

Received 29 January 2020 Accepted 27 February 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; molecular salt; hydrogen bonding.

CCDC reference: 1986654

**Supporting information**: this article has supporting information at journals.iucr.org/e

# Crystal structure and Hirshfeld surface analysis of $(C_7H_9N_4O_2)[ZnCl_3(H_2O)]$

Hicham El Hamdani,<sup>a</sup>\* Mohamed El Amane,<sup>a</sup> Mohamed Saadi<sup>b</sup> and Lahcen El Ammari<sup>b</sup>

<sup>a</sup>Equipe Metallation, Complexes Moleculaires et Applications, Université Moulay Ismail, Faculté des Sciences, BP 11201 Zitoune, 50000 Meknés, Morocco, and <sup>b</sup>Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Batouta, BP 1014, Rabat, Morocco. \*Correspondence e-mail: elhamdanihicham40@gmail.com

In the title molecular salt, 1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-9ium aquatrichloridozincate(II),  $(C_7H_9N_4O_2)[ZnCl_3(H_2O)]$ , the fused ring system of the cation is close to planar, with the largest deviation from the mean plane being 0.037 (3) Å. In the complex anion, the Zn<sup>II</sup> cation is coordinated by three chloride ions and one oxygen atom from the water ligand in a distorted tetrahedral geometry. In the crystal, inversion dimers between pairs of cations linked by pairwise N-H···O hydrogen bonds generate  $R_2^2(10)$ rings. The anions are linked into dimers by pairs of O-H···Cl hydrogen bonds and the respective dimers are linked by O-H···O and N-H···Cl hydrogen bonds. Together, these generate a three-dimensional supramolecular network. Hirshfeld surfaces were generated to gain further insight into the packing.

#### 1. Chemical context

Theophylline,  $C_7H_8N_4O_2$ , is an alkaloid derivative of xanthine, containing a fused pyrimidine-imidazole ring system with conjugated double bonds. It has many biological and pharmacological properties (see, for example, Rao *et al.*, 2005; Piosik *et al.*, 2005). Various studies have shown that theophylline can be used as a medicine for the treatment of asthmatic bronchitis and chronic obstructive bronchitis (under several brand names), and as anticancer drugs (Nafisi *et al.* 2003; Rao *et al.* 2005; Piosik *et al.* 2005). Furthermore, theophylline complexes with transition metals can be used in anticancer drugs (David *et al.*, 1999).







As part of our studies in this area, we reacted the ophylline with ZnCl<sub>2</sub> under acid conditions to give the molecular salt  $(C_7H_9N_4O_2)\cdot[ZnCl_3(H_2O)]$  and its crystal structure is described herein.

#### 2. Structural commentary

The asymmetric unit of the title molecular salt (Fig. 1) comprises one theophyllinium  $(C_7H_9N_4O_2)^+$  cation proto-

## research communications

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$        | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------|------|-------------------------|--------------|------------------|
| $N1 - H1 \cdots O2^i$   | 0.86 | 1.87                    | 2.7067 (18)  | 163              |
| $N2-H2\cdots Cl2^{ii}$  | 0.86 | 2.21                    | 3.0652 (15)  | 174              |
| $C6-H6C\cdots O2^{iii}$ | 0.96 | 2.65                    | 3.431 (3)    | 139              |
| $O3-H3A\cdots Cl3^{iv}$ | 0.77 | 2.43                    | 3.1915 (17)  | 176              |
| O3−H3 <i>B</i> ···O1    | 0.82 | 1.90                    | 2.718 (2)    | 173              |

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x - 1, y, z; (iii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (iv) -x + 2, -y + 1, -z + 1.

nated at N2 and one  $[ZnCl_3(H_2O)]^{-1}$  anion. As expected, the  $[ZnCl_3(H_2O)]$  tetrahedron contains one short Zn–O bond distance [2.0240 (15) Å] and three longer Zn–Cl bonds distances [in the range 2.2121 (7)–2.2745 (6) Å]. These bond lengths are consistent with the values observed in analogous compounds such as  $[H_3N(CH_2)_8NH_3]ZnCl_4$ ,  $[C_6H_5-C_2H_4-NH_3]_2ZnCl_4$ ,  $(C1_2H_{12}N_2)[ZnCl_4]$  and  $(C_{10}H_{22}N_2)[ZnCl_4](El Mrabet$ *et al.*, 2017), as are the Cl–Zn–Cl [111.45 (3)–116.99 (3)°] and Cl–Zn–O [101.36 (5)–108.19 (5)°] bond angles (Kassou*et al.*, 2016; Campos-Gaxiola*et al.*, 2015; Soudani*et al.*, 2013).

#### 3. Supramolecular features

The packing is consolidated by a network of hydrogen bonds (Table 1, Fig. 2). The cations are linked into inversion dimers by pairs of N1-H1...O2 hydrogen bonds, which generate  $R_2^2(10)$  rings. The anions also form inversion dimers, being



Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.



Figure 2 Molecules linked by  $O-H\cdots O$  and  $O-H\cdots Cl$  strong hydrogen bonds.



Figure 3 Perspective view of the crystal structure along the c axis showing the layered organization.

linked by pairwise O3-H3A···Cl3 hydrogen bonds. The anions are linked to the cations *via* O3-H3B···O1 hydrogen bonds from the water molecule to a carbonyl group of the pyrimidine ring. Finally, the cations are linked to the anions *via* N2-H2···Cl2 hydrogen bonds. Taken together, these hydrogen bonds generate a three-dimensional supramolecular network (Fig. 3), which also features short Cl··· $\pi$  contacts [Cl···centroid distances in the range of 3.533 (2)-3.620 (2) Å].

#### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, May 2019; Groom *et al.*, 2016) for organicinorganic compounds containing theophilinium in the cation revealed three similar structures: theophyllinium trichlorotheophyllineplatinum(II), bis(theophyllinium) tetrachloroplatinum(II) (Griffith *et al.*, 1979) and bis(theophyllinium) tetrabromopalladium(II) (Salas *et al.*, 1989). In each of the three complexes, the metal cation is surrounded by four ligands in a planar geometry. The crystal structures of these



Figure 4 Hirshfeld  $d_{norm}$  surface of the  $(C_7H_9N_4O_2)^+$  cation in the title compound.

# research communications



#### Figure 5

Hirshfeld  $d_{norm}$  surface of the  $[ZnCl_3(H_2O)]^-$  anion in the title compound.

compounds are different from that of the title compound; however, the organic-inorganic moities are linked through hydrogen bonds in all of these structures.

#### 5. Hirshfeld surface analysis

In order to gain further insight into the intermolecular interactions in the title compound, we used the program *Crystal Explorer* (Spackman & Jayatilaka, 2009), to consider separately the  $(C_7H_9N_4O_2)^+$  organic cation and the  $[ZnCl_3(H_2O)]^$ inorganic anion.

The Hirshfeld  $d_{norm}$  surface of the cation is depicted in Fig. 4. The most significant interactions are H···H (29.6%) contacts and the second largest percentage (25.8%) can be attributed to H···O interactions, which are responsible for the appearance of deep-red spots and correlate with the O–H···O and N–H···O hydrogen bonds. H···Cl (21.9%), C···Cl (8.1%), N···Cl (5.5%) and C···H (3.6%) interactions are also observed, with other contact types making a negligible contribution.

The Hirshfeld surface of the  $[ZnCl_3(H_2O)]$  anion is depicted in Fig. 5 and shows red spots that correspond to the strong N-H···Cl and O-H···Cl hydrogen bonds: Cl···H contacts are the most abundant contributor to the surface at 54.7%. Other significant contributions include Cl···C (10.3%), H···H (9.6%), Cl···N (7.3%), H···O (5.6%) and H···Cl (4.7%). It is notable that the Cl···Cl contact percentage is 0%, *i.e.* the chloride anions avoid each other in the crystal.

#### 6. Synthesis and crystallization

ZnCl<sub>2</sub>·6H<sub>2</sub>O (0.244 g, 1 mmol) was dissolved in 5 ml of water. Then, theophylline  $[C_7H_8N_4O_2]$  (0.180 g, 1 mmol) was dissolved in 3 ml of ethanol/water (1:1  $\nu:\nu$ ) with a few drops of conc. HCl (37%). The two solutions were mixed and after two

| Crystal data                                                               |                                          |
|----------------------------------------------------------------------------|------------------------------------------|
| Chemical formula                                                           | $(C_7H_0N_4O_2)[ZnCl_3(H_2O)]$           |
| M <sub>r</sub>                                                             | 370.92                                   |
| Crystal system, space group                                                | Monoclinic, $P2_1/c$                     |
| Temperature (K)                                                            | 296                                      |
| a, b, c (Å)                                                                | 8.0932 (14), 13.744 (3), 12.429 (2)      |
| $\beta$ (°)                                                                | 92.290 (6)                               |
| $V(\dot{A}^3)$                                                             | 1381.4 (4)                               |
| Z                                                                          | 4                                        |
| Radiation type                                                             | Μο Κα                                    |
| $\mu (\text{mm}^{-1})$                                                     | 2.36                                     |
| Crystal size (mm)                                                          | $0.32 \times 0.25 \times 0.11$           |
| Data collection                                                            |                                          |
| Diffractometer                                                             | Bruker D8 VENTURE Super<br>DUO           |
| Absorption correction                                                      | Multi-scan (SADABS; Krause et al., 2015) |
| $T_{\min}, T_{\max}$                                                       | 0.587, 0.746                             |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 29522, 3046, 2753                        |
| R <sub>int</sub>                                                           | 0.035                                    |
| Refinement                                                                 |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.025, 0.070, 1.04                       |
| No. of reflections                                                         | 3046                                     |
| No. of parameters                                                          | 166                                      |
| H-atom treatment                                                           | H-atom parameters constrained            |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.42, -0.26                              |

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT2014/5* (Sheldrick, 2015*a*), *SHELXL2018/3* (Sheldrick 2015*b*), *Mercury* (Macrae *et al.*, 2020) and *publCIF* (Westrip, 2010).

weeks, colourless crystals of the title molecular salt were obtained.

#### 7. Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were all located in a difference map, but those attached to C and N atoms were repositioned geometrically (C-H = 0.93–0.96, N-H = 0.86 Å). The water H atoms were located in a difference map and refined as riding atoms in their as-found relative positions. The constraint  $U_{iso}(H) = 1.2U_{eq}(carrier)$  or  $1.5U_{eq}(C-methyl)$ was applied in all cases.

#### Acknowledgements

The authors thank the Faculty of Science, Mohammed V University in Rabat, Morocco for the X-ray data collection.

#### References

Bruker (2016). APEX3 (Version 5.054), SAINT (Version 6.36A), SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Campos-Gaxiola, J. J., Arredondo Rea, S. P., Corral Higuera, R., Höpfl, H. & Cruz Enríquez, A. (2015). *Acta Cryst.* C71, 48–52.
- David, L., Cozar, O., Forizs, E., Craciun, C., Ristoiu, D. & Balan, C. (1999). Spectrochim. Acta A, 55, 2559–2564.
- El Mrabet, R., Kassou, S., Tahiri, O., Belaaraj, A., El Ammari, L. & Saadi, M. (2017). J. Cryst. Growth, **472**, 76–83.

Griffith, E.H., Amma, E.L. (1979). Chem. Commun. pp. 322-324.

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Kassou, S., El-Mrabet, R., Kaiba, A., Guionneau, P. & Belaaraj, A. (2016). *Phys. Chem. Chem. Phys.* **18**, 9431–9436.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Nafisi, S., Sadjadi, A. S., Zadeh, S. S. & Damerchelli, M. (2003). J. Biomol. Struct. Dyn. 21, 289–296.
- Piosik, J., Gwizdek-Wiśniewska, A., Ulanowska, K., Ochociński, J., Czyz, A. & Wegrzyn, G. (2005). Acta Biochim. Pol. 52, 923– 926.
- Rao, F. V., Andersen, O. A., Vora, K. A., DeMartino, J. A. & van Aalten, D. M. F. (2005). *Chem. Biol.* **12**, 973–980.
- Salas, J. M., Colacio, E., Moreno, M. N., Ruiz, J., Debaerdemaeker, T., Via, J. & Arriortua, M. I. (1989). J. Crystallogr. Spectrosc. Res. 19, 755–763.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Soudani, S., Aubert, E., Jelsch, C. & Ben Nasr, C. (2013). Acta Cryst. C69, 1304–1306.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2020). E76, 506-509 [https://doi.org/10.1107/S2056989020002753]

# Crystal structure and Hirshfeld surface analysis of (C7H9N4O2)[ZnCl3(H2O)]

### Hicham El Hamdani, Mohamed El Amane, Mohamed Saadi and Lahcen El Ammari

#### **Computing details**

Data collection: *APEX3* (Bruker, 2016); cell refinement: *SAINT* (Bruker, 2016); data reduction: *SAINT* (Bruker, 2016); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

1,3-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-9-ium aquatrichloridozincate(II)

#### Crystal data

| $(C_7H_9N_4O_2)[ZnCl_3(H_2O)]$ |
|--------------------------------|
| $M_r = 370.92$                 |
| Monoclinic, $P2_1/c$           |
| a = 8.0932 (14)  Å             |
| b = 13.744 (3) Å               |
| c = 12.429 (2) Å               |
| $\beta = 92.290 \ (6)^{\circ}$ |
| V = 1381.4 (4) Å <sup>3</sup>  |
| Z = 4                          |

#### Data collection

| Bruker D8 VENTURE Super DUO                          |
|------------------------------------------------------|
| diffractometer                                       |
| Radiation source: INCOATEC I $\mu$ S micro-focus     |
| source                                               |
| HELIOS mirror optics monochromator                   |
| Detector resolution: 10.4167 pixels mm <sup>-1</sup> |
| $\varphi$ and $\omega$ scans                         |
| Absorption correction: multi-scan                    |
| (SADABS; Krause et al., 2015)                        |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.025$  $wR(F^2) = 0.070$ S = 1.043046 reflections 166 parameters 0 restraints Primary atom site location: dual Hydrogen site location: mixed F(000) = 744  $D_x = 1.783 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3046 reflections  $\theta = 2.2-27.1^{\circ}$   $\mu = 2.36 \text{ mm}^{-1}$  T = 296 KPlate, colorless  $0.32 \times 0.25 \times 0.11 \text{ mm}$ 

 $T_{\min} = 0.587, T_{\max} = 0.746$ 29522 measured reflections
3046 independent reflections
2753 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.035$   $\theta_{max} = 27.1^{\circ}, \theta_{min} = 2.2^{\circ}$   $h = -10 \rightarrow 10$   $k = -17 \rightarrow 17$   $l = -15 \rightarrow 15$ 

H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0361P)^2 + 0.7104P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} = 0.001$   $\Delta\rho_{max} = 0.42$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.26$  e Å<sup>-3</sup> Extinction correction: *SHELXL2018/3* (Sheldrick 2015b), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0116 (9)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x             | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|---------------|--------------|--------------|-----------------------------|
| C1  | 0.3890 (2)    | 0.73981 (12) | 0.43314 (14) | 0.0328 (4)                  |
| C2  | 0.23025 (19)  | 0.88256 (11) | 0.49620 (13) | 0.0270 (3)                  |
| C3  | 0.09587 (19)  | 0.84313 (11) | 0.43243 (13) | 0.0275 (3)                  |
| C4  | -0.1427 (2)   | 0.81114 (13) | 0.35170 (15) | 0.0347 (4)                  |
| H4  | -0.252141     | 0.816209     | 0.326593     | 0.042*                      |
| C5  | 0.10920 (19)  | 0.75700 (12) | 0.37968 (13) | 0.0279 (3)                  |
| C6  | 0.2625 (3)    | 0.61496 (16) | 0.3140 (2)   | 0.0534 (6)                  |
| H6A | 0.175032      | 0.571204     | 0.331328     | 0.080*                      |
| H6B | 0.367334      | 0.584272     | 0.329585     | 0.080*                      |
| H6C | 0.253138      | 0.631212     | 0.238896     | 0.080*                      |
| C7  | 0.5201 (2)    | 0.85870 (15) | 0.55359 (17) | 0.0427 (4)                  |
| H7A | 0.593033      | 0.889908     | 0.505244     | 0.064*                      |
| H7B | 0.575456      | 0.804184     | 0.587203     | 0.064*                      |
| H7C | 0.489054      | 0.904175     | 0.607817     | 0.064*                      |
| N1  | -0.06417 (17) | 0.87524 (10) | 0.41341 (12) | 0.0314 (3)                  |
| H1  | -0.105499     | 0.928117     | 0.437743     | 0.038*                      |
| N2  | -0.04038 (17) | 0.73720 (10) | 0.33052 (12) | 0.0317 (3)                  |
| H2  | -0.064969     | 0.686459     | 0.292687     | 0.038*                      |
| N3  | 0.25046 (17)  | 0.70379 (10) | 0.37848 (12) | 0.0316 (3)                  |
| N4  | 0.37091 (16)  | 0.82468 (10) | 0.49296 (12) | 0.0307 (3)                  |
| 01  | 0.52249 (16)  | 0.69911 (11) | 0.42937 (12) | 0.0463 (3)                  |
| O2  | 0.22824 (15)  | 0.95718 (8)  | 0.54976 (10) | 0.0348 (3)                  |
| O3  | 0.7194 (2)    | 0.54071 (11) | 0.46116 (13) | 0.0567 (4)                  |
| H3A | 0.791444      | 0.560052     | 0.496924     | 0.085*                      |
| H3B | 0.653875      | 0.586278     | 0.454444     | 0.085*                      |
| C11 | 0.53785 (8)   | 0.37606 (5)  | 0.28558 (6)  | 0.06943 (19)                |
| Cl2 | 0.84322 (7)   | 0.55879 (3)  | 0.20036 (4)  | 0.04325 (13)                |
| C13 | 0.98173 (7)   | 0.36721 (4)  | 0.39782 (4)  | 0.05047 (15)                |
| Zn1 | 0.76669 (3)   | 0.45595 (2)  | 0.33282 (2)  | 0.03798 (10)                |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|-------------|--------------|--------------|
| C1 | 0.0309 (8)  | 0.0313 (8)  | 0.0364 (9)  | 0.0047 (7)  | 0.0020 (7)   | 0.0003 (7)   |
| C2 | 0.0268 (7)  | 0.0248 (7)  | 0.0293 (7)  | 0.0002 (6)  | 0.0002 (6)   | 0.0013 (6)   |
| C3 | 0.0244 (7)  | 0.0245 (7)  | 0.0333 (8)  | 0.0023 (6)  | -0.0005 (6)  | -0.0009 (6)  |
| C4 | 0.0276 (8)  | 0.0346 (9)  | 0.0414 (9)  | -0.0006 (7) | -0.0030 (7)  | -0.0028 (7)  |
| C5 | 0.0289 (8)  | 0.0250 (7)  | 0.0299 (8)  | -0.0004 (6) | 0.0014 (6)   | 0.0003 (6)   |
| C6 | 0.0538 (13) | 0.0432 (11) | 0.0627 (13) | 0.0120 (9)  | -0.0033 (10) | -0.0252 (10) |
|    |             | × ,         |             |             |              |              |

# supporting information

| C7  | 0.0269 (8)   | 0.0451 (10)  | 0.0551 (12)  | 0.0004 (7)    | -0.0089 (8)  | -0.0086 (9)   |
|-----|--------------|--------------|--------------|---------------|--------------|---------------|
| N1  | 0.0257 (7)   | 0.0273 (7)   | 0.0411 (8)   | 0.0027 (5)    | -0.0018 (6)  | -0.0044 (6)   |
| N2  | 0.0307 (7)   | 0.0281 (7)   | 0.0359 (7)   | -0.0026 (5)   | -0.0021 (6)  | -0.0055 (6)   |
| N3  | 0.0316 (7)   | 0.0269 (7)   | 0.0364 (7)   | 0.0046 (5)    | 0.0013 (6)   | -0.0055 (6)   |
| N4  | 0.0246 (6)   | 0.0305 (7)   | 0.0366 (7)   | 0.0018 (5)    | -0.0027 (5)  | -0.0025 (6)   |
| 01  | 0.0334 (7)   | 0.0440 (8)   | 0.0612 (9)   | 0.0146 (6)    | -0.0020 (6)  | -0.0063 (6)   |
| O2  | 0.0335 (6)   | 0.0302 (6)   | 0.0401 (7)   | 0.0031 (5)    | -0.0052 (5)  | -0.0086 (5)   |
| 03  | 0.0556 (9)   | 0.0577 (9)   | 0.0556 (9)   | 0.0250 (7)    | -0.0129 (7)  | -0.0217 (7)   |
| Cl1 | 0.0508 (3)   | 0.0742 (4)   | 0.0829 (4)   | -0.0221 (3)   | -0.0032 (3)  | -0.0209 (3)   |
| Cl2 | 0.0543 (3)   | 0.0337 (2)   | 0.0405 (2)   | -0.00102 (19) | -0.0130 (2)  | -0.00533 (17) |
| C13 | 0.0538 (3)   | 0.0503 (3)   | 0.0467 (3)   | 0.0195 (2)    | -0.0059 (2)  | 0.0006 (2)    |
| Zn1 | 0.03676 (14) | 0.03346 (14) | 0.04306 (15) | 0.00315 (8)   | -0.00657 (9) | -0.00676 (8)  |
|     |              |              |              |               |              |               |

### Geometric parameters (Å, °)

| C101      | 1.219 (2)   | C6—H6B     | 0.9600      |
|-----------|-------------|------------|-------------|
| C1—N3     | 1.379 (2)   | С6—Н6С     | 0.9600      |
| C1—N4     | 1.394 (2)   | C7—N4      | 1.474 (2)   |
| C2—O2     | 1.223 (2)   | С7—Н7А     | 0.9600      |
| C2—N4     | 1.391 (2)   | С7—Н7В     | 0.9600      |
| C2—C3     | 1.427 (2)   | С7—Н7С     | 0.9600      |
| C3—C5     | 1.360 (2)   | N1—H1      | 0.8600      |
| C3—N1     | 1.380 (2)   | N2—H2      | 0.8600      |
| C4—N1     | 1.315 (2)   | O3—H3A     | 0.7665      |
| C4—N2     | 1.343 (2)   | O3—H3B     | 0.8227      |
| C4—H4     | 0.9300      | Zn1—O3     | 2.0240 (15) |
| C5—N3     | 1.358 (2)   | Zn1—Cl1    | 2.2121 (7)  |
| C5—N2     | 1.362 (2)   | Zn1—Cl2    | 2.2745 (6)  |
| C6—N3     | 1.466 (2)   | Zn1—Cl3    | 2.2487 (6)  |
| C6—H6A    | 0.9600      |            |             |
|           |             |            |             |
| O1—C1—N3  | 121.36 (16) | N4—C7—H7C  | 109.5       |
| O1—C1—N4  | 121.10 (16) | H7A—C7—H7C | 109.5       |
| N3-C1-N4  | 117.55 (14) | H7B—C7—H7C | 109.5       |
| O2—C2—N4  | 121.61 (15) | C4—N1—C3   | 108.30 (14) |
| O2—C2—C3  | 126.47 (15) | C4—N1—H1   | 125.8       |
| N4—C2—C3  | 111.92 (14) | C3—N1—H1   | 125.8       |
| C5—C3—N1  | 106.73 (14) | C4—N2—C5   | 107.74 (14) |
| C5—C3—C2  | 121.68 (15) | C4—N2—H2   | 126.1       |
| N1—C3—C2  | 131.54 (15) | C5—N2—H2   | 126.1       |
| N1-C4-N2  | 109.50 (15) | C5—N3—C1   | 117.99 (14) |
| N1-C4-H4  | 125.2       | C5—N3—C6   | 121.95 (15) |
| N2C4H4    | 125.2       | C1—N3—C6   | 119.84 (15) |
| N3—C5—C3  | 123.88 (15) | C2—N4—C1   | 126.70 (14) |
| N3—C5—N2  | 128.42 (15) | C2—N4—C7   | 117.30 (14) |
| C3—C5—N2  | 107.71 (14) | C1—N4—C7   | 115.90 (14) |
| N3—C6—H6A | 109.5       | Zn1—O3—H3A | 119.6       |
| N3—C6—H6B | 109.5       | Zn1—O3—H3B | 120.0       |

| 109.5        | НЗА—ОЗ—НЗВ                                                                                                                                                                                                                                                                        | 105.5                                                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 109.5        | O3—Zn1—Cl3                                                                                                                                                                                                                                                                        | 101.36 (5)                                           |
| 109.5        | O3—Zn1—Cl2                                                                                                                                                                                                                                                                        | 106.16 (6)                                           |
| 109.5        | O3—Zn1—Cl1                                                                                                                                                                                                                                                                        | 108.19 (5)                                           |
| 109.5        | Cl1—Zn1—Cl2                                                                                                                                                                                                                                                                       | 111.45 (3)                                           |
| 109.5        | Cl3—Zn1—Cl2                                                                                                                                                                                                                                                                       | 111.58 (2)                                           |
| 109.5        | Cl1—Zn1—Cl3                                                                                                                                                                                                                                                                       | 116.99 (3)                                           |
|              |                                                                                                                                                                                                                                                                                   |                                                      |
| -176.95 (16) | N2—C5—N3—C1                                                                                                                                                                                                                                                                       | 178.75 (17)                                          |
| 2.2 (2)      | C3—C5—N3—C6                                                                                                                                                                                                                                                                       | -175.40 (18)                                         |
| 0.2 (3)      | N2—C5—N3—C6                                                                                                                                                                                                                                                                       | 4.0 (3)                                              |
| 179.38 (17)  | O1—C1—N3—C5                                                                                                                                                                                                                                                                       | -175.01 (17)                                         |
| 179.06 (15)  | N4—C1—N3—C5                                                                                                                                                                                                                                                                       | 5.0 (2)                                              |
| -3.2 (3)     | O1—C1—N3—C6                                                                                                                                                                                                                                                                       | -0.2 (3)                                             |
| -0.48 (18)   | N4—C1—N3—C6                                                                                                                                                                                                                                                                       | 179.78 (18)                                          |
| 177.31 (15)  | O2-C2-N4-C1                                                                                                                                                                                                                                                                       | -178.35 (16)                                         |
| 0.8 (2)      | C3—C2—N4—C1                                                                                                                                                                                                                                                                       | 2.4 (2)                                              |
| -0.18 (19)   | O2—C2—N4—C7                                                                                                                                                                                                                                                                       | -2.2 (2)                                             |
| -177.67 (18) | C3—C2—N4—C7                                                                                                                                                                                                                                                                       | 178.56 (15)                                          |
| -1.1 (2)     | O1—C1—N4—C2                                                                                                                                                                                                                                                                       | 173.82 (17)                                          |
| -178.56 (16) | N3—C1—N4—C2                                                                                                                                                                                                                                                                       | -6.1 (3)                                             |
| 0.95 (19)    | O1—C1—N4—C7                                                                                                                                                                                                                                                                       | -2.3 (3)                                             |
| -0.7 (2)     | N3—C1—N4—C7                                                                                                                                                                                                                                                                       | 177.68 (16)                                          |
|              | 109.5 $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $109.5$ $-176.95 (16)$ $2.2 (2)$ $0.2 (3)$ $179.38 (17)$ $179.06 (15)$ $-3.2 (3)$ $-0.48 (18)$ $177.31 (15)$ $0.8 (2)$ $-0.18 (19)$ $-177.67 (18)$ $-1.1 (2)$ $-178.56 (16)$ $0.95 (19)$ $-0.7 (2)$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                             | <i>D</i> —Н | H···A | $D^{\dots}A$ | <i>D</i> —H··· <i>A</i> |
|-------------------------------------|-------------|-------|--------------|-------------------------|
| N1—H1···O2 <sup>i</sup>             | 0.86        | 1.87  | 2.7067 (18)  | 163                     |
| N2—H2···Cl2 <sup>ii</sup>           | 0.86        | 2.21  | 3.0652 (15)  | 174                     |
| C6—H6 <i>C</i> ···O2 <sup>iii</sup> | 0.96        | 2.65  | 3.431 (3)    | 139                     |
| O3—H3A····Cl3 <sup>iv</sup>         | 0.77        | 2.43  | 3.1915 (17)  | 176                     |
| O3—H3 <i>B</i> …O1                  | 0.82        | 1.90  | 2.718 (2)    | 173                     |
|                                     |             |       |              |                         |

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z; (iii) x, -y+3/2, z-1/2; (iv) -x+2, -y+1, -z+1.