolidating a rather compact three-dimensional supramolecular network (Fig. 3).

4. Database survey

Similar structures to the title compound (major component) with the same chalcone skeleton and one or two thiophenyl rings include the following, which are identified by their CSD (Groom *et al.*, 2016) reference codes. In all compounds, the molecular skeletons are approximately planar, and have an E configuration about the C=C bond.

The structures containing one thiophenyl rings include: 1-(5-chloro-2-thienyl)-3-(2,3,4-trimethoxyphenyl)prop-2-en-1one (refcode LOVHAH; Chidan Kumar *et al.*, 2015), where the molecular structure features intramolecular $C-H\cdots O$ interactions. The molecules in 1-(4-bromophenyl)-3-(3-methyl-2-thienyl)prop-2-en-1-one (XICNON; Fun *et al.*, 2007), feature short intramolecular $C-H\cdots O/S$ contacts, which form S(5) rings. In the crystal structure, the molecules are linked into layers by weak $C-H\cdots O$ hydrogen bonds, and short $Br\cdots O$ contacts are also observed. In 1-(2-hydroxyphenyl)-3-(5-methylthiophen-2-yl)prop-2-en-1-one (AGEFUQ; Sreenatha *et al.*, 2018), the structure exhibits $O-H\cdots O$ and C- $H\cdots O/S$ intramolecular interactions.

The structures of bis-thiophenyl chalcones include 2,6-(*E,E*)-bis[(thiophene-2-yl)methylene]cyclohexanone (BOQ-YAK; Yakalı *et al.*, 2019) in which the terminal thiophene rings adopt a *syn* orientation. In the structure, the molecules display weak C—H···S and C—H···O intramolecular and only C— H···O intermolecular hydrogen bonds. In addition, $\pi - \pi$ interactions are found between the thiophene rings. In 1,5bis(3-methyl-2-thienyl)penta-1,4-dien-3-one (RUZCIZ; Contreras *et al.*, 2009), the molecule consists of terminal methylthiophenyl rings with the two S atoms being in a *syn* arrangement and *trans* to the carbonyl oxygen atom. The molecule is almost planar, with a slight twist along the bridging

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$0.93C_{12}H_9ClOS_2 \cdot 0.07C_{12}H_{11}ClOS_2$
$M_{\rm r}$	268.90
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	7.3709 (4), 7.5063 (4), 12.4247 (6)
α, β, γ (°)	84.126 (4), 76.694 (4), 62.372 (4)
$V(Å^3)$	592.69 (6)
Ζ	2
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	5.93
Crystal size (mm)	$0.25 \times 0.21 \times 0.14$
Data collection	
Diffractometer	Stoe Stadivari
Absorption correction	Multi-scan (LANA; Stoe, 2016)
T_{\min}, T_{\max}	0.079, 0.352
No. of measured, independent and	10865, 2398, 2221
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.024
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.628
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.088, 1.06
No. of reflections	2398
No. of parameters	291
No. of restraints	754
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.27, -0.28

Computer programs: X-AREA (Stoe & Cie, 2016), SHELXT2014 (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b) and DIAMOND (Putz & Brandenburg, 2014).

unit, leading to a small rotation between the terminal thiophenyl rings. The molecules are connected via various types of intermolecular interactions, namely $C-H \cdots O$, $C-H \cdots \pi$ and π - π , leading to a three-dimensional supramolecular network. The molecule of (2E, 6E)-2,6-bis[(5-methylthiophen-2-yl)methylene]cyclohexanone (XILXUM; Liang et al., 2007) displays two slightly twisted syn terminal methylthiophenyl rings in an anti-arrangement with respect to the carbonyl oxygen atom. In 1,5-bis(thiophen-3-yl)penta-1,4-dien-3-one (AYUPIU; Shalini et al., 2011), the dihedral angle between the thiophenyl rings is $15.45 (10)^{\circ}$. The molecules features both $C-H\cdots O$ and $C-H\cdots \pi$ interactions. Both thiophene rings in 3-hydroxy-1-(thiophen-2-yl)-3-(thiophen-3-yl)prop-2-en-1one (IBIRUJ; Oyarce et al., 2017) are disordered with the major-disorder components inclined to each other by $12.1 (3)^{\circ}$. In the crystal, the molecules are connected through C-H···O interactions. In the crystal of 1,3-bis(3-thienyl)prop-2-en-1-one (UNAJIE; Baggio et al., 2016), the thiophene rings are inclined to each other by a dihedral angle of 8.88 (10)°. The structure exhibits $\pi - \pi$ interactions together with C-H...O interactions and short S...S contacts also occur.

5. Synthesis and crystallization

The synthesis was carried out using a reported method (Al-Maqtari *et al.*, 2015). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at room temperature, of a solution in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were included in calculated positions (C-H = 0.95–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C$ -methyl). Methyl groups were allowed to rotate about the bond to their next atom to fit the electron density.

The crystal structure was refined as a superposition of two molecular structures with formulae $C_{12}H_9ClOS_2$ (93% occupancy component) and $C_{12}H_{11}ClOS_2$ (7% occupancy component), respectively. Restraints were necessary during the refinement of geometric and anisotropic displacement parameters.

Funding information

The authors thank Al al-Bayt University (Mafraq, Jordan) for financial support.

References

- Al-Maqtari, H. M., Jamalis, J. & Sirat, H. M. (2015). Jurnal Teknologi, 77, 55–59.
- Baggio, R., Brovelli, F., Moreno, Y., Pinto, M. & Soto-Delgado, J. (2016). J. Mol. Struct. **1123**, 1–7.
- Chidan Kumar, C. S., Govindarasu, K., Fun, H.-K., Kavitha, E., Chandraju, S. & Quah, C. K. (2015). *J. Mol. Struct.* **1085**, 63–77.
- Contreras, D., Moreno, Y., Soto, C., Saavedra, M., Brovelli, F. & Baggio, R. (2009). J. Chil. Chem. Soc. 54, 470–472.
- Fang, Q., Zhao, L., Wang, Y., Zhang, Y., Li, Z., Pan, Y., Kanchana, K., Wang, J., Tong, C., Li, D. & Liang, G. (2015). *Toxicol. Appl. Pharmacol.* 282, 129–138.
- Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, 02724–02725.
- Gillespie, E., Dungan, K. W., Gomoll, A. W. & Seidehamel, R. J. (1985). *Int. J. Immunopharmacol.* **7**, 655–660.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Ibrahim, M. M., Al-Refai, M., Ali, B. F., Geyer, A., Harms, K. & Marsch, M. (2019). *IUCrData*, 4, x191046.
- Jarak, I., Kralj, M., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360.
- Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, 04118.
- López, S. N., Castelli, M., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M. & Enriz, R. D. (2001). *Bioorg. Med. Chem.* 9, 1999–2013.
- Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.
- Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.
- Oyarce, J., Hernández, L., Ahumada, G., Soto, J. P., del Valle, M. A., Dorcet, V., Carrillo, D., Hamon, J.-R. & Manzur, C. (2017). *Polyhedron*, **123**, 277–284.
- Putz, H. & Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Shalini, S., Girija, C. R., Jotani, M. M., Rajashekhar, B., Rao, N. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2354.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024.
- Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23–24.
- Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie GmbH, Darmstadt, Germany.
- Tran, T. D., Nguyen, T. T., Do, T. H., Huynh, T. N., Tran, C. D. & Thai, K. M. (2012). *Molecules*, **17**, 6684–6696.
- Vu Quoc, T., Tran Thi Thuy, D., Dang Thanh, T., Phung Ngoc, T., Nguyen Thien, V., Nguyen Thuy, C. & Van Meervelt, L. (2019). *Acta Cryst.* E75, 957–963.
- Yakalı, G., Biçer, A. & Cin, G. T. (2019). Turk. C. Theo. Chem. 3, 47– 58.
- Yesilyurt, F., Aydin, A., Gul, H. I., Akkurt, M. & Ozcelik, N. D. (2018). Acta Cryst. E74, 960–963.

supporting information

Acta Cryst. (2020). E76, 477-480 [https://doi.org/10.1107/S2056989020002583]

Unexpected formation of a co-crystal containing the chalcone (*E*)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (*Z*)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1ol

Mahmoud Al-Refai, Basem F. Ali, Armin Geyer, Klaus Harms and Michael Marsch

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2016); cell refinement: *X-AREA* (Stoe & Cie, 2016); data reduction: *X-AREA* (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Putz & Brandenburg, 2014); software used to prepare material for publication: *X-AREA* (Stoe & Cie, 2016).

 $(E)-1-(5-Chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-\ one-(Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-\ 1-en-1-ol\ (0.93/0/07)$

Crystal data
$0.93C_{12}H_9ClOS_2 \cdot 0.07C_{12}H_{11}ClOS_2$
$M_r = 268.90$
Triclinic, $P\overline{1}$
a = 7.3709 (4) Å
b = 7.5063 (4) Å
c = 12.4247 (6) Å
$\alpha = 84.126 \ (4)^{\circ}$
$\beta = 76.694 \ (4)^{\circ}$
$\gamma = 62.372 \ (4)^{\circ}$
V = 592.69 (6) Å ³

Data collection

Stoe Stadivari diffractometer Radiation source: GeniX 3D HF Cu Detector resolution: 5.81 pixels mm⁻¹ rotation method, ω scans Absorption correction: multi-scan (*LANA*; Stoe, 2016) $T_{\min} = 0.079, T_{\max} = 0.352$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ Z = 2 F(000) = 276 $D_x = 1.507 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54186 \text{ Å}$ Cell parameters from 17498 reflections $\theta = 3.7-76.0^{\circ}$ $\mu = 5.93 \text{ mm}^{-1}$ T = 100 K Plate, yellow $0.25 \times 0.21 \times 0.14 \text{ mm}$

10865 measured reflections 2398 independent reflections 2221 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 75.5^{\circ}, \theta_{min} = 6.7^{\circ}$ $h = -5 \rightarrow 9$ $k = -8 \rightarrow 9$ $l = -13 \rightarrow 15$

 $wR(F^2) = 0.088$ S = 1.06 2398 reflections

291 parameters	H-atom parameters constrained
754 restraints	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.4005P]$
Primary atom site location: dual	where $P = (F_o^2 + 2F_c^2)/3$
Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\min} = -0.28 \text{ e} \text{ Å}^{-3}$
neighbouring sites	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure is an overlay of two molecular structure with ratio 93:7.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.3137 (4)	0.2710 (3)	0.5851 (2)	0.0314 (5)	0.93
C1	0.2726 (3)	0.4337 (3)	0.53882 (16)	0.0247 (4)	0.93
C2	0.2535 (3)	0.4652 (3)	0.42238 (15)	0.0259 (4)	0.93
H2	0.213137	0.595628	0.391242	0.031*	0.93
C3	0.2928 (3)	0.3105 (3)	0.35969 (16)	0.0259 (4)	0.93
Н3	0.334120	0.182539	0.394094	0.031*	0.93
C4	0.2784 (3)	0.3201 (3)	0.24557 (16)	0.0256 (4)	0.93
S5	0.21123 (9)	0.54296 (8)	0.17199 (4)	0.03242 (16)	0.93
C6	0.2248 (4)	0.4291 (4)	0.05595 (18)	0.0348 (5)	0.93
H6	0.198313	0.496677	-0.011889	0.042*	0.93
C7	0.2777 (4)	0.2310 (3)	0.07204 (18)	0.0314 (4)	0.93
H7	0.291283	0.145132	0.016418	0.038*	0.93
C8	0.3110 (3)	0.1643 (3)	0.18065 (17)	0.0262 (4)	0.93
C9	0.3748 (4)	-0.0483 (3)	0.21906 (19)	0.0312 (5)	0.93
H9A	0.422423	-0.136716	0.154993	0.047*	0.93
H9B	0.254852	-0.057161	0.268618	0.047*	0.93
H9C	0.488738	-0.090123	0.258667	0.047*	0.93
C10	0.2397 (3)	0.6067 (3)	0.60062 (16)	0.0233 (4)	0.93
S11	0.24466 (9)	0.57165 (8)	0.74011 (4)	0.02410 (15)	0.93
C12	0.1984 (3)	0.8151 (3)	0.75171 (17)	0.0251 (4)	0.93
C13	0.1837 (3)	0.9193 (3)	0.65490 (19)	0.0276 (4)	0.93
H13	0.161182	1.054853	0.646974	0.033*	0.93
C14	0.2066 (4)	0.7980 (3)	0.56787 (18)	0.0268 (4)	0.93
H14	0.199724	0.844259	0.494119	0.032*	0.93
Cl1	0.17230 (10)	0.90570 (8)	0.87916 (4)	0.03112 (15)	0.93
O1A	0.354 (6)	0.286 (4)	0.602 (3)	0.035 (6)	0.07
H1A	0.343705	0.215573	0.557340	0.053*	0.07
C1A	0.257 (5)	0.496 (4)	0.569 (2)	0.028 (3)	0.07
C2A	0.126 (4)	0.535 (4)	0.497 (2)	0.029 (3)	0.07
H2A	0.031913	0.671106	0.487244	0.035*	0.07
C3A	0.121 (5)	0.385 (4)	0.435 (2)	0.034 (3)	0.07

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H3A	-0.022191	0.397317	0.458163	0.041*	0.07
H3B	0.216209	0.252274	0.460874	0.041*	0.07
C4A	0.175 (5)	0.377 (3)	0.3079 (17)	0.032 (3)	0.07
S5A	0.1043 (15)	0.6046 (12)	0.2374 (7)	0.0485 (18)	0.07
C6A	0.200 (5)	0.482 (3)	0.1107 (16)	0.034 (3)	0.07
H6A	0.209319	0.547565	0.041533	0.041*	0.07
C7A	0.260 (5)	0.281 (3)	0.1218 (18)	0.035 (3)	0.07
H7A	0.296091	0.192728	0.062046	0.042*	0.07
C8A	0.261 (5)	0.219 (3)	0.2331 (19)	0.032 (3)	0.07
C9A	0.331 (5)	0.001 (3)	0.272 (3)	0.036 (5)	0.07
H9AA	0.370744	-0.086268	0.208833	0.053*	0.07
H9AB	0.214815	-0.008058	0.325911	0.053*	0.07
H9AC	0.450522	-0.041072	0.307367	0.053*	0.07
C10A	0.262 (5)	0.615 (4)	0.6395 (18)	0.029 (2)	0.07
S11A	0.3211 (17)	0.5574 (13)	0.7707 (9)	0.0450 (19)	0.07
C12A	0.238 (5)	0.810 (3)	0.7933 (17)	0.031 (3)	0.07
C13A	0.213 (5)	0.918 (4)	0.6986 (19)	0.032 (3)	0.07
H13A	0.186143	1.054308	0.694311	0.039*	0.07
C14A	0.228 (5)	0.812 (4)	0.6075 (19)	0.029 (3)	0.07
H14A	0.217023	0.865457	0.535253	0.034*	0.07
Cl1A	0.255 (2)	0.8778 (18)	0.9186 (11)	0.067 (3)	0.07

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0477 (13)	0.0282 (8)	0.0229 (10)	-0.0213 (8)	-0.0077 (7)	0.0027 (6)
C1	0.0291 (10)	0.0248 (10)	0.0217 (10)	-0.0149 (8)	-0.0016 (8)	-0.0017 (7)
C2	0.0297 (9)	0.0260 (9)	0.0215 (9)	-0.0130 (8)	-0.0042 (7)	0.0013 (7)
C3	0.0287 (10)	0.0281 (9)	0.0216 (9)	-0.0146 (8)	-0.0034 (7)	0.0017 (7)
C4	0.0308 (10)	0.0251 (9)	0.0214 (9)	-0.0141 (8)	-0.0040 (8)	0.0013 (7)
S5	0.0476 (3)	0.0276 (3)	0.0260 (3)	-0.0194 (2)	-0.0118 (2)	0.0051 (2)
C6	0.0465 (12)	0.0405 (12)	0.0214 (9)	-0.0218 (10)	-0.0108 (9)	0.0027 (9)
C7	0.0373 (11)	0.0359 (11)	0.0224 (9)	-0.0177 (9)	-0.0050 (8)	-0.0031 (8)
C8	0.0273 (10)	0.0290 (10)	0.0221 (9)	-0.0132 (8)	-0.0025 (8)	-0.0028 (8)
C9	0.0366 (12)	0.0267 (10)	0.0285 (11)	-0.0132 (9)	-0.0047 (9)	-0.0028 (9)
C10	0.0282 (10)	0.0259 (9)	0.0156 (9)	-0.0130 (7)	-0.0027 (8)	0.0001 (8)
S11	0.0318 (3)	0.0229 (2)	0.0182 (2)	-0.0139 (2)	-0.0033 (2)	0.00121 (18)
C12	0.0315 (10)	0.0249 (9)	0.0207 (9)	-0.0146 (8)	-0.0030 (8)	-0.0036 (8)
C13	0.0327 (11)	0.0245 (9)	0.0252 (10)	-0.0136 (8)	-0.0049 (9)	0.0016 (8)
C14	0.0329 (10)	0.0280 (10)	0.0201 (9)	-0.0154 (8)	-0.0048 (8)	0.0035 (8)
Cl1	0.0378 (3)	0.0319 (3)	0.0246 (3)	-0.0173 (2)	-0.0021 (2)	-0.00631 (19)
O1A	0.045 (11)	0.024 (6)	0.034 (10)	-0.013 (7)	-0.008 (8)	-0.002 (7)
C1A	0.033 (4)	0.027 (4)	0.022 (4)	-0.013 (4)	-0.002 (4)	0.002 (4)
C2A	0.034 (4)	0.028 (4)	0.022 (4)	-0.015 (4)	-0.002 (4)	0.005 (4)
C3A	0.038 (5)	0.030 (5)	0.027 (4)	-0.011 (4)	-0.002 (4)	0.000 (4)
C4A	0.039 (4)	0.028 (4)	0.026 (4)	-0.014 (4)	-0.001 (4)	0.002 (4)
S5A	0.057 (4)	0.035 (3)	0.036 (3)	-0.014 (3)	0.006 (3)	0.005 (3)
C6A	0.047 (4)	0.032 (4)	0.022 (4)	-0.016 (4)	-0.009 (4)	-0.002 (4)

supporting information

C7A	0.041 (4)	0.035 (4)	0.026 (4)	-0.015 (4)	-0.006 (4)	-0.001 (4)
C8A	0.035 (4)	0.032 (4)	0.025 (4)	-0.012 (4)	-0.005 (4)	0.000 (3)
C9A	0.031 (9)	0.035 (7)	0.039 (10)	-0.014 (7)	-0.007 (9)	-0.002 (7)
C10A	0.034 (4)	0.027 (3)	0.023 (4)	-0.013 (3)	-0.004 (3)	0.000 (3)
S11A	0.045 (4)	0.040 (3)	0.044 (4)	-0.018 (3)	-0.005 (3)	0.008 (3)
C12A	0.036 (4)	0.031 (4)	0.027 (4)	-0.018 (4)	-0.004 (4)	0.001 (4)
C13A	0.038 (5)	0.029 (4)	0.024 (4)	-0.012 (4)	-0.004 (4)	0.001 (4)
C14A	0.035 (4)	0.028 (4)	0.020 (4)	-0.014 (4)	-0.003 (4)	0.002 (4)
Cl1A	0.059 (6)	0.068 (6)	0.070 (7)	-0.030 (5)	-0.004 (5)	-0.001 (5)

Geometric parameters (Å, °)

01 01	1 227 (3)	O1A H1A	0.8400
$C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	1.227(3) 1 470(3)		1 328 (10)
C1 - C10	1.470(3)	C1A C2A	1.328(10) 1.38(4)
$C_1 - C_2$	1.470(3)	C1A - C2A	1.30(4)
$C_2 = C_3$	1.544 (5)	C_{2A} U_{2A}	1.44 (4)
C2—H2	0.9500	C2A—H2A	0.9500
C3—C4	1.438 (3)	C3A—C4A	1.54 (3)
С3—Н3	0.9500	СЗА—НЗА	0.9900
C4—C8	1.385 (3)	СЗА—НЗВ	0.9900
C4—S5	1.734 (2)	C4A—C8A	1.386 (18)
S5—C6	1.711 (2)	C4A—S5A	1.744 (16)
C6—C7	1.356 (3)	S5A—C6A	1.734 (18)
С6—Н6	0.9500	C6A—C7A	1.367 (18)
C7—C8	1.425 (3)	С6А—Н6А	0.9500
С7—Н7	0.9500	C7A—C8A	1.414 (18)
C8—C9	1.499 (3)	C7A—H7A	0.9500
С9—Н9А	0.9800	C8A—C9A	1.531 (17)
С9—Н9В	0.9800	С9А—Н9АА	0.9800
С9—Н9С	0.9800	С9А—Н9АВ	0.9800
C10-C14	1.374 (3)	С9А—Н9АС	0.9800
C10—S11	1.732 (2)	C10A—C14A	1.412 (18)
S11—C12	1.712 (2)	C10A—S11A	1.743 (18)
C12—C13	1.364 (3)	S11A—C12A	1.735 (17)
C12—Cl1	1.722 (2)	C12A—C13A	1.356 (18)
C13—C14	1.415 (3)	C12A—C11A	1.732 (17)
C13—H13	0.9500	C13A—C14A	1.399 (19)
C14—H14	0.9500	C13A—H13A	0.9500
O1A—C1A	1.453 (10)	C14A—H14A	0.9500
O1—C1—C10	119.75 (19)	C10A—C1A—O1A	112 (2)
O1—C1—C2	122.7 (2)	C2A—C1A—O1A	113 (2)
C10—C1—C2	117.52 (17)	C1A—C2A—C3A	126 (3)
C3—C2—C1	120.42 (18)	C1A—C2A—H2A	117.2
С3—С2—Н2	119.8	C3A—C2A—H2A	117.2
C1—C2—H2	119.8	C2A—C3A—C4A	123 (2)
C2—C3—C4	126.27 (19)	С2А—С3А—НЗА	106.7
С2—С3—Н3	116.9	С4А—С3А—Н3А	106.7

СЛ СЗ ЦЗ	116.0	$C_{2} \wedge C_{2} \wedge H_{2} P$	106 7
C^{4}	110.9	C_{2A} C_{3A} H_{3B}	100.7
C_{0}	127.20 (18)		106.7
C8-C4-S5	111.25 (14)	НЗА—СЗА—НЗВ	100.0
C3—C4—S5	121.56 (15)	C8A—C4A—C3A	132.5 (18)
C6—S5—C4	91.72 (10)	C8A—C4A—S5A	110.0 (13)
C7—C6—S5	112.16 (16)	C3A—C4A—S5A	117.4 (16)
С7—С6—Н6	123.9	C6A—S5A—C4A	91.4 (10)
S5—C6—H6	123.9	C7A—C6A—S5A	112.2 (15)
C6—C7—C8	113.4 (2)	С7А—С6А—Н6А	123.9
С6—С7—Н7	123.3	S5A—C6A—H6A	123.9
С8—С7—Н7	123.3	C6A—C7A—C8A	111.7 (18)
C4—C8—C7	111.53 (18)	С6А—С7А—Н7А	124.2
C4—C8—C9	124.48 (19)	C8A—C7A—H7A	124.2
C7—C8—C9	123.99 (19)	C4A—C8A—C7A	113.9 (16)
С8—С9—Н9А	109.5	C4A—C8A—C9A	121.3 (19)
С8—С9—Н9В	109.5	C7A—C8A—C9A	125 (2)
H9A—C9—H9B	109.5	С8А—С9А—Н9АА	109.5
C8-C9-H9C	109.5	C8A—C9A—H9AB	109.5
H9A - C9 - H9C	109.5	H9AA = C9A = H9AB	109.5
H9B_C9_H9C	109.5		109.5
C_{14} C_{10} C_{1}	131.62 (10)		109.5
$C_{14} = C_{10} = C_{1}$	111.52(17)	HOAR COA HOAC	109.5
$C_{1} = C_{10} = S_{11}$	111.50(10) 116.99(14)	$\begin{array}{cccc} 113 \text{AD} & -0.9 \text{A} & -113 \text{AC} \\ 113 \text{AD} & -0.9 \text{A} & -0.14 \text{A} \\ 113 \text{AD} & -0.14 \text{A} \\ 113 \text{A} & -0.14 \text{A} & -0.14 \text{A} \\ 113 \text{A} & -0.14 \text{A} & -0.14 \text{A} \\ 113 \text{A} & -0.14 \text{A} & -0.14 \text{A} \\ 113 \text{A} & -0.14 \text{A} & -0.14 \text{A} & -0.14 \text{A} \\ 113 \text{A} & -0.14 $	109.5
C12 - C10 - S11	110.00(14)	C1A = C10A = C14A	120(2)
	90.29 (10)	CIA—CIUA—SIIA	128.3 (19)
C13—C12—S11	114.16 (16)	CI4A—CI0A—SIIA	111.9 (14)
C13—C12—C11	126.56 (16)	C12A—S11A—C10A	89.6 (10)
S11—C12—Cl1	119.28 (12)	C13A—C12A—C11A	129.0 (16)
C12—C13—C14	110.72 (18)	C13A—C12A—S11A	111.6 (14)
С12—С13—Н13	124.6	Cl1A—C12A—S11A	117.7 (12)
C14—C13—H13	124.6	C12A—C13A—C14A	115.1 (17)
C10-C14-C13	113.32 (18)	C12A—C13A—H13A	122.4
C10-C14-H14	123.3	C14A—C13A—H13A	122.4
C13—C14—H14	123.3	C13A—C14A—C10A	109.6 (17)
C1A—O1A—H1A	109.5	C13A—C14A—H14A	125.2
C10A—C1A—C2A	131 (3)	C10A—C14A—H14A	125.2
O1—C1—C2—C3	-3.8(3)	C10A—C1A—C2A—C3A	-171(3)
C10-C1-C2-C3	176.41 (19)	01A—C1A—C2A—C3A	-16(5)
C1 - C2 - C3 - C4	179 37 (19)	C1A - C2A - C3A - C4A	-117(3)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}C_{8}^{-}$	-1775(2)	C_{2A} C_{3A} C_{4A} C_{8A}	150(3)
$C_2 = C_3 = C_4 = S_5$	16(3)	C_{2A} C_{3A} C_{4A} S_{5A}	-35(4)
$C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = S_{3}^{2}$	0.42(17)	$C_{2\Lambda} C_{3\Lambda} C_{4\Lambda} S_{5\Lambda} C_{6\Lambda}$	-2(3)
$C_{3} = C_{4} = S_{5} = C_{6}$	-178.88(18)	$C_{3A} C_{4A} S_{5A} C_{6A}$	-178(3)
$C_{3} = C_{4} = S_{3} = C_{0}$	1/0.00(10)	$C_{AA} = C_{AA} = C$	7(3)
C_{-} S_{-} C_{-} C_{-} C_{-}	-0.5(2)	$C_{TA} = S_{JA} = C_{UA} = C_{A}$	(3)
$S_{2} = C_{1} = C_{2} = C_{2}$	-0.3(3)	$S_{A} = UA = U/A = U\delta A$	-10(4)
	1/0.3(2)	$\Box A = \Box A = \Box A = \Box A$	1/2(3)
S5	-0.7(2)	$S_{A} = C_{A} = C_{A} = C_{A}$	-3 (4)
C3—C4—C8—C9	-1.9 (3)	C3A—C4A—C8A—C9A	-2 (6)

S5—C4—C8—C9	178.87 (17)	S5A—C4A—C8A—C9A	-178 (2)
C6—C7—C8—C4	0.8 (3)	C6A—C7A—C8A—C4A	9 (4)
C6—C7—C8—C9	-178.8 (2)	C6A—C7A—C8A—C9A	-177 (3)
O1-C1-C10-C14	175.0 (3)	C2A-C1A-C10A-C14A	-41 (6)
C2-C1-C10-C14	-5.2 (3)	O1A—C1A—C10A—C14A	163 (3)
O1-C1-C10-S11	-4.2 (3)	C2A-C1A-C10A-S11A	143 (3)
C2-C1-C10-S11	175.62 (15)	O1A-C1A-C10A-S11A	-13 (5)
C14—C10—S11—C12	0.86 (17)	C1A—C10A—S11A—C12A	-170 (4)
C1-C10-S11-C12	-179.83 (17)	C14A—C10A—S11A—C12A	13 (3)
C10—S11—C12—C13	-1.24 (18)	C10A—S11A—C12A—C13A	-12 (3)
C10—S11—C12—Cl1	178.05 (14)	C10A—S11A—C12A—C11A	-179 (2)
S11-C12-C13-C14	1.3 (3)	Cl1A—C12A—C13A—C14A	173 (3)
Cl1—C12—C13—C14	-177.96 (16)	S11A—C12A—C13A—C14A	9 (4)
C1-C10-C14-C13	-179.5 (2)	C12A—C13A—C14A—C10A	2 (4)
S11-C10-C14-C13	-0.3 (2)	C1A—C10A—C14A—C13A	172 (3)
C12-C13-C14-C10	-0.6 (3)	S11A-C10A-C14A-C13A	-11 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С3—Н3…О1	0.95	2.48	2.818 (3)	101
C2—H2…S5	0.95	2.80	3.166 (2)	104
C13—H13…O1 ⁱ	0.95	2.35	3.184 (4)	146
C9—H9 <i>C</i> ···O1 ⁱⁱ	0.98	2.58	3.488 (4)	154
C6—H6···S11 ⁱⁱⁱ	0.95	3.04	3.948 (2)	160

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*, –*z*+1; (iii) *x*, *y*, *z*-1.