

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 December 2019
Accepted 1 March 2020

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine; photoluminescence; SEM; TG-DTA.

CCDC reference: 1914486
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure and photoluminescent properties of bis(4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridyl)cobalt(II) dichloride tetrahydrate

B. Thippeswamy, ${ }^{\text {a,b }}$ P. A. Suchetan, ${ }^{\text {a }}$ K. M. Mahadevan, ${ }^{\text {c }}$ H. Nagabhushana ${ }^{\text {d }}$ and G. R. Vijayakumar ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Chemistry, University College of Science, Tumkur University, Tumkur, Karnataka 572 103, India,
${ }^{\mathbf{b}}$ Department of Chemistry, Government Science College, Chitradurga, 577501, India, ${ }^{\text {c }}$ Department of Chemistry, Kuvempu University, P. G. Centre, Kadur-577548, India, and ${ }^{\text {d Prof. C. N. R Rao Centre for Advanced Materials Research, }}$ Tumkur University, Tumkur-572 103, India. *Correspondence e-mail: vijaykumargr18@gmail.com

In the title hydrated complex, $\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the complete dication is generated by $\overline{4}$ symmetry. The CoN_{6} moiety shows distortion from regular octahedral geometry with the trans bond angles of two $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ units being $160.62(9)^{\circ}$. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions link the components into (001) sheets. The title compound exhibits blue-light emission, as indicated by photoluminescence data, and a HOMO-LUMO energy separation of 2.23 eV was obtained from its diffuse reflectance spectrum.

1. Chemical context

Since the pioneering work of Tang et al. (1987), there has been increasing interest in chelating organic compounds being employed as charge-transporting materials in electronic devices such as OLEDs. Transition-metal complexes are promising candidates for use as hole-transporting materials as the metal ions can assume variable oxidation states and are found to exhibit low kinetic barriers for self-exchange reactions (Marcus, 1965).

As $2,2^{\prime}$-bipyridine (bpy) is reported to show both σ-donor and π-acceptor capabilities, disubstituted 4, 4^{\prime}-, 5,5'- and 6,6'derivatives of bpy have been widely employed in supramolecular and coordination chemistry (Kaes et al., 2000; Williams et al., 2002). Materials incorporating pyridine have also been shown to perform well in electron-transporting layers in OLEDs because of their high electron mobility (Ichikawa et al., 2010).

Single-layer device structures that make use of $\mathrm{Ru}^{\mathrm{II}}$ complexes involving bipyridine and its derivatives not only show the potential to transport both holes and electrons but also exhibit luminescent properties (Rudmann \& Rubner, 2001; Gao \& Bard, 2000). Reports of the application of cyclometalated $\mathrm{Ir}^{\text {III }}$ complexes in vapour-deposited OLEDs both as efficient emissive and charge-transporting materials (Adamovich et al., 2003; Grushin et al., 2001) and the luminescent properties of a distorted octahedral $\mathrm{Ni}^{\mathrm{II}}$ complex with 5,5'-dimethyl-2,2'-bipyridine have been published (Abedi et al., 2015). The synthesis and a study of the thermal and luminescent properties of d^{8} transition-metal complexes with the incorporation of substituted $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine ligands were described by Momeni et al. (2017).

As an extension of such studies, we now report the synthesis, structure, spectroscopic characterization and thermal behaviour of the title complex, (I).

2. Structural commentary

The $\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{3}\right)_{2} \mathrm{Cl}_{2}\right]^{2+}$ cation in (I) is symmetric (the metal atom lies on a special position with $\overline{4}$ site symmetry; atoms N 2 , C 8 and Cl 1 lie on a crystallographic twofold axis), thus the asymmetric unit contains half of the ligand coordinated to the cobalt ion, one water molecule of crystallization (O atom site symmetry 1) and half of a chloride counter-ion (site symmetry 2) (Fig. 1). The complex shows distortion from an ideal octahedral geometry for the metal ion with two $\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1$ bond angles being $160.62(9)^{\circ}$. However, the $\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2$ bond angle is 180°, as it lies on the rotoinversion axis. The coordinated ligand is almost planar with the r.m.s. deviation of all the non-hydrogen atoms being $0.025 \AA$. Moreover, the dihedral angle between the ligands is 90.0°, as constrained by the presence of the rotoinversion axis.

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. The complete cation of the complex is generated by applying the symmetry operations (a) $-y+\frac{5}{4}, x+\frac{1}{4},-z+\frac{5}{4},(b)-x+1$, $-y+\frac{3}{2}, z$ and (c) $y-\frac{1}{4},-x+\frac{5}{4},-z+\frac{5}{4}$.

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 2 O 1 \cdots \mathrm{Cl} 2$	0.82	2.35	3.1735	177
O1-H1O1 $^{\mathrm{H}} \mathrm{Cl} 2^{\mathrm{H}}$	0.84	2.43	3.2607	170
${\text { C7-H7 } \cdots 1^{\mathrm{ii}}}^{\text {C7 }}$	0.93	2.44	$3.334(4)$	161

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x, y+\frac{1}{2},-z+1$.

3. Supramolecular features

The unit cell of (I) contains four cations, which are electrically balanced by eight chloride ions along with sixteen water molecules of crystallization (Fig. 2). In the crystal structure, two pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds between water molecules and chloride ions $[\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} 1 \cdots \mathrm{Cl} 2$ and $\mathrm{O} 2-$ $\mathrm{H} 1 \mathrm{O} 1 \cdots \mathrm{Cl} 2]$ link the components into infinite (001) sheets (Table 1).

4. Thermal and photoluminescence studies

Thermogravimetry (TG) and differential thermal analysis (DTA) on (I) show progressive decomposition in several steps.

Figure 2
A partial view of the crystal packing of (I) viewed down [100]. Hydrogen bonds are shown as thin blue lines.

Figure 3
(a) Diffuse reflectance spectrum of (I) (b) Plot of $\left[F\left(R_{\infty}\right) h \nu\right]^{1 / 2}$ versus energy for (I)

The first mass loss (obs. 10.0%, calc. 9.8% over the temperature range $60-140^{\circ} \mathrm{C}$) is attributed to the loss of the water molecules of crystallization, accompanied by endotherms at 78 and $134^{\circ} \mathrm{C}$. The second mass loss over the temperature range $200-310^{\circ} \mathrm{C}$ accompanied by a DTA peak at $306^{\circ} \mathrm{C}$ is probably due to the decomposition of one ligand with an estimated mass loss of 36.1% (calcd. mass loss 36.2%). Powder XRD of the final residue after heating to $800^{\circ} \mathrm{C}$ indicated the presence of cobalt oxy hydroxide, $\mathrm{CoO}(\mathrm{OH})$ and $\mathrm{Co}_{3} \mathrm{O}_{4}$ (Sulikowska et al., 2000).

The diffuse reflectance (DR) spectrum of (I) was scanned in the wavelength range $200-1100 \mathrm{~nm}$ and an absorption band appeared in the visible region as shown in Fig. 3a. A prominent peak with a diffuse reflectance percentage of 5.4 is observed at 640 nm . The Kubelka-Munk function (Harry, 1976) (Fig. 3b) was used in order to determine the HOMOLUMO gap for (I): the band gap energy obtained from the plot was found to be 2.23 eV (Morales et al., 2007).

The excitation and emission spectra of (I) recorded at room temperature are shown in Fig. $4 a$ and b. The excitation spectrum shows features at $318,339,382$ and 395 nm . From the emission spectrum, three well-defined peaks at 436,541 and 653 nm are apparent for (I). The determination of chromaticity co-ordinates [Publication CIE No 15.2 (1986) and 17.4 (1987)] was carried out at an excitation wavelength of 395 nm .

Figure 4
Photoluminescence spectra of (I); (a) excitation spectrum (b) emission spectrum (c) CIE graph

The estimated CIE values for the probable excitation are incorporated in the left corner of Fig. 4c. The colour of emission for the highlighted phosphor is indicated in the chromaticity diagram by the solid circle sign (star), which indicates that the emission colour is blue.

5. Database survey

A search of the Cambridge Structural Database gave 90 matches for crystal structures containing the 4^{\prime}-chloro$2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine (L) ligand. Closely related complexes to (I) with a pair of chelating L ligands generating an $M \mathrm{~N}_{6}$ coordination sphere include the nickel and iron complexes $\left[\mathrm{Ni}\left(\mathrm{L}-\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (CCDC refcode HIVPUY; Huang et al., 2008) and $\left[\mathrm{Fe}\left(\mathrm{L}-\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (HIVQEJ; Huang et al., 2008); the latter complex is isostructural with (I). The structure of $\left[\mathrm{Ru}\left(\mathrm{L}-\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (PAYMOT; Wang et al., 2012) has also been described. The dihedral angles between the L ligands in HIVPUY, HIVQEJ and PAYMOT are 94.9 (3), 86.1 (3) and 87.0 (3) ${ }^{\circ}$, respectively. The crystals of both HIVPUY and HIVQEJ display threedimensional networks arising from $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. In PAYMOT, the cations, anions and water molecules are linked into a three-dimensional network by C $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

6. Synthesis and crystallization

A solution of 4^{\prime}-chloro- $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine (2) (0.535 g , 2.00 mmol) in 3 ml of ethanol was stirred at 333 K for about 30 min and an aqueous solution of cobalt(II) chloride hexahydrate (1) ($0.2379 \mathrm{~g}, 1.00 \mathrm{mmol})$ dissolved in 2 ml of water was added slowly and the resulting solution was refluxed for one h . The brown solution obtained was subjected to slow evaporation at room temperature and was finally triturated with toluene to recover the powdered form of the title complex. The solid product was then kept in a desiccator in order to achieve constant weight (yield $0.584 \mathrm{~g} ; 87.8 \%$).

The product was recrystallized from a mixed methanolacetonitrile (1:9) solvent system and brown prisms of (I) were obtained. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3039(\mathrm{CH}$ aromatic), $1595(\mathrm{C}=\mathrm{N}$ aromatic), 1416-1554 ($\mathrm{C}=\mathrm{C}$ aromatic), 491 and $409(\mathrm{Co}-\mathrm{N}$ symmetric and asymmetric bending, respectively). The broad band centred near $3423 \mathrm{~cm}^{-1}$ can be ascribed to $\nu(\mathrm{O}-\mathrm{H})$ vibrations.

Simultaneous TG/DTA measurements were carried out using a Perkin-Elmer Diamond TG/DTA analyser. A PerkinElmer Lambda-35 UV-visible spectrophotometer and Moriba spectrofluorimeter equipped with a 450 W xenon lamp as an excitation source were used to obtain the diffuse reflectance and photoluminescence spectra, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The oxygen-bound H atoms were located from difference-Fourier maps and refined as riding:

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
M_{r}	737.31
Crystal system, space group	Tetragonal, $I 4_{1} / a$
Temperature (K)	296
$a, c(\AA)$	$9.2846(7), 38.069(4)$
$V\left(\AA^{3}\right)$	$3281.7(6)$
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.89
Crystal size (mm)	$0.35 \times 0.35 \times 0.30$
Data collection	Bruker APEXII CCD area
Diffractometer	Multi-scan $(S A D A B S ;$ Bruker,
Absorption correction	$2009)$
	$0.739,0.765$
$T_{\text {min }}, T_{\text {max }}$	$12778,2054,1628$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.031
$R_{\text {int }}$	0.669
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.044,0.127,1.08$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2054
No. of reflections	112
No. of parameters	2
No. of restraints	H atoms treated by a mixture of
H -atom treatment	independent and constrained
	refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.69,-0.41$

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXT2016/4 (Sheldrick, 2015a), SHELXL2016/4 (Sheldrick, 2015b), Mercury (Macrae et al., 2020).
$\mathrm{O}-\mathrm{H}=0.82(2) \AA$. The carbon-bound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The authors thank Tumkur University administration for their support and encouragement. BT is thankful to the Principal
and the staff of Government Science College, Chithradurga577501.

References

Abedi, A., Saemian, E. \& Amani, V. (2015). J. Struct. Chem. 56, 15451549.

Adamovich, V. I., Cordero, S. R., Djurovich, P. I., Tamayo, A., Thompson, M. E., D'Andrade, B. W. \& Forrest, S. R. (2003). Org. Electron. 4, 77-87.
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Gao, F. G. \& Bard, A. J. (2000). J. Am. Chem. Soc. 122, 7426-7427.
Grushin, V. V., Herron, N., LeCloux, D. D., Marshall, W. J., Petrov, V. A. \& Wang, Y. (2001). Chem. Commun. pp. 1494-1495.

Harry, G. H. (1976). J. Res. Natl Bur. Stand. 80A, 567-583.
Huang, W. \& Qian, H. (2008). J. Mol. Struct. 874, 64-76.
Ichikawa, M., Wakabayashi, K., Hayashi, S., Yokoyama, N., Koyama, T. \& Taniguchi, Y. (2010). Org. Electron. 11, 1966-1973.

Kaes, C., Katz, A. \& Hosseini, M. W. (2000). Chem. Rev. 100, 35533590.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.
Marcus, R. A. (1965). J. Chem. Phys. 43, 679-701.
Momeni, B. Z., Rahimi, F., Jebraeil, S. M. \& Janczak, J. (2017). J. Mol. Struct. 1150, 196-205.
Morales, A. E., Mora, E. S. \& Pal, U. (2007). Rev. Mex. Fis., 53, 18-22.
Publication CIE No. 15.2 (1986). Colorimetry, 2nd ed.. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.
Publication CIE No. 17.4 (1987). International Lighting Vocabulary. Vienna: Central Bureau of the Commission Internationale de L'Eclairage.
Rudmann, H. \& Rubner, M. F. (2001). J. Appl. Phys. 90, 4338-4345.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sulikowska, D. C., Malinowska, A. \& Doczekalska, J. R. (2000). Pol. J. Chem. 74, 607-614.

Tang, C. W. \& VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.
Wang, Y., Jiao, R., Qiu, X.-L., Wang, J. \& Huang, W. (2012). Acta Cryst. E68, m777-m778.
Williams, R. M., De Cola, L., Hartl, F., Lagref, J.-J., Planeix, J.-M., Cian, A. D. \& Hosseini, M. W. (2002). Coord. Chem. Rev. 230, 253261.

supporting information

Acta Cryst. (2020). E76, 496-499 [https://doi.org/10.1107/S205698902000287X]
Crystal structure and photoluminescent properties of bis(4'-chloro-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridyl)cobalt(II) dichloride tetrahydrate

B. Thippeswamy, P. A. Suchetan, K. M. Mahadevan, H. Nagabhushana and G. R. Vijayakumar

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT2016/4 (Sheldrick, 2015a); program(s) used to refine structure:

SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015b).

Bis(4'-chloro-2,2':6', $2^{\prime \prime}$-terpyridyl)cobalt(II) dichloride tetrahydrate

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClN}_{3}\right)_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=737.31$
Tetragonal, $I 4_{1} / a$
Hall symbol: -I 4ad
$a=9.2846$ (7) \AA
$c=38.069$ (4) \AA
$V=3281.7$ (6) \AA^{3}
$Z=4$
$F(000)=1508$

Data collection

Bruker APEXII CCD area diffractometer
Radiation source: fine-focus sealed tube

Graphite monochromator

phi and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.739, T_{\text {max }}=0.765$

Prism

$D_{\mathrm{x}}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 143 reflections
$\theta=2.1-28.4^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, brown
$0.35 \times 0.35 \times 0.30 \mathrm{~mm}$

12778 measured reflections
2054 independent reflections
1628 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-10 \rightarrow 12$
$k=-11 \rightarrow 12$
$l=-50 \rightarrow 50$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.127$
$S=1.08$
2054 reflections
112 parameters
2 restraints
Primary atom site location: dual

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0659 P)^{2}+2.6119 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.69 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.41 \mathrm{e}_{\AA^{-3}}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Co1	0.500000	0.750000	0.625000	$0.03266(18)$
C11	0.500000	0.750000	$0.45878(2)$	$0.0973(5)$
C12	0.000000	0.250000	$0.51848(4)$	$0.0902(4)$
N2	0.500000	0.750000	$0.57542(6)$	$0.0327(5)$
N1	$0.3088(2)$	$0.8560(2)$	$0.61590(4)$	$0.0374(4)$
O1	$0.1904(3)$	$0.5302(3)$	$0.52954(7)$	$0.0799(7)$
C6	$0.3905(2)$	$0.8121(2)$	$0.55799(5)$	$0.0368(4)$
C5	$0.2786(2)$	$0.8709(2)$	$0.58127(5)$	$0.0396(5)$
C1	$0.2131(3)$	$0.9052(3)$	$0.63940(6)$	$0.0463(5)$
H1	0.233771	0.896268	0.663200	0.056^{*}
C7	$0.3886(3)$	$0.8165(3)$	$0.52162(5)$	$0.0488(6)$
H7	0.314890	0.862669	0.509485	0.059^{*}
C8	0.500000	0.750000	$0.50418(8)$	$0.0516(9)$
C2	$0.0868(3)$	$0.9678(4)$	$0.62963(7)$	$0.0616(7)$
H2	0.022044	1.000078	0.646538	0.074^{*}
C4	$0.1537(3)$	$0.9336(4)$	$0.56990(7)$	$0.0700(9)$
H4	0.134770	0.943043	0.546016	0.084^{*}
C3	$0.0559(3)$	$0.9828(5)$	$0.59462(7)$	$0.0816(11)$
H3	-0.029809	1.025672	0.587528	0.098^{*}
H2O1	$0.142(3)$	$0.457(2)$	$0.5273(8)$	$0.057(9)^{*}$
H1O1	$0.151(4)$	$0.589(3)$	$0.5157(8)$	$0.085(13)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0358(2)$	$0.0358(2)$	$0.0263(3)$	0.000	0.000	0.000
C11	$0.1200(10)$	$0.1498(13)$	$0.0220(4)$	$0.0660(9)$	0.000	0.000
C12	$0.1157(11)$	$0.0514(6)$	$0.1035(10)$	$-0.0010(6)$	0.000	0.000
N2	$0.0373(12)$	$0.0359(12)$	$0.0249(10)$	$0.0001(9)$	0.000	0.000
N1	$0.0424(10)$	$0.0422(10)$	$0.0274(8)$	$0.0000(7)$	$-0.0015(7)$	$0.0003(7)$
O1	$0.0732(16)$	$0.0850(19)$	$0.0814(16)$	$-0.0034(14)$	$0.0074(13)$	$-0.0058(15)$
C6	$0.0405(11)$	$0.0418(11)$	$0.0282(9)$	$0.0017(8)$	$-0.0022(8)$	$-0.0011(8)$
C5	$0.0408(11)$	$0.0490(12)$	$0.0292(10)$	$0.0040(9)$	$-0.0027(8)$	$-0.0004(8)$
C1	$0.0541(14)$	$0.0557(14)$	$0.0292(10)$	$0.0014(11)$	$0.0042(9)$	$-0.0005(9)$
C7	$0.0536(14)$	$0.0648(15)$	$0.0281(10)$	$0.0148(11)$	$-0.0063(9)$	$-0.0012(9)$
C8	$0.065(2)$	$0.069(2)$	$0.0210(13)$	$0.0163(17)$	0.000	0.000
C2	$0.0535(15)$	$0.085(2)$	$0.0462(14)$	$0.0173(14)$	$0.0114(11)$	$-0.0033(13)$
C4	$0.0591(17)$	$0.116(3)$	$0.0346(12)$	$0.0347(17)$	$-0.0058(11)$	$-0.0014(14)$
C3	$0.0580(17)$	$0.135(3)$	$0.0519(16)$	$0.0430(19)$	$-0.0035(13)$	$-0.0036(17)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Col}-\mathrm{N} 2{ }^{\text {i }}$	1.888 (2)	C6-C7	1.385 (3)
Col-N2	1.888 (2)	C6-C5	1.471 (3)
Col-N1	2.0591 (18)	C5-C4	1.368 (3)
$\mathrm{Col}-\mathrm{Nl}^{1}{ }^{\text {i }}$	2.0591 (18)	$\mathrm{C} 1-\mathrm{C} 2$	1.361 (4)
$\mathrm{Col}-\mathrm{N} 1^{\text {ii }}$	2.0591 (18)	C1-H1	0.9300
$\mathrm{Col-N1} 1^{\text {iii }}$	2.0591 (18)	C7-C8	1.376 (3)
C11-C8	1.728 (3)	C7-H7	0.9300
N2-C6	1.344 (2)	C8-C7 ${ }^{\text {iii }}$	1.376 (3)
N2-C6 ${ }^{\text {iii }}$	1.344 (2)	C2-C3	1.370 (4)
N1-C1	1.341 (3)	C2-H2	0.9300
N1-C5	1.355 (3)	C4-C3	1.385 (4)
$\mathrm{O} 1-\mathrm{H} 2 \mathrm{O} 1$	0.824 (18)	C4-H4	0.9300
$\mathrm{O} 1-\mathrm{H1O} 1$	0.843 (18)	C3-H3	0.9300
N2 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2$	180.0	N2-C6-C5	113.33 (18)
N2-Col-N1	99.69 (5)	C7-C6-C5	125.58 (19)
N2-Co1-N1	80.31 (5)	N1-C5-C4	121.8 (2)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Col} \mathrm{C}^{-} 1^{\mathrm{i}}$	80.31 (5)	N1-C5-C6	113.71 (18)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {i }}$	99.69 (5)	C4-C5-C6	124.48 (19)
$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	91.623 (15)	N1-C1-C2	122.3 (2)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Col} 1-\mathrm{N} 1^{\text {ii }}$	80.31 (5)	N1-C1-H1	118.8
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 1^{\text {ii }}$	99.69 (5)	C2-C1-H1	118.8
$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 1^{1 i}$	91.623 (15)	C8-C7-C6	117.3 (2)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Col} 1-\mathrm{N} 1^{\text {ii }}$	160.62 (9)	C8-C7-H7	121.3
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 1^{1 i i}$	99.69 (5)	C6- $\mathrm{C} 7-\mathrm{H} 7$	121.3
$\mathrm{N} 2-\mathrm{Col}-\mathrm{N} 1^{\text {iii }}$	80.31 (5)	C7iii-C8-C7	122.3 (3)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {iii }}$	160.62 (9)	C7iii-C8-Cl1	118.85 (14)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Col} 1-\mathrm{N} 1^{\text {iii }}$	91.623 (16)	C7-C8- Cl 1	118.86 (14)
$\mathrm{N} 1{ }^{\text {iii }}$ - Col - $\mathrm{N}^{\text {iii }}$	91.623 (15)	C1-C2-C3	119.3 (2)
C6-N2-C6 ${ }^{\text {iii }}$	120.8 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4
C6-N2-Co1	119.59 (12)	C3-C2-H2	120.4
C6 ${ }^{\text {iii }}$ - $\mathrm{N} 2-\mathrm{Col}$	119.60 (12)	C5-C4-C3	118.7 (2)
C1-N1-C5	118.49 (19)	C5-C4-H4	120.6
C1-N1-Col	128.45 (15)	C3-C4-H4	120.6
C5-N1-Col	113.02 (14)	C2-C3-C4	119.4 (3)
$\mathrm{H} 2 \mathrm{O} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} 1$	103 (3)	C2-C3-H3	120.3
N2-C6-C7	121.1 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.3
N1-Co1-N2-C6	0.56 (12)	N2-C6-C5-N1	2.1 (3)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 6$	-89.44 (12)	C7-C6-C5-N1	-178.2 (2)
N1i- ${ }^{\text {ii }} \mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 6$	90.56 (12)	N2-C6-C5-C4	-177.1 (3)
N1 ${ }^{\text {iii }}$ - $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 6$	-179.44 (12)	C7-C6-C5-C4	2.6 (4)
N1-Co1-N2-C6iii	-179.44 (12)	C5-N1-C1-C2	0.7 (4)
$\mathrm{N} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C}^{\text {iii }}$	90.56 (12)	$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-176.8(2)
N1ii-Co1-N2-C6 ${ }^{\text {iii }}$	-89.44 (12)	N2-C6-C7-C8	2.5 (3)
N1 ${ }^{\text {iii }}$ - $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 6{ }^{\text {iii }}$	0.56 (12)	C5-C6-C7-C8	-177.14 (19)

C6 ${ }^{\text {iii- }}$ - $2-\mathrm{C} 6-\mathrm{C} 7$	-1.31 (17)	C6-C7-C8-C7iii	-1.23 (15)
Co1-N2-C6-C7	178.69 (16)	C6-C7-C8-Cl1	178.78 (15)
C6 ${ }^{\text {iii- }}$ - $2-\mathrm{C} 6-\mathrm{C} 5$	178.4 (2)	N1-C1-C2-C3	-0.7 (5)
Co1-N2-C6-C5	-1.6 (2)	N1-C5-C4-C3	-0.1 (5)
C1-N1-C5-C4	-0.4 (4)	C6-C5-C4-C3	179.0 (3)
$\mathrm{Co1-N1-C5-C4}$	177.5 (2)	C1-C2-C3-C4	0.2 (6)
C1-N1-C5-C6	-179.6 (2)	C5-C4-C3-C2	0.1 (6)
Co1-N1-C5-C6	-1.7 (2)		

Symmetry codes: (i) $y-1 / 4,-x+5 / 4,-z+5 / 4$; (ii) $-y+5 / 4, x+1 / 4,-z+5 / 4$; (iii) $-x+1,-y+3 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 2 O 1 \cdots \mathrm{Cl} 2$	0.82	2.35	3.1735	177
$\mathrm{O}_{1} \mathrm{H} 1 O 1 \cdots \mathrm{Cl} 2^{\text {iv }}$	0.84	2.43	3.2607	170
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O}^{\text {v }}$	0.93	2.44	$3.334(4)$	161

Symmetry codes: (iv) $-x,-y+1,-z+1$; (v) $x, y+1 / 2,-z+1$.

